SlideShare a Scribd company logo
1 of 70
Download to read offline
1
Carlos Rallo de la Cruz
M. Arch. UPM
M. Eng. in Fire safety. UC3M
Dipl. Project Management. PUC
PhD Candidate CERTEC. UPC
Contact
carlosrallo@gmail.com
+34 647865702
Madrid, Spain
www.rallodelacruz.com
www.arquitecturayfuego.es
www.linkedin.com/in/carlosrallo
Fire Safety impact in Building Design
01. Prescriptive Design 05/05/2017
02. Performance Based Design 05/05/2017
03. NFPA 101 Live Safety Code 12/05/2017
04. Fire Safety in complex Architecture designs 12/05/2017
05. CFD / Fire Dynamics Simulator 26/05/2017
06. Crowd Dynamics & Pedestrian Modeling 02/06/2017
Máster en Ingeniería de
Seguridad contra Incendios
2
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
06. Crowd Dynamics & Pedestrian Modeling
3
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Crowd Dynamics & Pedestrian Modeling
• About
• History
• Complexity
• Models
• Limitations
Practice
• FDS+Evac
• Pathfinder
• MassMotion
Schedule
4
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Interiors
Bus, Train, Metro Facilities
Exteriors Public Buildings
Stadiums Airports
About Crowd Dynamics & Pedestrian Modeling
Objectives
1. Avoid dangerous situations
2. Ensure evacuation times and safety
3. Optimize normal operation and evacuation
5
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Major crowd catastrophes
About Crowd Dynamics & Pedestrian Modeling
Love Parade in Duisburg, Germany
Photographer: Uwe Weber
Reference: Crowd Modeling and Simulation on High Performance
Architectures. Table 2.4.1 Major crowd catastrophes.
Albert Gutiérrez Millá – UAB - 2016
“In the last years has been a growing effort in solving the evacuation
safety problem. The research áreas interested on the problema vary from
engineering, computer science, psychology, architectrue or sociology,..”
6
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Evacuation calculations => Part of performance-based analyses => Life safety provided in buildings.
‒ Hand calculations
Usually follow the equations given in the Emergency Movement Chapter of the Society of Fire Protection Engineers
(SFPE) Handbook to calculate mass flow evacuation from any height of building.
http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=906951
Reference: A review of Building Evacuation Models 2º Edition. NIST Technical Note 1680
About Crowd Dynamics & Pedestrian Modeling
The calculation focuses mainly on
points of constriction throughout the
building (commonly the door to the
outside) and calculates the time for
the occupants to flow past these
points and to the outside.
7
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=906951
Reference: A review of Building Evacuation Models 2º Edition. NIST Technical Note 1680
About Crowd Dynamics & Pedestrian Modeling
Evacuation calculations => Part of performance-based analyses => Life safety provided in buildings.
‒ Computer models
To achieve a more realistic evacuation calculation, engineers have been looking to evacuation computer models to
assess a building’s life safety.
‘Grid’ model analysis ‘Continuous’ model analysis
8
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Evacuation modelling first two assumptions:
• Human behaviour during evacuation is rational
• Human behaviour during evacuation can be predicted
70s Crowd behave similar to fluids
80s Fist computer models for evacuation simulation
90s Equation-based models, Agent-Based Models
History of Crowd Dynamics & Pedestrian Modeling
http://www.springer.com/gp/book/9783319207070
Arturo Cuesta, Orlando Abreu, Daniel Alvear, Springer 2016,
Evacuation Modeling Trends
9
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Pedestrians have been empirically studied for more than four decades.
The evaluation methods initially applied were based on direct
observation, photographs, and time-lapse films.
History of Crowd Dynamics & Pedestrian Modeling
Fruin Walkways
Fruin platform (Queuing) IATA Wait/Circulate
Fruin, J. J. (1971) Pedestrian planning and design. Level of Service (LOS).
https://www.researchgate.net/publication/226065087_Pedestrian_Crowd_and_Evacuation_Dynamics
Pedestrian, Crowd and Evacuation Dynamics. 2010
Dirk Helbing - ETH Zurich, Andrés Johansson – University of Bristol.
For a long time, the main goal of these studies was:
‒ To develop a level-of-service concept,
‒ Design elements of pedestrian facilities,
‒ Design planning guidelines.
Simulation Models
‒ e. g. queuing models,
‒ transition matrix models,
‒ stochastic models,
‒ Route choice behavior of pedestrians.
Crowds behave similar to gases or fluids.
Agent-based models of pedestrian crowds.
The “social force model”.
Cellular automata of pedestrian dynamics.
AI-based models.
Cooperation patterns
‒ Lane Formation
‒ Oscillatory Flows at Bottlenecks
‒ Stripe Formation in Intersecting Flows
10
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Evacuation Dynamics
Crowd dynamics at high densities and under psychological stress.
Evacuation and Panic Research
Panic => Short-term personal interests uncontrolled by social and cultural constraints.
 reduced attention in situations of fear,
 options like side exits are mostly ignored.
 Social contagion,
 Transition from individual to mass psychology, in which individuals transfer control over their actions to others, leading to conformity.
 This “herding behavior” => irrational => dangerous overcrowding and slower escape.
https://www.researchgate.net/publication/226065087_Pedestrian_Crowd_and_Evacuation_Dynamics
Pedestrian, Crowd and Evacuation Dynamics. 2010
Dirk Helbing - ETH Zurich, Andrés Johansson – University of Bristol.
Complexity. Crowd Dynamics & Pedestrian Modeling
11
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
https://www.researchgate.net/publication/226065087_Pedestrian_Crowd_and_Evacuation_Dynamics
Pedestrian, Crowd and Evacuation Dynamics. 2010
Dirk Helbing - ETH Zurich, Andrés Johansson – University of Bristol.
http://vision.cse.psu.edu/courses/Tracking/vlpr12/HelbingSocialForceModel95.pdf
Helbing, D., Molnar, P., Social Force Model for Pedestrian Dynamics, Physical Review
E, Volume 51, Issue 5, pp4281-4286, 1995
Complexity. Crowd Dynamics & Pedestrian Modeling
12
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Mass evacuation - human behavior and crowd dynamics - What do we know? - Markus Friberg, Michael Hjelm. Department of
Fire Safety Engineering Lund University, Sweden. 2014
http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=7766859&fileOId=7766990
Human behavior in fires & evacuations
3.1 Individual behavior
3.1.1 Uncertainty
3.1.2 Problem solving & decision making
3.1.3 Gender
3.1.4 Cultural
3.1.5 Age
3.1.6 Stress
3.1.7 Panic
3.1.8 Individual roles
3.2 Group behavior
3.2.1 Social influence
3.2.2 Social identity
3.3 Pre-movement
3.3.1 The evaluation process
3.3.2 Knowledge & Understanding
3.3.3 Fire alarms & designs
3.3.4 Denying the danger
3.4 Movement
3.4.1 Speed
3.4.2 Structural impacts
Complexity. Crowd Dynamics & Pedestrian Modeling
13
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
A review of Building Evacuation Models 2º Edition. NIST Technical Note 1680
Models for Crowd Dynamics & Pedestrian Modeling
http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=906951
14
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
A review of Building Evacuation Models 2º Edition. NIST Technical Note 1680
Models for Crowd Dynamics & Pedestrian Modeling
http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=906951
Modeling Method:
(M): Movement model
(M-O): Movement/optimization models
(PB): Partial Behavioral model
(B): Behavioral model
(B-RA): Behavioral model with risk assessment capabilities
Purpose:
(1) Models that can simulate any type of building
(2) Models that specialize in residences
(3) Models that specialize in public transport stations
(4) Models that are capable of simulating low-rise buildings (under 15 stories)
(5) Models that only simulate 1-route/exit of the building.
Grid/Structure:
(C): Coarse network
(F): Fine network
(Co): Continuous Perspective of the model/occupant:
(G): Global perspective
(I): Individual perspective
Behavior:
(N): No behavior
(I): Implicit
(C): Conditional or rule-based
(AI): Artificial intelligence
(P): Probabilistic
Movement:
(D): Density
(UC): User’s choice
(ID): Inter-person distance
(P): Potential
(E): Emptiness of next grid cell
(C): Conditional
(Ac_K): Acquired knowledge
(Un_F): Unimpeded flow
(CA): Cellular automata
Fire Data:
(N): The model cannot incorporate fire data
(Y1): The model can import fire data from another model
(Y2): The model allows the user to input specific fire data at certain times
throughout the evacuation
(Y3): The model has its own simultaneous fire model
CAD:
(N): The model does not allow for importation of CAD drawings
(Y): The model does allow for importation of CAD drawings
Visual:
(N): The model does not have visualization capabilities
(2-D): 2-dimension visualization available
(3-D): 3-dimension visualization available
Validation:
(C): Validation against codes
(FD): Validation against fire drills or other people movement experiments/trials
(PE): Validation against literature on past experiments (flow rates, etc.)
(OM): Validation against other models
(3P): Third party validation
(N): No validation work could be found regarding the model
15
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
A review of Building Evacuation Models 2º Edition. NIST Technical Note 1680
Models for Crowd Dynamics & Pedestrian Modeling
http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=906951
Trends (1º Edition 2005/2º Edition 2010)
Complexity of the evacuation models
More of the models are including behaviors and decision-making capabilities for the simulated occupants.
Complexity of the model grids
In the previous review, very few models incorporated a continuous grid network. In this review, the majority of the available models
simulate movement on a continuous grid.
Complexity of the modeling input
Incorporate fire effects into the simulation.
CAD
Complexity of the models’ output capabilities
3-D visualization
Notes:
‒ Users should be careful to ensure that the behavioral aspects of the model are supported by data and/or theory of human behavior during fires.
‒ The attributes and decisions of the occupants are often defined in a probabilistic fashion which requires multiple iterations of each simulation to
determine the range of expected occupant evacuation times and movement speeds.
‒ it is imperative to understand how the model has been validated and to find out if the capabilities are grounded in any evacuation or pedestrian
data sources and to understand the validity of that data to the desired scenario.
16
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
J. Averill, Five grand challenges in pedestrian and evacuation dynamics, in: Proceedings of Pedestrian and Evacuation Dynamics, Gaithersburg, MD, 2010
Limitations in Crowd Dynamics & Pedestrian Modeling
http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=906566
NIST 2010. Five grand challenges in pedestrian and evacuation dynamics.
‒ Grand Challenge #1: Develop and validate a comprehensive theory which predicts human behavior
during pedestrian or evacuation movement.
‒ Grand Challenge #2: Create a comprehensive database of actual emergency data
‒ Grand Challenge #3: Embrace variance (stochastic)
‒ Grand Challenge #4: Integrate results of evacuation models with fire models to enable accurate and
reliable performance-based design
‒ Grand Challenge #5: Embrace technology
17
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Limitations in Crowd Dynamics & Pedestrian Modeling
https://www.youtube.com/watch?v=OMov1aMWscw&t=36s
Golaem software. Physics (for visualization only)
https://www.youtube.com/watch?v=daysCqmqd2Y
Madrid Arena 2012
https://www.youtube.com/watch?v=8SeYkvLTgKo
Love Parade 2010
https://www.youtube.com/watch?v=8y73-7lFBNE
Physics of real extrem crowds
18
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Limitations in Crowd Dynamics & Pedestrian Modeling
Physics of real crowds
19
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Limitations in Crowd Dynamics & Pedestrian Modeling
Delhi Metro peak hour
https://www.youtube.com/watch?v=_BtBaM-izwo
Physics of real crowds
20
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Limitations in Crowd Dynamics & Pedestrian Modeling
11-M. Atocha 2004
https://www.youtube.com/watch?v=izZXTwsTbLU
Real people behave during evacuation
21
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Limitations in Crowd Dynamics & Pedestrian Modeling
Santiago de Chile, Estación Pudahuel. 2012
https://www.youtube.com/watch?v=s6dqnv48JzI
Real people behave during evacuation (without panic)
22
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Limitations in Crowd Dynamics & Pedestrian Modeling
https://www.youtube.com/watch?v=v6iTSAwGo1Y&oref=https%3A%2F%2Fwww.yo
utube.com%2Fwatch%3Fv%3Dv6iTSAwGo1Y&has_verified=1
Real people behave during evacuation
23
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Limitations in Crowd Dynamics & Pedestrian Modeling
https://www.youtube.com/watch?v=BgpdmAtbhbE
Crowds waves
24
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Limitations in Crowd Dynamics & Pedestrian Modeling
So, how we design with these limitations?
With prevention strategies.
Design the building/space for a Level of service C (for example).
25
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice
FDS+Evac Pathfinder MassMotion
26
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice – FDS + EVAC
http://virtual.vtt.fi/virtual/proj6/fdsevac/examples_fds6.html
Examples
http://virtual.vtt.fi/virtual/proj6/fdsevac/documents/FDS+Evac_textbased_homepage.txt
Software web
Author
http://www.vttresearch.com/
http://virtual.vtt.fi/virtual/proj6/fdsevac/documents/FDS+EVAC_Guide.pdf
Software User Manual
Download FDS + EVAC is fully embedded in Fire Dynamics Simulator (FDS)
https://pages.nist.gov/fds-smv/
27
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice – FDS + EVAC – Key points
‒ Simulate human egress using the Fire Dynamics Simulator (FDS)
‒ Allows simultaneous (or not) simulation of fire and evacuation processes.
‒ Each evacuee is a separate entity, or an ’agent’, which has its own personal properties
and escape strategies.
‒ The movement of the agents is simulated using two-dimensional planes representing
the floors of buildings. (a continuous two dimensional space )
‒ The forces acting on the agents consist of both physical forces, such as contact forces
and psychological forces exerted by the environment and other agents.
‒ The model behind the movement algorithm is the social force model introduced by
Helbing’s group [17, 18, 19, 20]. A modification of the model to describe better the
shape of the human body was introduced by Langston et al. [21].
[17] Helbing, D., and Molnár, P., “Social force model for pedestrian dynamics”, Physical Review E 51:
4282–4286 (1995).
[18] Helbing, D., Farkas, I., and Vicsek, T., “Simulating dynamical features of escape panic”, Nature 407:
487–490 (2000).
[19] Helbing, D., Farkas, I., Molnár, P., and Vicsek,T., “Simulating of Pedestrian Crowds in Normal and
Evacuation Situations”, Pedestrian and Evacuation Dynamics, Schreckenberg, M. and Sharma, S.D.
(eds.), Springer, Berlin, 2002, pp. 21–58.
[20] Werner, T., and Helbing, D., “The social force pedestrian model applied to real life scenarios”,
Pedestrian and Evacuation Dynamics – Proceedings of the Seconnd International Conference,
University of Greenwich, London, 2003, pp. 17–26.
[21] Langston, P.A., Masling, R., and Asmar, B.N., “Crowd dynamics discrete element multi-circle
model”, Safety Science 44: 395–417 (2006).
28
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice – FDS + EVAC – Key points
‒ The evacuation geometry is described using two-dimensional planes that cut the fire
geometry at the heights representing best the floor geometries.
‒ Evacuation meshes have their own rectilinear meshes that need not coinside with the
fire meshes.
‒ Usually mesh cell sizes 0.25 m or larger
‒ Spaces, where agents are allowed to move, should be at least about 0.7 m wide.
‒ The evacuation geometry does not support time dependent geometries. But the user
can give time dependent information on the usability of the doors/exits.
‒ Limit: 10 000 agents are tried to place on the same evacuation mesh. The total number
of agents is not restricted by the programme.
‒ The initial density of agents cannot be much larger than 4 persons per square metre.
Because the initial positions of agents are generated randomly. If higher densities are
needed, then the option for ordered placements of the initial agents should be used.
‒ The gas phase concentrations of O2, CO2, and CO are used by default to calculate
Purser’s Fractional Effective Dose (FED) index, indicating the human incapacitation.
‒ The effects of some other gases, (NO, NO2, CN, HCl, HBr, HF, SO2, C3H4O, CH2O) are
also considered, if the user gives corresponding inputs.
‒ Smoke density is used both to slow down the walking speeds of the agents and to
‒ affect the exit selection algorithm of the agents.
‒ The effects of radiation and gas temperature on agents are not yet implemented in the
programme, so agents do not try to avoid a fire if the user does not explicitly define the
evacuation geometry to take this in to account.
29
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice – FDS + EVAC – Key points
‒ The evacuation part of the FDS+Evac is stochastic, i.e., it uses random numbers to
generate the initial positions and properties of the agents. For this reason, one should
always do a dozen or so egress simulations to see the variation of the results.
‒ Several egress calculation can be done per one fire simulation and the calculation of the
guiding door flow fields for evacuation movement need to be calculated only once for
each given geometry. Monte Carlo mode EVACUATION_MC_MODE.
‒ The present version of FDS+Evac does not fully support parallel CPU calculations for the
evacuation part.
‒ FDS+Evac is primarily a research tool for studying evacuation processes in buildings.
While it seems to produce similar egress flows as found in the literature (both
experimental and other simulation tools) it is not yet fully validated. Thus, its use as an
engineering tool needs further considerations. It is suggested that FDS+Evac is used
together with some other (well) validated egress programme/method to study
evacuation.
30
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice – FDS + EVAC – Limitations
‒ Geometry Rectilinear numerical mesh
‒ The default model for stairs does not include the option for agents to turn back when
the smoke concentration becomes too high.
‒ Exit Route Selection: The exit door selection algorithm is still a relatively simple one.
‒ New social type behaviours are not yet validated.
‒ There is no feasible model for elevators in the current version of the FDS+Evac. There is
a really simple elevator model implemented in the programme, but it is mostly there for
illustrative purposes only.
‒ More than a couple of thousand agents in an evacuation mesh then the calculation will
take long time.
‒ The possible blocking effect of other agents is not considered in the current version of
the programme.
31
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice – FDS + EVAC – Brief Theoretical Basis for the Evacuation Model
Where:
is the position of agent at time
is the force exerted on agent by the surroundings
is the mass
is a small random fluctuation force
The velocity of agent i is given by
32
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice – FDS + EVAC – Brief Theoretical Basis for the Evacuation Model
‒ Force on the agent
33
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice – FDS + EVAC – Brief Theoretical Basis for the Evacuation Model
‒ Exit Selection
Many prescriptive fire codes implicitly assume that the total exit width of buildings is used
in egress. Herding behavior, as well as people’s tendency to favor the familiar routes, may
easily lead to outcomes that contradict with these assumptions.
Three new agent types were introduced in FDS+Evac so now there are four
types: conservative type, active type, follower type, and herding type.
The agents observe the actions of the others and select the target exit through which the
evacuation is estimated to be the fastest. The evacuation time of each agent to each exit is
calculated from the distances to the exits and the congestion in front of the exits. The
estimated evacuation time is not the only criterion considered in the model; also the
visibility of the exits and the fire related conditions at the exits affect the decision, as well
as the familiarity with the different exits, which can be defined for each agent by the user.
34
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice – FDS + EVAC – Brief Theoretical Basis for the Evacuation Model
‒ Model Validation
35
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice – FDS + EVAC – Brief Theoretical Basis for the Evacuation Model
‒ Model Validation
36
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
The user needs just to define:
• The main evacuation mesh (usually one per building floor)
• Final exits (EXIT namelists)
• Internal door connections (DOOR and ENTR namelists) that move agents from one
mesh (floor) to some other mesh (floor)
• Inclines, stairs, staircases, etc (EVSS and STRS namelists)
• Agent properties and initial postions (PERS and EVAC namelists)
Let’s see some examples
Practice – FDS + EVAC – Brief Theoretical Basis for the Evacuation Model
01. Door Flow 02. Wide Stairs 03. Real project
37
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
http://virtual.vtt.fi/virtual/proj6/fdsevac/examples_fds6.html
Practice Example 01 : Door Flow, fds file
http://virtual.vtt.fi/virtual/proj6/fdsevac/documents/FDS+EVAC_Guide.pdf
Let’s see fds input file & User Guide, Chapter 8. Setting up the Input File for FDS+Evac
Practice – FDS + EVAC – EXAMPLES - Input File
38
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
http://virtual.vtt.fi/virtual/proj6/fdsevac/examples_fds6.html
Practice Example 01 : Door Flow, fds file
http://virtual.vtt.fi/virtual/proj6/fdsevac/documents/FDS+EVAC_Guide.pdf
Let’s see fds input file & User Guide, Chapter 8. Setting up the Input File for FDS+Evac
Practice – FDS + EVAC – EXAMPLES - Input File
&MESH IJK=150,150,1, XB=0.0,15.0, 0.0,15.0, 1.45,1.55, EVACUATION=.TRUE.,
EVAC_HUMANS=.TRUE., EVAC_Z_OFFSET=1.5, ID= 'FF1stFloor’ /
&EXIT ID='TopExit', IOR= +2,
FYI= 'Comment line',
COUNT_ONLY=.FALSE. ,
XYZ= 7.5, 14.5, 1.50,
XB= 5.0,10.0, 15.0,15.0, 1.45,1.55 /
39
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
http://virtual.vtt.fi/virtual/proj6/fdsevac/examples_fds6.html
Practice Example 01 : Door Flow, fds file
http://virtual.vtt.fi/virtual/proj6/fdsevac/documents/FDS+EVAC_Guide.pdf
Let’s see fds input file & User Guide, Chapter 8. Setting up the Input File for FDS+Evac
Practice – FDS + EVAC – EXAMPLES - Input File
&PERS ID='Adult',
FYI='Male+Female diameter and velocity',
DEFAULT_PROPERTIES='Adult',
PRE_EVAC_DIST=0,PRE_MEAN=1.0,
DET_EVAC_DIST=0,DET_MEAN=0.0,
DENS_INIT=40.0,
HUMAN_SMOKE_HEIGHT=1.60,
OUTPUT_SPEED=.TRUE.,
OUTPUT_DENSITY=.TRUE.,
OUTPUT_TOTAL_FORCE=.TRUE.,
COLOR_METHOD=0, I_HERDING_TYPE=2, /
&EVAC ID='EvacAdult',
NUMBER_INITIAL_PERSONS= 100,
XB= 5.0, 10.0, 4.8, 9.8, 1.5,1.5,
AVATAR_COLOR= 'BLUE',
ANGLE= 90, AGENT_TYPE=2,
KNOWN_DOOR_NAMES='TopExit',
KNOWN_DOOR_PROBS=1.0,
PERS_ID='Adult' /
40
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
http://virtual.vtt.fi/virtual/proj6/fdsevac/examples_fds6.html
Practice Example 01 : Door Flow, fds file
http://virtual.vtt.fi/virtual/proj6/fdsevac/documents/FDS+EVAC_Guide.pdf
Let’s see fds input file & User Guide, Chapter 8. Setting up the Input File for FDS+Evac
Practice – FDS + EVAC – EXAMPLES - Input File
Next line could be used to plot the evacuation flow fields:
&SLCF PBZ=1.5, QUANTITY='VELOCITY', VECTOR=.TRUE., EVACUATION=.TRUE. /
41
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice – FDS + EVAC – EXAMPLES - Input File
http://virtual.vtt.fi/virtual/proj6/fdsevac/examples_fds6.html
Practice Example 02: Wide Stairs Example, fds file, version 2
The wide stairs (x=40m - 50m), stairs (EVSS) at the 1st floor mesh, door connection is
at x=40m
The stairs belong to the 1st floor, so we put an OBST where the is not enough space
in the z-direction.
&OBST XB=40.0,45.0, 10.0,15.0, 0.9,1.1, EVACUATION=.TRUE., OUTLINE=.TRUE. /
&DOOR ID='GF_2_Stairs', IOR=+1,
FYI= 'Comment line',
KEEP_XY=.TRUE.,
COLOR='PINK', EXIT_SIGN=.TRUE.,
TO_NODE= 'Stairs_2_Up',
XYZ=39.0, 12.5, 1.0,
XB= 40.0,40.0, 10.0,15.0, 0.9,1.1, /
&ENTR ID='Stairs_2_Up', IOR=+1,
FYI= 'Comment line',
COLOR='CYAN',
XB= 40.0,40.0, 10.0,15.0, 4.9,5.1, /
&EXIT ID='GroundExit', IOR=+2,
FYI= 'Comment line',
COLOR='YELLOW',
XYZ=11.0, 24.0, 1.0,
XB= 10.0,12.0, 25.0,25.0, 0.9,1.1, /
&EXIT ID='1stFloorExit', IOR=+2,
FYI= 'Comment line',
COLOR='GREEN',
XYZ=79.0, 24.0, 5.0,
XB= 78.0,80.0, 25.0,25.0, 4.9,5.1, /
42
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice – FDS + EVAC – EXAMPLES - Input File
http://virtual.vtt.fi/virtual/proj6/fdsevac/examples_fds6.html
Practice Example 02: Wide Stairs Example, fds file, version 2
Next was the "MonStairs.fds", just one stair flight.
EVSS XB=40.0,50.0, 10.0,15.0, 4.9,5.1, IOR=-1, ID='WideStairs',
FAC_V0_UP=0.4, FAC_V0_DOWN=0.7, FAC_V0_HORI=1.0,
HEIGHT=0.0, HEIGHT0=-4.0, MESH_ID='FirstFloor' /
Below the same, but an intermediate landing is put in place.
Still the stairs are "straight".
&EVSS XB=40.0,44.0, 10.0,15.0, 4.9,5.1, IOR=-1, ID='WideStairs1',
FAC_V0_UP=0.4, FAC_V0_DOWN=0.7, FAC_V0_HORI=1.0,
HEIGHT=-2.0, HEIGHT0=-4.0, MESH_ID='FirstFloor’ /
Next is a landing ==> normal velocities are used
&EVSS XB=44.0,46.0, 10.0,15.0, 4.9,5.1, IOR=-1, ID='WideStairs2',
FAC_V0_UP=1.0, FAC_V0_DOWN=1.0, FAC_V0_HORI=1.0,
HEIGHT=-2.0, HEIGHT0=-2.0, MESH_ID='FirstFloor’ /
&EVSS XB=46.0,50.0, 10.0,15.0, 4.9,5.1, IOR=-1, ID='WideStairs3',
FAC_V0_UP=0.4, FAC_V0_DOWN=0.7, FAC_V0_HORI=1.0,
HEIGHT=0.0, HEIGHT0=-2.0, MESH_ID='FirstFloor' /
43
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice – FDS + EVAC – EXAMPLES - Input File
Practice Example 03: Real Project (with Report)
44
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice – Pathfinder
http://www.thunderheadeng.com/pathfinder/resources/
Examples & Tutorials
http://www.thunderheadeng.com/downloads/pathfinder/users_guide.pdf
Software User Manual
Download Pathfinder
http://www.thunderheadeng.com/pathfinder/
http://www.thunderheadeng.com/pathfinder/tutorials/
Licence Prices
http://www.thunderheadeng.com/downloads/pathfinder/tech_ref.pdf
Software Technical Reference
https://www.thunderheadeng.com/wp-
content/uploads/dlm_uploads/2012/05/verification_validation_2017_1.pdf
Software Verification & Validation
https://www.youtube.com/watch?v=c6unBZ
oY9Ag
45
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Simulation Modes
Pathfinder supports two movement simulation modes. In "Steering" mode, occupants use a
steering system to move and interact with others. This mode tries to emulate human behavior
and movement as much as possible. SFPE mode uses a set of assumptions and hand-calculations
as defined in the Engineering Guide to Human Behavior in Fire (SFPE, 2003). In SFPE mode,
occupants make no attempt to avoid one another and are allowed to interpenetrate, but doors
impose a flow limit and velocity is controlled by density.
Limitations and Known Issues
Pathfinder does not presently integrate results from a fire model or provide support for complex
behaviors (e.g. family grouping).
Dynamic geometry is only partially supported (e.g. elevators, virtual escalators, and door
opening/closing are supported, but trains and other moving surfaces are not).
Elevators are supported in evacuation-only circumstances. They do not model a general-purpose
elevator system.
Practice – Pathfinder - Technical Reference
46
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
‒ Pathfinder uses a 3D geometry model. Within this geometric model is a navigation mesh
defined as a continuous 2D triangulated surface referred to as a "navigation mesh.“ Occupant
motion takes place on this navigation mesh.
‒ Pathfinder supports drawing or automatic generation of a navigation mesh from imported
geometry – including FDS files,PyroSim files, DXF and DWG files. Also background images
BMP, GIF, JPG, PNG, and TGA .
‒ The navigation geometry is organized into rooms of irregular shape. Each room has a
boundary that cannot be crossed by an occupant. Travel between two adjacent rooms is
through doors. A door that does not connect two rooms and is defined on the exterior
boundary of a room is an Exit door.
‒ Any location on the navigation mesh can be categorized as one of four terrain types:
‒ Open space (rooms & ramps)
‒ Doors
‒ Stairs
‒ Exit
‒ Behaviors and Goals
‒ Seek Goals occupant uses path planning, path generation, and path following.
‒ Idle Goals. Occupants wait until an event occurs.
‒ Goals
‒ Assist Occupants
‒ Detach from Assistants
‒ Fill Room
‒ Goto Elevator
‒ Go to Exit
‒ Go to room
‒ Goto Waypoint
‒ Wait
‒ Wait for Assistance
Practice – Pathfinder - Technical Reference
47
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
‒ Door Distance Map
‒ For each vertex of the sub-divided triangle, a distance value is generated that is the minimum
distance to a set of doors.
‒ The set of doors used to generate the distance map varies per-occupant based on whether the
occupant can move in the room. The set only includes doors that are active.
‒ Ideal Seek Direction
‒ Once the occupant has obtained the door distance map, the occupant determines an ideal seek
direction. To do this, the occupant creates sample directions that are 30° apart from each other
covering a full 360°.
‒ Then the occupant checks to see if they will collide with other occupants in that direction and
how far it is to the collision. The occupant then limits the distance that can be travelled in that
direction to the minimum of the distance to an occupant collision and distance to the
maximum door distance.
‒ The occupant chooses the sample direction that will give the farthest distance from a door
according to the door distance map.
‒ Decide Whether to Move
Practice – Pathfinder - Technical Reference
48
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Paths
‒ Path Planning (Locally Quickest)
‒ Locally quickest is the path planning approach used in Pathfinder .
‒ It plans the route hierarchically, using local information about the occupant’s current room and
global knowledge of the building. It is assumed that an occupant knows about all doors in their
current room as well as queues at those doors. It is also assumed that the occupant knows how far
it is from one of those doors to the current destination (seek goal). Locally quickest then uses this
information to choose a door in the current room based on a calculated cost of that door. A path is
then generated to the door, which the occupant can follow.
‒ Door Choice
‒ The cost for each target is based on multiple criteria and the occupant’s preferences.
Current room travel time, current room queue time, global travel time, distance travelled in
room, Current Room Travel Time Cost Factor, Current Room Queue Time Cost Factor, Global
Travel Time Cost Factor, Current Door Preference, Current Room Distance Penalty.
‒ Backtrack Prevention
‒ In Pathfinder, once an occupant manages to exit a room using a particular exit door, they are
committed to that routing decision using the following rules:
‒ 1. The next local door the occupant selects may not lead back into any previous rooms. If this
rule eliminates all options.
‒ 2. Backtrack prevention is disabled, the occupant can choose from any valid local door.
‒ Path Generation
Practice – Pathfinder - Technical Reference
49
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
‒ Path Generation
‒ Once a local target has been chosen through path planning, a path is needed to reach the target.
‒ Pathfinder uses the A* search algorithm [Hart et al., 1968] and the triangulated navigation mesh.
‒ The resulting path is represented as a series of points on edges of mesh triangles. These points
from A* create a jagged path to the occupant’s goal.
‒ To smooth out this jagged path, Pathfinder then uses a variation on a technique known as string
pulling [Johnson, 2006]. This re-aligns the points so the resulting path only bends at the corner of
obstructions but remains at least the occupant’s radius away from those obstructions. Examples of
these final points, called waypoints, are shown in .
Practice – Pathfinder - Technical Reference
50
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Calculation of Measurement Region Quantities
The calculation of density and velocity in measurement regions uses an implementation of
Steffen and Seyfried's Voronoi diagram-based method [Steffen and Seyfried, 2010]. In this
method a Voronoi diagram is created to divide space among occupants. Each occupant's density
is calculated based on the size of their cell in the Voronoi diagram. These densities are then
combined using a weighted average, where the weights are the portion of the measurement
area that intersects the Voronoi cell.
Occupants whose location is up to 1.41 meters outside the measurement region will contribute
to the measurement, but more distant agents will be ignored.
‒ The 1.41 meter range corresponds to a 4 m2 square maximum area of influence for each
occupant.
Practice – Pathfinder - Technical Reference
51
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice – Pathfinder - Graphical User Interface
52
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice – Pathfinder - Graphical User Interface
Importing FDS Output Data
Pathfinder can use the PLOT3D data output from FDS to create time history data for each occupant as
they move throughout the simulation. In cases where FDS PLOT3D output data is available for CO
Volume Fraction, CO2 Volume Fraction, and O2 Volume Fraction; Pathfinder will also output FED for
each occupant specified.
FDS data integration is a measurement only and does not alter the movements or decision making
within the Pathfinder simulation.
53
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice – Pathfinder - Graphical User Interface
Vehicle Shapes
54
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice – Pathfinder - Graphical User Interface
Let’s see some examples
55
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice – MassMotion
http://www.oasys-software.com/massmotion-tutorials.html
https://www.youtube.com/channel/UCCSaCU47M1miJaf7l357VTw
Tutorials
http://www.oasys-software.com/media/Manuals/Latest_Manuals/MassMotion.pdf
Software User Manual
Download MassMotion
http://www.oasys-software.com/customer-service/request-trial.html?product=MassMotion
https://www.youtube.com/watch?v=dR5G5SNI5T4
First Version - April 2011
Current Version 9.0.3.2 - 12th April 2017
Verification testing of the MassMotion model has been performed in accordance with:
• International Maritime Organisation (IMO) 1238
• National Institute of Standards (NIST) [Ronchi, E., Kuligowski, E.D., Reneke, P.A.,
Peacock, R.D., Nilsson, D., The Process of Verification and Validation of Building Fire
Evacuation Models, NIST Technical Note 1822, 2013.]
“The World's Most Advanced Crowd
Simulation Software”
56
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Working with Geometry
• Importing Geometry (.3ds, .dae, .dxf, .fbx, .ifc, .obj)
• Creating Geometry
• Editing Geometry
BIM model
• Revit
IFC
MassMotion
Practice – MassMotion
Scene
‒ Floor
‒ Link
‒ Stair
‒ Ramp
‒ Escalator
‒ Path
‒ Portal
‒ Barrier
57
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
“Each agent has the ability to monitor and react to its environment according to a unique set of characteristics and goals”
Agents
‒ Profile characteristics
‒ Scheduling (events, journey, etc)
‒ Behaviour
‒ Agent Tasks ("things to do")
‒ Agent Navigation (best path to a given destination) Costing Routes
‒ Agent Movement (Social Forces)
Practice – MassMotion
Physical properties
‒ Body Radius
‒ Speed Distribution
‒ Direction Bias
‒ Shuffle Factor
‒ Max Acceleration
‒ Max Turn Rate
Agents, Profile Properties
Personality
‒ Horizontal
‒ Distance Cost
‒ Vertical Distance
‒ Cost
‒ Queue Cost
‒ Processing Cost
+ Tokens!
58
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Agents, Behaviour, Agent Tasks
Types
‒ Moving to a portal destination
‒ Moving to and entering a process chain
‒ Evacuating a zone
‒ Waiting in an area for some duration
‒ Executing a sequence of sub tasks (in order)
‒ Exiting the simulation
Practice – MassMotion
59
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice – MassMotion
Agents, Behaviour, Agent Navigation
Automatically creating path networks
Costing Routes
‒ Downstream Horizontal Distance (target – goal)
‒ Downstream Vertical Displacement
‒ Near Horizontal Distance (agent – target)
‒ Queue Time
‒ Opposing Flow
‒ Closed Penalty
‒ Backtrack Penalty
Stochastic Elements => randomness => agent personality and choice variability
60
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice – MassMotion
Agents, Behaviour, Agent Movement
Agent Movement
‒ Finding the Target
‒ Neighbours
‒ Social Forces
Component Forces
‒ Goal
‒ Neighbour
‒ Cohesion
‒ Collision
‒ Drift
‒ Orderly Queuing
‒ Corner
Agent Speed
‒ Profile
+
‒ Density
‒ Object Speed/Type
61
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice – MassMotion
Connection Objects
Properties
‒ Direction
‒ Gates (open by an event)
‒ Flow Limits
‒ Priority Flow
‒ Delay on Enter and Exit
‒ Banks and Perimeters
Connection Objects
‒ Escalators
‒ Links
‒ Paths
‒ Ramps
‒ Stairs
62
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice – MassMotion
Events
‒ Time Event For creating time reference points
‒ Action Event For how to apply an action to all agents in the simulation
‒ Open Gate Event for how to control gated actors
‒ Evacuate Event For how to trigger a basic evacuation
63
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice – MassMotion
Reporting
Graph and Table Data
‒ (text CSV file)
‒ Graph Images (Maps)
‒ Scene Images and Videos
‒ Alembic (export to 3d Max)
FlowCounts
Number of agents who crossed the given connection in the given
direction during the given interval.
Journey Times
(total, by floor, by token, etc)
Where and when they entered the simulation, where and when they
exited the simulation, their normal speed, total distance traveled,
how long the spent 'congested‘, and how long they spent
experiencing various levels of service
Link Queue average
Average number of agents queuing
Agent Count/path
Displays paths of agents across selected objects, where the colour
represents the number of agents who have ever occupied that space.
Agent Time To Exit
Displays paths of agents across selected objects, where the colour
represents the maximum time it took an agent to exit the simulation
from that point.
Average/max. Density
Colours objects based on the average agent density at each point.
Time Above Density
Colours objects based on how long each point has had an agent
density above a given threshold.
Time Occupied
Colours objects based on the total amount of time each point was
occupied by any agent.
64
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice – MassMotion
Simulation time & LOS
65
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice – MassMotion
Timetables
http://www.oasys-software.com/blog/2015/04/using-python-scripts-with-massmotion-%E2%80%93-creating-a-timetable-schedule-from-an-od-matrix/
Origin/Destination Matrices with Python
66
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice – MassMotion
Vision Time
67
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice – MassMotion
Alembic
68
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice – MassMotion
69
Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017
Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es
Practice – MassMotion
Let’s see some examples
70
Carlos Rallo de la Cruz
M. Arch. UPM
M. Eng. in Fire safety. UC3M
Dipl. Project Management. PUC
PhD Candidate CERTEC. UPC
Contact
carlosrallo@gmail.com
+34 647865702
Madrid, Spain
www.rallodelacruz.com
www.arquitecturayfuego.es
www.linkedin.com/in/carlosrallo
Fire Safety impact in Building Design
01. Prescriptive Design 05/05/2017
02. Performance Based Design 05/05/2017
03. NFPA 101 Live Safety Code 12/05/2017
04. Fire Safety in complex Architecture designs 12/05/2017
05. CFD / Fire Dynamics Simulator 26/05/2017
06. Crowd Dynamics & Pedestrian Modeling 02/06/2017
Máster en Ingeniería de
Seguridad contra Incendios
Thank you for your attention!

More Related Content

Similar to Carlos Rallo iv crowd dynamics

Top Computer Science & Information Technology Articles of 2019
Top Computer Science & Information Technology Articles of 2019 Top Computer Science & Information Technology Articles of 2019
Top Computer Science & Information Technology Articles of 2019 AIRCC Publishing Corporation
 
Intro to modeling
Intro to modelingIntro to modeling
Intro to modelingAnne Geraci
 
2014 11 16 ABC PhD tutti i corsi
2014 11 16 ABC PhD tutti i corsi2014 11 16 ABC PhD tutti i corsi
2014 11 16 ABC PhD tutti i corsiEnrico DeAngelis
 
Research dissemination and moocs - Presentation for FutureLearn Partners Foru...
Research dissemination and moocs - Presentation for FutureLearn Partners Foru...Research dissemination and moocs - Presentation for FutureLearn Partners Foru...
Research dissemination and moocs - Presentation for FutureLearn Partners Foru...mattjenner
 
Fire risk analysis of structures and infrastructures: theory and application ...
Fire risk analysis of structures and infrastructures: theory and application ...Fire risk analysis of structures and infrastructures: theory and application ...
Fire risk analysis of structures and infrastructures: theory and application ...Franco Bontempi Org Didattica
 
Resilience in High-Speed Train Networks - Promising, New Approach, Florian ST...
Resilience in High-Speed Train Networks - Promising, New Approach, Florian ST...Resilience in High-Speed Train Networks - Promising, New Approach, Florian ST...
Resilience in High-Speed Train Networks - Promising, New Approach, Florian ST...Global Risk Forum GRFDavos
 
New books dec 2013
New books dec 2013New books dec 2013
New books dec 2013maethaya
 
Optimization of Fire Suppression using Fire Dynamics Simulator
Optimization of Fire Suppression using Fire Dynamics SimulatorOptimization of Fire Suppression using Fire Dynamics Simulator
Optimization of Fire Suppression using Fire Dynamics SimulatorIRJET Journal
 
Designing Swarms of Cyber-Physical Systems: The H2020 CPSwarm Project
Designing Swarms of Cyber-Physical Systems: The H2020 CPSwarm ProjectDesigning Swarms of Cyber-Physical Systems: The H2020 CPSwarm Project
Designing Swarms of Cyber-Physical Systems: The H2020 CPSwarm ProjectAlessandra Bagnato
 
MCS 2014
MCS 2014MCS 2014
MCS 2014dorao12
 
Barcelona Global Energy Challenges 2015
Barcelona Global Energy Challenges 2015Barcelona Global Energy Challenges 2015
Barcelona Global Energy Challenges 2015Pau Fonseca
 
Towards Sustainable Infraculture - Modern Commons
Towards Sustainable Infraculture - Modern Commons Towards Sustainable Infraculture - Modern Commons
Towards Sustainable Infraculture - Modern Commons Klaus Markus Hofmann
 
Research collaboration between Spain and Switzerland
Research collaboration between Spain and  Switzerland Research collaboration between Spain and  Switzerland
Research collaboration between Spain and Switzerland shengjing 孙胜晶
 

Similar to Carlos Rallo iv crowd dynamics (20)

Top Computer Science & Information Technology Articles of 2019
Top Computer Science & Information Technology Articles of 2019 Top Computer Science & Information Technology Articles of 2019
Top Computer Science & Information Technology Articles of 2019
 
Minisymposium
MinisymposiumMinisymposium
Minisymposium
 
Intro to modeling
Intro to modelingIntro to modeling
Intro to modeling
 
Digital Human Models - Results of a World Café 2017
Digital Human Models - Results of a World Café 2017Digital Human Models - Results of a World Café 2017
Digital Human Models - Results of a World Café 2017
 
2014 11 16 ABC PhD tutti i corsi
2014 11 16 ABC PhD tutti i corsi2014 11 16 ABC PhD tutti i corsi
2014 11 16 ABC PhD tutti i corsi
 
All opentalk
All opentalkAll opentalk
All opentalk
 
Muenster_Portfolio_2016
Muenster_Portfolio_2016Muenster_Portfolio_2016
Muenster_Portfolio_2016
 
Research dissemination and moocs - Presentation for FutureLearn Partners Foru...
Research dissemination and moocs - Presentation for FutureLearn Partners Foru...Research dissemination and moocs - Presentation for FutureLearn Partners Foru...
Research dissemination and moocs - Presentation for FutureLearn Partners Foru...
 
Fire risk analysis of structures and infrastructures: theory and application ...
Fire risk analysis of structures and infrastructures: theory and application ...Fire risk analysis of structures and infrastructures: theory and application ...
Fire risk analysis of structures and infrastructures: theory and application ...
 
Resilience in High-Speed Train Networks - Promising, New Approach, Florian ST...
Resilience in High-Speed Train Networks - Promising, New Approach, Florian ST...Resilience in High-Speed Train Networks - Promising, New Approach, Florian ST...
Resilience in High-Speed Train Networks - Promising, New Approach, Florian ST...
 
New books dec 2013
New books dec 2013New books dec 2013
New books dec 2013
 
Optimization of Fire Suppression using Fire Dynamics Simulator
Optimization of Fire Suppression using Fire Dynamics SimulatorOptimization of Fire Suppression using Fire Dynamics Simulator
Optimization of Fire Suppression using Fire Dynamics Simulator
 
Designing Swarms of Cyber-Physical Systems: The H2020 CPSwarm Project
Designing Swarms of Cyber-Physical Systems: The H2020 CPSwarm ProjectDesigning Swarms of Cyber-Physical Systems: The H2020 CPSwarm Project
Designing Swarms of Cyber-Physical Systems: The H2020 CPSwarm Project
 
MCS 2014
MCS 2014MCS 2014
MCS 2014
 
Barcelona Global Energy Challenges 2015
Barcelona Global Energy Challenges 2015Barcelona Global Energy Challenges 2015
Barcelona Global Energy Challenges 2015
 
CMM
CMMCMM
CMM
 
Towards Sustainable Infraculture - Modern Commons
Towards Sustainable Infraculture - Modern Commons Towards Sustainable Infraculture - Modern Commons
Towards Sustainable Infraculture - Modern Commons
 
Research collaboration between Spain and Switzerland
Research collaboration between Spain and  Switzerland Research collaboration between Spain and  Switzerland
Research collaboration between Spain and Switzerland
 
cvtrevinoeng_RubyDev_Intl
cvtrevinoeng_RubyDev_Intlcvtrevinoeng_RubyDev_Intl
cvtrevinoeng_RubyDev_Intl
 
Engineering Essay Sample
Engineering Essay SampleEngineering Essay Sample
Engineering Essay Sample
 

Recently uploaded

Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 

Recently uploaded (20)

Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 

Carlos Rallo iv crowd dynamics

  • 1. 1 Carlos Rallo de la Cruz M. Arch. UPM M. Eng. in Fire safety. UC3M Dipl. Project Management. PUC PhD Candidate CERTEC. UPC Contact carlosrallo@gmail.com +34 647865702 Madrid, Spain www.rallodelacruz.com www.arquitecturayfuego.es www.linkedin.com/in/carlosrallo Fire Safety impact in Building Design 01. Prescriptive Design 05/05/2017 02. Performance Based Design 05/05/2017 03. NFPA 101 Live Safety Code 12/05/2017 04. Fire Safety in complex Architecture designs 12/05/2017 05. CFD / Fire Dynamics Simulator 26/05/2017 06. Crowd Dynamics & Pedestrian Modeling 02/06/2017 Máster en Ingeniería de Seguridad contra Incendios
  • 2. 2 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es 06. Crowd Dynamics & Pedestrian Modeling
  • 3. 3 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Crowd Dynamics & Pedestrian Modeling • About • History • Complexity • Models • Limitations Practice • FDS+Evac • Pathfinder • MassMotion Schedule
  • 4. 4 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Interiors Bus, Train, Metro Facilities Exteriors Public Buildings Stadiums Airports About Crowd Dynamics & Pedestrian Modeling Objectives 1. Avoid dangerous situations 2. Ensure evacuation times and safety 3. Optimize normal operation and evacuation
  • 5. 5 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Major crowd catastrophes About Crowd Dynamics & Pedestrian Modeling Love Parade in Duisburg, Germany Photographer: Uwe Weber Reference: Crowd Modeling and Simulation on High Performance Architectures. Table 2.4.1 Major crowd catastrophes. Albert Gutiérrez Millá – UAB - 2016 “In the last years has been a growing effort in solving the evacuation safety problem. The research áreas interested on the problema vary from engineering, computer science, psychology, architectrue or sociology,..”
  • 6. 6 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Evacuation calculations => Part of performance-based analyses => Life safety provided in buildings. ‒ Hand calculations Usually follow the equations given in the Emergency Movement Chapter of the Society of Fire Protection Engineers (SFPE) Handbook to calculate mass flow evacuation from any height of building. http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=906951 Reference: A review of Building Evacuation Models 2º Edition. NIST Technical Note 1680 About Crowd Dynamics & Pedestrian Modeling The calculation focuses mainly on points of constriction throughout the building (commonly the door to the outside) and calculates the time for the occupants to flow past these points and to the outside.
  • 7. 7 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=906951 Reference: A review of Building Evacuation Models 2º Edition. NIST Technical Note 1680 About Crowd Dynamics & Pedestrian Modeling Evacuation calculations => Part of performance-based analyses => Life safety provided in buildings. ‒ Computer models To achieve a more realistic evacuation calculation, engineers have been looking to evacuation computer models to assess a building’s life safety. ‘Grid’ model analysis ‘Continuous’ model analysis
  • 8. 8 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Evacuation modelling first two assumptions: • Human behaviour during evacuation is rational • Human behaviour during evacuation can be predicted 70s Crowd behave similar to fluids 80s Fist computer models for evacuation simulation 90s Equation-based models, Agent-Based Models History of Crowd Dynamics & Pedestrian Modeling http://www.springer.com/gp/book/9783319207070 Arturo Cuesta, Orlando Abreu, Daniel Alvear, Springer 2016, Evacuation Modeling Trends
  • 9. 9 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Pedestrians have been empirically studied for more than four decades. The evaluation methods initially applied were based on direct observation, photographs, and time-lapse films. History of Crowd Dynamics & Pedestrian Modeling Fruin Walkways Fruin platform (Queuing) IATA Wait/Circulate Fruin, J. J. (1971) Pedestrian planning and design. Level of Service (LOS). https://www.researchgate.net/publication/226065087_Pedestrian_Crowd_and_Evacuation_Dynamics Pedestrian, Crowd and Evacuation Dynamics. 2010 Dirk Helbing - ETH Zurich, Andrés Johansson – University of Bristol. For a long time, the main goal of these studies was: ‒ To develop a level-of-service concept, ‒ Design elements of pedestrian facilities, ‒ Design planning guidelines. Simulation Models ‒ e. g. queuing models, ‒ transition matrix models, ‒ stochastic models, ‒ Route choice behavior of pedestrians. Crowds behave similar to gases or fluids. Agent-based models of pedestrian crowds. The “social force model”. Cellular automata of pedestrian dynamics. AI-based models. Cooperation patterns ‒ Lane Formation ‒ Oscillatory Flows at Bottlenecks ‒ Stripe Formation in Intersecting Flows
  • 10. 10 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Evacuation Dynamics Crowd dynamics at high densities and under psychological stress. Evacuation and Panic Research Panic => Short-term personal interests uncontrolled by social and cultural constraints.  reduced attention in situations of fear,  options like side exits are mostly ignored.  Social contagion,  Transition from individual to mass psychology, in which individuals transfer control over their actions to others, leading to conformity.  This “herding behavior” => irrational => dangerous overcrowding and slower escape. https://www.researchgate.net/publication/226065087_Pedestrian_Crowd_and_Evacuation_Dynamics Pedestrian, Crowd and Evacuation Dynamics. 2010 Dirk Helbing - ETH Zurich, Andrés Johansson – University of Bristol. Complexity. Crowd Dynamics & Pedestrian Modeling
  • 11. 11 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es https://www.researchgate.net/publication/226065087_Pedestrian_Crowd_and_Evacuation_Dynamics Pedestrian, Crowd and Evacuation Dynamics. 2010 Dirk Helbing - ETH Zurich, Andrés Johansson – University of Bristol. http://vision.cse.psu.edu/courses/Tracking/vlpr12/HelbingSocialForceModel95.pdf Helbing, D., Molnar, P., Social Force Model for Pedestrian Dynamics, Physical Review E, Volume 51, Issue 5, pp4281-4286, 1995 Complexity. Crowd Dynamics & Pedestrian Modeling
  • 12. 12 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Mass evacuation - human behavior and crowd dynamics - What do we know? - Markus Friberg, Michael Hjelm. Department of Fire Safety Engineering Lund University, Sweden. 2014 http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=7766859&fileOId=7766990 Human behavior in fires & evacuations 3.1 Individual behavior 3.1.1 Uncertainty 3.1.2 Problem solving & decision making 3.1.3 Gender 3.1.4 Cultural 3.1.5 Age 3.1.6 Stress 3.1.7 Panic 3.1.8 Individual roles 3.2 Group behavior 3.2.1 Social influence 3.2.2 Social identity 3.3 Pre-movement 3.3.1 The evaluation process 3.3.2 Knowledge & Understanding 3.3.3 Fire alarms & designs 3.3.4 Denying the danger 3.4 Movement 3.4.1 Speed 3.4.2 Structural impacts Complexity. Crowd Dynamics & Pedestrian Modeling
  • 13. 13 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es A review of Building Evacuation Models 2º Edition. NIST Technical Note 1680 Models for Crowd Dynamics & Pedestrian Modeling http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=906951
  • 14. 14 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es A review of Building Evacuation Models 2º Edition. NIST Technical Note 1680 Models for Crowd Dynamics & Pedestrian Modeling http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=906951 Modeling Method: (M): Movement model (M-O): Movement/optimization models (PB): Partial Behavioral model (B): Behavioral model (B-RA): Behavioral model with risk assessment capabilities Purpose: (1) Models that can simulate any type of building (2) Models that specialize in residences (3) Models that specialize in public transport stations (4) Models that are capable of simulating low-rise buildings (under 15 stories) (5) Models that only simulate 1-route/exit of the building. Grid/Structure: (C): Coarse network (F): Fine network (Co): Continuous Perspective of the model/occupant: (G): Global perspective (I): Individual perspective Behavior: (N): No behavior (I): Implicit (C): Conditional or rule-based (AI): Artificial intelligence (P): Probabilistic Movement: (D): Density (UC): User’s choice (ID): Inter-person distance (P): Potential (E): Emptiness of next grid cell (C): Conditional (Ac_K): Acquired knowledge (Un_F): Unimpeded flow (CA): Cellular automata Fire Data: (N): The model cannot incorporate fire data (Y1): The model can import fire data from another model (Y2): The model allows the user to input specific fire data at certain times throughout the evacuation (Y3): The model has its own simultaneous fire model CAD: (N): The model does not allow for importation of CAD drawings (Y): The model does allow for importation of CAD drawings Visual: (N): The model does not have visualization capabilities (2-D): 2-dimension visualization available (3-D): 3-dimension visualization available Validation: (C): Validation against codes (FD): Validation against fire drills or other people movement experiments/trials (PE): Validation against literature on past experiments (flow rates, etc.) (OM): Validation against other models (3P): Third party validation (N): No validation work could be found regarding the model
  • 15. 15 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es A review of Building Evacuation Models 2º Edition. NIST Technical Note 1680 Models for Crowd Dynamics & Pedestrian Modeling http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=906951 Trends (1º Edition 2005/2º Edition 2010) Complexity of the evacuation models More of the models are including behaviors and decision-making capabilities for the simulated occupants. Complexity of the model grids In the previous review, very few models incorporated a continuous grid network. In this review, the majority of the available models simulate movement on a continuous grid. Complexity of the modeling input Incorporate fire effects into the simulation. CAD Complexity of the models’ output capabilities 3-D visualization Notes: ‒ Users should be careful to ensure that the behavioral aspects of the model are supported by data and/or theory of human behavior during fires. ‒ The attributes and decisions of the occupants are often defined in a probabilistic fashion which requires multiple iterations of each simulation to determine the range of expected occupant evacuation times and movement speeds. ‒ it is imperative to understand how the model has been validated and to find out if the capabilities are grounded in any evacuation or pedestrian data sources and to understand the validity of that data to the desired scenario.
  • 16. 16 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es J. Averill, Five grand challenges in pedestrian and evacuation dynamics, in: Proceedings of Pedestrian and Evacuation Dynamics, Gaithersburg, MD, 2010 Limitations in Crowd Dynamics & Pedestrian Modeling http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=906566 NIST 2010. Five grand challenges in pedestrian and evacuation dynamics. ‒ Grand Challenge #1: Develop and validate a comprehensive theory which predicts human behavior during pedestrian or evacuation movement. ‒ Grand Challenge #2: Create a comprehensive database of actual emergency data ‒ Grand Challenge #3: Embrace variance (stochastic) ‒ Grand Challenge #4: Integrate results of evacuation models with fire models to enable accurate and reliable performance-based design ‒ Grand Challenge #5: Embrace technology
  • 17. 17 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Limitations in Crowd Dynamics & Pedestrian Modeling https://www.youtube.com/watch?v=OMov1aMWscw&t=36s Golaem software. Physics (for visualization only) https://www.youtube.com/watch?v=daysCqmqd2Y Madrid Arena 2012 https://www.youtube.com/watch?v=8SeYkvLTgKo Love Parade 2010 https://www.youtube.com/watch?v=8y73-7lFBNE Physics of real extrem crowds
  • 18. 18 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Limitations in Crowd Dynamics & Pedestrian Modeling Physics of real crowds
  • 19. 19 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Limitations in Crowd Dynamics & Pedestrian Modeling Delhi Metro peak hour https://www.youtube.com/watch?v=_BtBaM-izwo Physics of real crowds
  • 20. 20 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Limitations in Crowd Dynamics & Pedestrian Modeling 11-M. Atocha 2004 https://www.youtube.com/watch?v=izZXTwsTbLU Real people behave during evacuation
  • 21. 21 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Limitations in Crowd Dynamics & Pedestrian Modeling Santiago de Chile, Estación Pudahuel. 2012 https://www.youtube.com/watch?v=s6dqnv48JzI Real people behave during evacuation (without panic)
  • 22. 22 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Limitations in Crowd Dynamics & Pedestrian Modeling https://www.youtube.com/watch?v=v6iTSAwGo1Y&oref=https%3A%2F%2Fwww.yo utube.com%2Fwatch%3Fv%3Dv6iTSAwGo1Y&has_verified=1 Real people behave during evacuation
  • 23. 23 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Limitations in Crowd Dynamics & Pedestrian Modeling https://www.youtube.com/watch?v=BgpdmAtbhbE Crowds waves
  • 24. 24 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Limitations in Crowd Dynamics & Pedestrian Modeling So, how we design with these limitations? With prevention strategies. Design the building/space for a Level of service C (for example).
  • 25. 25 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice FDS+Evac Pathfinder MassMotion
  • 26. 26 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice – FDS + EVAC http://virtual.vtt.fi/virtual/proj6/fdsevac/examples_fds6.html Examples http://virtual.vtt.fi/virtual/proj6/fdsevac/documents/FDS+Evac_textbased_homepage.txt Software web Author http://www.vttresearch.com/ http://virtual.vtt.fi/virtual/proj6/fdsevac/documents/FDS+EVAC_Guide.pdf Software User Manual Download FDS + EVAC is fully embedded in Fire Dynamics Simulator (FDS) https://pages.nist.gov/fds-smv/
  • 27. 27 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice – FDS + EVAC – Key points ‒ Simulate human egress using the Fire Dynamics Simulator (FDS) ‒ Allows simultaneous (or not) simulation of fire and evacuation processes. ‒ Each evacuee is a separate entity, or an ’agent’, which has its own personal properties and escape strategies. ‒ The movement of the agents is simulated using two-dimensional planes representing the floors of buildings. (a continuous two dimensional space ) ‒ The forces acting on the agents consist of both physical forces, such as contact forces and psychological forces exerted by the environment and other agents. ‒ The model behind the movement algorithm is the social force model introduced by Helbing’s group [17, 18, 19, 20]. A modification of the model to describe better the shape of the human body was introduced by Langston et al. [21]. [17] Helbing, D., and Molnár, P., “Social force model for pedestrian dynamics”, Physical Review E 51: 4282–4286 (1995). [18] Helbing, D., Farkas, I., and Vicsek, T., “Simulating dynamical features of escape panic”, Nature 407: 487–490 (2000). [19] Helbing, D., Farkas, I., Molnár, P., and Vicsek,T., “Simulating of Pedestrian Crowds in Normal and Evacuation Situations”, Pedestrian and Evacuation Dynamics, Schreckenberg, M. and Sharma, S.D. (eds.), Springer, Berlin, 2002, pp. 21–58. [20] Werner, T., and Helbing, D., “The social force pedestrian model applied to real life scenarios”, Pedestrian and Evacuation Dynamics – Proceedings of the Seconnd International Conference, University of Greenwich, London, 2003, pp. 17–26. [21] Langston, P.A., Masling, R., and Asmar, B.N., “Crowd dynamics discrete element multi-circle model”, Safety Science 44: 395–417 (2006).
  • 28. 28 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice – FDS + EVAC – Key points ‒ The evacuation geometry is described using two-dimensional planes that cut the fire geometry at the heights representing best the floor geometries. ‒ Evacuation meshes have their own rectilinear meshes that need not coinside with the fire meshes. ‒ Usually mesh cell sizes 0.25 m or larger ‒ Spaces, where agents are allowed to move, should be at least about 0.7 m wide. ‒ The evacuation geometry does not support time dependent geometries. But the user can give time dependent information on the usability of the doors/exits. ‒ Limit: 10 000 agents are tried to place on the same evacuation mesh. The total number of agents is not restricted by the programme. ‒ The initial density of agents cannot be much larger than 4 persons per square metre. Because the initial positions of agents are generated randomly. If higher densities are needed, then the option for ordered placements of the initial agents should be used. ‒ The gas phase concentrations of O2, CO2, and CO are used by default to calculate Purser’s Fractional Effective Dose (FED) index, indicating the human incapacitation. ‒ The effects of some other gases, (NO, NO2, CN, HCl, HBr, HF, SO2, C3H4O, CH2O) are also considered, if the user gives corresponding inputs. ‒ Smoke density is used both to slow down the walking speeds of the agents and to ‒ affect the exit selection algorithm of the agents. ‒ The effects of radiation and gas temperature on agents are not yet implemented in the programme, so agents do not try to avoid a fire if the user does not explicitly define the evacuation geometry to take this in to account.
  • 29. 29 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice – FDS + EVAC – Key points ‒ The evacuation part of the FDS+Evac is stochastic, i.e., it uses random numbers to generate the initial positions and properties of the agents. For this reason, one should always do a dozen or so egress simulations to see the variation of the results. ‒ Several egress calculation can be done per one fire simulation and the calculation of the guiding door flow fields for evacuation movement need to be calculated only once for each given geometry. Monte Carlo mode EVACUATION_MC_MODE. ‒ The present version of FDS+Evac does not fully support parallel CPU calculations for the evacuation part. ‒ FDS+Evac is primarily a research tool for studying evacuation processes in buildings. While it seems to produce similar egress flows as found in the literature (both experimental and other simulation tools) it is not yet fully validated. Thus, its use as an engineering tool needs further considerations. It is suggested that FDS+Evac is used together with some other (well) validated egress programme/method to study evacuation.
  • 30. 30 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice – FDS + EVAC – Limitations ‒ Geometry Rectilinear numerical mesh ‒ The default model for stairs does not include the option for agents to turn back when the smoke concentration becomes too high. ‒ Exit Route Selection: The exit door selection algorithm is still a relatively simple one. ‒ New social type behaviours are not yet validated. ‒ There is no feasible model for elevators in the current version of the FDS+Evac. There is a really simple elevator model implemented in the programme, but it is mostly there for illustrative purposes only. ‒ More than a couple of thousand agents in an evacuation mesh then the calculation will take long time. ‒ The possible blocking effect of other agents is not considered in the current version of the programme.
  • 31. 31 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice – FDS + EVAC – Brief Theoretical Basis for the Evacuation Model Where: is the position of agent at time is the force exerted on agent by the surroundings is the mass is a small random fluctuation force The velocity of agent i is given by
  • 32. 32 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice – FDS + EVAC – Brief Theoretical Basis for the Evacuation Model ‒ Force on the agent
  • 33. 33 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice – FDS + EVAC – Brief Theoretical Basis for the Evacuation Model ‒ Exit Selection Many prescriptive fire codes implicitly assume that the total exit width of buildings is used in egress. Herding behavior, as well as people’s tendency to favor the familiar routes, may easily lead to outcomes that contradict with these assumptions. Three new agent types were introduced in FDS+Evac so now there are four types: conservative type, active type, follower type, and herding type. The agents observe the actions of the others and select the target exit through which the evacuation is estimated to be the fastest. The evacuation time of each agent to each exit is calculated from the distances to the exits and the congestion in front of the exits. The estimated evacuation time is not the only criterion considered in the model; also the visibility of the exits and the fire related conditions at the exits affect the decision, as well as the familiarity with the different exits, which can be defined for each agent by the user.
  • 34. 34 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice – FDS + EVAC – Brief Theoretical Basis for the Evacuation Model ‒ Model Validation
  • 35. 35 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice – FDS + EVAC – Brief Theoretical Basis for the Evacuation Model ‒ Model Validation
  • 36. 36 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es The user needs just to define: • The main evacuation mesh (usually one per building floor) • Final exits (EXIT namelists) • Internal door connections (DOOR and ENTR namelists) that move agents from one mesh (floor) to some other mesh (floor) • Inclines, stairs, staircases, etc (EVSS and STRS namelists) • Agent properties and initial postions (PERS and EVAC namelists) Let’s see some examples Practice – FDS + EVAC – Brief Theoretical Basis for the Evacuation Model 01. Door Flow 02. Wide Stairs 03. Real project
  • 37. 37 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es http://virtual.vtt.fi/virtual/proj6/fdsevac/examples_fds6.html Practice Example 01 : Door Flow, fds file http://virtual.vtt.fi/virtual/proj6/fdsevac/documents/FDS+EVAC_Guide.pdf Let’s see fds input file & User Guide, Chapter 8. Setting up the Input File for FDS+Evac Practice – FDS + EVAC – EXAMPLES - Input File
  • 38. 38 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es http://virtual.vtt.fi/virtual/proj6/fdsevac/examples_fds6.html Practice Example 01 : Door Flow, fds file http://virtual.vtt.fi/virtual/proj6/fdsevac/documents/FDS+EVAC_Guide.pdf Let’s see fds input file & User Guide, Chapter 8. Setting up the Input File for FDS+Evac Practice – FDS + EVAC – EXAMPLES - Input File &MESH IJK=150,150,1, XB=0.0,15.0, 0.0,15.0, 1.45,1.55, EVACUATION=.TRUE., EVAC_HUMANS=.TRUE., EVAC_Z_OFFSET=1.5, ID= 'FF1stFloor’ / &EXIT ID='TopExit', IOR= +2, FYI= 'Comment line', COUNT_ONLY=.FALSE. , XYZ= 7.5, 14.5, 1.50, XB= 5.0,10.0, 15.0,15.0, 1.45,1.55 /
  • 39. 39 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es http://virtual.vtt.fi/virtual/proj6/fdsevac/examples_fds6.html Practice Example 01 : Door Flow, fds file http://virtual.vtt.fi/virtual/proj6/fdsevac/documents/FDS+EVAC_Guide.pdf Let’s see fds input file & User Guide, Chapter 8. Setting up the Input File for FDS+Evac Practice – FDS + EVAC – EXAMPLES - Input File &PERS ID='Adult', FYI='Male+Female diameter and velocity', DEFAULT_PROPERTIES='Adult', PRE_EVAC_DIST=0,PRE_MEAN=1.0, DET_EVAC_DIST=0,DET_MEAN=0.0, DENS_INIT=40.0, HUMAN_SMOKE_HEIGHT=1.60, OUTPUT_SPEED=.TRUE., OUTPUT_DENSITY=.TRUE., OUTPUT_TOTAL_FORCE=.TRUE., COLOR_METHOD=0, I_HERDING_TYPE=2, / &EVAC ID='EvacAdult', NUMBER_INITIAL_PERSONS= 100, XB= 5.0, 10.0, 4.8, 9.8, 1.5,1.5, AVATAR_COLOR= 'BLUE', ANGLE= 90, AGENT_TYPE=2, KNOWN_DOOR_NAMES='TopExit', KNOWN_DOOR_PROBS=1.0, PERS_ID='Adult' /
  • 40. 40 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es http://virtual.vtt.fi/virtual/proj6/fdsevac/examples_fds6.html Practice Example 01 : Door Flow, fds file http://virtual.vtt.fi/virtual/proj6/fdsevac/documents/FDS+EVAC_Guide.pdf Let’s see fds input file & User Guide, Chapter 8. Setting up the Input File for FDS+Evac Practice – FDS + EVAC – EXAMPLES - Input File Next line could be used to plot the evacuation flow fields: &SLCF PBZ=1.5, QUANTITY='VELOCITY', VECTOR=.TRUE., EVACUATION=.TRUE. /
  • 41. 41 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice – FDS + EVAC – EXAMPLES - Input File http://virtual.vtt.fi/virtual/proj6/fdsevac/examples_fds6.html Practice Example 02: Wide Stairs Example, fds file, version 2 The wide stairs (x=40m - 50m), stairs (EVSS) at the 1st floor mesh, door connection is at x=40m The stairs belong to the 1st floor, so we put an OBST where the is not enough space in the z-direction. &OBST XB=40.0,45.0, 10.0,15.0, 0.9,1.1, EVACUATION=.TRUE., OUTLINE=.TRUE. / &DOOR ID='GF_2_Stairs', IOR=+1, FYI= 'Comment line', KEEP_XY=.TRUE., COLOR='PINK', EXIT_SIGN=.TRUE., TO_NODE= 'Stairs_2_Up', XYZ=39.0, 12.5, 1.0, XB= 40.0,40.0, 10.0,15.0, 0.9,1.1, / &ENTR ID='Stairs_2_Up', IOR=+1, FYI= 'Comment line', COLOR='CYAN', XB= 40.0,40.0, 10.0,15.0, 4.9,5.1, / &EXIT ID='GroundExit', IOR=+2, FYI= 'Comment line', COLOR='YELLOW', XYZ=11.0, 24.0, 1.0, XB= 10.0,12.0, 25.0,25.0, 0.9,1.1, / &EXIT ID='1stFloorExit', IOR=+2, FYI= 'Comment line', COLOR='GREEN', XYZ=79.0, 24.0, 5.0, XB= 78.0,80.0, 25.0,25.0, 4.9,5.1, /
  • 42. 42 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice – FDS + EVAC – EXAMPLES - Input File http://virtual.vtt.fi/virtual/proj6/fdsevac/examples_fds6.html Practice Example 02: Wide Stairs Example, fds file, version 2 Next was the "MonStairs.fds", just one stair flight. EVSS XB=40.0,50.0, 10.0,15.0, 4.9,5.1, IOR=-1, ID='WideStairs', FAC_V0_UP=0.4, FAC_V0_DOWN=0.7, FAC_V0_HORI=1.0, HEIGHT=0.0, HEIGHT0=-4.0, MESH_ID='FirstFloor' / Below the same, but an intermediate landing is put in place. Still the stairs are "straight". &EVSS XB=40.0,44.0, 10.0,15.0, 4.9,5.1, IOR=-1, ID='WideStairs1', FAC_V0_UP=0.4, FAC_V0_DOWN=0.7, FAC_V0_HORI=1.0, HEIGHT=-2.0, HEIGHT0=-4.0, MESH_ID='FirstFloor’ / Next is a landing ==> normal velocities are used &EVSS XB=44.0,46.0, 10.0,15.0, 4.9,5.1, IOR=-1, ID='WideStairs2', FAC_V0_UP=1.0, FAC_V0_DOWN=1.0, FAC_V0_HORI=1.0, HEIGHT=-2.0, HEIGHT0=-2.0, MESH_ID='FirstFloor’ / &EVSS XB=46.0,50.0, 10.0,15.0, 4.9,5.1, IOR=-1, ID='WideStairs3', FAC_V0_UP=0.4, FAC_V0_DOWN=0.7, FAC_V0_HORI=1.0, HEIGHT=0.0, HEIGHT0=-2.0, MESH_ID='FirstFloor' /
  • 43. 43 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice – FDS + EVAC – EXAMPLES - Input File Practice Example 03: Real Project (with Report)
  • 44. 44 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice – Pathfinder http://www.thunderheadeng.com/pathfinder/resources/ Examples & Tutorials http://www.thunderheadeng.com/downloads/pathfinder/users_guide.pdf Software User Manual Download Pathfinder http://www.thunderheadeng.com/pathfinder/ http://www.thunderheadeng.com/pathfinder/tutorials/ Licence Prices http://www.thunderheadeng.com/downloads/pathfinder/tech_ref.pdf Software Technical Reference https://www.thunderheadeng.com/wp- content/uploads/dlm_uploads/2012/05/verification_validation_2017_1.pdf Software Verification & Validation https://www.youtube.com/watch?v=c6unBZ oY9Ag
  • 45. 45 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Simulation Modes Pathfinder supports two movement simulation modes. In "Steering" mode, occupants use a steering system to move and interact with others. This mode tries to emulate human behavior and movement as much as possible. SFPE mode uses a set of assumptions and hand-calculations as defined in the Engineering Guide to Human Behavior in Fire (SFPE, 2003). In SFPE mode, occupants make no attempt to avoid one another and are allowed to interpenetrate, but doors impose a flow limit and velocity is controlled by density. Limitations and Known Issues Pathfinder does not presently integrate results from a fire model or provide support for complex behaviors (e.g. family grouping). Dynamic geometry is only partially supported (e.g. elevators, virtual escalators, and door opening/closing are supported, but trains and other moving surfaces are not). Elevators are supported in evacuation-only circumstances. They do not model a general-purpose elevator system. Practice – Pathfinder - Technical Reference
  • 46. 46 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es ‒ Pathfinder uses a 3D geometry model. Within this geometric model is a navigation mesh defined as a continuous 2D triangulated surface referred to as a "navigation mesh.“ Occupant motion takes place on this navigation mesh. ‒ Pathfinder supports drawing or automatic generation of a navigation mesh from imported geometry – including FDS files,PyroSim files, DXF and DWG files. Also background images BMP, GIF, JPG, PNG, and TGA . ‒ The navigation geometry is organized into rooms of irregular shape. Each room has a boundary that cannot be crossed by an occupant. Travel between two adjacent rooms is through doors. A door that does not connect two rooms and is defined on the exterior boundary of a room is an Exit door. ‒ Any location on the navigation mesh can be categorized as one of four terrain types: ‒ Open space (rooms & ramps) ‒ Doors ‒ Stairs ‒ Exit ‒ Behaviors and Goals ‒ Seek Goals occupant uses path planning, path generation, and path following. ‒ Idle Goals. Occupants wait until an event occurs. ‒ Goals ‒ Assist Occupants ‒ Detach from Assistants ‒ Fill Room ‒ Goto Elevator ‒ Go to Exit ‒ Go to room ‒ Goto Waypoint ‒ Wait ‒ Wait for Assistance Practice – Pathfinder - Technical Reference
  • 47. 47 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es ‒ Door Distance Map ‒ For each vertex of the sub-divided triangle, a distance value is generated that is the minimum distance to a set of doors. ‒ The set of doors used to generate the distance map varies per-occupant based on whether the occupant can move in the room. The set only includes doors that are active. ‒ Ideal Seek Direction ‒ Once the occupant has obtained the door distance map, the occupant determines an ideal seek direction. To do this, the occupant creates sample directions that are 30° apart from each other covering a full 360°. ‒ Then the occupant checks to see if they will collide with other occupants in that direction and how far it is to the collision. The occupant then limits the distance that can be travelled in that direction to the minimum of the distance to an occupant collision and distance to the maximum door distance. ‒ The occupant chooses the sample direction that will give the farthest distance from a door according to the door distance map. ‒ Decide Whether to Move Practice – Pathfinder - Technical Reference
  • 48. 48 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Paths ‒ Path Planning (Locally Quickest) ‒ Locally quickest is the path planning approach used in Pathfinder . ‒ It plans the route hierarchically, using local information about the occupant’s current room and global knowledge of the building. It is assumed that an occupant knows about all doors in their current room as well as queues at those doors. It is also assumed that the occupant knows how far it is from one of those doors to the current destination (seek goal). Locally quickest then uses this information to choose a door in the current room based on a calculated cost of that door. A path is then generated to the door, which the occupant can follow. ‒ Door Choice ‒ The cost for each target is based on multiple criteria and the occupant’s preferences. Current room travel time, current room queue time, global travel time, distance travelled in room, Current Room Travel Time Cost Factor, Current Room Queue Time Cost Factor, Global Travel Time Cost Factor, Current Door Preference, Current Room Distance Penalty. ‒ Backtrack Prevention ‒ In Pathfinder, once an occupant manages to exit a room using a particular exit door, they are committed to that routing decision using the following rules: ‒ 1. The next local door the occupant selects may not lead back into any previous rooms. If this rule eliminates all options. ‒ 2. Backtrack prevention is disabled, the occupant can choose from any valid local door. ‒ Path Generation Practice – Pathfinder - Technical Reference
  • 49. 49 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es ‒ Path Generation ‒ Once a local target has been chosen through path planning, a path is needed to reach the target. ‒ Pathfinder uses the A* search algorithm [Hart et al., 1968] and the triangulated navigation mesh. ‒ The resulting path is represented as a series of points on edges of mesh triangles. These points from A* create a jagged path to the occupant’s goal. ‒ To smooth out this jagged path, Pathfinder then uses a variation on a technique known as string pulling [Johnson, 2006]. This re-aligns the points so the resulting path only bends at the corner of obstructions but remains at least the occupant’s radius away from those obstructions. Examples of these final points, called waypoints, are shown in . Practice – Pathfinder - Technical Reference
  • 50. 50 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Calculation of Measurement Region Quantities The calculation of density and velocity in measurement regions uses an implementation of Steffen and Seyfried's Voronoi diagram-based method [Steffen and Seyfried, 2010]. In this method a Voronoi diagram is created to divide space among occupants. Each occupant's density is calculated based on the size of their cell in the Voronoi diagram. These densities are then combined using a weighted average, where the weights are the portion of the measurement area that intersects the Voronoi cell. Occupants whose location is up to 1.41 meters outside the measurement region will contribute to the measurement, but more distant agents will be ignored. ‒ The 1.41 meter range corresponds to a 4 m2 square maximum area of influence for each occupant. Practice – Pathfinder - Technical Reference
  • 51. 51 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice – Pathfinder - Graphical User Interface
  • 52. 52 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice – Pathfinder - Graphical User Interface Importing FDS Output Data Pathfinder can use the PLOT3D data output from FDS to create time history data for each occupant as they move throughout the simulation. In cases where FDS PLOT3D output data is available for CO Volume Fraction, CO2 Volume Fraction, and O2 Volume Fraction; Pathfinder will also output FED for each occupant specified. FDS data integration is a measurement only and does not alter the movements or decision making within the Pathfinder simulation.
  • 53. 53 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice – Pathfinder - Graphical User Interface Vehicle Shapes
  • 54. 54 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice – Pathfinder - Graphical User Interface Let’s see some examples
  • 55. 55 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice – MassMotion http://www.oasys-software.com/massmotion-tutorials.html https://www.youtube.com/channel/UCCSaCU47M1miJaf7l357VTw Tutorials http://www.oasys-software.com/media/Manuals/Latest_Manuals/MassMotion.pdf Software User Manual Download MassMotion http://www.oasys-software.com/customer-service/request-trial.html?product=MassMotion https://www.youtube.com/watch?v=dR5G5SNI5T4 First Version - April 2011 Current Version 9.0.3.2 - 12th April 2017 Verification testing of the MassMotion model has been performed in accordance with: • International Maritime Organisation (IMO) 1238 • National Institute of Standards (NIST) [Ronchi, E., Kuligowski, E.D., Reneke, P.A., Peacock, R.D., Nilsson, D., The Process of Verification and Validation of Building Fire Evacuation Models, NIST Technical Note 1822, 2013.] “The World's Most Advanced Crowd Simulation Software”
  • 56. 56 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Working with Geometry • Importing Geometry (.3ds, .dae, .dxf, .fbx, .ifc, .obj) • Creating Geometry • Editing Geometry BIM model • Revit IFC MassMotion Practice – MassMotion Scene ‒ Floor ‒ Link ‒ Stair ‒ Ramp ‒ Escalator ‒ Path ‒ Portal ‒ Barrier
  • 57. 57 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es “Each agent has the ability to monitor and react to its environment according to a unique set of characteristics and goals” Agents ‒ Profile characteristics ‒ Scheduling (events, journey, etc) ‒ Behaviour ‒ Agent Tasks ("things to do") ‒ Agent Navigation (best path to a given destination) Costing Routes ‒ Agent Movement (Social Forces) Practice – MassMotion Physical properties ‒ Body Radius ‒ Speed Distribution ‒ Direction Bias ‒ Shuffle Factor ‒ Max Acceleration ‒ Max Turn Rate Agents, Profile Properties Personality ‒ Horizontal ‒ Distance Cost ‒ Vertical Distance ‒ Cost ‒ Queue Cost ‒ Processing Cost + Tokens!
  • 58. 58 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Agents, Behaviour, Agent Tasks Types ‒ Moving to a portal destination ‒ Moving to and entering a process chain ‒ Evacuating a zone ‒ Waiting in an area for some duration ‒ Executing a sequence of sub tasks (in order) ‒ Exiting the simulation Practice – MassMotion
  • 59. 59 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice – MassMotion Agents, Behaviour, Agent Navigation Automatically creating path networks Costing Routes ‒ Downstream Horizontal Distance (target – goal) ‒ Downstream Vertical Displacement ‒ Near Horizontal Distance (agent – target) ‒ Queue Time ‒ Opposing Flow ‒ Closed Penalty ‒ Backtrack Penalty Stochastic Elements => randomness => agent personality and choice variability
  • 60. 60 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice – MassMotion Agents, Behaviour, Agent Movement Agent Movement ‒ Finding the Target ‒ Neighbours ‒ Social Forces Component Forces ‒ Goal ‒ Neighbour ‒ Cohesion ‒ Collision ‒ Drift ‒ Orderly Queuing ‒ Corner Agent Speed ‒ Profile + ‒ Density ‒ Object Speed/Type
  • 61. 61 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice – MassMotion Connection Objects Properties ‒ Direction ‒ Gates (open by an event) ‒ Flow Limits ‒ Priority Flow ‒ Delay on Enter and Exit ‒ Banks and Perimeters Connection Objects ‒ Escalators ‒ Links ‒ Paths ‒ Ramps ‒ Stairs
  • 62. 62 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice – MassMotion Events ‒ Time Event For creating time reference points ‒ Action Event For how to apply an action to all agents in the simulation ‒ Open Gate Event for how to control gated actors ‒ Evacuate Event For how to trigger a basic evacuation
  • 63. 63 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice – MassMotion Reporting Graph and Table Data ‒ (text CSV file) ‒ Graph Images (Maps) ‒ Scene Images and Videos ‒ Alembic (export to 3d Max) FlowCounts Number of agents who crossed the given connection in the given direction during the given interval. Journey Times (total, by floor, by token, etc) Where and when they entered the simulation, where and when they exited the simulation, their normal speed, total distance traveled, how long the spent 'congested‘, and how long they spent experiencing various levels of service Link Queue average Average number of agents queuing Agent Count/path Displays paths of agents across selected objects, where the colour represents the number of agents who have ever occupied that space. Agent Time To Exit Displays paths of agents across selected objects, where the colour represents the maximum time it took an agent to exit the simulation from that point. Average/max. Density Colours objects based on the average agent density at each point. Time Above Density Colours objects based on how long each point has had an agent density above a given threshold. Time Occupied Colours objects based on the total amount of time each point was occupied by any agent.
  • 64. 64 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice – MassMotion Simulation time & LOS
  • 65. 65 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice – MassMotion Timetables http://www.oasys-software.com/blog/2015/04/using-python-scripts-with-massmotion-%E2%80%93-creating-a-timetable-schedule-from-an-od-matrix/ Origin/Destination Matrices with Python
  • 66. 66 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice – MassMotion Vision Time
  • 67. 67 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice – MassMotion Alembic
  • 68. 68 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice – MassMotion
  • 69. 69 Fire safety in the Built Enviroment - Máster en Ingeniería de Seguridad contra Incendios - Universidad de Alcalá de Henares - 05.2017 Prof. Carlos Rallo de la Cruz carlosrallo@gmail.com https://www.linkedin.com/in/carlosrallo/ www.rallodelacruz.com www.arquitecturayfuego.es Practice – MassMotion Let’s see some examples
  • 70. 70 Carlos Rallo de la Cruz M. Arch. UPM M. Eng. in Fire safety. UC3M Dipl. Project Management. PUC PhD Candidate CERTEC. UPC Contact carlosrallo@gmail.com +34 647865702 Madrid, Spain www.rallodelacruz.com www.arquitecturayfuego.es www.linkedin.com/in/carlosrallo Fire Safety impact in Building Design 01. Prescriptive Design 05/05/2017 02. Performance Based Design 05/05/2017 03. NFPA 101 Live Safety Code 12/05/2017 04. Fire Safety in complex Architecture designs 12/05/2017 05. CFD / Fire Dynamics Simulator 26/05/2017 06. Crowd Dynamics & Pedestrian Modeling 02/06/2017 Máster en Ingeniería de Seguridad contra Incendios Thank you for your attention!