SlideShare a Scribd company logo
1 of 49
Download to read offline
DEVELOPMENT AND CHARACTERIZATION OF RADIATA-PINE CLADDING
FOR MORE SUSTAINABLE AND ENERGY EFFICIENT FAҪADES IN THE
BASQUE COUNTRY
Belinda Pelaz Sánchez
Directors:
Jesús Cuadrado Rojo
Jesús Mª Blanco Ilzarbe
April 2017
1
CONTENTS 2
I. Literature Review
• Façade materials
• Façade solutions
• Current requirements: Energy efficiency,
sustainability & comfort
II. Characterization of Radiata-pine:
• Thermal conductivity
• Permeability
• Specific heat
III. Energy Simulation:
• THERM
• WUFI
• Design Builder (CFD)
IV. Durability:
• Ageing
• Thermal properties
V. Index of sustainability:
• Case study
VI. Wooden façades Catalogue:
• Timber frame
• CLT (Cross Laminated Timber)
VII. Conclusions & future research lines
CONTENTS
Literature
Review
Characterization
of Radiata-pine:
Energy
Simulation
Durability
Index of
sustainability
Wooden
facades
Catalogue
Conclusions
& future
research
lines
Energy
Efficiency
Costs
Foot
Print
3
LITERATURE REVIEW
FAҪADE EVOLUTION
MATERIALS 4
Stone Ceramic
• An interpretation of natural structures, caves
• Its development is liked to masonry development
• Its extraction started in 5000 B.C.
• Manipulation with the apparition of copper in 2500
B.C.
• Development of the curvature by Egyptians, during the
Greek Architecture.
• The Romanians developed more in deep these
techniques
• Structural solutions by means of joining horizontal
layers (Gothic cathedrals of 13th century)
• Evolution to facades with external cladding.
• Products made of clay have taken place
since more than 7000 years
• Origin in Nilo Valley, buildings made of
handmade mud bricks
• In 5000 B.C. appeared the fire bricks, to
build masonries more durable
• Mass production of fire bricks by Romanians
• In Germany gained relevance in the Middle
Ages, with the Baltic Gothic
• Its peak was extended to countries where
stone was limited resource
Santa Maria del Fiore in Florence, Italy
House Ratschow in Rostock, Germany
LITERATURE REVIEW
FAҪADE EVOLUTION
MATERIALS 5
• From 12000 B.C., lime mortar was used as construction
material and its development permitted the discover
of opus caementitium or concrete in 2dn century B.C
• The discovery of Portland cement in 1824 enabled the
development of the concrete as it is known nowadays
• The first samples of reinforced concrete were tested in
the middle of 19th century in France and England
• Replaced wood and stone because this material
promised more protection against moisture
• The first patent was registered in England, in 1854, to a
reinforced concrete slab with steel
• It was the first artificial and heterogeneous
construction material
• Extremely durable, easy-to-work , great load capacity
together with steel, malleable
• It has been present from the prehistory until
the beginning of the industrial age
• Sawing and chipping methods are from a
thousand years ago
• The precessors of modern engineering of
wood are mainly found in 19th and 20th
century
• The current state of wooden façade
technology is extended from the craftwork
to more advanced prefabricated wooden
walls. (Cross Laminated Timber)
Other materials:
o Plastic
o Glass
o Metal
Concrete Wood
Red House in Ross-shire, ScottlandEnnis House in los Angeles, EEUU
LITERATURE REVIEW
FAҪADE EVOLUTION
MATERIALS 6
Iberdrola tower
School of civil Engineering (UPV/EHU)
San Mamés Stadium
LITERATURE REVIEW
FAҪADE EVOLUTION
SOLUTIONS 7
Load
façade
Multi-layer
façade
Ventilated
façade
Wooden façade
• Protection
• Structure use
• Protection
• Salubrity
• Comfort
• Energy efficiency
• Protection
• Salubrity
• Comfort
• More Energy Efficiency
(continuous insulation)
• Protection
• Structure use
• Salubrity
• Comfort
• Energy Efficiency
• Sustainability
ENVIRONMENTAL
ASPECTS
ECONOMIC
ASPECTS
SOCIAL
ASPECTS
8
WOODEN CLADDING
DESCRIPTION OF THE SAMPLES AND TREATMENTS
CHARACTERIZATION OF RADIATA-PINE
9
CU Location Humidity Example
CU 1
Protected against exterior
climate and no exposed to
humidity source.
< 20%
Interior rooms without
humidity source near
CU 2
Protected against exterior
climate and occasionally
exposed to humidity source.
Occasionally
> 20%
Interior rooms near to
humidty sources (ceiling of a
swimming pool, etc.)
CU 3.1
Outdoor, without contact
with ground and protected
Occasionally
>20%
Outdoor beam with copings
or sacrifice pieces to protect
the exposed heads
CU 3.2
Outdoor, without contact
with ground or fresh water
Frequency
> 20%
Unprotected pieces in uppper
faces or heads, subject to
splashing rain and snow
accumulations
CU 4
In contact with ground or
fresh water
Permanent
> 20%
Construction in fresh water.
Pilars in direct contact with
ground
CU 5 In contact with salad water > 20% Construction in salat water
PROTECTORS DEPENDING ON CLASS OF USE (DB-SE:M, CTE)
In the Basque Country (Spain), the most common specimen is the Radiata-
pine. Due to that, in order to study the external cladding, three types of
Radiata-pine samples will be tested; natural wood, protected wood with
chemical substances and heat-treated wood.
In this case, the most common treatments in our territory were selected.
The first one is a chemical treatment compounded with copper-HDO, Boro,
chromium and arsenic free, similar to WOLMANIT CX-8 product. The
second one is heat-treated wood; in this case wood is heated with high
temperature (210 °C) and water vapour. Both of protection treatments
gives to Radiata-pine the required durability for external exposed façades
made of this type of wood.
NATURAL
WOOD
CHEMICAL
TREATED
WOOD
HEAT-
TREATED
WOOD
The most vulnerable part of a wooden facade is the outer
face, that is, the external cladding made of wood. In this
case, its class of use is CU 3.2.
THERMAL CONDUCTIVITY
CONDUCTION vs CONVECTION METHOD
CHARACTERIZATION OF RADIATA-PINE
10
UNE-EN 12664
HAND-MADE TEST-BOX
THERMAL CONDUCTIVITY
RESULTS BY CONDUCTION METHOD
CHARACTERIZATION OF RADIATA-PINE
Natural
*554.7 kg/m3
Chemical treated
*513.4 kg/m3
Heat-treated
*502.5 kg/m3
λ [W/(m∙°C)] λ [W/(m∙°C)] λ [W/(m∙°C)]
T [°C] ΔT5 ΔT10 ΔT15 ΔT5 ΔT10 ΔT15 ΔT5 ΔT10 ΔT15
10 0.1214 0.1201 0.1294 0.1199 0.1183 0.1279 0.1057 0.1040 0.1142
25 0.1238 0.1239 0.1331 0.1211 0.1217 0.1304 0.1069 0.1051 0.1152
40 0.1299 0.1305 0.1400 0.1260 0.1262 0.1338 0.1100 0.1083 0.1181
Average 0.1248 0.1230 0.1346 0.1224 0.1224 0.1304 0.1062 0.1045 0.1149
*Apparent volume mass
Technical specifications
Test temperature 10 to 40 °C
Gradient of temperature 5 to 15 K
Material thickness 10 to 200 mm
Thermal conductivity 3 to 500 mW/m·K
Thermal resistance 0,125 to 5 m²·K/W
Accuracy < 1%
Reproducibility < 0.5%
Software EP500-Control Program
11
UNE-EN 12664
Thermal performance of building materials and
products. Determination of thermal resistance by
means of guarded hot plate and heat flow meter
methods. Dry and moist products of medium and
low thermal resistance
THERMAL CONDUCTIVITY
RESULTS BY CONDUCTION METHOD
CHARACTERIZATION OF RADIATA-PINE
Natural
*554.7 kg/m3
Chemical treated
*513.4 kg/m3
Heat-treated
*502.5 kg/m3
λ [W/(m∙°C)] λ [W/(m∙°C)] λ [W/(m∙°C)]
T [°C] ΔT5 ΔT10 ΔT15 ΔT5 ΔT10 ΔT15 ΔT5 ΔT10 ΔT15
10 0.1214 0.1201 0.1294 0.1199 0.1183 0.1279 0.1057 0.1040 0.1142
25 0.1238 0.1239 0.1331 0.1211 0.1217 0.1304 0.1069 0.1051 0.1152
40 0.1299 0.1305 0.1400 0.1260 0.1262 0.1338 0.1100 0.1083 0.1181
Average 0.1248 0.1230 0.1346 0.1224 0.1224 0.1304 0.1062 0.1045 0.1149
*Apparent volume mass
12
UNE-EN 12664
Thermal performance of building materials and
products. Determination of thermal resistance by
means of guarded hot plate and heat flow meter
methods. Dry and moist products of medium and
low thermal resistance
T : 10,25,40 [°C] ΔT5,10,15 [°C]
THERMAL CONDUCTIVITY
CONVECTION
CHARACTERIZATION OF RADIATA-PINE
13
HAND-MADE TEST-BOX
THERMAL CONDUCTIVITY
CONVECTION
CHARACTERIZATION OF RADIATA-PINE
Data acquisition equipment
Hottinger Baldwin Messtechnik (HBM)
Fine-wire thermocouples
RS 409-4908 (PTFE)
Protection wooden box with
insulation
Multilayer blanket, 7.5 m2∙°C/W
thermal resistance
Silicon flexible resistance
Digital thermostat
ELIWELL ID961
14
HAND-MADE TEST-BOX
THERMAL CONDUCTIVITY
CONVECTION
CHARACTERIZATION OF RADIATA-PINE
15
THERMAL CONDUCTIVITY
CONVECTION
CHARACTERIZATION OF RADIATA-PINE
16
a.40
b.36
c. 32
d.28
Natural Radiata-pine Chemical treated Heat-treated
THERMAL CONDUCTIVITY
CONVECTION
CHARACTERIZATION OF RADIATA-PINE
Natural
Ti Te λ hi he
°C °C W/(m∙°C) W/(m2∙°C) W/(m2∙°C)
Test a
(40°C)
Tmed 40.7 21.6 0.1202 15.0858 7.4431
Tmax 42.9 21.6 0.1064 11.4066 7.4397
Tmin 38.5 21.6 0.1355 22.4503 7.4385
Test b
(36°C)
Tmed 36.8 21.9 0.1188 15.4370 7.0466
Tmax 38.9 22.0 0.1026 11.1898 7.0362
Tmin 34.7 21.9 0.1412 25.4776 7.0434
Test c
(32°C)
Tmed 32.9 21.8 0.1122 13.5698 6.5862
Tmax 35.1 21.8 0.0930 8.9250 6.5541
Tmin 30.8 21.8 0.1408 31.5150 6.5584
Test d
(28°C)
Tmed 28.7 21.5 0.1031 13.1443 5.7712
Tmax 31.0 21.5 0.0795 6.9088 5.9332
Tmin 26.8 21.5 0.1395 239.8796 5.9278
Chemical treated
λ hi he
W/(m∙°C) W/(m2∙°C) W/(m2∙°C)
0.1205 14.5856 7.3111
0.1118 10.5006 7.3476
0.1358 25.0350 7.3472
0.1207 14.1995 6.9947
0.1093 9.5100 6.9814
0.1394 28.0843 6.9799
0.1173 13.0026 6.3928
0.0998 7.6634 6.4501
0.1412 38.3745 6.4539
0.1123 12.8936 5.8554
0.0883 5.5558 5.8497
0.1529 98.7834 5.8600
Heat-treated
λ hi he
W/(m∙°C) W/(m2∙°C) W/(m2∙°C)
0.1215 14.2616 7.4494
0.1108 10.7003 7.6197
0.1356 25.2744 7.6148
0.1184 13.6486 7.0427
0.1070 9.5846 7.1056
0.1398 24.3241 7.1081
0.1163 13.5947 6.5932
0.0987 8.0011 6.5917
0.1460 32.9281 6.5994
0.1118 12.9676 5.8586
0.0855 5.7967 5.9012
0.1614 65.3473 5.9214
17
THERMAL CONDUCTIVITY
COMPARISON OF CONDUCTIVITY RESULTS
CHARACTERIZATION OF RADIATA-PINE
TEST BOX
Natural
Chemical
treated
Heat-treated
ΔTe-i [°C] ΔT 1-2[°C] λ [W/(m∙°C)]
20 9 0.1202 0.1205 0.1215
15 6.5 0.1188 0.1207 0.1184
11 4.6 0.1122 0.1173 0.1163
7 2.8 0.1031 0.1123 0.1118
0.1136 0.1177 0.1170
UNE-EN 12664
Natural
Chemical
treated
Heat-treated
ΔTe-i [°C] ΔT 1-2[°C] λ [W/(m∙°C)]
- 5 0.1248 0.1224 0.1062
- 10 0.1230 0.1224 0.1045
- 15 0.1346 0.1304 0.1149
0.1275 0.1251 0.1085
18
CTE (ρ= 520-610 kg/m3) λ= 0.18 W/(m∙°C)
ISO UNE-EN 10456
(ρ= 500-700 kg/m3 )
λ= 0.13-0.18 W/(m∙°C)
PERMEABILITY
PROCEDURE & RESULTS
CHARACTERIZATION OF RADIATA-PINE
Natural Radiata-pine
1.1 1.2 1.3 Average
g [kg/(s.m2)] 3.505E-07 3.208E-07 3.189E-07 3.301E-07
W [kg/(m2.s.Pa)] 2.628E-10 2.405E-10 2.391E-10 2.475E-10
Z [(m2.s.Pa)/kg] 3.805E+09 4.158E+09 4.182E+09 4.048E+09
δ [Kg/(m.s.Pa)] 6.252E-12 5.711E-12 5.716E-12 5.893E-12
μ [-] 3.140E+01 3.438E+01 3.435E+01 3.337E+01
Sd [m] 7.470E-01 8.163E-01 8.209E-01 7.947E-01
Chemical treated Radiata-pine
2.1 2.2 2.3 Average
g [kg/(s.m2)] 3.025E-07 3.032E-07 2.923E-07 2.993E-07
W [kg/(m2.s.Pa)] 2.268E-10 2.274E-10 2.192E-10 2.244E-10
Z [(m2.s.Pa)/kg] 4.409E+09 4.398E+09 4.563E+09 4.457E+09
δ [Kg/(m.s.Pa)] 5.356E-12 5.392E-12 5.193E-12 5.314E-12
μ [-] 3.665E+01 3.641E+01 3.781E+01 3.696E+01
Sd [m] 8.657E-01 8.635E-01 8.957E-01 8.750E-01
Heat-treated Radiata-pine
3.1 3.2 3.3 Average
g [kg/(s.m2)] 1.970E-07 1.806E-07 1.829E-07 1.868E-07
W [kg/(m2.s.Pa)] 1.477E-10 1.354E-10 1.371E-10 1.401E-10
Z [(m2.s.Pa)/kg] 6.770E+09 7.385E+09 7.293E+09 7.149E+09
δ [Kg/(m.s.Pa)] 2.974E-12 2.741E-12 2.772E-12 2.829E-12
μ [-] 6.601E+01 7.162E+01 7.082E+01 6.948E+01
Sd [m] 1.329E+00 1.450E+00 1.432E+00 1.404E+00
19
Climate-chamber
DesiccantMetal cup
Sealing
Paraffin
Tape
UNE-EN ISO 1257:2001
Hygrothermal performance of building
materials and products - Determination of water
vapour transmission properties.
CHARACTERIZATION OF RADIATA-PINE
SPECIFIC HEAT
PROCEDURE & RESULTS
A: Cooling System
B: Silver furnace with circular heater
Technical specifications
Temperature Range 150 to 600 °C
Heating rates 0 to 100 K/min
Cooling rates
0 to 70 K/min
(depending on Temp.)
Sensor Heat flux System
Measurement range ± 600 mW
Enthalpy accuracy < 1%
Cooling options
Forced air; LN2;
Intracooler
Atmospheres
Oxid., inert (static,
dynamic)
Software Proteus
Specific heat [J/(kg∙K)]
Natural Chemical treated Heat-treated
1 1485 1328* 1442
2 1528 1650 1384
3 1434 1761 1184*
4 1629 1616 1158*
5 1597 1696 1498
Average 1535 1681 1441
* This value was excluded from the average and standard deviation
UNE-EN ISO 22007-2
Determination of thermal conductivity and thermal diffusivity
- Part 2: Transient plane heat source (hot disc) method
20
Differential scanning calorimetry
Sample Capsules
Wood dust
21
ENERGY SIMULATION
FINITE ELEMENTS SIMULATION
RADIATA-PINE CLADDING
Rreference: 0.2 [(m2∙C)/W] λconifer: 0.15 [W/(m2∙°C)]
R [(m2∙C)/W] A [cm2] P [cm] eeq [m] emax [m] ∆emax
D1 0.1764 4305.14 169.02 0.0266 0.03 -11,8%
D2 0.1604 3804.18 153.97 0.0241 0.03 -19,8%
D3 0.1334 4068.75 243.17 0.0200 0.03 -33,3%
D4 0.1404 3375.00 165.75 0.0211 0.03 -29,8%
D5 0.1000 2590.85 164.89 0.0150 0.03 -50,0%
Rreference: 0.2 [(m2∙C)/W] λconifer: 0.15 [W/(m2∙°C)]
R [(m2∙C)/W] A [cm2] P [cm] eeq [m] emax [m] ∆emax
D1 0.1764 4305.14 169.02 0.0266 0.03 -11,8%
D2 0.1604 3804.18 153.97 0.0241 0.03 -19,8%
D3 0.1334 4068.75 243.17 0.0200 0.03 -33,3%
D4 0.1404 3375.00 165.75 0.0211 0.03 -29,8%
D5 0.1000 2590.85 164.89 0.0150 0.03 -50,0%
❶ ❷ ❸ ❹ ❺ ❻
emax 0.0300 [m]
λconifer 0.1500 [W/(m∙C)]
Rsi 0.1300 [(m
2
∙C)/W]
Rse 0.0400 [(m
2
∙C)/W]
hi 7.6923 [W/(m
2
∙C)]
he 25.0000 [W/(m
2
∙C)]
R 0.3304 [(m
2
∙C)/W]
U 3.0269 [W/(m
2
∙C)]
D2 RD2 0.1604 [(m
2
∙C)/W]
UD2 6.2344 [W/(m
2
∙C)]
① Finite elements mesh
[°C]②③ Isotherm lines
④ Flux vectors
[W/m
2
]⑤⑥ Constant flux lines
❶ ❷ ❸ ❹ ❺ ❻
emax 0.0300 [m]
λconifer 0.1500 [W/(m∙C)]
Rsi 0.1300 [(m
2
∙C)/W]
Rse 0.0400 [(m
2
∙C)/W]
hi 7.6923 [W/(m
2
∙C)]
he 25.0000 [W/(m
2
∙C)]
R 0.3034 [(m
2
∙C)/W]
U 3.2965 [W/(m
2
∙C)]
D3 RD3 0.1334 [(m
2
∙C)/W]
UD3 7.4963 [W/(m
2
∙C)]
① Finite elements mesh
[°C]②③ Isotherm lines
④ Flux vectors
[W/m
2
]⑤⑥ Constant flux lines
❶ ❷ ❸ ❹ ❺ ❻
emax 0.0300 [m]
λconifer 0.1500 [W/(m∙C)]
Rsi 0.1300 [(m
2
∙C)/W]
Rse 0.0400 [(m
2
∙C)/W]
hi 7.6923 [W/(m
2
∙C)]
he 25.0000 [W/(m
2
∙C)]
R 0.3104 [(m
2
∙C)/W]
U 3.2216 [W/(m
2
∙C)]
D4 RD4 0.1404 [(m
2
∙C)/W]
UD4 7.1225 [W/(m
2
∙C)]
① Finite elements mesh
[°C]②③ Isotherm lines
④ Flux vectors
[W/m
2
]⑤⑥ Constant flux lines
❶ ❷ ❸ ❹ ❺ ❻
emax 0.0300 [m]
λconifer 0.1500 [W/(m∙C)]
Rsi 0.1300 [(m
2
∙C)/W]
Rse 0.0400 [(m
2
∙C)/W]
hi 7.6923 [W/(m
2
∙C)]
he 25.0000 [W/(m
2
∙C)]
R 0.3464 [(m
2
∙C)/W]
U 2.8872 [W/(m
2
∙C)]
D1 RD1 0.1764 [(m
2
∙C)/W]
UD1 5.6689 [W/(m
2
∙C)]
① Finite elements mesh
[°C]②③ Isotherm lines
④ Flux vectors
[W/m
2
]⑤⑥ Constant flux lines
❶ ❷ ❸ ❹ ❺ ❻
emax 0.0300 [m]
λconifer 0.1500 [W/(m∙C)]
Rsi 0.1300 [(m
2
∙C)/W]
Rse 0.0400 [(m
2
∙C)/W]
hi 7.6923 [W/(m
2
∙C)]
he 25.0000 [W/(m
2
∙C)]
R 0.2700 [(m
2
∙C)/W]
U 3.7031 [W/(m
2
∙C)]
D5 RD5 0.1000 [(m
2
∙C)/W]
UD5 10.000 [W/(m
2
∙C)]
❶ ❷ ❸ ❹ ❺ ❻
emax 0.0300 [m]
λconifer 0.1500 [W/(m∙C)]
Rsi 0.1300 [(m
2
∙C)/W]
Rse 0.0400 [(m
2
∙C)/W]
hi 7.6923 [W/(m
2
∙C)]
he 25.0000 [W/(m
2
∙C)]
R 0.2700 [(m
2
∙C)/W]
U 3.7031 [W/(m
2
∙C)]
D5 RD5 0.1000 [(m
2
∙C)/W]
UD5 10.000 [W/(m
2
∙C)]
① Finite elements mesh
[°C]②③ Isotherm lines
④ Flux vectors
[W/m
2
]⑤⑥ Constant flux lines
❶ ❷ ❸ ❹ ❺ ❻
emax 0.0300 [m]
λconifer 0.1500 [W/(m∙C)]
Rsi 0.1300 [(m
2
∙C)/W]
Rse 0.0400 [(m
2
∙C)/W]
hi 7.6923 [W/(m
2
∙C)]
he 25.0000 [W/(m
2
∙C)]
R 0.2700 [(m
2
∙C)/W]
U 3.7031 [W/(m
2
∙C)]
D5 RD5 0.1000 [(m
2
∙C)/W]
UD5 10.000 [W/(m
2
∙C)]
① Finite elements mesh
[°C]②③ Isotherm lines
④ Flux vectors
[W/m
2
]⑤⑥ Constant flux lines
D1 D2
22
THERM Software
THERM contains an automatic mesh generator that uses
the Finite Quadtree algorithm. THERM checks solutions for
convergence and automatically adapts the mesh as
required using an error-estimation algorithm based on the
work of Zienkiewicz and Zhu .
THERM’s calculation routines evaluate conduction and
radiation from first principles. Convective heat transfer is
approximated through the use of film coefficients obtained
from engineering references .
This program allows estimate the thermal transmittance of
different solutions. The inputs are the thermal conductivity
of the material and the environment boundary conditions.
D3 D4
D5
HIGROTHERMAL SIMULATION
WUFI SOFTWARE
ENERGY SIMULATION
23
Transmittance, U [W/(m2∙K)]
Natural
Chemical
treated
Heat-
treated
1- January 9.7115 9.9299 9.9835
2- February 9.2577 9.2582 9.2507
3- March 6.7610 6.7794 6.8568
4- April 5.3675 5.4169 5.2881
5- May 0.0000 0.0000 0.0000
6- June 0.0000 0.0000 0.0000
7- July ---- ---- ----
8- August ---- ---- ----
9- September 0.0000 0.0000 0.0000
10- October 0.0000 0.0000 0.0000
11- November 1.7822 1.8328 1.9361
12- December 7.0047 6.9095 7.1370
WUFI Software
WUFI Pro v.6 software enables the one-dimensional investigation of the
hygrothermal performance of building components for various effects such
as built-in moisture, driving rain, solar radiation, long-wave emissions,
capillary transport and summer condensation.
This tool allows a simulation over a complete year. However, this software
presents some limitations relating to modeling, when some layers vary in
size along the wall.
Radiata-pine variables:
• Conductivity dependence of material
temperature (UNE-EN 12664 )
• Density (23°C, 50% HR)
• Resistande to water vapour difussion factor
(UNE-EN ISO 1257:2001)
• Specific heat (UNE-EN ISO 22007-2)
TEST-BOX SIMULATION
DESIGN BUILDER SOFTWARE
ENERGY SIMULATION
24
Temperature
Air velocity
Isotherms
Air direction
DESIGN BUILDER Software
Design Builder is a simulation tool which
combines various energy modules in order to
estimate heating and cooling energy demand
into a room, using different systems and
energy sources. This software combines
different advanced tools based on the
ENERGY PLUS engine.
The Design Builder software analyse both
moisture and heat transfer through a
combined Heat and Moisture Finite Element,
defined in the Heat Balance Algorithm.
Through the CFD module (Computational fluid
dynamics) it is able to analyse the energy
losses of the test box, and it also allows to
foreseen how the air flows inside the box.
TEST-BOX SIMULATION
DESIGN BUILDER SOFTWARE
ENERGY SIMULATION
Initial conditions 20°C
Turbulence model KƐ
Internal iterations 6
Relaxation factor 1
Viscosity
Relaxation factor 1
Velocity (x,y,z)
Internal iterations 3
Relaxation factor 1
Pressure
Internal iterations 3
Temperature
Walls Ceiling Floor (ext) Lost Heating Interior Exterior
kW kW kW kW kW °C °C
-0.336 -0.011 -0.011 -0.359 0.356 28,0 20,5
93.4% 3.3% 3.3% 100% 0.9% error
Temperature
Walls Ceiling Floor (ext) Lost Heating Interior Exterior
kW kW kW kW kW °C °C
-0.339 -0.011 -0.009 -0.359 0.356 28,0 20,5
95.2% 3.2% 2.4% 100% 0.9% error
25
Estimation in
the design of
the TEST BOX
Simulation
results
Temperature
DETERIORATION
DURABILITY TEST PREPARATION
DURABILITY
27
Cylindrical solar chart, from June to December
Cylindrical solar chart, from December to June
CLIMATE CONSULTANT Software
SSW (30° South-West)
UNE-CEN/TS 15397 EX
Wood preservatives - Method for natural preconditioning out of ground
contact of treated wood specimens prior to biological laboratory test
Support Samples
3D with SKETCHUP
Software
DETERIORATION
AGEING
DURABILITY
28
2015
DETERIORATION
DURABILITY TEST PREPARATION
DURABILITY
29
2016
DETERIORATION
VARIATION OF PROPERTIES
DURABILITY
Emissivity, ε [-]
Origin 2 years Δε [%]
Natural 0.93 0.92 -1.07
Chemical treated 0.93 0.87 -6,46
Heat-treated 0.93 0.90 -3.22
30
Technical specifications
Measuring
range
-30 to +100°C; 0 to
+350 °C (switchable)
Accuracy
±2 °C, ±2 % of m.v.
(±3 °C of m.v. at -30
to -22 °C)
Thermal
sensitivity
˂ 50 mK at +30 °C
Software TESTO IRSoft
Conductivity, λ [W/(m∙K)]
Origin 1.5 years Δλ [%]
Natural 0.1202 0.0821 -31.65
Chemical treated 0.1205 0.0898 -25.44
Heat-treated 0.1215 0.1006 -17.18
THERMOGRAPHIC CAMERA
EMISSIVITY
THERMAL CONDUTIVITY BY TEST BOX
31
ENVIRONMENTAL SUSTAINABILITY
INDEX DEVELOPMENT BY MIVES
SUSTAINABILITY
Global Evaluation ESI-CW Criteria level evaluation Indicator level evaluation
32
General Hierarchy Diagram of the Evaluation
INDEX OF ENVIRONMENTAL
SUSTAINABILITY
In the Spanish code for concrete and
steel (EHE-08. RD 1247/2008]; EAE.
RD 751/2011) an index of
environmental sustainability was
obtained using an adaptation of the
MIVES.
In this case, this methodology aims
to establish a quick indicator for
quantifying the degree of
“environmental sustainability” that
may be assigned on the basis of
information from the agents that
intervene in the design of a timber
façade.
ENVIRONMENTAL SUSTAINABILITY
INDEX DEVELOPMENT BY MIVES
SUSTAINABILITY
33
1. Characterization of Timber products:
• Volume of laminated timber with FSC, PEFC or other certifications
• Volume of sawn timber with FSC, PEFC or other certifications
Respect to the total volume of wood used in the facade
2. Manufacture and assembly:
• Manufacture and assembly in the factory
• On-site assembly
• Construction firm
3. Optimization of resources in use :
• Origin of the timber with regard to its consumption ≤ 300 km
• Origin of the timber with regard to its consumption between 300 and1000 km
• Origin of the timber with regard to its consumption ≥ 1000 km
4. Supervision of environmental impact:
• Type of protection (superficial, average, deep)
5. Waste management:
• No specific action in either the Project or the budget
• The use of waste containers for stony fractions is proposed in the project and
appears in the budget
• The firm supplying the structure is responsible for possible waste generated in
the assembly of the structure
• The supplier collects the waste and proposes an agreement for its valuation
Company with
environmental accreditation
or commitment
Distance of the factory
respect to the site works
(more or less than 300km)
CRITERIA
The environmental
sustainability index is
proposed on the basis of two
criteria for a wood cladding,
which are the products used
and the measures to reduce
the generation of impacts
ENVIRONMENTAL SUSTAINABILITY
INDEX DEVELOPMENT BY MIVES
SUSTAINABILITY
ESI-CW
5: Waste management (67 %)
Products (70%)
3: Optimization of resources in
use (30 %)
1: Characterization of timber
products (40%)
2: Manufacture and assembly
(30%)
Measures to reduce
impacts (30%)
4: Supervision of environmental
impact (33 %)
0
0,2
0,4
0,6
0,8
1
0 20 40 60 80 100
1.- Indicator
0
0,2
0,4
0,6
0,8
1
0 20 40 60 80 100
2.- Indicator
0
0,2
0,4
0,6
0,8
1
0 20 40 60 80 100
3.- Indicator
0
0,2
0,4
0,6
0,8
1
0 20 40 60 80 100
4.- Indicator
0
0,2
0,4
0,6
0,8
1
0 20 40 60 80 100
5.- Indicator
34
VALUE FUNCTIONS [0-1]
CRITERIA &
WEIGHTING FACTORS [%]
INDICATORS
INDEX OF
ENVIRONMENTAL
SUSTAINABILITY
The Panel of Experts was formed by professionals from the
construction sector (engineering and architecture studios,
construction companies, research centres and universities)
≈
EHE: Spanish normative for
concrete structures
EAE: Spanish normative for
steel structures
ENVIRONMENTAL SUSTAINABILITY
INDEX DEVELOPMENT BY MIVES
SUSTAINABILITY
35
CASE 1
• Certified Timber
• The factory was at a distance of 54 km from the location
of the house
• The timber factory has ISO-9.001 and OHSAS-18.001
accreditation
• The manufacturer is a small company without Research
and Development
• The construction firm in charge of carrying out the
necessary civil works, has no type of environmental
accreditation
CASE 2
• Wood is brought from Austria
• The CLT manufacturer has ISO 14.000 accreditation
CASE 3
• The external cladding is changed to a wooden external
cladding 2 cm thickness made of joined boards which are
joined to the CLT by means of wood studs
CASE STUDY
A house located in the Basque Country and made of CLT
(Cross Laminated Timber), whose external cladding is based
on a stone layer stuck to the façade support, the CLT walls.
ENVIRONMENTAL SUSTAINABILITY
INDEX DEVELOPMENT BY MIVES
SUSTAINABILITY
Indicator
Indicator
score
Indicator
value
Indicator
[%]
Value of
criterion
Indicator
[%]
Value of
Index
1: Pproduct 100 1.00 40
0.56 70
0.49
2: Pfactory/Psite 12 0.03 30
3: Puse 29 0.50 30
4: Pprotect. 100 1.00 33
0.33 30
5: Pmng 0 0 67
Indicator
Indicator
score
Indicator
value
Indicator
[%]
Value of
criterion
Indicator
[%]
Value of
Index
1: Pproduct 100 1.00 40
0.95 70
0.76
2: Pfactory/Psite 60 0.83 30
3: Puse 54 0.99 30
4: Pprotect. 100 1.00 33
0.33 30
5: Pmng 0 0 67
Indicator
Indicator
score
Indicator
value
Indicator
[%]
Value of
criterion
Indicator
[%]
Value of
Index
1: Pproduct 100 1.00 40
0.94 70
0.75
2: Pfactory/Psite 60 0.83 30
3: Puse 48 0.99 30
4: Pprotect. 91 0.91 33
0.30 30
5: Pmng 0 0 67
36
1.
2.
3.4.
5.
1.
2.
3.4.
5.
CASE 1. Local wood
CASE 2: Wood from Austria
CASE 3: Wooden external cladding
CASE 1
CASE 2
CASE 3
37
1.
2.
3.4.
5.
1.
2.
3.4.
5.
CATALOGUE OF FAҪADES
DEFINITION
CATALOGUE
38
ENVIRONMENTAL ASPECTS
•NATURAL RESOURCES
•BETTER WASTE MANAGEMENT
•ECOLOGICAL SOLUTIONS
ECONOMIC ASPECTS
•FAST CONSTRUCTION
•HIGH CONTROL OF
QUALITY
•LESS FINAL COSTS
•INDEPENDENT TO
CLIMATE
SOCIAL ASPECTS
•CREATIVE
•AESTHETIC
•THERMAL AND ACOUSTIC
COMFORT
•GOOD WORK PRACTICES
CATALOGUE ASPECTS
• Carbon emissions
• Weight
• Costs
• Transmittance (Spanish Technical Code)
SUSTAINABLE DEVELOPMENT
CATALOGUE OF WOODEN FAÇADES
The aim of this catalogue is a compilation of the most
common wooden façades used in our territory and
compare its sustainability depending on the aspects:
environmental, social and economic.
Very often, wooden façades are configured as a load
wall. That implies that both structural and protection
functions are required. Because of that, the catalogue
distinguished between façades made of traditional
timber frame (A) and CLT (B), Cross Laminated Timber,
in order to compare different structural composition
CATALOGUE OF FAҪADES
CONFIGURATION
CATALOGUE
39
CATALOGUE OF FAҪADES
TIMBER FRAME SOLUTIONS (A)
CATALOGUE
40
0.417 W/m2∙K
33.06 Kg CO2 eq
71.82 Kg/m2
53.26 €/m2
0.425 W/m2∙K
37.22 Kg CO2 eq
70.71 Kg/m2
88.44 €/m2
0.400 W/m2∙K
46.95 Kg CO2 eq
78.98 Kg/m2
66.32 €/m2
0.421 W/m2∙K
55.82 Kg CO2 eq
187.63 Kg/m2
124.01 €/m2
0.431 W/m2∙K
33.06 Kg CO2 eq
71.82 Kg/m2
53.26 €/m2
0.405 W/m2∙K
31.50 Kg CO2 eq
75.06 Kg/m2
63.02 €/m2
A1 A2 A3 A4 A5 A6
CATALOGUE OF FAҪADES
CROSS LAMINATED TIMBER SOLUTIONS (B)
CATALOGUE
41
0.396 W/m2∙K
27.66 Kg CO2 eq
73.81 Kg/m2
92.21 €/m2
0.370 W/m2∙K
31.14 Kg CO2 eq
67.47 Kg/m2
123.39 €/m2
0.437 W/m2∙K
41.55 Kg CO2 eq
69.51 Kg/m2
91.64 €/m2
0.411 W/m2∙K
58.66 Kg CO2 eq
198.63 Kg/m2
164.97 €/m2
0.406 W/m2∙K
35.90 Kg CO2 eq
94.11 Kg/m2
98.64 €/m2
0.426 W/m2∙K
25.94 Kg CO2 eq
74.31 Kg/m2
101.97 €/m2
B1 B2 B3 B4 B5 B6
42
CONCLUSIONES FINALES
43
CONCLUSIONES FINALES
Simulación energética
• DESIGN BUILDER: Se ha demostrado que la hipótesis de
cálculo de la transferencia de calor y la hipótesis de
movimiento del aire interior se cumplen.
• THERM: Se ha demostrado que a mayor área en
sección y menor perímetro expuesto al exterior mayor
resistencia térmica. Este sofware permite obtener la
transmitancia térmica de las soluciones. (λ, hv, Te, Ti)
• WUFI: Se ha demostrado que en diferentes meses, la
transmitancia varía, y que hay meses en los que un tipo
de madera es más eficientes que otros. (λ, ρ, Ce, µ, hv)
44
D1 D2 D3 D4
CONCLUSIONES FINALES
Durabilidad
• La mayor variación del aspecto de las muestras, a nivel de color y aparición de fisuras,
se produce durante el primer año. Durante el segundo año, el deterioro se ralentiza.
• En términos de conductividad térmica, la madera natural y tratada térmicamente
representan una mayor variación (31 y 25%), mientras que la conductividad térmica de
la termotratada varía menos (17%).
• Sin embargo, en cuanto a emisividad son la natural y la termotratada las que menos
varían (1 y 3%), mientras que la tratada químicamente reduce su emisividad hasta en
un 6%.
45
CONCLUSIONES FINALES
Sostenibilidad
• Como dentro del grupo de agentes intervinientes en la industria de la construcción se
generan conflictos de interés, se ha desarrollado una metodología para unificar criterios
en relación a la sostenibilidad ambiental de las fachadas de madera.
• A partir de dicha metodología se pueden establecer líneas de acción para la mejora de la
sostenibilidad de las fachadas de madera, considerando la situación económica y las
características particulares de cada país.
Catálogo de fachadas de madera
• A través de la recopilación de diferentes sistemas de fachada de madera, se ha concluido
que las fachadas de CLT (Cross Laminated Timber) son en general más caras que las de
entramado. Sin embargo, representan menores saltos térmicos.
• Por otro lado, las fachadas de entramado son más baratas pero no son comunes en
nuestro territorio, mientras que las de CLT se están extendiendo debido al desarrollo
tecnológico de dicho modelo constructivo de gran resistencia mecánica, fácil de
ensamblar y de material ecológico.
46
CONTRIBUCIONES
47
Artículos
 ANALYSIS OF THE INFLUENCE OF WOOD CLADDING ON THE THERMAL BEHAVIOR OF BUILDING
FAÇADES; CHARACTERIZATION THROUGH SIMULATION BY USING DIFFERENT TOOLS AND
COMPARATIVE TESTING VALIDATION. Pelaz, B., Blanco, J.M., Cuadrado, J., Egiluz, Z., Buruaga, A.
Energy and Buildings, 141, pp. 349-360. 2017
 METHODOLOGY TO ASSESS THE ENVIRONMENTAL SUSTAINABILITY OF TIMBER STRUCTURES.
Cuadrado, J., Zubizarreta, M., Pelaz, B., Marcos, I. Construction and Building Materials, 86, pp.
149-158. 2015
 ENERGY ASSESSMENT AND OPTIMIZATION OF PERFORATED METAL SHEET DOUBLE SKIN
FAÇADES THROUGH DESIGN BUILDER; A CASE STUDY IN SPAIN. Blanco, J.M., Buruaga, A., Rojí,
E., Cuadrado, J., Pelaz, B. Energy and Buildings, 111, pp. 326-336. 2016
Congresos
 NUMERICAL MODEL DEVELOPMENT FOR THE OPTIMIZATION OF WOOD COATING ENCLOSURES.
B. Pelaz , J. Cuadrado, Jesús M. Blanco, E. Rojí. CMN, Lisboa. 2015
 CHARACTERIZATION OF WOOD SAMPLES THROUGH NUMERICAL SIMULATION BASED ON A TEST
VALIDATION BENCH PROCEDURE. B. Pelaz , J. Cuadrado, Jesús M. Blanco, E. Rojí. CMN, Lisboa.
2015
 MODELOS DE COMPORTAMIENTO TÉRMICO EN FACHADAS DE MADERA. B. Pelaz , J. Cuadrado,
Jesús M. Blanco, E. Rojí, R. Losada. 6º EESAP , Donostia-San Sebastián. 2015
FUTURAS LINEAS DE INVESTIGACIÓN
 Se ha demostrado que a mayor conductividad térmica del material, mayor resistencia
térmica superficial, en el caso de muestras de Radiata de 2cm de espesor. El fenómeno
convectivo gana importancia y por ello puede ser objeto de estudio de cara a nuevas
aplicaciones.
 El método de la Caja de Ensayo se centra en la transferencia de calor. Sin embargo, el
estudio de las propiedades de humedad dentro y fuera de la cámara facilitarían la
caracterización de materiales higroscópicos.
 Se ha demostrado que el deterioro del material también toma importancia al influir en
las propiedades del mismo. Un mayor estudio en relación al deterioro de las
propiedades térmicas del material es necesario. En la actualidad, seguimos con este test.
 Aparte de la caracterización del material, conocer la influencia de las condiciones de
frontera en el comportamiento del material también es objeto de estudio.
 El diseño y geometría de los acabados exteriores de madera influyen en el
comportamiento térmico de dicho elemento. Por ello, un estudio más elaborado sería a
su vez objeto de interés.
 En el caso de la metodología creada para la evaluación de la sostenibilidad de fachadas
de madera, de cara a futuras necesidades, puede asumir nuevos criterios a desarrollar,
como, por ejemplo, los costes.
48
DEVELOPMENT AND CHARACTERIZATION OF RADIATA-PINE CLADDING
FOR MORE SUSTAINABLE AND ENERGY EFFICIENT FAҪADES IN THE
BASQUE COUNTRY
Belinda Pelaz Sánchez
Directors:
Jesús Cuadrado Rojo
Jesús Mª Blanco Ilzarbe
April 2017
49

More Related Content

Similar to PhD

High-Rise Passive House Feasibility Study
High-Rise Passive House Feasibility StudyHigh-Rise Passive House Feasibility Study
High-Rise Passive House Feasibility StudyRDH Building Science
 
Performance assessment of boilers,steam system,insulation & refractories
Performance assessment of boilers,steam system,insulation & refractoriesPerformance assessment of boilers,steam system,insulation & refractories
Performance assessment of boilers,steam system,insulation & refractoriesghoshshweta
 
Denia Kolokotsa: The cool and reflective materials' contribution to nzeb. Tec...
Denia Kolokotsa: The cool and reflective materials' contribution to nzeb. Tec...Denia Kolokotsa: The cool and reflective materials' contribution to nzeb. Tec...
Denia Kolokotsa: The cool and reflective materials' contribution to nzeb. Tec...Hellenic Passive House Institute
 
ORGANIC COATINGS FOR CORROSION PROTECTION OF TRANSFORMERS IN UNDERGROUND CHAM...
ORGANIC COATINGS FOR CORROSION PROTECTION OF TRANSFORMERS IN UNDERGROUND CHAM...ORGANIC COATINGS FOR CORROSION PROTECTION OF TRANSFORMERS IN UNDERGROUND CHAM...
ORGANIC COATINGS FOR CORROSION PROTECTION OF TRANSFORMERS IN UNDERGROUND CHAM...Adriana de Araujo
 
application of carbon nano tube in chromatography
application of carbon nano tube in chromatographyapplication of carbon nano tube in chromatography
application of carbon nano tube in chromatographyAbdolah Karimgolan
 
Qwik-Guide PIR vs XPS Pipe Insulation 0518
Qwik-Guide PIR vs XPS Pipe Insulation 0518Qwik-Guide PIR vs XPS Pipe Insulation 0518
Qwik-Guide PIR vs XPS Pipe Insulation 0518Joe Hughes
 
Qwik-Guide PIR vs XPS Pipe Insulation 0518
Qwik-Guide PIR vs XPS Pipe Insulation 0518Qwik-Guide PIR vs XPS Pipe Insulation 0518
Qwik-Guide PIR vs XPS Pipe Insulation 0518Dyplast Products
 
Spacial, Thalassa, ClimaSys Universal enclosures Briefing
Spacial, Thalassa, ClimaSys Universal enclosures BriefingSpacial, Thalassa, ClimaSys Universal enclosures Briefing
Spacial, Thalassa, ClimaSys Universal enclosures BriefingSchneider Electric
 
History of insulation 11 2-14
History of insulation 11 2-14History of insulation 11 2-14
History of insulation 11 2-14Connor Clements
 
MagO introduction to MgO cement boards
MagO introduction to MgO cement boardsMagO introduction to MgO cement boards
MagO introduction to MgO cement boardsPeter Francis
 
Microbial fuel cells
Microbial fuel cellsMicrobial fuel cells
Microbial fuel cellsHari Haran
 
Ablative and Thermal Materials
Ablative and Thermal MaterialsAblative and Thermal Materials
Ablative and Thermal MaterialsAbdullah Akram
 
Presentation energy and comfort
Presentation  energy and comfort Presentation  energy and comfort
Presentation energy and comfort Ahmad Alshaghel
 

Similar to PhD (20)

High-Rise Passive House Feasibility Study
High-Rise Passive House Feasibility StudyHigh-Rise Passive House Feasibility Study
High-Rise Passive House Feasibility Study
 
Performance assessment of boilers,steam system,insulation & refractories
Performance assessment of boilers,steam system,insulation & refractoriesPerformance assessment of boilers,steam system,insulation & refractories
Performance assessment of boilers,steam system,insulation & refractories
 
Insulator
InsulatorInsulator
Insulator
 
Denia Kolokotsa: The cool and reflective materials' contribution to nzeb. Tec...
Denia Kolokotsa: The cool and reflective materials' contribution to nzeb. Tec...Denia Kolokotsa: The cool and reflective materials' contribution to nzeb. Tec...
Denia Kolokotsa: The cool and reflective materials' contribution to nzeb. Tec...
 
CMN2015_1
CMN2015_1CMN2015_1
CMN2015_1
 
Loc3
Loc3Loc3
Loc3
 
ORGANIC COATINGS FOR CORROSION PROTECTION OF TRANSFORMERS IN UNDERGROUND CHAM...
ORGANIC COATINGS FOR CORROSION PROTECTION OF TRANSFORMERS IN UNDERGROUND CHAM...ORGANIC COATINGS FOR CORROSION PROTECTION OF TRANSFORMERS IN UNDERGROUND CHAM...
ORGANIC COATINGS FOR CORROSION PROTECTION OF TRANSFORMERS IN UNDERGROUND CHAM...
 
application of carbon nano tube in chromatography
application of carbon nano tube in chromatographyapplication of carbon nano tube in chromatography
application of carbon nano tube in chromatography
 
Adsorption Materials and Processes for Carbon Capture from Gas-Fired Power Pl...
Adsorption Materials and Processes for Carbon Capture from Gas-Fired Power Pl...Adsorption Materials and Processes for Carbon Capture from Gas-Fired Power Pl...
Adsorption Materials and Processes for Carbon Capture from Gas-Fired Power Pl...
 
Meterials of modern era
Meterials of modern eraMeterials of modern era
Meterials of modern era
 
Qwik-Guide PIR vs XPS Pipe Insulation 0518
Qwik-Guide PIR vs XPS Pipe Insulation 0518Qwik-Guide PIR vs XPS Pipe Insulation 0518
Qwik-Guide PIR vs XPS Pipe Insulation 0518
 
Qwik-Guide PIR vs XPS Pipe Insulation 0518
Qwik-Guide PIR vs XPS Pipe Insulation 0518Qwik-Guide PIR vs XPS Pipe Insulation 0518
Qwik-Guide PIR vs XPS Pipe Insulation 0518
 
Spacial, Thalassa, ClimaSys Universal enclosures Briefing
Spacial, Thalassa, ClimaSys Universal enclosures BriefingSpacial, Thalassa, ClimaSys Universal enclosures Briefing
Spacial, Thalassa, ClimaSys Universal enclosures Briefing
 
History of insulation 11 2-14
History of insulation 11 2-14History of insulation 11 2-14
History of insulation 11 2-14
 
MagO introduction to MgO cement boards
MagO introduction to MgO cement boardsMagO introduction to MgO cement boards
MagO introduction to MgO cement boards
 
1
11
1
 
Microbial fuel cells
Microbial fuel cellsMicrobial fuel cells
Microbial fuel cells
 
NZEB: Ventilation in dwellings
NZEB: Ventilation in dwellingsNZEB: Ventilation in dwellings
NZEB: Ventilation in dwellings
 
Ablative and Thermal Materials
Ablative and Thermal MaterialsAblative and Thermal Materials
Ablative and Thermal Materials
 
Presentation energy and comfort
Presentation  energy and comfort Presentation  energy and comfort
Presentation energy and comfort
 

More from Belinda Pelaz Sánchez (8)

Todos giramos alrededor del sol
Todos giramos alrededor del solTodos giramos alrededor del sol
Todos giramos alrededor del sol
 
Ikea belinda
Ikea belindaIkea belinda
Ikea belinda
 
Ecodiseno castellano11
Ecodiseno castellano11Ecodiseno castellano11
Ecodiseno castellano11
 
2015 eesap6
2015 eesap62015 eesap6
2015 eesap6
 
CMN2015_2
CMN2015_2CMN2015_2
CMN2015_2
 
Ne zer+ d2+2+nzebr+success+cases
Ne zer+ d2+2+nzebr+success+casesNe zer+ d2+2+nzebr+success+cases
Ne zer+ d2+2+nzebr+success+cases
 
Folleto c
Folleto cFolleto c
Folleto c
 
NeZer
NeZerNeZer
NeZer
 

Recently uploaded

Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAbhinavSharma374939
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 

Recently uploaded (20)

Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog Converter
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 

PhD

  • 1. DEVELOPMENT AND CHARACTERIZATION OF RADIATA-PINE CLADDING FOR MORE SUSTAINABLE AND ENERGY EFFICIENT FAҪADES IN THE BASQUE COUNTRY Belinda Pelaz Sánchez Directors: Jesús Cuadrado Rojo Jesús Mª Blanco Ilzarbe April 2017 1
  • 2. CONTENTS 2 I. Literature Review • Façade materials • Façade solutions • Current requirements: Energy efficiency, sustainability & comfort II. Characterization of Radiata-pine: • Thermal conductivity • Permeability • Specific heat III. Energy Simulation: • THERM • WUFI • Design Builder (CFD) IV. Durability: • Ageing • Thermal properties V. Index of sustainability: • Case study VI. Wooden façades Catalogue: • Timber frame • CLT (Cross Laminated Timber) VII. Conclusions & future research lines
  • 4. LITERATURE REVIEW FAҪADE EVOLUTION MATERIALS 4 Stone Ceramic • An interpretation of natural structures, caves • Its development is liked to masonry development • Its extraction started in 5000 B.C. • Manipulation with the apparition of copper in 2500 B.C. • Development of the curvature by Egyptians, during the Greek Architecture. • The Romanians developed more in deep these techniques • Structural solutions by means of joining horizontal layers (Gothic cathedrals of 13th century) • Evolution to facades with external cladding. • Products made of clay have taken place since more than 7000 years • Origin in Nilo Valley, buildings made of handmade mud bricks • In 5000 B.C. appeared the fire bricks, to build masonries more durable • Mass production of fire bricks by Romanians • In Germany gained relevance in the Middle Ages, with the Baltic Gothic • Its peak was extended to countries where stone was limited resource Santa Maria del Fiore in Florence, Italy House Ratschow in Rostock, Germany
  • 5. LITERATURE REVIEW FAҪADE EVOLUTION MATERIALS 5 • From 12000 B.C., lime mortar was used as construction material and its development permitted the discover of opus caementitium or concrete in 2dn century B.C • The discovery of Portland cement in 1824 enabled the development of the concrete as it is known nowadays • The first samples of reinforced concrete were tested in the middle of 19th century in France and England • Replaced wood and stone because this material promised more protection against moisture • The first patent was registered in England, in 1854, to a reinforced concrete slab with steel • It was the first artificial and heterogeneous construction material • Extremely durable, easy-to-work , great load capacity together with steel, malleable • It has been present from the prehistory until the beginning of the industrial age • Sawing and chipping methods are from a thousand years ago • The precessors of modern engineering of wood are mainly found in 19th and 20th century • The current state of wooden façade technology is extended from the craftwork to more advanced prefabricated wooden walls. (Cross Laminated Timber) Other materials: o Plastic o Glass o Metal Concrete Wood Red House in Ross-shire, ScottlandEnnis House in los Angeles, EEUU
  • 6. LITERATURE REVIEW FAҪADE EVOLUTION MATERIALS 6 Iberdrola tower School of civil Engineering (UPV/EHU) San Mamés Stadium
  • 7. LITERATURE REVIEW FAҪADE EVOLUTION SOLUTIONS 7 Load façade Multi-layer façade Ventilated façade Wooden façade • Protection • Structure use • Protection • Salubrity • Comfort • Energy efficiency • Protection • Salubrity • Comfort • More Energy Efficiency (continuous insulation) • Protection • Structure use • Salubrity • Comfort • Energy Efficiency • Sustainability ENVIRONMENTAL ASPECTS ECONOMIC ASPECTS SOCIAL ASPECTS
  • 8. 8
  • 9. WOODEN CLADDING DESCRIPTION OF THE SAMPLES AND TREATMENTS CHARACTERIZATION OF RADIATA-PINE 9 CU Location Humidity Example CU 1 Protected against exterior climate and no exposed to humidity source. < 20% Interior rooms without humidity source near CU 2 Protected against exterior climate and occasionally exposed to humidity source. Occasionally > 20% Interior rooms near to humidty sources (ceiling of a swimming pool, etc.) CU 3.1 Outdoor, without contact with ground and protected Occasionally >20% Outdoor beam with copings or sacrifice pieces to protect the exposed heads CU 3.2 Outdoor, without contact with ground or fresh water Frequency > 20% Unprotected pieces in uppper faces or heads, subject to splashing rain and snow accumulations CU 4 In contact with ground or fresh water Permanent > 20% Construction in fresh water. Pilars in direct contact with ground CU 5 In contact with salad water > 20% Construction in salat water PROTECTORS DEPENDING ON CLASS OF USE (DB-SE:M, CTE) In the Basque Country (Spain), the most common specimen is the Radiata- pine. Due to that, in order to study the external cladding, three types of Radiata-pine samples will be tested; natural wood, protected wood with chemical substances and heat-treated wood. In this case, the most common treatments in our territory were selected. The first one is a chemical treatment compounded with copper-HDO, Boro, chromium and arsenic free, similar to WOLMANIT CX-8 product. The second one is heat-treated wood; in this case wood is heated with high temperature (210 °C) and water vapour. Both of protection treatments gives to Radiata-pine the required durability for external exposed façades made of this type of wood. NATURAL WOOD CHEMICAL TREATED WOOD HEAT- TREATED WOOD The most vulnerable part of a wooden facade is the outer face, that is, the external cladding made of wood. In this case, its class of use is CU 3.2.
  • 10. THERMAL CONDUCTIVITY CONDUCTION vs CONVECTION METHOD CHARACTERIZATION OF RADIATA-PINE 10 UNE-EN 12664 HAND-MADE TEST-BOX
  • 11. THERMAL CONDUCTIVITY RESULTS BY CONDUCTION METHOD CHARACTERIZATION OF RADIATA-PINE Natural *554.7 kg/m3 Chemical treated *513.4 kg/m3 Heat-treated *502.5 kg/m3 λ [W/(m∙°C)] λ [W/(m∙°C)] λ [W/(m∙°C)] T [°C] ΔT5 ΔT10 ΔT15 ΔT5 ΔT10 ΔT15 ΔT5 ΔT10 ΔT15 10 0.1214 0.1201 0.1294 0.1199 0.1183 0.1279 0.1057 0.1040 0.1142 25 0.1238 0.1239 0.1331 0.1211 0.1217 0.1304 0.1069 0.1051 0.1152 40 0.1299 0.1305 0.1400 0.1260 0.1262 0.1338 0.1100 0.1083 0.1181 Average 0.1248 0.1230 0.1346 0.1224 0.1224 0.1304 0.1062 0.1045 0.1149 *Apparent volume mass Technical specifications Test temperature 10 to 40 °C Gradient of temperature 5 to 15 K Material thickness 10 to 200 mm Thermal conductivity 3 to 500 mW/m·K Thermal resistance 0,125 to 5 m²·K/W Accuracy < 1% Reproducibility < 0.5% Software EP500-Control Program 11 UNE-EN 12664 Thermal performance of building materials and products. Determination of thermal resistance by means of guarded hot plate and heat flow meter methods. Dry and moist products of medium and low thermal resistance
  • 12. THERMAL CONDUCTIVITY RESULTS BY CONDUCTION METHOD CHARACTERIZATION OF RADIATA-PINE Natural *554.7 kg/m3 Chemical treated *513.4 kg/m3 Heat-treated *502.5 kg/m3 λ [W/(m∙°C)] λ [W/(m∙°C)] λ [W/(m∙°C)] T [°C] ΔT5 ΔT10 ΔT15 ΔT5 ΔT10 ΔT15 ΔT5 ΔT10 ΔT15 10 0.1214 0.1201 0.1294 0.1199 0.1183 0.1279 0.1057 0.1040 0.1142 25 0.1238 0.1239 0.1331 0.1211 0.1217 0.1304 0.1069 0.1051 0.1152 40 0.1299 0.1305 0.1400 0.1260 0.1262 0.1338 0.1100 0.1083 0.1181 Average 0.1248 0.1230 0.1346 0.1224 0.1224 0.1304 0.1062 0.1045 0.1149 *Apparent volume mass 12 UNE-EN 12664 Thermal performance of building materials and products. Determination of thermal resistance by means of guarded hot plate and heat flow meter methods. Dry and moist products of medium and low thermal resistance T : 10,25,40 [°C] ΔT5,10,15 [°C]
  • 13. THERMAL CONDUCTIVITY CONVECTION CHARACTERIZATION OF RADIATA-PINE 13 HAND-MADE TEST-BOX
  • 14. THERMAL CONDUCTIVITY CONVECTION CHARACTERIZATION OF RADIATA-PINE Data acquisition equipment Hottinger Baldwin Messtechnik (HBM) Fine-wire thermocouples RS 409-4908 (PTFE) Protection wooden box with insulation Multilayer blanket, 7.5 m2∙°C/W thermal resistance Silicon flexible resistance Digital thermostat ELIWELL ID961 14 HAND-MADE TEST-BOX
  • 16. THERMAL CONDUCTIVITY CONVECTION CHARACTERIZATION OF RADIATA-PINE 16 a.40 b.36 c. 32 d.28 Natural Radiata-pine Chemical treated Heat-treated
  • 17. THERMAL CONDUCTIVITY CONVECTION CHARACTERIZATION OF RADIATA-PINE Natural Ti Te λ hi he °C °C W/(m∙°C) W/(m2∙°C) W/(m2∙°C) Test a (40°C) Tmed 40.7 21.6 0.1202 15.0858 7.4431 Tmax 42.9 21.6 0.1064 11.4066 7.4397 Tmin 38.5 21.6 0.1355 22.4503 7.4385 Test b (36°C) Tmed 36.8 21.9 0.1188 15.4370 7.0466 Tmax 38.9 22.0 0.1026 11.1898 7.0362 Tmin 34.7 21.9 0.1412 25.4776 7.0434 Test c (32°C) Tmed 32.9 21.8 0.1122 13.5698 6.5862 Tmax 35.1 21.8 0.0930 8.9250 6.5541 Tmin 30.8 21.8 0.1408 31.5150 6.5584 Test d (28°C) Tmed 28.7 21.5 0.1031 13.1443 5.7712 Tmax 31.0 21.5 0.0795 6.9088 5.9332 Tmin 26.8 21.5 0.1395 239.8796 5.9278 Chemical treated λ hi he W/(m∙°C) W/(m2∙°C) W/(m2∙°C) 0.1205 14.5856 7.3111 0.1118 10.5006 7.3476 0.1358 25.0350 7.3472 0.1207 14.1995 6.9947 0.1093 9.5100 6.9814 0.1394 28.0843 6.9799 0.1173 13.0026 6.3928 0.0998 7.6634 6.4501 0.1412 38.3745 6.4539 0.1123 12.8936 5.8554 0.0883 5.5558 5.8497 0.1529 98.7834 5.8600 Heat-treated λ hi he W/(m∙°C) W/(m2∙°C) W/(m2∙°C) 0.1215 14.2616 7.4494 0.1108 10.7003 7.6197 0.1356 25.2744 7.6148 0.1184 13.6486 7.0427 0.1070 9.5846 7.1056 0.1398 24.3241 7.1081 0.1163 13.5947 6.5932 0.0987 8.0011 6.5917 0.1460 32.9281 6.5994 0.1118 12.9676 5.8586 0.0855 5.7967 5.9012 0.1614 65.3473 5.9214 17
  • 18. THERMAL CONDUCTIVITY COMPARISON OF CONDUCTIVITY RESULTS CHARACTERIZATION OF RADIATA-PINE TEST BOX Natural Chemical treated Heat-treated ΔTe-i [°C] ΔT 1-2[°C] λ [W/(m∙°C)] 20 9 0.1202 0.1205 0.1215 15 6.5 0.1188 0.1207 0.1184 11 4.6 0.1122 0.1173 0.1163 7 2.8 0.1031 0.1123 0.1118 0.1136 0.1177 0.1170 UNE-EN 12664 Natural Chemical treated Heat-treated ΔTe-i [°C] ΔT 1-2[°C] λ [W/(m∙°C)] - 5 0.1248 0.1224 0.1062 - 10 0.1230 0.1224 0.1045 - 15 0.1346 0.1304 0.1149 0.1275 0.1251 0.1085 18 CTE (ρ= 520-610 kg/m3) λ= 0.18 W/(m∙°C) ISO UNE-EN 10456 (ρ= 500-700 kg/m3 ) λ= 0.13-0.18 W/(m∙°C)
  • 19. PERMEABILITY PROCEDURE & RESULTS CHARACTERIZATION OF RADIATA-PINE Natural Radiata-pine 1.1 1.2 1.3 Average g [kg/(s.m2)] 3.505E-07 3.208E-07 3.189E-07 3.301E-07 W [kg/(m2.s.Pa)] 2.628E-10 2.405E-10 2.391E-10 2.475E-10 Z [(m2.s.Pa)/kg] 3.805E+09 4.158E+09 4.182E+09 4.048E+09 δ [Kg/(m.s.Pa)] 6.252E-12 5.711E-12 5.716E-12 5.893E-12 μ [-] 3.140E+01 3.438E+01 3.435E+01 3.337E+01 Sd [m] 7.470E-01 8.163E-01 8.209E-01 7.947E-01 Chemical treated Radiata-pine 2.1 2.2 2.3 Average g [kg/(s.m2)] 3.025E-07 3.032E-07 2.923E-07 2.993E-07 W [kg/(m2.s.Pa)] 2.268E-10 2.274E-10 2.192E-10 2.244E-10 Z [(m2.s.Pa)/kg] 4.409E+09 4.398E+09 4.563E+09 4.457E+09 δ [Kg/(m.s.Pa)] 5.356E-12 5.392E-12 5.193E-12 5.314E-12 μ [-] 3.665E+01 3.641E+01 3.781E+01 3.696E+01 Sd [m] 8.657E-01 8.635E-01 8.957E-01 8.750E-01 Heat-treated Radiata-pine 3.1 3.2 3.3 Average g [kg/(s.m2)] 1.970E-07 1.806E-07 1.829E-07 1.868E-07 W [kg/(m2.s.Pa)] 1.477E-10 1.354E-10 1.371E-10 1.401E-10 Z [(m2.s.Pa)/kg] 6.770E+09 7.385E+09 7.293E+09 7.149E+09 δ [Kg/(m.s.Pa)] 2.974E-12 2.741E-12 2.772E-12 2.829E-12 μ [-] 6.601E+01 7.162E+01 7.082E+01 6.948E+01 Sd [m] 1.329E+00 1.450E+00 1.432E+00 1.404E+00 19 Climate-chamber DesiccantMetal cup Sealing Paraffin Tape UNE-EN ISO 1257:2001 Hygrothermal performance of building materials and products - Determination of water vapour transmission properties.
  • 20. CHARACTERIZATION OF RADIATA-PINE SPECIFIC HEAT PROCEDURE & RESULTS A: Cooling System B: Silver furnace with circular heater Technical specifications Temperature Range 150 to 600 °C Heating rates 0 to 100 K/min Cooling rates 0 to 70 K/min (depending on Temp.) Sensor Heat flux System Measurement range ± 600 mW Enthalpy accuracy < 1% Cooling options Forced air; LN2; Intracooler Atmospheres Oxid., inert (static, dynamic) Software Proteus Specific heat [J/(kg∙K)] Natural Chemical treated Heat-treated 1 1485 1328* 1442 2 1528 1650 1384 3 1434 1761 1184* 4 1629 1616 1158* 5 1597 1696 1498 Average 1535 1681 1441 * This value was excluded from the average and standard deviation UNE-EN ISO 22007-2 Determination of thermal conductivity and thermal diffusivity - Part 2: Transient plane heat source (hot disc) method 20 Differential scanning calorimetry Sample Capsules Wood dust
  • 21. 21
  • 22. ENERGY SIMULATION FINITE ELEMENTS SIMULATION RADIATA-PINE CLADDING Rreference: 0.2 [(m2∙C)/W] λconifer: 0.15 [W/(m2∙°C)] R [(m2∙C)/W] A [cm2] P [cm] eeq [m] emax [m] ∆emax D1 0.1764 4305.14 169.02 0.0266 0.03 -11,8% D2 0.1604 3804.18 153.97 0.0241 0.03 -19,8% D3 0.1334 4068.75 243.17 0.0200 0.03 -33,3% D4 0.1404 3375.00 165.75 0.0211 0.03 -29,8% D5 0.1000 2590.85 164.89 0.0150 0.03 -50,0% Rreference: 0.2 [(m2∙C)/W] λconifer: 0.15 [W/(m2∙°C)] R [(m2∙C)/W] A [cm2] P [cm] eeq [m] emax [m] ∆emax D1 0.1764 4305.14 169.02 0.0266 0.03 -11,8% D2 0.1604 3804.18 153.97 0.0241 0.03 -19,8% D3 0.1334 4068.75 243.17 0.0200 0.03 -33,3% D4 0.1404 3375.00 165.75 0.0211 0.03 -29,8% D5 0.1000 2590.85 164.89 0.0150 0.03 -50,0% ❶ ❷ ❸ ❹ ❺ ❻ emax 0.0300 [m] λconifer 0.1500 [W/(m∙C)] Rsi 0.1300 [(m 2 ∙C)/W] Rse 0.0400 [(m 2 ∙C)/W] hi 7.6923 [W/(m 2 ∙C)] he 25.0000 [W/(m 2 ∙C)] R 0.3304 [(m 2 ∙C)/W] U 3.0269 [W/(m 2 ∙C)] D2 RD2 0.1604 [(m 2 ∙C)/W] UD2 6.2344 [W/(m 2 ∙C)] ① Finite elements mesh [°C]②③ Isotherm lines ④ Flux vectors [W/m 2 ]⑤⑥ Constant flux lines ❶ ❷ ❸ ❹ ❺ ❻ emax 0.0300 [m] λconifer 0.1500 [W/(m∙C)] Rsi 0.1300 [(m 2 ∙C)/W] Rse 0.0400 [(m 2 ∙C)/W] hi 7.6923 [W/(m 2 ∙C)] he 25.0000 [W/(m 2 ∙C)] R 0.3034 [(m 2 ∙C)/W] U 3.2965 [W/(m 2 ∙C)] D3 RD3 0.1334 [(m 2 ∙C)/W] UD3 7.4963 [W/(m 2 ∙C)] ① Finite elements mesh [°C]②③ Isotherm lines ④ Flux vectors [W/m 2 ]⑤⑥ Constant flux lines ❶ ❷ ❸ ❹ ❺ ❻ emax 0.0300 [m] λconifer 0.1500 [W/(m∙C)] Rsi 0.1300 [(m 2 ∙C)/W] Rse 0.0400 [(m 2 ∙C)/W] hi 7.6923 [W/(m 2 ∙C)] he 25.0000 [W/(m 2 ∙C)] R 0.3104 [(m 2 ∙C)/W] U 3.2216 [W/(m 2 ∙C)] D4 RD4 0.1404 [(m 2 ∙C)/W] UD4 7.1225 [W/(m 2 ∙C)] ① Finite elements mesh [°C]②③ Isotherm lines ④ Flux vectors [W/m 2 ]⑤⑥ Constant flux lines ❶ ❷ ❸ ❹ ❺ ❻ emax 0.0300 [m] λconifer 0.1500 [W/(m∙C)] Rsi 0.1300 [(m 2 ∙C)/W] Rse 0.0400 [(m 2 ∙C)/W] hi 7.6923 [W/(m 2 ∙C)] he 25.0000 [W/(m 2 ∙C)] R 0.3464 [(m 2 ∙C)/W] U 2.8872 [W/(m 2 ∙C)] D1 RD1 0.1764 [(m 2 ∙C)/W] UD1 5.6689 [W/(m 2 ∙C)] ① Finite elements mesh [°C]②③ Isotherm lines ④ Flux vectors [W/m 2 ]⑤⑥ Constant flux lines ❶ ❷ ❸ ❹ ❺ ❻ emax 0.0300 [m] λconifer 0.1500 [W/(m∙C)] Rsi 0.1300 [(m 2 ∙C)/W] Rse 0.0400 [(m 2 ∙C)/W] hi 7.6923 [W/(m 2 ∙C)] he 25.0000 [W/(m 2 ∙C)] R 0.2700 [(m 2 ∙C)/W] U 3.7031 [W/(m 2 ∙C)] D5 RD5 0.1000 [(m 2 ∙C)/W] UD5 10.000 [W/(m 2 ∙C)] ❶ ❷ ❸ ❹ ❺ ❻ emax 0.0300 [m] λconifer 0.1500 [W/(m∙C)] Rsi 0.1300 [(m 2 ∙C)/W] Rse 0.0400 [(m 2 ∙C)/W] hi 7.6923 [W/(m 2 ∙C)] he 25.0000 [W/(m 2 ∙C)] R 0.2700 [(m 2 ∙C)/W] U 3.7031 [W/(m 2 ∙C)] D5 RD5 0.1000 [(m 2 ∙C)/W] UD5 10.000 [W/(m 2 ∙C)] ① Finite elements mesh [°C]②③ Isotherm lines ④ Flux vectors [W/m 2 ]⑤⑥ Constant flux lines ❶ ❷ ❸ ❹ ❺ ❻ emax 0.0300 [m] λconifer 0.1500 [W/(m∙C)] Rsi 0.1300 [(m 2 ∙C)/W] Rse 0.0400 [(m 2 ∙C)/W] hi 7.6923 [W/(m 2 ∙C)] he 25.0000 [W/(m 2 ∙C)] R 0.2700 [(m 2 ∙C)/W] U 3.7031 [W/(m 2 ∙C)] D5 RD5 0.1000 [(m 2 ∙C)/W] UD5 10.000 [W/(m 2 ∙C)] ① Finite elements mesh [°C]②③ Isotherm lines ④ Flux vectors [W/m 2 ]⑤⑥ Constant flux lines D1 D2 22 THERM Software THERM contains an automatic mesh generator that uses the Finite Quadtree algorithm. THERM checks solutions for convergence and automatically adapts the mesh as required using an error-estimation algorithm based on the work of Zienkiewicz and Zhu . THERM’s calculation routines evaluate conduction and radiation from first principles. Convective heat transfer is approximated through the use of film coefficients obtained from engineering references . This program allows estimate the thermal transmittance of different solutions. The inputs are the thermal conductivity of the material and the environment boundary conditions. D3 D4 D5
  • 23. HIGROTHERMAL SIMULATION WUFI SOFTWARE ENERGY SIMULATION 23 Transmittance, U [W/(m2∙K)] Natural Chemical treated Heat- treated 1- January 9.7115 9.9299 9.9835 2- February 9.2577 9.2582 9.2507 3- March 6.7610 6.7794 6.8568 4- April 5.3675 5.4169 5.2881 5- May 0.0000 0.0000 0.0000 6- June 0.0000 0.0000 0.0000 7- July ---- ---- ---- 8- August ---- ---- ---- 9- September 0.0000 0.0000 0.0000 10- October 0.0000 0.0000 0.0000 11- November 1.7822 1.8328 1.9361 12- December 7.0047 6.9095 7.1370 WUFI Software WUFI Pro v.6 software enables the one-dimensional investigation of the hygrothermal performance of building components for various effects such as built-in moisture, driving rain, solar radiation, long-wave emissions, capillary transport and summer condensation. This tool allows a simulation over a complete year. However, this software presents some limitations relating to modeling, when some layers vary in size along the wall. Radiata-pine variables: • Conductivity dependence of material temperature (UNE-EN 12664 ) • Density (23°C, 50% HR) • Resistande to water vapour difussion factor (UNE-EN ISO 1257:2001) • Specific heat (UNE-EN ISO 22007-2)
  • 24. TEST-BOX SIMULATION DESIGN BUILDER SOFTWARE ENERGY SIMULATION 24 Temperature Air velocity Isotherms Air direction DESIGN BUILDER Software Design Builder is a simulation tool which combines various energy modules in order to estimate heating and cooling energy demand into a room, using different systems and energy sources. This software combines different advanced tools based on the ENERGY PLUS engine. The Design Builder software analyse both moisture and heat transfer through a combined Heat and Moisture Finite Element, defined in the Heat Balance Algorithm. Through the CFD module (Computational fluid dynamics) it is able to analyse the energy losses of the test box, and it also allows to foreseen how the air flows inside the box.
  • 25. TEST-BOX SIMULATION DESIGN BUILDER SOFTWARE ENERGY SIMULATION Initial conditions 20°C Turbulence model KƐ Internal iterations 6 Relaxation factor 1 Viscosity Relaxation factor 1 Velocity (x,y,z) Internal iterations 3 Relaxation factor 1 Pressure Internal iterations 3 Temperature Walls Ceiling Floor (ext) Lost Heating Interior Exterior kW kW kW kW kW °C °C -0.336 -0.011 -0.011 -0.359 0.356 28,0 20,5 93.4% 3.3% 3.3% 100% 0.9% error Temperature Walls Ceiling Floor (ext) Lost Heating Interior Exterior kW kW kW kW kW °C °C -0.339 -0.011 -0.009 -0.359 0.356 28,0 20,5 95.2% 3.2% 2.4% 100% 0.9% error 25 Estimation in the design of the TEST BOX Simulation results Temperature
  • 26.
  • 27. DETERIORATION DURABILITY TEST PREPARATION DURABILITY 27 Cylindrical solar chart, from June to December Cylindrical solar chart, from December to June CLIMATE CONSULTANT Software SSW (30° South-West) UNE-CEN/TS 15397 EX Wood preservatives - Method for natural preconditioning out of ground contact of treated wood specimens prior to biological laboratory test Support Samples 3D with SKETCHUP Software
  • 30. DETERIORATION VARIATION OF PROPERTIES DURABILITY Emissivity, ε [-] Origin 2 years Δε [%] Natural 0.93 0.92 -1.07 Chemical treated 0.93 0.87 -6,46 Heat-treated 0.93 0.90 -3.22 30 Technical specifications Measuring range -30 to +100°C; 0 to +350 °C (switchable) Accuracy ±2 °C, ±2 % of m.v. (±3 °C of m.v. at -30 to -22 °C) Thermal sensitivity ˂ 50 mK at +30 °C Software TESTO IRSoft Conductivity, λ [W/(m∙K)] Origin 1.5 years Δλ [%] Natural 0.1202 0.0821 -31.65 Chemical treated 0.1205 0.0898 -25.44 Heat-treated 0.1215 0.1006 -17.18 THERMOGRAPHIC CAMERA EMISSIVITY THERMAL CONDUTIVITY BY TEST BOX
  • 31. 31
  • 32. ENVIRONMENTAL SUSTAINABILITY INDEX DEVELOPMENT BY MIVES SUSTAINABILITY Global Evaluation ESI-CW Criteria level evaluation Indicator level evaluation 32 General Hierarchy Diagram of the Evaluation INDEX OF ENVIRONMENTAL SUSTAINABILITY In the Spanish code for concrete and steel (EHE-08. RD 1247/2008]; EAE. RD 751/2011) an index of environmental sustainability was obtained using an adaptation of the MIVES. In this case, this methodology aims to establish a quick indicator for quantifying the degree of “environmental sustainability” that may be assigned on the basis of information from the agents that intervene in the design of a timber façade.
  • 33. ENVIRONMENTAL SUSTAINABILITY INDEX DEVELOPMENT BY MIVES SUSTAINABILITY 33 1. Characterization of Timber products: • Volume of laminated timber with FSC, PEFC or other certifications • Volume of sawn timber with FSC, PEFC or other certifications Respect to the total volume of wood used in the facade 2. Manufacture and assembly: • Manufacture and assembly in the factory • On-site assembly • Construction firm 3. Optimization of resources in use : • Origin of the timber with regard to its consumption ≤ 300 km • Origin of the timber with regard to its consumption between 300 and1000 km • Origin of the timber with regard to its consumption ≥ 1000 km 4. Supervision of environmental impact: • Type of protection (superficial, average, deep) 5. Waste management: • No specific action in either the Project or the budget • The use of waste containers for stony fractions is proposed in the project and appears in the budget • The firm supplying the structure is responsible for possible waste generated in the assembly of the structure • The supplier collects the waste and proposes an agreement for its valuation Company with environmental accreditation or commitment Distance of the factory respect to the site works (more or less than 300km) CRITERIA The environmental sustainability index is proposed on the basis of two criteria for a wood cladding, which are the products used and the measures to reduce the generation of impacts
  • 34. ENVIRONMENTAL SUSTAINABILITY INDEX DEVELOPMENT BY MIVES SUSTAINABILITY ESI-CW 5: Waste management (67 %) Products (70%) 3: Optimization of resources in use (30 %) 1: Characterization of timber products (40%) 2: Manufacture and assembly (30%) Measures to reduce impacts (30%) 4: Supervision of environmental impact (33 %) 0 0,2 0,4 0,6 0,8 1 0 20 40 60 80 100 1.- Indicator 0 0,2 0,4 0,6 0,8 1 0 20 40 60 80 100 2.- Indicator 0 0,2 0,4 0,6 0,8 1 0 20 40 60 80 100 3.- Indicator 0 0,2 0,4 0,6 0,8 1 0 20 40 60 80 100 4.- Indicator 0 0,2 0,4 0,6 0,8 1 0 20 40 60 80 100 5.- Indicator 34 VALUE FUNCTIONS [0-1] CRITERIA & WEIGHTING FACTORS [%] INDICATORS INDEX OF ENVIRONMENTAL SUSTAINABILITY The Panel of Experts was formed by professionals from the construction sector (engineering and architecture studios, construction companies, research centres and universities) ≈ EHE: Spanish normative for concrete structures EAE: Spanish normative for steel structures
  • 35. ENVIRONMENTAL SUSTAINABILITY INDEX DEVELOPMENT BY MIVES SUSTAINABILITY 35 CASE 1 • Certified Timber • The factory was at a distance of 54 km from the location of the house • The timber factory has ISO-9.001 and OHSAS-18.001 accreditation • The manufacturer is a small company without Research and Development • The construction firm in charge of carrying out the necessary civil works, has no type of environmental accreditation CASE 2 • Wood is brought from Austria • The CLT manufacturer has ISO 14.000 accreditation CASE 3 • The external cladding is changed to a wooden external cladding 2 cm thickness made of joined boards which are joined to the CLT by means of wood studs CASE STUDY A house located in the Basque Country and made of CLT (Cross Laminated Timber), whose external cladding is based on a stone layer stuck to the façade support, the CLT walls.
  • 36. ENVIRONMENTAL SUSTAINABILITY INDEX DEVELOPMENT BY MIVES SUSTAINABILITY Indicator Indicator score Indicator value Indicator [%] Value of criterion Indicator [%] Value of Index 1: Pproduct 100 1.00 40 0.56 70 0.49 2: Pfactory/Psite 12 0.03 30 3: Puse 29 0.50 30 4: Pprotect. 100 1.00 33 0.33 30 5: Pmng 0 0 67 Indicator Indicator score Indicator value Indicator [%] Value of criterion Indicator [%] Value of Index 1: Pproduct 100 1.00 40 0.95 70 0.76 2: Pfactory/Psite 60 0.83 30 3: Puse 54 0.99 30 4: Pprotect. 100 1.00 33 0.33 30 5: Pmng 0 0 67 Indicator Indicator score Indicator value Indicator [%] Value of criterion Indicator [%] Value of Index 1: Pproduct 100 1.00 40 0.94 70 0.75 2: Pfactory/Psite 60 0.83 30 3: Puse 48 0.99 30 4: Pprotect. 91 0.91 33 0.30 30 5: Pmng 0 0 67 36 1. 2. 3.4. 5. 1. 2. 3.4. 5. CASE 1. Local wood CASE 2: Wood from Austria CASE 3: Wooden external cladding CASE 1 CASE 2 CASE 3
  • 38. CATALOGUE OF FAҪADES DEFINITION CATALOGUE 38 ENVIRONMENTAL ASPECTS •NATURAL RESOURCES •BETTER WASTE MANAGEMENT •ECOLOGICAL SOLUTIONS ECONOMIC ASPECTS •FAST CONSTRUCTION •HIGH CONTROL OF QUALITY •LESS FINAL COSTS •INDEPENDENT TO CLIMATE SOCIAL ASPECTS •CREATIVE •AESTHETIC •THERMAL AND ACOUSTIC COMFORT •GOOD WORK PRACTICES CATALOGUE ASPECTS • Carbon emissions • Weight • Costs • Transmittance (Spanish Technical Code) SUSTAINABLE DEVELOPMENT CATALOGUE OF WOODEN FAÇADES The aim of this catalogue is a compilation of the most common wooden façades used in our territory and compare its sustainability depending on the aspects: environmental, social and economic. Very often, wooden façades are configured as a load wall. That implies that both structural and protection functions are required. Because of that, the catalogue distinguished between façades made of traditional timber frame (A) and CLT (B), Cross Laminated Timber, in order to compare different structural composition
  • 40. CATALOGUE OF FAҪADES TIMBER FRAME SOLUTIONS (A) CATALOGUE 40 0.417 W/m2∙K 33.06 Kg CO2 eq 71.82 Kg/m2 53.26 €/m2 0.425 W/m2∙K 37.22 Kg CO2 eq 70.71 Kg/m2 88.44 €/m2 0.400 W/m2∙K 46.95 Kg CO2 eq 78.98 Kg/m2 66.32 €/m2 0.421 W/m2∙K 55.82 Kg CO2 eq 187.63 Kg/m2 124.01 €/m2 0.431 W/m2∙K 33.06 Kg CO2 eq 71.82 Kg/m2 53.26 €/m2 0.405 W/m2∙K 31.50 Kg CO2 eq 75.06 Kg/m2 63.02 €/m2 A1 A2 A3 A4 A5 A6
  • 41. CATALOGUE OF FAҪADES CROSS LAMINATED TIMBER SOLUTIONS (B) CATALOGUE 41 0.396 W/m2∙K 27.66 Kg CO2 eq 73.81 Kg/m2 92.21 €/m2 0.370 W/m2∙K 31.14 Kg CO2 eq 67.47 Kg/m2 123.39 €/m2 0.437 W/m2∙K 41.55 Kg CO2 eq 69.51 Kg/m2 91.64 €/m2 0.411 W/m2∙K 58.66 Kg CO2 eq 198.63 Kg/m2 164.97 €/m2 0.406 W/m2∙K 35.90 Kg CO2 eq 94.11 Kg/m2 98.64 €/m2 0.426 W/m2∙K 25.94 Kg CO2 eq 74.31 Kg/m2 101.97 €/m2 B1 B2 B3 B4 B5 B6
  • 42. 42
  • 44. CONCLUSIONES FINALES Simulación energética • DESIGN BUILDER: Se ha demostrado que la hipótesis de cálculo de la transferencia de calor y la hipótesis de movimiento del aire interior se cumplen. • THERM: Se ha demostrado que a mayor área en sección y menor perímetro expuesto al exterior mayor resistencia térmica. Este sofware permite obtener la transmitancia térmica de las soluciones. (λ, hv, Te, Ti) • WUFI: Se ha demostrado que en diferentes meses, la transmitancia varía, y que hay meses en los que un tipo de madera es más eficientes que otros. (λ, ρ, Ce, µ, hv) 44 D1 D2 D3 D4
  • 45. CONCLUSIONES FINALES Durabilidad • La mayor variación del aspecto de las muestras, a nivel de color y aparición de fisuras, se produce durante el primer año. Durante el segundo año, el deterioro se ralentiza. • En términos de conductividad térmica, la madera natural y tratada térmicamente representan una mayor variación (31 y 25%), mientras que la conductividad térmica de la termotratada varía menos (17%). • Sin embargo, en cuanto a emisividad son la natural y la termotratada las que menos varían (1 y 3%), mientras que la tratada químicamente reduce su emisividad hasta en un 6%. 45
  • 46. CONCLUSIONES FINALES Sostenibilidad • Como dentro del grupo de agentes intervinientes en la industria de la construcción se generan conflictos de interés, se ha desarrollado una metodología para unificar criterios en relación a la sostenibilidad ambiental de las fachadas de madera. • A partir de dicha metodología se pueden establecer líneas de acción para la mejora de la sostenibilidad de las fachadas de madera, considerando la situación económica y las características particulares de cada país. Catálogo de fachadas de madera • A través de la recopilación de diferentes sistemas de fachada de madera, se ha concluido que las fachadas de CLT (Cross Laminated Timber) son en general más caras que las de entramado. Sin embargo, representan menores saltos térmicos. • Por otro lado, las fachadas de entramado son más baratas pero no son comunes en nuestro territorio, mientras que las de CLT se están extendiendo debido al desarrollo tecnológico de dicho modelo constructivo de gran resistencia mecánica, fácil de ensamblar y de material ecológico. 46
  • 47. CONTRIBUCIONES 47 Artículos  ANALYSIS OF THE INFLUENCE OF WOOD CLADDING ON THE THERMAL BEHAVIOR OF BUILDING FAÇADES; CHARACTERIZATION THROUGH SIMULATION BY USING DIFFERENT TOOLS AND COMPARATIVE TESTING VALIDATION. Pelaz, B., Blanco, J.M., Cuadrado, J., Egiluz, Z., Buruaga, A. Energy and Buildings, 141, pp. 349-360. 2017  METHODOLOGY TO ASSESS THE ENVIRONMENTAL SUSTAINABILITY OF TIMBER STRUCTURES. Cuadrado, J., Zubizarreta, M., Pelaz, B., Marcos, I. Construction and Building Materials, 86, pp. 149-158. 2015  ENERGY ASSESSMENT AND OPTIMIZATION OF PERFORATED METAL SHEET DOUBLE SKIN FAÇADES THROUGH DESIGN BUILDER; A CASE STUDY IN SPAIN. Blanco, J.M., Buruaga, A., Rojí, E., Cuadrado, J., Pelaz, B. Energy and Buildings, 111, pp. 326-336. 2016 Congresos  NUMERICAL MODEL DEVELOPMENT FOR THE OPTIMIZATION OF WOOD COATING ENCLOSURES. B. Pelaz , J. Cuadrado, Jesús M. Blanco, E. Rojí. CMN, Lisboa. 2015  CHARACTERIZATION OF WOOD SAMPLES THROUGH NUMERICAL SIMULATION BASED ON A TEST VALIDATION BENCH PROCEDURE. B. Pelaz , J. Cuadrado, Jesús M. Blanco, E. Rojí. CMN, Lisboa. 2015  MODELOS DE COMPORTAMIENTO TÉRMICO EN FACHADAS DE MADERA. B. Pelaz , J. Cuadrado, Jesús M. Blanco, E. Rojí, R. Losada. 6º EESAP , Donostia-San Sebastián. 2015
  • 48. FUTURAS LINEAS DE INVESTIGACIÓN  Se ha demostrado que a mayor conductividad térmica del material, mayor resistencia térmica superficial, en el caso de muestras de Radiata de 2cm de espesor. El fenómeno convectivo gana importancia y por ello puede ser objeto de estudio de cara a nuevas aplicaciones.  El método de la Caja de Ensayo se centra en la transferencia de calor. Sin embargo, el estudio de las propiedades de humedad dentro y fuera de la cámara facilitarían la caracterización de materiales higroscópicos.  Se ha demostrado que el deterioro del material también toma importancia al influir en las propiedades del mismo. Un mayor estudio en relación al deterioro de las propiedades térmicas del material es necesario. En la actualidad, seguimos con este test.  Aparte de la caracterización del material, conocer la influencia de las condiciones de frontera en el comportamiento del material también es objeto de estudio.  El diseño y geometría de los acabados exteriores de madera influyen en el comportamiento térmico de dicho elemento. Por ello, un estudio más elaborado sería a su vez objeto de interés.  En el caso de la metodología creada para la evaluación de la sostenibilidad de fachadas de madera, de cara a futuras necesidades, puede asumir nuevos criterios a desarrollar, como, por ejemplo, los costes. 48
  • 49. DEVELOPMENT AND CHARACTERIZATION OF RADIATA-PINE CLADDING FOR MORE SUSTAINABLE AND ENERGY EFFICIENT FAҪADES IN THE BASQUE COUNTRY Belinda Pelaz Sánchez Directors: Jesús Cuadrado Rojo Jesús Mª Blanco Ilzarbe April 2017 49