SlideShare a Scribd company logo
1 of 28
Microwave Radiation-Induced Magnetoresistance Oscillations
in high mobility GaAs/AlGaAs system under
Bichromatic excitation
Presented By : Binuka Gunawardana
Advisor : Dr. Ramesh G. Mani
Content
1. Introduction
• 2D Electron Systems (2DES)
• Landau Levels (LL)
• Quantum Hall Effect
• Shubnikov de Hass (SdH) Oscillations
• Microwave Induced Magnetoresistance Oscillations (MIMOs)
2. Theoretical Background
3. Motivation
4. Experimental setup
5. Results
6. Discussion
7. Summary
2D Electron system
𝐸 =
ℏ
2𝑚∗
𝑘 𝑥
2
+ 𝑘 𝑦
2
+ 𝑘 𝑧
2
Energy of free electron with wave vector 𝑘
Allowed quantized energy levels
limits
Z-direction motion
At low temperature (𝑇 < 4𝐾) only lowest energy level is
occupied
2D Electron system (2DES)
1
Ref: http://dx.doi.org/10.18419/opus-6695
Landau Levels (LLs)
Quantization
of cyclotron
orbits
(LLs)
Low
Temperature
Perpendicular
𝑩 field
Charged
Particles in
2DES
𝝎 𝒄 =
𝒆𝑩
𝒎∗
• 𝜔𝑐 - Cyclotron Frequency
• 𝑒 - Charge of electron
• 𝐵 - Magnetic Field
• 𝑚∗
- Effective Mass of the electron
𝑬 𝒏 = ℏ𝝎 𝒄 𝒏 +
𝟏
𝟐
2
Integer Quantum Hall Effect (IQHE)
Degenerated LL
There are 𝑛 𝑜 =
𝑒𝐵
ℎ
number of degenerated LLs per unit area
Filling factor 𝝂 =
𝒏
𝒏 𝟎
3
𝝆 𝒙𝒚 =
𝟏
𝝂
×
𝒉
𝒆 𝟐
When the filling factor, 𝝂 is an
integer we have an quantum hall
state
Ref: Nobel Lecture by Klaus von Klitzing, 1985
QHE and Shubnikov de Hass(SdH) Oscillations 4
Ref: http://dx.doi.org/10.18419/opus-6695
Microwave Induced Magnetoresistance Oscillations (MIMOs)
IQHE
SdH
Ref: R. G. Mani, Nature (London) 420, 646 (2002)
MIMOs
𝑅 𝑥𝑥 =
𝑉𝑥𝑥
𝐼𝑖𝑛
5
Ref: R. G. Mani, Nature (London) 420, 646 (2002)
6
Theoretical Background of MIMOs
MIMOs
Scattered
from
disorder
Photo
excited
electrons
Ref: A. C. Durst, S.Sachdev, N. Read, and S. M. Girvin, Phys.Rev.Lett. 91, 086803 (2003).
Displacement Model
7
Inelastic Model
Ref: I. A. Dmitriev, M. G. Vavilov, I. L. Aleiner, A. D. Mirlin, and D. G. Polyakov, Phys. Rev. B 71, 115316 (2005).
8
MWs changes
density of states
Induce Oscillatory
electron distribution
function
MIMOs
Radiation Driven Electron Orbital Model
Ref: J. Inarrea and G. Platero, Phys. Rev. Lett. 94, 016806 (2005).
Electron jumps
between fixed
orbits
Orbits oscillates
because of
MWs
MIMOs
9
Classical Memory Effect
Ref: Y. M. Beltukov and M. I. Dyakonov, Phys. Rev. Lett. 116, 176801 (2016).
Electrons go in circular
orbits
Gets scattered from
scattering centers
The change in the
direction makes
MIMOs
10
MIMOs
Power
Temp
(T)
Density
Polarization
angle
AC/DC
Current
Frequency
MIMOS
Depends on
what
parameters?
11
Two Microwave
Frequencies
What happens to
MIMO oscillations
???
Motivation
Previous Studies
Ref: M. A. Zudov, R. R. Du, L. N. Pfeier, and K. W. West, Phys. Rev. Lett. 96,236804 (2006).
• Obeys an Average of two Monochromatic results
• Strongly suppressed at zero resistance states (ZRS)
12
• 4 terminal measurement using Lock in
Amplifiers
• GaAs/AlGaAs Sample
• Density, 𝒏 ≈ 𝟑. 𝟑 × 𝟏𝟎 𝟏𝟏 𝒄𝒎−𝟐
• Mobility, 𝝁 ≈ 𝟏𝟓 × 𝟏𝟎 𝟔 𝒄𝒎 𝟐/𝑽𝒔
• Temperature, 𝑻 = 𝟏. 𝟕 𝑲
• 𝟏. 𝟖𝟒 ≤
𝒇 𝟏
𝒇 𝟐
≤ 𝟑. 𝟒
Experimental Setup
Bichromatic Microwave Induced
Magnetoresistance Oscillation
Bichromatic MIMO
13
Results : Comparing with Average
This figure shows the
Rxx vs. 1/B
for monochromatic excitation
at
90.6 GHz
48.7 GHz
bichromatic excitation
90.6 GHz & 48.7 GHz
and the numerical arithmetic
average of the
monochromatic signals at
90.6 GHz & 48.7 GHz
14
MIMOs for
90.6 GHz
48.7 GHz
bichromatic MIMOs for
90.6 GHz +48.7 GHz
at same Microwave
powers
Region 1
𝑩 𝟏
Region 2
𝑩 𝟐
Region 3
𝑩 𝟑
Results : bMIMO behavior 15
MIMOs for
90.6 GHz
41.0 GHz
bichromatic MIMOs for
90.6 GHz +41.0 GHz
at same Microwave
powers
Region 1
𝑩 𝟏
Region 2
𝑩 𝟐
Region 3
𝑩 𝟑
16
Low Frequency
𝒇 𝟏 = 𝟓𝟖 𝑮𝑯𝒛
High frequency
component (𝑓2)
takes on the
values
𝟏𝟒𝟏 𝑮𝑯𝒛
𝟏𝟓𝟔. 𝟓 𝑮𝑯𝒛
𝟏𝟔𝟏 𝑮𝑯𝒛
𝟏𝟕𝟒 𝑮𝑯𝒛
17
Results : Power dependence of bMIMOs
bMIMOs for frequency pair
90.6 GHz
and
41.0 GHz
for microwave power
4, 2, 1, 0.5 and 0.25 mW
at the lower frequency,
and
constant power at the
higher frequency
(90.6 GHz)
18
The variation in
the diagonal
resistance, Rxx,
with the change
in the
microwave
power of the
low frequency
component
under
bichromatic
photo-excitation
conditions for
(a) region (1),
(b) region (2)
and
(c) region (3)
19
n
n+1
n+2
n+3
n+4
n+5
n+6
𝒉𝒇 𝟐
𝒉𝒇 𝟏
B1 Region 1
𝑩 𝟏
20Discussion
n
n+1
B2
n+2
n+3
n+4
n+5
n+6
𝒉𝒇 𝟐
𝒉𝒇 𝟏
Region 2
𝑩 𝟐
21
n+3
n+2
n+1
n
n+4
n+5
B3
n+6
𝒉𝒇 𝟐
𝒉𝒇 𝟏
Region 3
𝑩 𝟑
22
Region 1
𝑩 𝟏
Region 2
𝑩 𝟐
Region 3
𝑩 𝟑
23
Summary
• Bichromatic response may not be a superposition or average of two monochromatic MIMO responses
• The amplitude of the bichromatic MIMO has a non linear relationship with MW power
• At low magnetic field bichromatic MIMO response is similar to low frequency response, when going to high
magnetic field they both contributes and bichromatic MIMO response goes towards high frequency response
• The model developed can be used to explain the behavior of the bichromatic MIMO responses
24
Acknowledgement
• Study more about bichromatic MIMO dependency with MW properties
Future Work
Supervisor : Group Members: Funding Agencies
Prof. Ramesh Mani Dr. Annika Krissa
Han Chun Liu
Committee Members: Zhuo Wang
Prof. Unil Perera Rasanga Samaraweera US Department of Energy
DE-SC001762Prof. Yohannes Abate Rasadi Munasinghe
Prof. Alexander Kozhanov Tharanga Nanayakkara
Prof. Russel White Kushan Wijewardana
Sajith Wijayarathne
Rupesh Ghimire Army Research Office
W911NF-10-1-0450
25
Summary
• Bichromatic response may not be a superposition or average of two monochromatic MIMO responses
• The amplitude of the bichromatic MIMO has a non linear relationship with MW power
• At low magnetic field bichromatic MIMO response is similar to low frequency response, when going to high
magnetic field they both contributes and bichromatic MIMO response goes towards high frequency response
• The model developed can be used to explain the behavior of the bichromatic MIMO responses
• Study more about bichromatic MIMO dependency with MW properties
Future Work
26

More Related Content

What's hot

Magnetic nanoparticles applications and bioavailability for cancer therapy
Magnetic nanoparticles applications and bioavailability for cancer therapyMagnetic nanoparticles applications and bioavailability for cancer therapy
Magnetic nanoparticles applications and bioavailability for cancer therapy
Pravin Chinchole
 
Effect of magnetic field in mössbauer spectroscopy
Effect of magnetic field in mössbauer spectroscopyEffect of magnetic field in mössbauer spectroscopy
Effect of magnetic field in mössbauer spectroscopy
Anuradha Verma
 

What's hot (20)

Nmr spectroscopy
Nmr spectroscopyNmr spectroscopy
Nmr spectroscopy
 
PRINCIPLES of FT-NMR & 13C NMR
PRINCIPLES of FT-NMR & 13C NMRPRINCIPLES of FT-NMR & 13C NMR
PRINCIPLES of FT-NMR & 13C NMR
 
detection of single molecules
detection of single moleculesdetection of single molecules
detection of single molecules
 
Coercivity weighted Langevin magnetisation: A new approach to interpret super...
Coercivity weighted Langevin magnetisation: A new approach to interpret super...Coercivity weighted Langevin magnetisation: A new approach to interpret super...
Coercivity weighted Langevin magnetisation: A new approach to interpret super...
 
Magnetic nanoparticles applications and bioavailability for cancer therapy
Magnetic nanoparticles applications and bioavailability for cancer therapyMagnetic nanoparticles applications and bioavailability for cancer therapy
Magnetic nanoparticles applications and bioavailability for cancer therapy
 
NUCLEAR MAGNETIC RESONANCE
NUCLEAR MAGNETIC RESONANCENUCLEAR MAGNETIC RESONANCE
NUCLEAR MAGNETIC RESONANCE
 
Ferro2016
Ferro2016Ferro2016
Ferro2016
 
Molecular spectroscopy
Molecular spectroscopyMolecular spectroscopy
Molecular spectroscopy
 
Physics in Nuclear Medicine
Physics in Nuclear MedicinePhysics in Nuclear Medicine
Physics in Nuclear Medicine
 
magnetic nano particles in bio medical applications
magnetic nano particles in bio medical applicationsmagnetic nano particles in bio medical applications
magnetic nano particles in bio medical applications
 
NMR
NMRNMR
NMR
 
Mossbauer spectroscopy
Mossbauer spectroscopyMossbauer spectroscopy
Mossbauer spectroscopy
 
Thesis defense
Thesis defenseThesis defense
Thesis defense
 
Microwave advancement
Microwave advancementMicrowave advancement
Microwave advancement
 
Nuclear chemistry
Nuclear chemistryNuclear chemistry
Nuclear chemistry
 
Zeeman Effect
Zeeman EffectZeeman Effect
Zeeman Effect
 
Chapter 3b
Chapter 3bChapter 3b
Chapter 3b
 
Properties of nano materials
Properties of nano materialsProperties of nano materials
Properties of nano materials
 
Effect of magnetic field in mössbauer spectroscopy
Effect of magnetic field in mössbauer spectroscopyEffect of magnetic field in mössbauer spectroscopy
Effect of magnetic field in mössbauer spectroscopy
 
Radionuclide Generators and Equilibrium
Radionuclide Generators and EquilibriumRadionuclide Generators and Equilibrium
Radionuclide Generators and Equilibrium
 

Viewers also liked (9)

Physics Special Presentation
Physics Special PresentationPhysics Special Presentation
Physics Special Presentation
 
Rencontres datashom2016 5_OutilsCarto
Rencontres datashom2016 5_OutilsCartoRencontres datashom2016 5_OutilsCarto
Rencontres datashom2016 5_OutilsCarto
 
Long and Short of Schedules
Long and Short of SchedulesLong and Short of Schedules
Long and Short of Schedules
 
Accelerate Australia & NZ- Issue 1
Accelerate Australia & NZ- Issue 1Accelerate Australia & NZ- Issue 1
Accelerate Australia & NZ- Issue 1
 
Conocimiento y ciencia
Conocimiento y cienciaConocimiento y ciencia
Conocimiento y ciencia
 
창의적발상과제 최종 15115344 도자문화학과 최미나
창의적발상과제 최종 15115344 도자문화학과 최미나창의적발상과제 최종 15115344 도자문화학과 최미나
창의적발상과제 최종 15115344 도자문화학과 최미나
 
Kick off sept 2016
Kick off sept 2016Kick off sept 2016
Kick off sept 2016
 
Library Autonomation
Library AutonomationLibrary Autonomation
Library Autonomation
 
mbed Connect Asia 2016 Andy Chen ARM Accelerator
mbed Connect Asia 2016 Andy Chen ARM Accelerator mbed Connect Asia 2016 Andy Chen ARM Accelerator
mbed Connect Asia 2016 Andy Chen ARM Accelerator
 

Similar to MS Defense _ Binuka pdf version

NMR, principle, chemical shift , valu,13 C, application
NMR, principle, chemical shift , valu,13 C, applicationNMR, principle, chemical shift , valu,13 C, application
NMR, principle, chemical shift , valu,13 C, application
Tripura University
 

Similar to MS Defense _ Binuka pdf version (20)

Magnetic Resonance Imaging Final Power point Presentation
Magnetic Resonance Imaging Final Power point PresentationMagnetic Resonance Imaging Final Power point Presentation
Magnetic Resonance Imaging Final Power point Presentation
 
MRI_1.ppt
MRI_1.pptMRI_1.ppt
MRI_1.ppt
 
MRI_1.ppt
MRI_1.pptMRI_1.ppt
MRI_1.ppt
 
Nmr spectroscopy
Nmr spectroscopyNmr spectroscopy
Nmr spectroscopy
 
Nmr
NmrNmr
Nmr
 
Nmr 1
Nmr 1Nmr 1
Nmr 1
 
sss-2002-podladchikova1.ppt
sss-2002-podladchikova1.pptsss-2002-podladchikova1.ppt
sss-2002-podladchikova1.ppt
 
Spectroscopy
SpectroscopySpectroscopy
Spectroscopy
 
Swi seminar final
Swi seminar finalSwi seminar final
Swi seminar final
 
Mri 3
Mri 3Mri 3
Mri 3
 
Mapping WGMs of erbium doped glass microsphere using near-field optical probe...
Mapping WGMs of erbium doped glass microsphere using near-field optical probe...Mapping WGMs of erbium doped glass microsphere using near-field optical probe...
Mapping WGMs of erbium doped glass microsphere using near-field optical probe...
 
NMR, principle, chemical shift , valu,13 C, application
NMR, principle, chemical shift , valu,13 C, applicationNMR, principle, chemical shift , valu,13 C, application
NMR, principle, chemical shift , valu,13 C, application
 
Nuclear magnetic resonance by ayush kumawat
Nuclear magnetic resonance by ayush kumawatNuclear magnetic resonance by ayush kumawat
Nuclear magnetic resonance by ayush kumawat
 
s41566-021-00813-y.pdf
s41566-021-00813-y.pdfs41566-021-00813-y.pdf
s41566-021-00813-y.pdf
 
MAGNETIC RESONANCE IMAGING; physics
MAGNETIC RESONANCE IMAGING;   physicsMAGNETIC RESONANCE IMAGING;   physics
MAGNETIC RESONANCE IMAGING; physics
 
Non Rigid Rotator
Non Rigid RotatorNon Rigid Rotator
Non Rigid Rotator
 
2DIAGNOSTICSe-p.ppt
2DIAGNOSTICSe-p.ppt2DIAGNOSTICSe-p.ppt
2DIAGNOSTICSe-p.ppt
 
NMR Spectroscopy
NMR SpectroscopyNMR Spectroscopy
NMR Spectroscopy
 
MRI-Chilkulwar.pptx
MRI-Chilkulwar.pptxMRI-Chilkulwar.pptx
MRI-Chilkulwar.pptx
 
E010512730
E010512730E010512730
E010512730
 

MS Defense _ Binuka pdf version

  • 1. Microwave Radiation-Induced Magnetoresistance Oscillations in high mobility GaAs/AlGaAs system under Bichromatic excitation Presented By : Binuka Gunawardana Advisor : Dr. Ramesh G. Mani
  • 2. Content 1. Introduction • 2D Electron Systems (2DES) • Landau Levels (LL) • Quantum Hall Effect • Shubnikov de Hass (SdH) Oscillations • Microwave Induced Magnetoresistance Oscillations (MIMOs) 2. Theoretical Background 3. Motivation 4. Experimental setup 5. Results 6. Discussion 7. Summary
  • 3. 2D Electron system 𝐸 = ℏ 2𝑚∗ 𝑘 𝑥 2 + 𝑘 𝑦 2 + 𝑘 𝑧 2 Energy of free electron with wave vector 𝑘 Allowed quantized energy levels limits Z-direction motion At low temperature (𝑇 < 4𝐾) only lowest energy level is occupied 2D Electron system (2DES) 1 Ref: http://dx.doi.org/10.18419/opus-6695
  • 4. Landau Levels (LLs) Quantization of cyclotron orbits (LLs) Low Temperature Perpendicular 𝑩 field Charged Particles in 2DES 𝝎 𝒄 = 𝒆𝑩 𝒎∗ • 𝜔𝑐 - Cyclotron Frequency • 𝑒 - Charge of electron • 𝐵 - Magnetic Field • 𝑚∗ - Effective Mass of the electron 𝑬 𝒏 = ℏ𝝎 𝒄 𝒏 + 𝟏 𝟐 2
  • 5. Integer Quantum Hall Effect (IQHE) Degenerated LL There are 𝑛 𝑜 = 𝑒𝐵 ℎ number of degenerated LLs per unit area Filling factor 𝝂 = 𝒏 𝒏 𝟎 3 𝝆 𝒙𝒚 = 𝟏 𝝂 × 𝒉 𝒆 𝟐 When the filling factor, 𝝂 is an integer we have an quantum hall state Ref: Nobel Lecture by Klaus von Klitzing, 1985
  • 6. QHE and Shubnikov de Hass(SdH) Oscillations 4 Ref: http://dx.doi.org/10.18419/opus-6695
  • 7. Microwave Induced Magnetoresistance Oscillations (MIMOs) IQHE SdH Ref: R. G. Mani, Nature (London) 420, 646 (2002) MIMOs 𝑅 𝑥𝑥 = 𝑉𝑥𝑥 𝐼𝑖𝑛 5
  • 8. Ref: R. G. Mani, Nature (London) 420, 646 (2002) 6
  • 9. Theoretical Background of MIMOs MIMOs Scattered from disorder Photo excited electrons Ref: A. C. Durst, S.Sachdev, N. Read, and S. M. Girvin, Phys.Rev.Lett. 91, 086803 (2003). Displacement Model 7
  • 10. Inelastic Model Ref: I. A. Dmitriev, M. G. Vavilov, I. L. Aleiner, A. D. Mirlin, and D. G. Polyakov, Phys. Rev. B 71, 115316 (2005). 8 MWs changes density of states Induce Oscillatory electron distribution function MIMOs
  • 11. Radiation Driven Electron Orbital Model Ref: J. Inarrea and G. Platero, Phys. Rev. Lett. 94, 016806 (2005). Electron jumps between fixed orbits Orbits oscillates because of MWs MIMOs 9
  • 12. Classical Memory Effect Ref: Y. M. Beltukov and M. I. Dyakonov, Phys. Rev. Lett. 116, 176801 (2016). Electrons go in circular orbits Gets scattered from scattering centers The change in the direction makes MIMOs 10
  • 14. Two Microwave Frequencies What happens to MIMO oscillations ??? Motivation Previous Studies Ref: M. A. Zudov, R. R. Du, L. N. Pfeier, and K. W. West, Phys. Rev. Lett. 96,236804 (2006). • Obeys an Average of two Monochromatic results • Strongly suppressed at zero resistance states (ZRS) 12
  • 15. • 4 terminal measurement using Lock in Amplifiers • GaAs/AlGaAs Sample • Density, 𝒏 ≈ 𝟑. 𝟑 × 𝟏𝟎 𝟏𝟏 𝒄𝒎−𝟐 • Mobility, 𝝁 ≈ 𝟏𝟓 × 𝟏𝟎 𝟔 𝒄𝒎 𝟐/𝑽𝒔 • Temperature, 𝑻 = 𝟏. 𝟕 𝑲 • 𝟏. 𝟖𝟒 ≤ 𝒇 𝟏 𝒇 𝟐 ≤ 𝟑. 𝟒 Experimental Setup Bichromatic Microwave Induced Magnetoresistance Oscillation Bichromatic MIMO 13
  • 16. Results : Comparing with Average This figure shows the Rxx vs. 1/B for monochromatic excitation at 90.6 GHz 48.7 GHz bichromatic excitation 90.6 GHz & 48.7 GHz and the numerical arithmetic average of the monochromatic signals at 90.6 GHz & 48.7 GHz 14
  • 17. MIMOs for 90.6 GHz 48.7 GHz bichromatic MIMOs for 90.6 GHz +48.7 GHz at same Microwave powers Region 1 𝑩 𝟏 Region 2 𝑩 𝟐 Region 3 𝑩 𝟑 Results : bMIMO behavior 15
  • 18. MIMOs for 90.6 GHz 41.0 GHz bichromatic MIMOs for 90.6 GHz +41.0 GHz at same Microwave powers Region 1 𝑩 𝟏 Region 2 𝑩 𝟐 Region 3 𝑩 𝟑 16
  • 19. Low Frequency 𝒇 𝟏 = 𝟓𝟖 𝑮𝑯𝒛 High frequency component (𝑓2) takes on the values 𝟏𝟒𝟏 𝑮𝑯𝒛 𝟏𝟓𝟔. 𝟓 𝑮𝑯𝒛 𝟏𝟔𝟏 𝑮𝑯𝒛 𝟏𝟕𝟒 𝑮𝑯𝒛 17
  • 20. Results : Power dependence of bMIMOs bMIMOs for frequency pair 90.6 GHz and 41.0 GHz for microwave power 4, 2, 1, 0.5 and 0.25 mW at the lower frequency, and constant power at the higher frequency (90.6 GHz) 18
  • 21. The variation in the diagonal resistance, Rxx, with the change in the microwave power of the low frequency component under bichromatic photo-excitation conditions for (a) region (1), (b) region (2) and (c) region (3) 19
  • 25. Region 1 𝑩 𝟏 Region 2 𝑩 𝟐 Region 3 𝑩 𝟑 23
  • 26. Summary • Bichromatic response may not be a superposition or average of two monochromatic MIMO responses • The amplitude of the bichromatic MIMO has a non linear relationship with MW power • At low magnetic field bichromatic MIMO response is similar to low frequency response, when going to high magnetic field they both contributes and bichromatic MIMO response goes towards high frequency response • The model developed can be used to explain the behavior of the bichromatic MIMO responses 24
  • 27. Acknowledgement • Study more about bichromatic MIMO dependency with MW properties Future Work Supervisor : Group Members: Funding Agencies Prof. Ramesh Mani Dr. Annika Krissa Han Chun Liu Committee Members: Zhuo Wang Prof. Unil Perera Rasanga Samaraweera US Department of Energy DE-SC001762Prof. Yohannes Abate Rasadi Munasinghe Prof. Alexander Kozhanov Tharanga Nanayakkara Prof. Russel White Kushan Wijewardana Sajith Wijayarathne Rupesh Ghimire Army Research Office W911NF-10-1-0450 25
  • 28. Summary • Bichromatic response may not be a superposition or average of two monochromatic MIMO responses • The amplitude of the bichromatic MIMO has a non linear relationship with MW power • At low magnetic field bichromatic MIMO response is similar to low frequency response, when going to high magnetic field they both contributes and bichromatic MIMO response goes towards high frequency response • The model developed can be used to explain the behavior of the bichromatic MIMO responses • Study more about bichromatic MIMO dependency with MW properties Future Work 26