Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Thesis defense

1,396 views

Published on

Ph.D thesis defense presentation on the construction of a quantum memory for squeezed light

  • Be the first to comment

Thesis defense

  1. 1. Towards a Quantum Memory for Non-Classical Light With Cold Atoms<br />Sidney Burks<br />October 13, 2010<br />Thesis Director: Elisabeth Giacobino<br />Thesis Co-director: JulienLaurat<br />Quantum Optics Group<br />Laboratoire Kastler-Brossel<br />Université Pierre et Marie Curie, Paris<br />1<br />
  2. 2. From Classical Bits to Quantum Bits<br />Classical information is based on the bit<br />Discrete values of 1 or 0<br />Photonic bits<br />Quantum information introduces the qubit<br />Superposition of states<br />2<br />
  3. 3. A Quantum Memory<br />Desideratum : Storage without measurement, on-demand retrieval<br /> i.e. a coherent and reversible transfer between light and matter. <br />General Strategy: Transfer the quantum superposition of light onto a superposition of states in a storage medium<br />Photonic qubit<br />3<br />
  4. 4. A Quantum Memory<br />Desideratum : Storage without measurement, on-demand retrieval<br /> i.e. a coherent and reversible transfer between light and matter. <br />General Strategy: Transfer the quantum superposition of light onto a superposition of states in a storage medium<br />The states |a> and |b> are typically ground states in order to avoid a rapid decoherence<br />General Recipe: Two ground states are connected via an excited state by a control field<br />Photonic qubit<br />4<br />
  5. 5. A review of Quantum Memories<br />Single Atom<br />Cavity Quantum Electrodynamics (strong coupling)<br />“Dynamic” EIT<br />Experiments at LKB<br />Atomic Ensemble: Collective Excitation<br />Rephasing protocols<br />- CRIB and AFC - <br />Rare earth elements in solids at cryogenic temperatures<br />Long lifetime<br />5<br />
  6. 6. Applications of Quantum Memories<br /><ul><li>Most photon sources are probabilistic
  7. 7. We know however, how to create twin photon sources</li></ul>6<br />
  8. 8. Applications of Quantum Memories<br /><ul><li>Most photon sources are probabilistic
  9. 9. We know however, how to create twin photon sources
  10. 10. Memory loaded with a photon</li></ul>7<br />
  11. 11. Applications of Quantum Memories<br />Deterministic “Photon Gun”<br />8<br />
  12. 12. Synchronization of photon emissions<br />Two-photon interference<br />9<br />
  13. 13. Synchronization of photon emissions<br />Two-photon interference<br />Quantum gates<br />10<br />
  14. 14. Quantum Networks<br />Distribution of entanglement throughout a network<br />Propagation of entanglement in complex quantum systems<br />Simulation of collective phenomenon<br />H.J. Kimble, The Quantum Internet, Nature 453, 1023 (2008)<br />11<br />
  15. 15. 12<br />Long-distance Quantum Communication<br />Quantum states are fragile<br />Impossible to clone arbitrary quantum states<br />Amplification impossible!<br />
  16. 16. Long-distance Quantum Communication<br />100 km, telecom fiber: 99.5 % losses<br />For 1000 km, and with a 10GHz qubit source, it would take 300000 years to transmit 1 qubit<br />Connection time increases exponentially with distance<br />13<br />
  17. 17. Long-distance Quantum Communication<br />100 km, telecom fiber: 99.5 % losses<br />For 1000 km, and with a 10GHz qubit source, it would take 300000 years to transmit 1 qubit<br />Connection time increases exponentially with distance<br />Quantum repeaters<br />14<br />
  18. 18. Divide into segments and Generate Entanglement<br />.<br />.<br />.<br />.<br />.<br />.<br />L0<br />L0<br />L0<br />L<br />.<br />.<br />.<br />.<br />.<br />.<br />2) Entanglement Swapping<br />.<br />.<br />.<br />.<br />Quantum repeaters<br />Fidelity is close to 1 at long distances, but… the time increases exponentially with distance<br />Entanglement of the segments is probabilistic: each step occurs at a different moment.<br />15<br />
  19. 19. Divide into segments and Generate Entanglement<br />.<br />.<br />.<br />.<br />.<br />.<br />L0<br />L0<br />L0<br />L<br />.<br />.<br />.<br />.<br />.<br />.<br />2) Entanglement Swapping<br />.<br />.<br />.<br />.<br />Quantum repeaters<br />Fidelity is close to 1 at long distances, but… the time increases exponentially with distance<br />Entanglement of the segments is probabilistic: each step occurs at a different moment.<br />“Scalability” : requires quantum memories, which allow an asynchronous preparation of the network<br />Quantum Memories<br />16<br />
  20. 20. How do we entangle two memories?<br />17<br />
  21. 21. Probabilistic Entanglement: DLCZ Protocol<br />18<br />Creation of a collective excitation<br />Entanglement of two ensembles<br />Collective Excitation<br />L.M. Duan et al., Nature 414, 413 (2001)<br />|e><br />field 1<br />write<br />|s><br />|g><br />Experimental demonstration of first quantum repeater segment in 2007<br />
  22. 22. 19<br />Retrieval<br />Storage<br />Writing<br />Re-emission of quantum field<br />Quantum<br />Field<br />Control<br />Field<br />Deterministic entanglement: Single photon and electromagnetically induced transparency (EIT)<br />Mapping of a delocalized single photon<br />K.S. Choi et al., “Mapping photonic entanglement into and out of a quantum memory”, Nature 452, 7183 (2008)<br />
  23. 23. Continuous Variable Entanglement<br />Deterministic entanglement source<br />Uses variables with continuous degrees of freedom - quadratures of an electromagnetic field<br />Characterized by homodyne detection<br />20<br />Coherent State<br />Squeezed State<br />
  24. 24. Current results with EIT in continuous variables<br />Delay of a squeezed state<br />Storage of a single-sideband<br />Storage without excess noise<br />Coherent state<br />Storage of squeezed vacuum<br />−0.16 ± 0.01 dB ~4% <br />−0.21 ± 0.04 dB<br />G. Hétet et al., Phys. Rev. A 74, 033809 (2005)<br />E. Figueroa et al., New J. Phys. 11, 013044 (2009) <br />LKB<br />J. Cviklinski et al., Phys. Rev. Lett. 101, 133601 (2008)<br />K. Honda et al., Phys. Rev. Lett. 100, 093601 (2008)<br />J. Appel et al., Phys. Rev. Lett. 100, 093602 (2008) <br />21<br />
  25. 25. Our system for continuous variable entanglement storage<br />22<br />
  26. 26. Creation of two ensembles<br />23<br />
  27. 27. Plan: Towards a Quantum Memory<br />Quantum Memory<br />Source<br />Squeezed Vacuum<br />Characterization<br />Interfacing<br />Memory<br />24<br />
  28. 28. Plan: Towards a Quantum Memory<br />Quantum Memory<br />Source<br />Squeezed Vacuum<br />Characterization<br />Interfacing<br />Memory<br />25<br />
  29. 29. Generation of Squeezed Vacuum with an OPO<br />Source of Squeezed Vacuum<br />Compatible with a Cesium-based quantum memory<br />Optical Parametric Oscillator (OPO)<br />26<br />
  30. 30. Usage of nonlinear optics<br />Second-harmonic Generation<br />Parametric Down-Conversion<br />Coherent State<br />Squeezed Vacuum<br />27<br />
  31. 31. Experimental Layout<br />28<br />
  32. 32. Experimental Layout<br />29<br />
  33. 33. Second-Harmonic Generation<br />Ring cavity<br />Stabilization via Tilt-Locking<br />Temperature regulation<br />30<br />
  34. 34. Doubling Cavity<br />Second-harmonic Power<br />31<br />
  35. 35. Doubling Cavity<br />Second-harmonic Power<br />330 mW<br />330 mW of blue<br />50% conversion efficiency<br />32<br />
  36. 36. Experimental Layout<br />33<br />
  37. 37. OPO Cavity<br />Linear<br />Quadratic<br />34<br />Balance between strong squeezing and experimental stability<br />
  38. 38. OPO Cavity<br />Output coupler T = 7%<br />Below-threshold operation<br />Stabilization by Pound-Drever-Hall<br />Counter-propagating lock beam<br />35<br />
  39. 39. Lock Beam<br />Stray photons in the Squeezed Vacuum<br />Reduction of lock beam intensity<br />Antireflective treatment<br />Active Switch<br />36<br />
  40. 40. Plan: Towards a Quantum Memory<br />Quantum Memory<br />Source<br />Squeezed Vacuum<br />Characterization<br />Interfacing<br />Memory<br />37<br />
  41. 41. Experimental Layout<br />38<br />
  42. 42. Squeezed Vacuum Generation<br />S. Burks et al., “Squeezed light at the D2 cesium line for atomic memories”, Opt. Express 17, 3777 (2008)<br />39<br />Analysis frequency: 1MHz<br />
  43. 43. Squeezed Vacuum Generation<br />S. Burks et al., “Squeezed light at the D2 cesium line for atomic memories”, Opt. Express 17, 3777 (2008)<br />40<br />Analysis frequency: 1MHz<br /><ul><li>3 dB of squeezing</li></ul>(50% reduction of quantum noise)<br />
  44. 44. Squeezed Vacuum Generation<br />41<br />Compatibility with the memory?<br />
  45. 45. Squeezed Vacuum Generation<br />Will be used for EIT in Cesium<br />42<br />Compatibility with the memory?<br />Absorption<br />Dispersion<br />
  46. 46. Squeezed Vacuum Generation<br />Will be used for EIT in Cesium<br />Frequency fixed by linear region of the dispersion<br />43<br />Absorption<br />Dispersion<br />500 kHz<br />
  47. 47. Squeezed Vacuum Generation<br />Squeezing starting at 30 kHz<br />Compatibility with bandwidth-limited EIT!<br />44<br />
  48. 48. State Reconstruction<br />45<br />
  49. 49. State Reconstruction<br />Photon pairs for Squeezed Vacuum<br />Thermal state mixed with the vacuum state<br />Complete characterization of our state<br />46<br />Wigner function for 2 dB of squeezing<br />
  50. 50. Plan: Towards a Quantum Memory<br />Quantum Memory<br />Source<br />Squeezed Vacuum<br />Characterization<br />Interfacing<br />Memory<br />47<br />
  51. 51. Creation of Pulses<br />Temporal mode adapted to the memory<br />Conversion of a continuous source into a pulsed source<br />Very difficult due to the fragility of quantum states<br />48<br />
  52. 52. Pulses with an Optical Chopper<br />49<br />Acoustic noise suppression<br />Mechanical vibration attenuation<br />time<br />
  53. 53. Pulses with an Optical Chopper<br />1 µs width<br />time<br />Optical losses~2%<br />Pulses of 500 ns!<br />50<br />
  54. 54. Pulses via AOM<br /><ul><li>Low optical losses: ~10%
  55. 55. Precise timing control: 25 ns</li></ul>51<br />
  56. 56. Plan: Towards a Quantum Memory<br />Quantum Memory<br />Source<br />Memory<br />52<br />
  57. 57. Creation of Two Ensembles<br />53<br />
  58. 58. Necessary Elements<br />Atoms<br />Large and dense cloud<br />EIT<br />Lasers and transitions<br />Magnetic field cancelation<br />Avoid ground state decoherence<br />Timing and Synchronization<br />54<br />
  59. 59. 55<br />
  60. 60. Chamber<br />56<br />
  61. 61. Chamber<br />MOT<br />57<br />
  62. 62. Chamber<br />MOT<br />Lasers<br />58<br />
  63. 63. Chamber<br />MOT<br />Lasers<br />Multiplexing<br />59<br />
  64. 64. Chamber<br />MOT<br />Lasers<br />Multiplexing<br />60<br />How can we characterize this cloud?<br />
  65. 65. Optical density measurement<br />61<br />-10 MHz<br />
  66. 66. Optical density measurement<br />-10 MHz<br />Optical density of 20<br />Memory efficiency of 25%<br />62<br />Gorshkovet al., Phys. Rev. A 76, 033805 (2007)<br />
  67. 67. Necessary Elements<br />Atoms<br />Large and dense cloud<br />EIT<br />Lasers and transitions<br />Magnetic field cancelation<br />Avoid ground state decoherence<br />Timing and Synchronization<br />63<br />
  68. 68. Optical Phase Lock<br />Optical <br />beat signal<br />64<br />
  69. 69. 65<br />
  70. 70. Phase Lock<br />66<br /><ul><li>Rests locked for several hours
  71. 71. sub-Hz frequency precision</li></li></ul><li>Necessary Elements<br />Atoms<br />Large and dense cloud<br />EIT<br />Lasers and transitions<br />Magnetic field cancelation<br />Avoid ground state decoherence<br />Timing and Synchronization<br />67<br />
  72. 72. Extinguishing the magnetic field<br />Field due to MOT coils<br />Residual fields<br />68<br />
  73. 73. Extinguishing the magnetic field<br />Cloud remains ~5 ms after cutting the field<br />Fields are difficult to cut quickly<br />69<br />
  74. 74. Extinguishing the magnetic field<br />Cloud remains ~5 ms after cutting the field<br />Fields are difficult to cut quickly<br />70<br />Time constant 300 µs<br />The cloud remains dense!<br />
  75. 75. Raman Spectroscopy<br />Field present<br />Presence of parasite fields<br />milliGauss compensation in 3 dimensions<br />71<br />
  76. 76. Raman Spectroscopy<br />Field present<br />milliGauss compensation in 3 dimensions<br />72<br />Memory time: 10-100 µs<br />
  77. 77. Necessary Elements<br />Atoms<br />Large and dense cloud<br />EIT<br />Lasers and transitions<br />Magnetic field cancelation<br />Avoid ground state decoherence<br />Timing and Synchronization<br />73<br />
  78. 78. Timing of Memory Lasers<br />74<br />
  79. 79. Timing of Memory Lasers<br />Simple Interface<br />Rapid Development<br />Scaleable<br />75<br />
  80. 80. Memory Optical Table<br />76<br />
  81. 81. Conclusion<br />Entanglement of memory ensembles<br />77<br />
  82. 82. Conclusion<br />Entanglement of memory ensembles<br />Squeezed Vacuum generation with an ’OPO<br />Strong squeezing: -3 dB<br />Compatible with EIT<br />Interfaced with the memory<br />78<br />
  83. 83. Conclusion<br />Entanglement of memory ensembles<br />Squeezed Vacuum generation with an ’OPO<br />Strong squeezing: -3 dB<br />Compatible with EIT<br />Interfaced with the memory<br />Characterization of Memory Elements<br />79<br />Creation of two ensembles<br />Memory storage time: 10-100 µs<br />Memory efficiency of 25%<br />

×