SlideShare a Scribd company logo
1 of 80
Download to read offline
VIA University 
College 
Thermal response test and 
soil geothermal modelling 
Authors: 
Pedro Rico López 
Miguel Salgado Pérez 
David Canosa Vaamonde 
Martín Amado Pousa 
Supervisors: 
María Pagola 
Inga Sorensen 
Henrik Bjørn 
1
1. INTRODUCTION 
Text 
VIA University 
College 
Via University 
College 
2 
Energy park 
LOCATION
1. INTRODUCTION 
VIA University 
College 
3 
LOCATION 
ENERGY PARK
VIA University 
College 
4 
1. INTRODUCTION 
ENERGY PARK 
LOCATION
VIA University 
College 
5 
1. INTRODUCTION 
ENERGY PARK 
ENERGY PARK
VIA University 
College 
6 
1. INTRODUCTION 
LOCATION 
ENERGY PARK
VIA University 
College 
7 
1. INTRODUCTION 
LOCATION 
VIA 14 VIA 13 
ENERGY PARK
VIA University 
College 
8 
1. INTRODUCTION 
BOREHOLE DESCRIPTION 
VIA 14 VIA 13 
100m 96m 
VIA 14 
10m
1. INTRODUCTION 
TRT in BHE VIA 14 
Thermal energy storage modelling with Feflow 
VIA University 
College 
9 
GOALS 
GeRT 
VIA 14
1. INTRODUCTION 
TRT in BHE via 14 
-Thermal conductivity of the soil around of BHE VIA 14 
-Borehole thermal resistance of the BHE VIA 14 
Outcomes 
VIA University 
College 
10 
GOALS 
Interpreted 
Compared 
Previous TRT 
By intervals of time 
GeRT software 
Conclusions
1. INTRODUCTION 
•Thermal modelling by feflow software 
VIA University 
College 
11 
GOALS 
Behavior 
of the soil 
Storage Extraction
2. BIBLIOGRAPHIC RESEARCH 
VIA University 
College 
12 
Shallow geothermal energy 
Energy stored in the form of heat 
beneath the surface of the solid 
earth. 
Solar = 1 MWh/m² 
Geothermal = 0,5 – 1 kWh/m² 
Solar : Geothermal = 1000 : 1 
Shallow energy = Solar energy
2. BIBLIOGRAPHIC RESEARCH 
VIA University 
College 
13 
Shallow geothermal energy 
• How much energy can be extracted depends on: 
Heat transfer: 
• Conduction 
• Convection 
• Advection 
• Dispersion 
• Radiation 
Geothermal gradient: 
• 2,5 – 3,0 ºC/100m 
Properties of soil: 
• Specific heat capacity 
• Thermal conductivity 
• Diffusivity 
Conductive heat flow: 
• 65 – 101 mW/m²
2. BIBLIOGRAPHIC RESEARCH 
VIA University 
College 
14 
Ground Source Heat Pump 
Ground source
2. BIBLIOGRAPHIC RESEARCH 
VIA University 
College 
15 
Ground source heat pump system 
The heat transfer 
is done through 
heat exchanger 
Ground water heat pump system (open loops) 
Close loops system
2. BIBLIOGRAPHIC RESEARCH 
VIA University 
College 
16 
Borehole heat exchanger 
Ø 75-200 mm 
30-300m depth
2. BIBLIOGRAPHIC RESEARCH 
VIA University 
College 
17 
Borehole heat exchanger 
Configuration
2. BIBLIOGRAPHIC RESEARCH 
VIA University 
College 
18 
Borehole thermal resistance 
The thermal resistance [K m W-1] is the capacity of any material 
to oppose to heat transfer through itself 
Surrounding ground 
thermal resistance Rg 
Borehole thermal 
resistance 
Rb= Rf + Rbhf+ Rbhw
2. BIBLIOGRAPHIC RESEARCH 
VIA University 
College 
19 
Borehole thermal resistance 
Parameter Influencing thermal resistance 
•Number of pipes 
•Borehole depth 
•Shank spacing (distance between pipes) 
•Pipe material 
•Fluid flow rate
2. BIBLIOGRAPHIC RESEARCH 
VIA University 
College 
20 
TRT Definition 
The thermal response test is a suitable method to 
determine the effective thermal conductivity of the 
underground and the borehole thermal resistance 
(Gehlin 2002). 
Mogensen (1983) presented a method measure the 
thermal properties of boreholes in situ, the thermal 
response test. 
Mogensen designed a system where a fluid is circulated 
through the BHE. TRT method is based in the principle that 
with a known input power and tracking the mean 
temperature development over time, it is possible to 
measure the heat transported to the ground.
2. BIBLIOGRAPHIC RESEARCH 
VIA University 
College 
21 
Thermal response test TRT 
Steps before TRT: 
•Estimate thermal conductivity (λ) and volumetric heat 
capacity of the ground (Rb). 
•Measure the undisturbed ground temperature.
2. BIBLIOGRAPHIC RESEARCH 
VIA University 
College 
22 
Underground thermal energy storage (UTES) 
• Use of borehole heat 
exchangers 
• Depends on the thermal properties 
of the ground. 
• Can be used to balance heating 
systems STES
3. EXPERIMENTAL SECTION VIA University 
College 
23 
PROCESS SUMARY 
• Thermal properties estimation. 
• Undisturbed ground temperature. 
• Thermal Response Test.
3. EXPERIMENTAL SECTION 
• Literature values from VDI 
• Geological information (GEUS) 
• Previous results of needle prove tests 
VIA University 
College 
24 
THERMAL PROPERTIES ESTIMATION
VIA University 
College 
25 
3. EXPERIMENTAL SECTION 
THERMAL PROPERTIES ESTIMATION 
Depth (m) Layer 
thickness 
(m) 
λ (W/mK) 
Svc 
From To (MJ/m³K) 
1 3 2,0 1,54 2,40 
3 6 3,0 1,00 1,60 
6 9 3,0 2,36 2,20 
9 12 3,0 1,40 1,90 
12 15 3,0 1,00 1,50 
15 18 3,0 2,35 2,50 
18 24 6,0 1,40 1,90 
24 27 3,0 1,74 2,40 
27 45 18,0 1,00 2,00 
45 48 3,0 1,31 2,00 
48 51 3,0 1,10 2,00 
51 54 3,0 1,80 2,40 
54 57 3,0 2,40 2,50 
57 100 43,0 1,00 2,00 
Total depth (m) 99,0 
λ(ari) Svc(ari) 
1,23 2,03 
Arithmetic mixing model;
3. EXPERIMENTAL SECTION 
Thermal conductivity: 
Volumetric heat capacity: 
λ= 1,23 W/m/K 
VIA University 
College 
Svc= 2,03 MJ/m³/K 
26 
THERMAL PROPERTIES ESTIMATION 
• This values are not a good estimation 
• λ Significantly lower than real 
• Only to calculate break time for steady state
VIA University 
College 
27 
3. EXPERIMENTAL SECTION 
UNDISTURBED GROUND TEMPERATURE 
A good estimate of the undisturbed ground 
temperature is necessary for a correct design of the 
ground heat exchanger (Gehlin 2002). 
• At the same time the authors measured the 
ground water table at 15,05m.
VIA University 
College 
28 
3. EXPERIMENTAL SECTION 
UNDISTURBED GROUND TEMPERATURE 
The method performed was: 
• Measure temperature in each meter of depth. 
• 4 minutes interval between steps. 
• The average temperature calculated with the 
arithmetic mean.
VIA University 
College 
29 
3. EXPERIMENTAL SECTION 
UNDISTURBED GROUND TEMPERATURE 
The undisturbed ground 
temperature mean result was 
9,56 ºC 
0 5 10 15 
0 
-10 
-20 
-30 
-40 
-50 
-60 
-70 
-80 
-90 
-100 
-110 
Temperature (Cº) 
Depth 
(m)
VIA University 
College 
30 
3. EXPERIMENTAL SECTION 
THERMAL RESPONSE TEST 
Analysis method – Line Source Theory
VIA University 
College 
31 
3. EXPERIMENTAL SECTION 
THERMAL RESPONSE TEST 
Experimental setup for TRT 
• Equipment 
- New equipment GeRT by UBeG 
- Safety control systems 
- Own software
VIA University 
College 
32 
3. EXPERIMENTAL SECTION 
THERMAL RESPONSE TEST 
Experimental setup for TRT 
• Initial assumptions 
- Temperature of soil in equilibrium 
- Insulate the pipes 
- Pressure between 1 and 2 bar 
- Turbulent flow Re 4000 
- Heat power of 30-80 W/m 
- Length minimum 50 h
VIA University 
College 
33 
3. EXPERIMENTAL SECTION 
THERMAL RESPONSE TEST 
Experimental setup for TRT 
• Calculations 
- Total duration: 50,8 h 
- Reynolds number: 17020 
- Heat input rate: 58 w/m 
- Initial ti: 9,6 ºC 
- Final tf: 24,9 ºC 
Starting values Final values 
Input 
temperature 
9,62 ºC 26,56 ºC 
Output 
temperature 
9,63 ºC 23,43 ºC 
Selected hea 
ting power 
75% - 
Date 07/04/2014 09/04/2014 
Time 11:03 13:00 
Actual 
heating 
5,8 Kw 5,7 Kw 
power 
Flow rate 1,572 m3/h 1,572 m3/h 
Total flow 
283,90 m3 361,94 m3 
volume 
Total electric 
work 
673 Kwh 958 Kwh 
Pressure 2 bar 2 bar
VIA University 
College 
34 
3. EXPERIMENTAL SECTION 
THERMAL RESPONSE TEST 
Experimental setup for TRT 
• Calculations 
- Length minimum 50 h 
- Dismissing time 
- Time intervals 
VIA 14 CALCULATIONS 
Time 
interval 
6h-50h 9h-50h 12h-50h 9h-45h 9h-40h
4. RESULTS, INTERPRETATION AND 
COMPARIONS OF TRT 
VIA University 
College 
35 
Results 
30,00 
25,00 
20,00 
15,00 
10,00 
5,00 
Undisturbed Ground 
Temperature (°C) 
Tf(°C) LHS (°C) Effect (kW) Flow (m³/h) 
Mean power rate input 
(W/m) 
Thermal Conductivity 
(W/mK) 
Borehole Thermal 
Resistance (mK/W) 
9,56 56,85 2,03 ± 0,03 0,1079 ± 0,0020 
0,00 
0 5 10 15 20 25 30 35 40 45 50 55 
Time (h)
4. RESULTS, INTERPRETATION AND 
COMPARIONS OF TRT 
VIA University 
College 
36 
Temperature (ºC) Linear (Temperature (ºC)) 
y = 2,2229x - 1,9832 
25,50 
25,00 
24,50 
24,00 
23,50 
23,00 
22,50 
22,00 
21,50 
21,00 
20,50 
10,25 10,50 10,75 11,00 11,25 11,50 11,75 12,00 12,25 
Temperature (ºC) 
Time ln(s)
4. RESULTS, INTERPRETATION AND 
COMPARIONS OF TRT 
VIA University 
College 
37
According line source theory:
0,1500 
0,1450 
0,1400 
0,1350 
0,1300 
0,1250 
0,1200 
0,1150 
0,1100 
0,1050 
0,1000 
0,0950 
0,0900 
0,0850 
0,0800 
0,0750 
4. RESULTS, INTERPRETATION AND 
COMPARIONS OF TRT 
2,25 
2,20 
2,15 
2,10 
2,05 
2,00 
1,95 
1,90 
1,85 
1,80 
1,75 
1,70 
1,65 
1,60 
1,55 
1,50 
7,5 12,5 17,5 22,5 27,5 32,5 37,5 42,5 47,5 52,5 
Thermal resistance (mK/w) 
Thermal conductivity (W/mK) 
Time (h) 
Soil thermal conductivity (w/mK) Borehole thermal resistance (mK/w) 
VIA University 
College 
38 
λmean = 2,03 ± 0,03 w/mK 
Rbmean = 0,1079 ± 0,0020 mK/w
4. RESULTS, INTERPRETATION AND 
COMPARIONS OF TRT 
VIA University 
College 
39 
Comparison time intervals 
Time 
interval (h) 
6-50 9-50 12-50 9-45 9-40 
Thermal 
Conductivity 
(W/mK) 
2,00 ± 0,03 2,03 ± 0,03 2,08 ± 0,03 2,05 ± 0,03 2,03 ± 0,03 
Borehole 
Thermal 
Resistance 
(mK/W) 
0,1060 ± 0,0020 0,1079 ± 0,0020 0,1101 ± 0,0020 0,1088 ± 0,0019 0,1079 ± 0,0019 
According Sanner (2005) and Banks (2012): 
  
	 
  
∝ 
= 8,89 hours
4. RESULTS, INTERPRETATION AND 
COMPARIONS OF TRT 
VIA University 
College 
40 
y = 2,2643ln(x) + 16,076 
y = 2,2229ln(x) + 16,219 
y = 2,1768ln(x) + 16,381 
25,00 
24,50 
24,00 
23,50 
23,00 
22,50 
22,00 
21,50 
21,00 
20,50 
20,00 
5,00 50,00 
Temperature (°C) 
Time logarithm (h) 
Trend Line (6-50h) Trend Line (9-50h) Trend Line (12-50h)
4. RESULTS, INTERPRETATION AND 
COMPARIONS OF TRT 
VIA University 
College 
41 
Comparison GeRT software
4. RESULTS, INTERPRETATION AND 
COMPARIONS OF TRT 
VIA University 
College 
42
4. RESULTS, INTERPRETATION AND 
COMPARIONS OF TRT 
VIA University 
College 
43 
Time interval 
(h) 
Manual 
calculation 
GeRT 
calculation 
Neglected time 
(h) 
9,00 8,96 
Thermal 
Conductivity 
(W/mK) 
2,03 2,01 
Borehole Thermal 
Resistance 
(mK/W) 
0,1079 0,1090 
Error in manual results ≈ 1%
4. RESULTS, INTERPRETATION AND 
COMPARIONS OF TRT 
VIA University 
College 
44 
Comparison with previous TRT 
Time interval (h) Past TRT Current TRT 
Starting Date 03/07/2013 07/04/2014 
Starting time 18:00 10:10 
Finishing date 07/07/2013 09/04/2014 
Finishing time 16:33 13:00 
Total duration (h) 51,25 50,8 
Undisturbed ground 
9,90 9,56 
temperature (ºC) 
Groundwater level (m) 15,15 15,05 
Average heating 
power (w) 
2180 5626 
Average flow rate (l/h) 1121,70 1554,75
4. RESULTS, INTERPRETATION AND 
COMPARIONS OF TRT 
VIA University 
College 
45 
27,5 
25,0 
22,5 
20,0 
17,5 
15,0 
12,5 
10,0 
7,5 
5,0 
2,5 
0,0 
-5 0 5 10 15 20 25 30 35 40 45 50 55 
Time (h) 
Past TRT temperature (ºC) Current TRT temperature (ºC) Past TRT power (Kw) Current TRT power (Kw)
4. RESULTS, INTERPRETATION AND 
COMPARIONS OF TRT 
VIA University 
College 
y = 2,2229x - 1,9832 
y = 0,9748x + 4,356 
46 
26 
25 
24 
23 
22 
21 
20 
19 
18 
17 
16 
15 
14 
10,25 10,50 10,75 11,00 11,25 11,50 11,75 12,00 12,25 
Temperature (ºC) 
ln (s) 
Past TRT Present TRT Linear (Past TRT) Linear (Present TRT)
4. RESULTS, INTERPRETATION AND 
COMPARIONS OF TRT 
VIA University 
College 
0,15 
0,14 
0,13 
0,12 
0,11 
0,10 
47 
2,25 
2,00 
1,75 
1,50 
1,25 
1,00 
9 14 19 24 29 34 39 44 49 54 
Borehole thermal resistance (mK/w) 
Soil thermal conductivity (w/mK) 
Time (h) 
λ past TRT λ present TRT Rb past TRT Rb Present TRT
4. RESULTS, INTERPRETATION AND 
COMPARIONS OF TRT 
VIA University 
College 
48 
Results Previous TRT Current TRT 
Heating power 
Flow rate 
≈ Constant in both TRT 
Presence of air 
in the loop 
Thermal Conductivity 
(W/mK) 
1,75 ± 0,05 2,03 ± 0,03 
Borehole Thermal 
Resistance (mK/W) 
0,1128 ± 0,0049 0,1079 ± 0,0020 
λpast TRT 
too variable
4. RESULTS, INTERPRETATION AND 
COMPARIONS OF TRT 
VIA University 
College 
49 
Comparison with FEFLOW model 
λ (w/mK) 2,03 
Svc (MJ/m3K) 2,03 
Temperature (ºC) 9,56 
Area (m2) 20 x 20 
Depth (m) 120 
Groundwater 
flow 
Neglected
4. RESULTS, INTERPRETATION AND 
COMPARIONS OF TRT 
VIA University 
College 
50 
Time 
interval 
(h) 
λ grouting 
(w/m·K) 
Shank 
spacing 
(mm) 
Svc soil 
(MJ/m3·K) 
Model 1 2,35 80 2,03 
Model 2 1,50 80 2,03 
Model 3 1,50 60 2,03 
Model 4 1,50 60 3,00
4. RESULTS, INTERPRETATION AND 
COMPARIONS OF TRT 
VIA University 
College 
51 
27 
25 
23 
21 
19 
17 
15 
13 
11 
9 
0 5 10 15 20 25 30 35 40 45 50 55 
Temperature (ºC) 
Time (h) 
TRT Model 1 Model 2 Model 3 Model 4
4. RESULTS, INTERPRETATION AND 
COMPARIONS OF TRT 
VIA University 
College 
52 
Before starting TRT After finishing TRT
4. RESULTS, INTERPRETATION AND 
COMPARIONS OF TRT 
VIA University 
College 
53
5. THERMAL ENERGY STORAGE 
ENERGY STORAGE IN VIA 14 AND EXTRACTION IN VIA 13 
Soil data assumed: 
• λ = 2,03 W/mK (real value of TRT) 
• Svc = 2,03 MJ/m²K (literature value) 
• Homogeneous characteristics 
• Groundwater flow neglected 
Thermal energy storage data assumed: 
• Maximum soil temperature = 20 ºC 
Thermal energy extraction data assumed: 
• Minimum soil temperature = 0 ºC 
VIA University 
College 
54
5. THERMAL ENERGY STORAGE 
Thermal energy extraction in BHE VIA 13 
VIA University 
College 
55 
Svc CALCULATIONS 
ΔT (K) Radius (m) Volume (m³) Energy (MJ) Energy(MWh) 
-9,56 3,40 3486 -67660 -18,794 
Svc 3,45 3590 -69665 -19,351 
(MJ/m³K) 3,50 3695 -71699 -19,916 
2,03 3,55 3801 -73762 -20,489 
BHE depth 3,60 3909 -75854 -21,071 
(m) 3,65 4018 -77976 -21,660 
96 3,70 4129 -80127 -22,257 
Taking into account a radio around the borehole between 3,50 and 3,55 
m, the amount of energy can be extracted is between 19, and 20,5 MWh
5. THERMAL ENERGY STORAGE 
Thermal energy storage in BHE VIA 14 
VIA University 
College 
56 
Svc CALCULATIONS 
ΔT (K) Radius (m) Volume (m³) Energy (MJ) Energy(MWh) 
-9,56 3,10 3019 63984 17,773 
Svc 3,20 3217 68178 18,938 
(MJ/m³K) 3,30 3421 72506 20,141 
2,03 3,40 3630 76997 21,380 
BHE depth 3,45 3739 79247 22,013 
(m) 3,50 3848 81561 22,656 
96 3,60 4072 86288 23,969 
Taking into account a soil radio around the borehole between 3,40 and 
3,45 m, the amount of energy can be stored is between 21,4 and 22,0 MWh
5. THERMAL ENERGY STORAGE 
· G · G ·  · 
VIA University 
College 
57 
INFINITE LINE SOURCE METHOD 
Applying Fourier’s Law in each direction 
and assuming that the thermal process 
depends only on the radial distance: 
Integrating the previous formula and 
assuming that the temperature in the 
system at the beginning (t=0) and in the 
surroundings located at infinite distance 
from the heat source (r=∞) is constant 
(t0=undisturbed ground temperature)
VIA University 
College 
58 
5. THERMAL ENERGY STORAGE 
Heat energy extraction in BHE VIA 13 
Previous premises: 
• Minimum soil temperature in storage (Tf) 
• Undisturbed ground temperature (T0) 
• Time = 1 year 
Heat energy extraction (BHE VIA 13) 
r (m) λ 
(W/m K) 
Rb 
(m K/W) 
SVC 
(J/m³ K) 
a (m²/s) Tf (ºC) T0 (ºC) γ (Euler’s 
constant) 
0,16 2,03 0,0899 2030000 0,000001 0,0 9,56 0,5772157 
Isolating from the LS formula: 
• q: heat flux (W/m) 
• Q: amount of heat energy extracted (MWh)
VIA University 
College 
59 
Heat energy extraction in BHE VIA 13 
Heat energy storage 
along 1 year 
Q = - 20,07 MWh 
5. THERMAL ENERGY STORAGE
VIA University 
College 
60 
5. THERMAL ENERGY STORAGE 
Heat energy storage in BHE VIA 14 
Previous premises: 
• Minimum soil temperature in storage (Tf) 
• Undisturbed ground temperature (T0) 
• Time = 1 year 
Heat energy extraction (BHE VIA 13) 
r (m) λ 
(W/m K) 
Rb 
(m K/W) 
SVC 
(J/m³ K) 
a (m²/s) Tf (ºC) T0 (ºC) γ (Euler’s 
constant) 
0,16 2,03 0,1079 2030000 0,000001 20,0 9,56 0,5772157 
Isolating from the LS formula: 
• q: heat flux (W/m) 
• Q: amount of heat energy extracted (MWh)
VIA University 
College 
61 
Heat energy storage in BHE VIA 14 
Heat energy storage 
along 1 year 
Q = 21,85 MWh 
5. THERMAL ENERGY STORAGE
VIA University 
College 
5. THERMAL ENERGY STORAGE 
ENERGY STORAGE IN VIA 14 AND EXTRACTION IN VIA 13 
62 
FEFLOW geothermal modelling 
Theoretical situation model: 
• Heat energy extraction through BHE VIA 13 
• Heat energy storage through BHE VIA 14 
• Time of simulation: 1 year 
• Time step of simulation: 10-7seconds 
• Heat flux (W/m) obtained from LS model per day during 1 year 
• Minimum flow rate to obtain turbulent flow 
• Soil data assumed: 
• λ = 2,03 W/mK (real value of TRT) 
• Svc = 2,03 MJ/m²K (literature value) 
• Homogeneous characteristics along depth (groundwater flow neglected) 
• Undisturbed ground temperature (9,56 ºC)
VIA University 
College 
63 
5. THERMAL ENERGY STORAGE 
FEFLOW extraction and storage model 
The evolution of the BHEs temperatures is according to the main premises 
established before de calculation of the heat flux along the year.
VIA University 
College 
64 
5. THERMAL ENERGY STORAGE 
FEFLOW extraction and storage model 
Soil temperature behaviour along 1 year
VIA University 
College 
5. THERMAL ENERGY STORAGE 
Influence on the soil temperature of the heat energy extraction through the BHE 
VIA 13 and the heat energy storage to BHE VIA 14 along 1 year. 
• NO heat transfer between the BHE during 1 year. 
65 
FEFLOW extraction and storage model
VIA University 
College 
5. THERMAL ENERGY STORAGE 
SEASONAL THERMAL ENERGY STORAGE IN BHE VIA 14 
66 
Theoretical heating system model: 
• Heat energy consumption of the World Flex House in Energy Park 
(heating system and DHW) 
• Heat pump (COP = 4,65) connected to the BEH VIA 14 and 
thermal solar panels 
• Four 2,5 m² area and 0,79 of optical efficiency thermal solar 
panels 
• Excess production of thermal solar panels is stored within the soil 
through the BHE
VIA University 
College 
5. THERMAL ENERGY STORAGE 
SEASONAL THERMAL ENERGY STORAGE IN BHE VIA 14 
67 
Thermal solar panels Heat pump (COP = 4,65) 
Sun radiation 
(kWh/m²) 
Heat energy 
production (kWh) 
Storage: excess 
production (kWh) 
Consumption 
(kWh) 
Extraction 
(kWh) 
Jan 29,1 166,3 0,0 1501,7 1235,9 
Feb 44,8 256,1 0,0 960,9 790,8 
Mar 112,0 640,2 0,0 247,8 203,9 
Apr 158,0 903,2 506,2 0,0 0,0 
May 174,0 994,7 794,7 0,0 0,0 
Jun 170,0 971,8 771,8 0,0 0,0 
Jul 167,0 984,6 754,6 0,0 0,0 
Aug 152,0 868,9 668,9 0,0 0,0 
Spe 119,0 680,3 282,3 0,0 0,0 
Oct 78,7 449,9 41,9 0,0 0,0 
Nov 37,8 216,1 0,0 875,9 720,9 
Dec 23,5 134,3 0,0 1497,7 1232,6 
YEAR 1265,9 4824,3 3820,3 5083,9 4184,1
VIA University 
College 
5. THERMAL ENERGY STORAGE 
BHE temperatures evolution along the year 
• Heat energy extraction in winter months 
• Heat energy storage in summer months 
68 
FEFLOW heating system model along 1 year
VIA University 
College 
69 
5. THERMAL ENERGY STORAGE 
FEFLOW heating system model along 1 year 
Soil temperature behaviour along 1 year
VIA University 
College 
70 
5. THERMAL ENERGY STORAGE 
FEFLOW heating system model 
Temperature of the soil in 31th of January 
This figure shows the cooling of the ground after the first month of heat energy 
extraction
VIA University 
College 
71 
5. THERMAL ENERGY STORAGE 
FEFLOW heating system model 
Temperature of the soil in 31th of May 
This figure shows how the temperature of the ground is balanced after the 
second month of heat energy storage
VIA University 
College 
72 
5. THERMAL ENERGY STORAGE 
FEFLOW heating system model 
Temperature of the soil in 30th of September 
This figure shows the heating of the temperature of the ground after the heat 
storage season
VIA University 
College 
73 
5. THERMAL ENERGY STORAGE 
FEFLOW heating system model 
Temperature of the soil in 31th of December 
This figure shows the cooling of the ground after the second month of heat 
energy extraction
VIA University 
College 
74 
5. THERMAL ENERGY STORAGE 
FEFLOW heating system model along 3 years 
BHE temperatures evolution along 3 year 
• Heat energy extraction in winter months 
• Heat energy storage in summer months
VIA University 
College 
75 
5. THERMAL ENERGY STORAGE 
FEFLOW heating system model along 3 years 
Stored heat energy into the soil obtained from FEFLOW
VIA University 
College 
76 
5. THERMAL ENERGY STORAGE 
FEFLOW heating system model along 3 years 
Stored heat energy into the soil influence: 
• Heat energy extraction: 12552,3 MWh 
• Heat energy storage: 11460,9 MWh 
• Stored heat energy into the soil drops 2300 MWh after 3 years 
• FEEFLOW theoretical heat energy storage 
12552,3 – 2300 = 10252,3 MWh 
• Efficiency of the thermal energy storage = 89,5 %
VIA University 
College 
77 
5. THERMAL ENERGY STORAGE 
INTERPRETATION OR RESULTS 
Heat energy extraction in BHE VIA 13 
• Line source model: 20,07 MWh during 1 year 
• Cooling from 9,56 ºC to 0 ºC of a cylinder of soil with radio 
between 3,50 and 3,55 m 
• Soil is an infinite medium: After 1 year, around 1 m of the BHE, the 
temperature soil drops until 4,0 ºC 
Heat energy storage in BHE VIA 14 
• Line source model: 21,85 MWh during 1 year 
• Heating from 9,56 ºC to 20 ºC of a cylinder of soil with radio 
between 3,40 and 3,45 m 
• After 1 year, considering the influence around 1 m of the BHE, the 
temperature soil increases until 13,5 ºC
VIA University 
College 
78 
5. THERMAL ENERGY STORAGE 
INTERPRETATION OR RESULTS 
Seasonal energy storage in BHE VIA 14 
• The ground source heat pump system efficiency improves 
(higher flow temperatures) 
• Soil temperatures are balanced along the time (NO freezing 
problems within the soil) 
• Heat energy stored into the soil along the time is balanced
VIA University 
College 
79 
6. CONCLUSIONS AND 
FURTHER RESEARCH 
• VIA University is a leading university researching about 
shallow geothermal energy 
• VIA has great facilities to develop research projects 
• For TRT, Svc estimation is one of the main problems leaving 
the door open to research in this field 
• Use of real data of Energy Park installations in further projects 
and compare FEFLOW simulations with real experiments 
• Take into consideration more data (ground water flow) 
• Implement better managing procedures for the 
collaboration between project group researches

More Related Content

What's hot

Heat transfer experiment for chemical engineering student
Heat transfer experiment for chemical engineering studentHeat transfer experiment for chemical engineering student
Heat transfer experiment for chemical engineering studentKrishnaKantNayak2
 
Experimental Studies on Pool Boiling Heat Transfer Using Alumina and Graphene...
Experimental Studies on Pool Boiling Heat Transfer Using Alumina and Graphene...Experimental Studies on Pool Boiling Heat Transfer Using Alumina and Graphene...
Experimental Studies on Pool Boiling Heat Transfer Using Alumina and Graphene...IRJET Journal
 
Gifford,Hoffie_ConvCalibrHeatFluxGages
Gifford,Hoffie_ConvCalibrHeatFluxGagesGifford,Hoffie_ConvCalibrHeatFluxGages
Gifford,Hoffie_ConvCalibrHeatFluxGagesAndreas F. Hoffie
 
Manual tables all new
Manual tables all newManual tables all new
Manual tables all newAwais Ali
 
Thermogravimetric analysis
Thermogravimetric analysisThermogravimetric analysis
Thermogravimetric analysisSimrana Fathima
 
TGA instrumentation
TGA instrumentation  TGA instrumentation
TGA instrumentation Sujata Holkar
 
Air Conditioning System with Ground Source Heat Exchanger
Air Conditioning System with Ground Source Heat ExchangerAir Conditioning System with Ground Source Heat Exchanger
Air Conditioning System with Ground Source Heat ExchangerIOSR Journals
 
Assessment of boiler performance
Assessment of boiler performanceAssessment of boiler performance
Assessment of boiler performanceAshish Kumar Jain
 
Optimizing Bunsen burner Performance Using CFD Analysis
Optimizing Bunsen burner Performance Using CFD AnalysisOptimizing Bunsen burner Performance Using CFD Analysis
Optimizing Bunsen burner Performance Using CFD AnalysisIJMER
 
Asphalt Testing For Precision, Accuracy And Maximum Throughput
Asphalt Testing For Precision, Accuracy And Maximum ThroughputAsphalt Testing For Precision, Accuracy And Maximum Throughput
Asphalt Testing For Precision, Accuracy And Maximum ThroughputJohn_Casola
 
Performance prediction of a thermal system using Artificial Neural Networks
Performance prediction of a thermal system using Artificial Neural NetworksPerformance prediction of a thermal system using Artificial Neural Networks
Performance prediction of a thermal system using Artificial Neural NetworksIJERD Editor
 
Experimental investigations of heat transfer mechanisms of a pulsating heat pipe
Experimental investigations of heat transfer mechanisms of a pulsating heat pipeExperimental investigations of heat transfer mechanisms of a pulsating heat pipe
Experimental investigations of heat transfer mechanisms of a pulsating heat pipeJohan Puentes
 
Thermogravimetry (instrumentation)
Thermogravimetry (instrumentation)Thermogravimetry (instrumentation)
Thermogravimetry (instrumentation)Madiha Ahmed
 

What's hot (20)

Df4301619624
Df4301619624Df4301619624
Df4301619624
 
Heat transfer experiment for chemical engineering student
Heat transfer experiment for chemical engineering studentHeat transfer experiment for chemical engineering student
Heat transfer experiment for chemical engineering student
 
Experimental Studies on Pool Boiling Heat Transfer Using Alumina and Graphene...
Experimental Studies on Pool Boiling Heat Transfer Using Alumina and Graphene...Experimental Studies on Pool Boiling Heat Transfer Using Alumina and Graphene...
Experimental Studies on Pool Boiling Heat Transfer Using Alumina and Graphene...
 
Gifford,Hoffie_ConvCalibrHeatFluxGages
Gifford,Hoffie_ConvCalibrHeatFluxGagesGifford,Hoffie_ConvCalibrHeatFluxGages
Gifford,Hoffie_ConvCalibrHeatFluxGages
 
95396211 heat-transfer-lab-manual
95396211 heat-transfer-lab-manual95396211 heat-transfer-lab-manual
95396211 heat-transfer-lab-manual
 
16028399
1602839916028399
16028399
 
Manual tables all new
Manual tables all newManual tables all new
Manual tables all new
 
Thermogravimetric analysis
Thermogravimetric analysisThermogravimetric analysis
Thermogravimetric analysis
 
FINAL_POSTER
FINAL_POSTERFINAL_POSTER
FINAL_POSTER
 
TGA instrumentation
TGA instrumentation  TGA instrumentation
TGA instrumentation
 
Air Conditioning System with Ground Source Heat Exchanger
Air Conditioning System with Ground Source Heat ExchangerAir Conditioning System with Ground Source Heat Exchanger
Air Conditioning System with Ground Source Heat Exchanger
 
Assessment of boiler performance
Assessment of boiler performanceAssessment of boiler performance
Assessment of boiler performance
 
Optimizing Bunsen burner Performance Using CFD Analysis
Optimizing Bunsen burner Performance Using CFD AnalysisOptimizing Bunsen burner Performance Using CFD Analysis
Optimizing Bunsen burner Performance Using CFD Analysis
 
Asphalt Testing For Precision, Accuracy And Maximum Throughput
Asphalt Testing For Precision, Accuracy And Maximum ThroughputAsphalt Testing For Precision, Accuracy And Maximum Throughput
Asphalt Testing For Precision, Accuracy And Maximum Throughput
 
Performance prediction of a thermal system using Artificial Neural Networks
Performance prediction of a thermal system using Artificial Neural NetworksPerformance prediction of a thermal system using Artificial Neural Networks
Performance prediction of a thermal system using Artificial Neural Networks
 
Thermal analysis 4
Thermal analysis  4Thermal analysis  4
Thermal analysis 4
 
Experimental investigations of heat transfer mechanisms of a pulsating heat pipe
Experimental investigations of heat transfer mechanisms of a pulsating heat pipeExperimental investigations of heat transfer mechanisms of a pulsating heat pipe
Experimental investigations of heat transfer mechanisms of a pulsating heat pipe
 
Thermogravimetry (instrumentation)
Thermogravimetry (instrumentation)Thermogravimetry (instrumentation)
Thermogravimetry (instrumentation)
 
R134
R134R134
R134
 
Radial heat conduction
Radial heat conductionRadial heat conduction
Radial heat conduction
 

Viewers also liked

Modernizacja ogrzewania - efekty zastosowania kotła kondensacyjnego
Modernizacja ogrzewania - efekty zastosowania kotła kondensacyjnegoModernizacja ogrzewania - efekty zastosowania kotła kondensacyjnego
Modernizacja ogrzewania - efekty zastosowania kotła kondensacyjnegoVaillant Saunier Duval Sp. z o.o.
 
Two Approaches of Seasonal Heat Storing | Ebbe Munster
Two Approaches of Seasonal Heat Storing | Ebbe MunsterTwo Approaches of Seasonal Heat Storing | Ebbe Munster
Two Approaches of Seasonal Heat Storing | Ebbe Munstericarb
 
Funkcja urlopowa ochrony instalacji solarnej
Funkcja urlopowa ochrony instalacji solarnejFunkcja urlopowa ochrony instalacji solarnej
Funkcja urlopowa ochrony instalacji solarnejHewalex Sp. z o.o. Sp.K.
 
Thermal energy storage system
Thermal energy storage systemThermal energy storage system
Thermal energy storage systemAbhinav Bhaskar
 
La géothermie : une alternative pour les mines et les communautés du Nord
La géothermie : une alternative pour les mines et les communautés du NordLa géothermie : une alternative pour les mines et les communautés du Nord
La géothermie : une alternative pour les mines et les communautés du NordJasmin Raymond
 

Viewers also liked (10)

Hanergy-Sucessful Cases
Hanergy-Sucessful CasesHanergy-Sucessful Cases
Hanergy-Sucessful Cases
 
Modernizacja ogrzewania - efekty zastosowania kotła kondensacyjnego
Modernizacja ogrzewania - efekty zastosowania kotła kondensacyjnegoModernizacja ogrzewania - efekty zastosowania kotła kondensacyjnego
Modernizacja ogrzewania - efekty zastosowania kotła kondensacyjnego
 
Two Approaches of Seasonal Heat Storing | Ebbe Munster
Two Approaches of Seasonal Heat Storing | Ebbe MunsterTwo Approaches of Seasonal Heat Storing | Ebbe Munster
Two Approaches of Seasonal Heat Storing | Ebbe Munster
 
Wprowadzenie do fotowoltaiki
Wprowadzenie do fotowoltaikiWprowadzenie do fotowoltaiki
Wprowadzenie do fotowoltaiki
 
Od czego zależy sprawność kotła kondensacyjnego
Od czego zależy sprawność kotła kondensacyjnegoOd czego zależy sprawność kotła kondensacyjnego
Od czego zależy sprawność kotła kondensacyjnego
 
Jak zwiększyc efektywność pompy ciepła
Jak zwiększyc efektywność pompy ciepłaJak zwiększyc efektywność pompy ciepła
Jak zwiększyc efektywność pompy ciepła
 
Funkcja urlopowa ochrony instalacji solarnej
Funkcja urlopowa ochrony instalacji solarnejFunkcja urlopowa ochrony instalacji solarnej
Funkcja urlopowa ochrony instalacji solarnej
 
Thermal energy storage system
Thermal energy storage systemThermal energy storage system
Thermal energy storage system
 
La géothermie : une alternative pour les mines et les communautés du Nord
La géothermie : une alternative pour les mines et les communautés du NordLa géothermie : une alternative pour les mines et les communautés du Nord
La géothermie : une alternative pour les mines et les communautés du Nord
 
Build Features, Not Apps
Build Features, Not AppsBuild Features, Not Apps
Build Features, Not Apps
 

Similar to Thermal response test and soil geothermal modelling

project presentation 1 (2).pptx
project presentation 1 (2).pptxproject presentation 1 (2).pptx
project presentation 1 (2).pptxDivinKV
 
Presentation slides Bassel AL Muallim
Presentation slides   Bassel AL MuallimPresentation slides   Bassel AL Muallim
Presentation slides Bassel AL MuallimBasel Al Muallim
 
New Methods to Spatially Extend Thermal Response Test Assessments
New Methods to Spatially Extend Thermal Response Test AssessmentsNew Methods to Spatially Extend Thermal Response Test Assessments
New Methods to Spatially Extend Thermal Response Test AssessmentsJasmin Raymond
 
Final project Civil Engineering
Final project Civil EngineeringFinal project Civil Engineering
Final project Civil EngineeringMartín Amado
 
Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...
Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...
Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...IRJET Journal
 
Experimentation and analysis of heat transfer through perforated fins of diff...
Experimentation and analysis of heat transfer through perforated fins of diff...Experimentation and analysis of heat transfer through perforated fins of diff...
Experimentation and analysis of heat transfer through perforated fins of diff...SharathKumar528
 
Keith_Coulson_poster
Keith_Coulson_posterKeith_Coulson_poster
Keith_Coulson_posterKeith Coulson
 
EFFECT OF PERFORATION ON ANNULAR FIN
EFFECT OF PERFORATION ON ANNULAR FINEFFECT OF PERFORATION ON ANNULAR FIN
EFFECT OF PERFORATION ON ANNULAR FINpkstanwar911
 
Thermo gravimetric Analysis
Thermo gravimetric AnalysisThermo gravimetric Analysis
Thermo gravimetric AnalysisTejas Jagtap
 
analysis of fins subjected to forced convection.
analysis of fins subjected to forced convection.analysis of fins subjected to forced convection.
analysis of fins subjected to forced convection.ChandraprabhuVyavhar
 
Differential Scanning Calorimetry (DSC).pdf
Differential Scanning Calorimetry (DSC).pdfDifferential Scanning Calorimetry (DSC).pdf
Differential Scanning Calorimetry (DSC).pdfSanDeepSharma926061
 
EXPERIMENTAL STUDY OF MIXED CONVECTION HEAT TRANSFER USING CIRCULAR, SQUARE, ...
EXPERIMENTAL STUDY OF MIXED CONVECTION HEAT TRANSFER USING CIRCULAR, SQUARE, ...EXPERIMENTAL STUDY OF MIXED CONVECTION HEAT TRANSFER USING CIRCULAR, SQUARE, ...
EXPERIMENTAL STUDY OF MIXED CONVECTION HEAT TRANSFER USING CIRCULAR, SQUARE, ...ijiert bestjournal
 
Insights from field experiments to conduct thermal response tests with heatin...
Insights from field experiments to conduct thermal response tests with heatin...Insights from field experiments to conduct thermal response tests with heatin...
Insights from field experiments to conduct thermal response tests with heatin...Jasmin Raymond
 
Experimental Investigation of Vertical Downward Flow Boiling Heat Transfer i...
Experimental Investigation of Vertical Downward Flow Boiling  Heat Transfer i...Experimental Investigation of Vertical Downward Flow Boiling  Heat Transfer i...
Experimental Investigation of Vertical Downward Flow Boiling Heat Transfer i...IJMER
 

Similar to Thermal response test and soil geothermal modelling (20)

project presentation 1 (2).pptx
project presentation 1 (2).pptxproject presentation 1 (2).pptx
project presentation 1 (2).pptx
 
Presentation slides Bassel AL Muallim
Presentation slides   Bassel AL MuallimPresentation slides   Bassel AL Muallim
Presentation slides Bassel AL Muallim
 
112CH0390
112CH0390112CH0390
112CH0390
 
E012142024
E012142024E012142024
E012142024
 
New Methods to Spatially Extend Thermal Response Test Assessments
New Methods to Spatially Extend Thermal Response Test AssessmentsNew Methods to Spatially Extend Thermal Response Test Assessments
New Methods to Spatially Extend Thermal Response Test Assessments
 
Final project Civil Engineering
Final project Civil EngineeringFinal project Civil Engineering
Final project Civil Engineering
 
Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...
Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...
Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...
 
Experimentation and analysis of heat transfer through perforated fins of diff...
Experimentation and analysis of heat transfer through perforated fins of diff...Experimentation and analysis of heat transfer through perforated fins of diff...
Experimentation and analysis of heat transfer through perforated fins of diff...
 
274 iitb 274 corrected
274 iitb 274 corrected274 iitb 274 corrected
274 iitb 274 corrected
 
Keith_Coulson_poster
Keith_Coulson_posterKeith_Coulson_poster
Keith_Coulson_poster
 
mel709-41.ppt
mel709-41.pptmel709-41.ppt
mel709-41.ppt
 
EFFECT OF PERFORATION ON ANNULAR FIN
EFFECT OF PERFORATION ON ANNULAR FINEFFECT OF PERFORATION ON ANNULAR FIN
EFFECT OF PERFORATION ON ANNULAR FIN
 
Thermo gravimetric Analysis
Thermo gravimetric AnalysisThermo gravimetric Analysis
Thermo gravimetric Analysis
 
2014 PV Performance Modeling Workshop: Toward Reliable Module Temperature Mea...
2014 PV Performance Modeling Workshop: Toward Reliable Module Temperature Mea...2014 PV Performance Modeling Workshop: Toward Reliable Module Temperature Mea...
2014 PV Performance Modeling Workshop: Toward Reliable Module Temperature Mea...
 
analysis of fins subjected to forced convection.
analysis of fins subjected to forced convection.analysis of fins subjected to forced convection.
analysis of fins subjected to forced convection.
 
Differential Scanning Calorimetry (DSC).pdf
Differential Scanning Calorimetry (DSC).pdfDifferential Scanning Calorimetry (DSC).pdf
Differential Scanning Calorimetry (DSC).pdf
 
D031201025031
D031201025031D031201025031
D031201025031
 
EXPERIMENTAL STUDY OF MIXED CONVECTION HEAT TRANSFER USING CIRCULAR, SQUARE, ...
EXPERIMENTAL STUDY OF MIXED CONVECTION HEAT TRANSFER USING CIRCULAR, SQUARE, ...EXPERIMENTAL STUDY OF MIXED CONVECTION HEAT TRANSFER USING CIRCULAR, SQUARE, ...
EXPERIMENTAL STUDY OF MIXED CONVECTION HEAT TRANSFER USING CIRCULAR, SQUARE, ...
 
Insights from field experiments to conduct thermal response tests with heatin...
Insights from field experiments to conduct thermal response tests with heatin...Insights from field experiments to conduct thermal response tests with heatin...
Insights from field experiments to conduct thermal response tests with heatin...
 
Experimental Investigation of Vertical Downward Flow Boiling Heat Transfer i...
Experimental Investigation of Vertical Downward Flow Boiling  Heat Transfer i...Experimental Investigation of Vertical Downward Flow Boiling  Heat Transfer i...
Experimental Investigation of Vertical Downward Flow Boiling Heat Transfer i...
 

Recently uploaded

Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 

Recently uploaded (20)

Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 

Thermal response test and soil geothermal modelling

  • 1. VIA University College Thermal response test and soil geothermal modelling Authors: Pedro Rico López Miguel Salgado Pérez David Canosa Vaamonde Martín Amado Pousa Supervisors: María Pagola Inga Sorensen Henrik Bjørn 1
  • 2. 1. INTRODUCTION Text VIA University College Via University College 2 Energy park LOCATION
  • 3. 1. INTRODUCTION VIA University College 3 LOCATION ENERGY PARK
  • 4. VIA University College 4 1. INTRODUCTION ENERGY PARK LOCATION
  • 5. VIA University College 5 1. INTRODUCTION ENERGY PARK ENERGY PARK
  • 6. VIA University College 6 1. INTRODUCTION LOCATION ENERGY PARK
  • 7. VIA University College 7 1. INTRODUCTION LOCATION VIA 14 VIA 13 ENERGY PARK
  • 8. VIA University College 8 1. INTRODUCTION BOREHOLE DESCRIPTION VIA 14 VIA 13 100m 96m VIA 14 10m
  • 9. 1. INTRODUCTION TRT in BHE VIA 14 Thermal energy storage modelling with Feflow VIA University College 9 GOALS GeRT VIA 14
  • 10. 1. INTRODUCTION TRT in BHE via 14 -Thermal conductivity of the soil around of BHE VIA 14 -Borehole thermal resistance of the BHE VIA 14 Outcomes VIA University College 10 GOALS Interpreted Compared Previous TRT By intervals of time GeRT software Conclusions
  • 11. 1. INTRODUCTION •Thermal modelling by feflow software VIA University College 11 GOALS Behavior of the soil Storage Extraction
  • 12. 2. BIBLIOGRAPHIC RESEARCH VIA University College 12 Shallow geothermal energy Energy stored in the form of heat beneath the surface of the solid earth. Solar = 1 MWh/m² Geothermal = 0,5 – 1 kWh/m² Solar : Geothermal = 1000 : 1 Shallow energy = Solar energy
  • 13. 2. BIBLIOGRAPHIC RESEARCH VIA University College 13 Shallow geothermal energy • How much energy can be extracted depends on: Heat transfer: • Conduction • Convection • Advection • Dispersion • Radiation Geothermal gradient: • 2,5 – 3,0 ºC/100m Properties of soil: • Specific heat capacity • Thermal conductivity • Diffusivity Conductive heat flow: • 65 – 101 mW/m²
  • 14. 2. BIBLIOGRAPHIC RESEARCH VIA University College 14 Ground Source Heat Pump Ground source
  • 15. 2. BIBLIOGRAPHIC RESEARCH VIA University College 15 Ground source heat pump system The heat transfer is done through heat exchanger Ground water heat pump system (open loops) Close loops system
  • 16. 2. BIBLIOGRAPHIC RESEARCH VIA University College 16 Borehole heat exchanger Ø 75-200 mm 30-300m depth
  • 17. 2. BIBLIOGRAPHIC RESEARCH VIA University College 17 Borehole heat exchanger Configuration
  • 18. 2. BIBLIOGRAPHIC RESEARCH VIA University College 18 Borehole thermal resistance The thermal resistance [K m W-1] is the capacity of any material to oppose to heat transfer through itself Surrounding ground thermal resistance Rg Borehole thermal resistance Rb= Rf + Rbhf+ Rbhw
  • 19. 2. BIBLIOGRAPHIC RESEARCH VIA University College 19 Borehole thermal resistance Parameter Influencing thermal resistance •Number of pipes •Borehole depth •Shank spacing (distance between pipes) •Pipe material •Fluid flow rate
  • 20. 2. BIBLIOGRAPHIC RESEARCH VIA University College 20 TRT Definition The thermal response test is a suitable method to determine the effective thermal conductivity of the underground and the borehole thermal resistance (Gehlin 2002). Mogensen (1983) presented a method measure the thermal properties of boreholes in situ, the thermal response test. Mogensen designed a system where a fluid is circulated through the BHE. TRT method is based in the principle that with a known input power and tracking the mean temperature development over time, it is possible to measure the heat transported to the ground.
  • 21. 2. BIBLIOGRAPHIC RESEARCH VIA University College 21 Thermal response test TRT Steps before TRT: •Estimate thermal conductivity (λ) and volumetric heat capacity of the ground (Rb). •Measure the undisturbed ground temperature.
  • 22. 2. BIBLIOGRAPHIC RESEARCH VIA University College 22 Underground thermal energy storage (UTES) • Use of borehole heat exchangers • Depends on the thermal properties of the ground. • Can be used to balance heating systems STES
  • 23. 3. EXPERIMENTAL SECTION VIA University College 23 PROCESS SUMARY • Thermal properties estimation. • Undisturbed ground temperature. • Thermal Response Test.
  • 24. 3. EXPERIMENTAL SECTION • Literature values from VDI • Geological information (GEUS) • Previous results of needle prove tests VIA University College 24 THERMAL PROPERTIES ESTIMATION
  • 25. VIA University College 25 3. EXPERIMENTAL SECTION THERMAL PROPERTIES ESTIMATION Depth (m) Layer thickness (m) λ (W/mK) Svc From To (MJ/m³K) 1 3 2,0 1,54 2,40 3 6 3,0 1,00 1,60 6 9 3,0 2,36 2,20 9 12 3,0 1,40 1,90 12 15 3,0 1,00 1,50 15 18 3,0 2,35 2,50 18 24 6,0 1,40 1,90 24 27 3,0 1,74 2,40 27 45 18,0 1,00 2,00 45 48 3,0 1,31 2,00 48 51 3,0 1,10 2,00 51 54 3,0 1,80 2,40 54 57 3,0 2,40 2,50 57 100 43,0 1,00 2,00 Total depth (m) 99,0 λ(ari) Svc(ari) 1,23 2,03 Arithmetic mixing model;
  • 26. 3. EXPERIMENTAL SECTION Thermal conductivity: Volumetric heat capacity: λ= 1,23 W/m/K VIA University College Svc= 2,03 MJ/m³/K 26 THERMAL PROPERTIES ESTIMATION • This values are not a good estimation • λ Significantly lower than real • Only to calculate break time for steady state
  • 27. VIA University College 27 3. EXPERIMENTAL SECTION UNDISTURBED GROUND TEMPERATURE A good estimate of the undisturbed ground temperature is necessary for a correct design of the ground heat exchanger (Gehlin 2002). • At the same time the authors measured the ground water table at 15,05m.
  • 28. VIA University College 28 3. EXPERIMENTAL SECTION UNDISTURBED GROUND TEMPERATURE The method performed was: • Measure temperature in each meter of depth. • 4 minutes interval between steps. • The average temperature calculated with the arithmetic mean.
  • 29. VIA University College 29 3. EXPERIMENTAL SECTION UNDISTURBED GROUND TEMPERATURE The undisturbed ground temperature mean result was 9,56 ºC 0 5 10 15 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 Temperature (Cº) Depth (m)
  • 30. VIA University College 30 3. EXPERIMENTAL SECTION THERMAL RESPONSE TEST Analysis method – Line Source Theory
  • 31. VIA University College 31 3. EXPERIMENTAL SECTION THERMAL RESPONSE TEST Experimental setup for TRT • Equipment - New equipment GeRT by UBeG - Safety control systems - Own software
  • 32. VIA University College 32 3. EXPERIMENTAL SECTION THERMAL RESPONSE TEST Experimental setup for TRT • Initial assumptions - Temperature of soil in equilibrium - Insulate the pipes - Pressure between 1 and 2 bar - Turbulent flow Re 4000 - Heat power of 30-80 W/m - Length minimum 50 h
  • 33. VIA University College 33 3. EXPERIMENTAL SECTION THERMAL RESPONSE TEST Experimental setup for TRT • Calculations - Total duration: 50,8 h - Reynolds number: 17020 - Heat input rate: 58 w/m - Initial ti: 9,6 ºC - Final tf: 24,9 ºC Starting values Final values Input temperature 9,62 ºC 26,56 ºC Output temperature 9,63 ºC 23,43 ºC Selected hea ting power 75% - Date 07/04/2014 09/04/2014 Time 11:03 13:00 Actual heating 5,8 Kw 5,7 Kw power Flow rate 1,572 m3/h 1,572 m3/h Total flow 283,90 m3 361,94 m3 volume Total electric work 673 Kwh 958 Kwh Pressure 2 bar 2 bar
  • 34. VIA University College 34 3. EXPERIMENTAL SECTION THERMAL RESPONSE TEST Experimental setup for TRT • Calculations - Length minimum 50 h - Dismissing time - Time intervals VIA 14 CALCULATIONS Time interval 6h-50h 9h-50h 12h-50h 9h-45h 9h-40h
  • 35. 4. RESULTS, INTERPRETATION AND COMPARIONS OF TRT VIA University College 35 Results 30,00 25,00 20,00 15,00 10,00 5,00 Undisturbed Ground Temperature (°C) Tf(°C) LHS (°C) Effect (kW) Flow (m³/h) Mean power rate input (W/m) Thermal Conductivity (W/mK) Borehole Thermal Resistance (mK/W) 9,56 56,85 2,03 ± 0,03 0,1079 ± 0,0020 0,00 0 5 10 15 20 25 30 35 40 45 50 55 Time (h)
  • 36. 4. RESULTS, INTERPRETATION AND COMPARIONS OF TRT VIA University College 36 Temperature (ºC) Linear (Temperature (ºC)) y = 2,2229x - 1,9832 25,50 25,00 24,50 24,00 23,50 23,00 22,50 22,00 21,50 21,00 20,50 10,25 10,50 10,75 11,00 11,25 11,50 11,75 12,00 12,25 Temperature (ºC) Time ln(s)
  • 37. 4. RESULTS, INTERPRETATION AND COMPARIONS OF TRT VIA University College 37
  • 39. 0,1500 0,1450 0,1400 0,1350 0,1300 0,1250 0,1200 0,1150 0,1100 0,1050 0,1000 0,0950 0,0900 0,0850 0,0800 0,0750 4. RESULTS, INTERPRETATION AND COMPARIONS OF TRT 2,25 2,20 2,15 2,10 2,05 2,00 1,95 1,90 1,85 1,80 1,75 1,70 1,65 1,60 1,55 1,50 7,5 12,5 17,5 22,5 27,5 32,5 37,5 42,5 47,5 52,5 Thermal resistance (mK/w) Thermal conductivity (W/mK) Time (h) Soil thermal conductivity (w/mK) Borehole thermal resistance (mK/w) VIA University College 38 λmean = 2,03 ± 0,03 w/mK Rbmean = 0,1079 ± 0,0020 mK/w
  • 40. 4. RESULTS, INTERPRETATION AND COMPARIONS OF TRT VIA University College 39 Comparison time intervals Time interval (h) 6-50 9-50 12-50 9-45 9-40 Thermal Conductivity (W/mK) 2,00 ± 0,03 2,03 ± 0,03 2,08 ± 0,03 2,05 ± 0,03 2,03 ± 0,03 Borehole Thermal Resistance (mK/W) 0,1060 ± 0,0020 0,1079 ± 0,0020 0,1101 ± 0,0020 0,1088 ± 0,0019 0,1079 ± 0,0019 According Sanner (2005) and Banks (2012): ∝ = 8,89 hours
  • 41. 4. RESULTS, INTERPRETATION AND COMPARIONS OF TRT VIA University College 40 y = 2,2643ln(x) + 16,076 y = 2,2229ln(x) + 16,219 y = 2,1768ln(x) + 16,381 25,00 24,50 24,00 23,50 23,00 22,50 22,00 21,50 21,00 20,50 20,00 5,00 50,00 Temperature (°C) Time logarithm (h) Trend Line (6-50h) Trend Line (9-50h) Trend Line (12-50h)
  • 42. 4. RESULTS, INTERPRETATION AND COMPARIONS OF TRT VIA University College 41 Comparison GeRT software
  • 43. 4. RESULTS, INTERPRETATION AND COMPARIONS OF TRT VIA University College 42
  • 44. 4. RESULTS, INTERPRETATION AND COMPARIONS OF TRT VIA University College 43 Time interval (h) Manual calculation GeRT calculation Neglected time (h) 9,00 8,96 Thermal Conductivity (W/mK) 2,03 2,01 Borehole Thermal Resistance (mK/W) 0,1079 0,1090 Error in manual results ≈ 1%
  • 45. 4. RESULTS, INTERPRETATION AND COMPARIONS OF TRT VIA University College 44 Comparison with previous TRT Time interval (h) Past TRT Current TRT Starting Date 03/07/2013 07/04/2014 Starting time 18:00 10:10 Finishing date 07/07/2013 09/04/2014 Finishing time 16:33 13:00 Total duration (h) 51,25 50,8 Undisturbed ground 9,90 9,56 temperature (ºC) Groundwater level (m) 15,15 15,05 Average heating power (w) 2180 5626 Average flow rate (l/h) 1121,70 1554,75
  • 46. 4. RESULTS, INTERPRETATION AND COMPARIONS OF TRT VIA University College 45 27,5 25,0 22,5 20,0 17,5 15,0 12,5 10,0 7,5 5,0 2,5 0,0 -5 0 5 10 15 20 25 30 35 40 45 50 55 Time (h) Past TRT temperature (ºC) Current TRT temperature (ºC) Past TRT power (Kw) Current TRT power (Kw)
  • 47. 4. RESULTS, INTERPRETATION AND COMPARIONS OF TRT VIA University College y = 2,2229x - 1,9832 y = 0,9748x + 4,356 46 26 25 24 23 22 21 20 19 18 17 16 15 14 10,25 10,50 10,75 11,00 11,25 11,50 11,75 12,00 12,25 Temperature (ºC) ln (s) Past TRT Present TRT Linear (Past TRT) Linear (Present TRT)
  • 48. 4. RESULTS, INTERPRETATION AND COMPARIONS OF TRT VIA University College 0,15 0,14 0,13 0,12 0,11 0,10 47 2,25 2,00 1,75 1,50 1,25 1,00 9 14 19 24 29 34 39 44 49 54 Borehole thermal resistance (mK/w) Soil thermal conductivity (w/mK) Time (h) λ past TRT λ present TRT Rb past TRT Rb Present TRT
  • 49. 4. RESULTS, INTERPRETATION AND COMPARIONS OF TRT VIA University College 48 Results Previous TRT Current TRT Heating power Flow rate ≈ Constant in both TRT Presence of air in the loop Thermal Conductivity (W/mK) 1,75 ± 0,05 2,03 ± 0,03 Borehole Thermal Resistance (mK/W) 0,1128 ± 0,0049 0,1079 ± 0,0020 λpast TRT too variable
  • 50. 4. RESULTS, INTERPRETATION AND COMPARIONS OF TRT VIA University College 49 Comparison with FEFLOW model λ (w/mK) 2,03 Svc (MJ/m3K) 2,03 Temperature (ºC) 9,56 Area (m2) 20 x 20 Depth (m) 120 Groundwater flow Neglected
  • 51. 4. RESULTS, INTERPRETATION AND COMPARIONS OF TRT VIA University College 50 Time interval (h) λ grouting (w/m·K) Shank spacing (mm) Svc soil (MJ/m3·K) Model 1 2,35 80 2,03 Model 2 1,50 80 2,03 Model 3 1,50 60 2,03 Model 4 1,50 60 3,00
  • 52. 4. RESULTS, INTERPRETATION AND COMPARIONS OF TRT VIA University College 51 27 25 23 21 19 17 15 13 11 9 0 5 10 15 20 25 30 35 40 45 50 55 Temperature (ºC) Time (h) TRT Model 1 Model 2 Model 3 Model 4
  • 53. 4. RESULTS, INTERPRETATION AND COMPARIONS OF TRT VIA University College 52 Before starting TRT After finishing TRT
  • 54. 4. RESULTS, INTERPRETATION AND COMPARIONS OF TRT VIA University College 53
  • 55. 5. THERMAL ENERGY STORAGE ENERGY STORAGE IN VIA 14 AND EXTRACTION IN VIA 13 Soil data assumed: • λ = 2,03 W/mK (real value of TRT) • Svc = 2,03 MJ/m²K (literature value) • Homogeneous characteristics • Groundwater flow neglected Thermal energy storage data assumed: • Maximum soil temperature = 20 ºC Thermal energy extraction data assumed: • Minimum soil temperature = 0 ºC VIA University College 54
  • 56. 5. THERMAL ENERGY STORAGE Thermal energy extraction in BHE VIA 13 VIA University College 55 Svc CALCULATIONS ΔT (K) Radius (m) Volume (m³) Energy (MJ) Energy(MWh) -9,56 3,40 3486 -67660 -18,794 Svc 3,45 3590 -69665 -19,351 (MJ/m³K) 3,50 3695 -71699 -19,916 2,03 3,55 3801 -73762 -20,489 BHE depth 3,60 3909 -75854 -21,071 (m) 3,65 4018 -77976 -21,660 96 3,70 4129 -80127 -22,257 Taking into account a radio around the borehole between 3,50 and 3,55 m, the amount of energy can be extracted is between 19, and 20,5 MWh
  • 57. 5. THERMAL ENERGY STORAGE Thermal energy storage in BHE VIA 14 VIA University College 56 Svc CALCULATIONS ΔT (K) Radius (m) Volume (m³) Energy (MJ) Energy(MWh) -9,56 3,10 3019 63984 17,773 Svc 3,20 3217 68178 18,938 (MJ/m³K) 3,30 3421 72506 20,141 2,03 3,40 3630 76997 21,380 BHE depth 3,45 3739 79247 22,013 (m) 3,50 3848 81561 22,656 96 3,60 4072 86288 23,969 Taking into account a soil radio around the borehole between 3,40 and 3,45 m, the amount of energy can be stored is between 21,4 and 22,0 MWh
  • 58. 5. THERMAL ENERGY STORAGE · G · G · · VIA University College 57 INFINITE LINE SOURCE METHOD Applying Fourier’s Law in each direction and assuming that the thermal process depends only on the radial distance: Integrating the previous formula and assuming that the temperature in the system at the beginning (t=0) and in the surroundings located at infinite distance from the heat source (r=∞) is constant (t0=undisturbed ground temperature)
  • 59. VIA University College 58 5. THERMAL ENERGY STORAGE Heat energy extraction in BHE VIA 13 Previous premises: • Minimum soil temperature in storage (Tf) • Undisturbed ground temperature (T0) • Time = 1 year Heat energy extraction (BHE VIA 13) r (m) λ (W/m K) Rb (m K/W) SVC (J/m³ K) a (m²/s) Tf (ºC) T0 (ºC) γ (Euler’s constant) 0,16 2,03 0,0899 2030000 0,000001 0,0 9,56 0,5772157 Isolating from the LS formula: • q: heat flux (W/m) • Q: amount of heat energy extracted (MWh)
  • 60. VIA University College 59 Heat energy extraction in BHE VIA 13 Heat energy storage along 1 year Q = - 20,07 MWh 5. THERMAL ENERGY STORAGE
  • 61. VIA University College 60 5. THERMAL ENERGY STORAGE Heat energy storage in BHE VIA 14 Previous premises: • Minimum soil temperature in storage (Tf) • Undisturbed ground temperature (T0) • Time = 1 year Heat energy extraction (BHE VIA 13) r (m) λ (W/m K) Rb (m K/W) SVC (J/m³ K) a (m²/s) Tf (ºC) T0 (ºC) γ (Euler’s constant) 0,16 2,03 0,1079 2030000 0,000001 20,0 9,56 0,5772157 Isolating from the LS formula: • q: heat flux (W/m) • Q: amount of heat energy extracted (MWh)
  • 62. VIA University College 61 Heat energy storage in BHE VIA 14 Heat energy storage along 1 year Q = 21,85 MWh 5. THERMAL ENERGY STORAGE
  • 63. VIA University College 5. THERMAL ENERGY STORAGE ENERGY STORAGE IN VIA 14 AND EXTRACTION IN VIA 13 62 FEFLOW geothermal modelling Theoretical situation model: • Heat energy extraction through BHE VIA 13 • Heat energy storage through BHE VIA 14 • Time of simulation: 1 year • Time step of simulation: 10-7seconds • Heat flux (W/m) obtained from LS model per day during 1 year • Minimum flow rate to obtain turbulent flow • Soil data assumed: • λ = 2,03 W/mK (real value of TRT) • Svc = 2,03 MJ/m²K (literature value) • Homogeneous characteristics along depth (groundwater flow neglected) • Undisturbed ground temperature (9,56 ºC)
  • 64. VIA University College 63 5. THERMAL ENERGY STORAGE FEFLOW extraction and storage model The evolution of the BHEs temperatures is according to the main premises established before de calculation of the heat flux along the year.
  • 65. VIA University College 64 5. THERMAL ENERGY STORAGE FEFLOW extraction and storage model Soil temperature behaviour along 1 year
  • 66. VIA University College 5. THERMAL ENERGY STORAGE Influence on the soil temperature of the heat energy extraction through the BHE VIA 13 and the heat energy storage to BHE VIA 14 along 1 year. • NO heat transfer between the BHE during 1 year. 65 FEFLOW extraction and storage model
  • 67. VIA University College 5. THERMAL ENERGY STORAGE SEASONAL THERMAL ENERGY STORAGE IN BHE VIA 14 66 Theoretical heating system model: • Heat energy consumption of the World Flex House in Energy Park (heating system and DHW) • Heat pump (COP = 4,65) connected to the BEH VIA 14 and thermal solar panels • Four 2,5 m² area and 0,79 of optical efficiency thermal solar panels • Excess production of thermal solar panels is stored within the soil through the BHE
  • 68. VIA University College 5. THERMAL ENERGY STORAGE SEASONAL THERMAL ENERGY STORAGE IN BHE VIA 14 67 Thermal solar panels Heat pump (COP = 4,65) Sun radiation (kWh/m²) Heat energy production (kWh) Storage: excess production (kWh) Consumption (kWh) Extraction (kWh) Jan 29,1 166,3 0,0 1501,7 1235,9 Feb 44,8 256,1 0,0 960,9 790,8 Mar 112,0 640,2 0,0 247,8 203,9 Apr 158,0 903,2 506,2 0,0 0,0 May 174,0 994,7 794,7 0,0 0,0 Jun 170,0 971,8 771,8 0,0 0,0 Jul 167,0 984,6 754,6 0,0 0,0 Aug 152,0 868,9 668,9 0,0 0,0 Spe 119,0 680,3 282,3 0,0 0,0 Oct 78,7 449,9 41,9 0,0 0,0 Nov 37,8 216,1 0,0 875,9 720,9 Dec 23,5 134,3 0,0 1497,7 1232,6 YEAR 1265,9 4824,3 3820,3 5083,9 4184,1
  • 69. VIA University College 5. THERMAL ENERGY STORAGE BHE temperatures evolution along the year • Heat energy extraction in winter months • Heat energy storage in summer months 68 FEFLOW heating system model along 1 year
  • 70. VIA University College 69 5. THERMAL ENERGY STORAGE FEFLOW heating system model along 1 year Soil temperature behaviour along 1 year
  • 71. VIA University College 70 5. THERMAL ENERGY STORAGE FEFLOW heating system model Temperature of the soil in 31th of January This figure shows the cooling of the ground after the first month of heat energy extraction
  • 72. VIA University College 71 5. THERMAL ENERGY STORAGE FEFLOW heating system model Temperature of the soil in 31th of May This figure shows how the temperature of the ground is balanced after the second month of heat energy storage
  • 73. VIA University College 72 5. THERMAL ENERGY STORAGE FEFLOW heating system model Temperature of the soil in 30th of September This figure shows the heating of the temperature of the ground after the heat storage season
  • 74. VIA University College 73 5. THERMAL ENERGY STORAGE FEFLOW heating system model Temperature of the soil in 31th of December This figure shows the cooling of the ground after the second month of heat energy extraction
  • 75. VIA University College 74 5. THERMAL ENERGY STORAGE FEFLOW heating system model along 3 years BHE temperatures evolution along 3 year • Heat energy extraction in winter months • Heat energy storage in summer months
  • 76. VIA University College 75 5. THERMAL ENERGY STORAGE FEFLOW heating system model along 3 years Stored heat energy into the soil obtained from FEFLOW
  • 77. VIA University College 76 5. THERMAL ENERGY STORAGE FEFLOW heating system model along 3 years Stored heat energy into the soil influence: • Heat energy extraction: 12552,3 MWh • Heat energy storage: 11460,9 MWh • Stored heat energy into the soil drops 2300 MWh after 3 years • FEEFLOW theoretical heat energy storage 12552,3 – 2300 = 10252,3 MWh • Efficiency of the thermal energy storage = 89,5 %
  • 78. VIA University College 77 5. THERMAL ENERGY STORAGE INTERPRETATION OR RESULTS Heat energy extraction in BHE VIA 13 • Line source model: 20,07 MWh during 1 year • Cooling from 9,56 ºC to 0 ºC of a cylinder of soil with radio between 3,50 and 3,55 m • Soil is an infinite medium: After 1 year, around 1 m of the BHE, the temperature soil drops until 4,0 ºC Heat energy storage in BHE VIA 14 • Line source model: 21,85 MWh during 1 year • Heating from 9,56 ºC to 20 ºC of a cylinder of soil with radio between 3,40 and 3,45 m • After 1 year, considering the influence around 1 m of the BHE, the temperature soil increases until 13,5 ºC
  • 79. VIA University College 78 5. THERMAL ENERGY STORAGE INTERPRETATION OR RESULTS Seasonal energy storage in BHE VIA 14 • The ground source heat pump system efficiency improves (higher flow temperatures) • Soil temperatures are balanced along the time (NO freezing problems within the soil) • Heat energy stored into the soil along the time is balanced
  • 80. VIA University College 79 6. CONCLUSIONS AND FURTHER RESEARCH • VIA University is a leading university researching about shallow geothermal energy • VIA has great facilities to develop research projects • For TRT, Svc estimation is one of the main problems leaving the door open to research in this field • Use of real data of Energy Park installations in further projects and compare FEFLOW simulations with real experiments • Take into consideration more data (ground water flow) • Implement better managing procedures for the collaboration between project group researches
  • 81. Thank you for your attention Contact info: Pedro Rico López – pedroricolopez@hotmail.com Miguel Salgado Pérez – jmsalgadoperez@gmail.com David Canosa Vaamonde – david.canosa@udc.es Martín Amado Pousa – martinamadopousa@gmail.com VIA University College 80