SlideShare a Scribd company logo
1 of 40
1
Extreme Times in Finance
J. Masoliver, M. Montero and J. Perelló
Departament de Fisica Fonamental
Universitat de Barcelona
2
Financial Makets:
two levels of description
• “Microscopic” description Tick-by-tick data
Continuous Time Random Walk
• “Mesoscopic” description Daily, weekly... data
Diffusion processes
Stochastic Volatility Models
3
I - CTRW formalism
• First developed by Montroll and Weiss
(1965)
• Aimed to study the microstructure of
random processes
• Applications: transport in random media,
random networks, self-organized
criticallity, earthquake modeling, and…
now in financial markets
4
CTRW dynamics
• The log-return and the zero-mean return:
0
( )
( ) ln
( )
S t t
Z t
S t
 

  
 
( ) ( ) ( )
X t Z t Z t
   
1 2
1
1
( ) changes at random times , , ,..., ,...
Sojourns, , are iid random variables with pdf ( )
At each sojourn ( ) suffers a random change ( ) ( ) ( )
with pdf ( )
Waiti
o n
n n n
n n
X t t t t t
T t t t
X t X t X t X t
h x




  
   
 ng times and increments are governed by a joint pdf ( , )
x t

J. Masoliver, M. Montero, G.H. Weiss Phys. Rev E 67, 021112 (2003)
5
CTRW dynamics
(cont.)
6
Return distribution
0
( , ) ( ) ( ) ' ( ', ') ( ', ') '
t
p x t t x dt x t p x x t t dx
 


    
 
[1 ( )]/
( , )
1 ( , )
s s
p s
s


 





( , ) Prob ( )
p x t dx x X t x dx
   
• Renewal equation
• Formal solution
joint distribution of increments and waiting times
( , )
x t

• Objective
7
Are jumps and
waiting times related
to each other?
a) If they are
independent:
b) If they are positively
correlated. Some
choices:
( , ) ( ) ( )
x t h x t
 

1/
( , )
( )
( , ) ( ) ( )
( , ) ( ) ( ) 1
t
t
h
s s h s
s h s



  

   
   



 
  
 
 

 
 
  
 
 
8
General Results
• Approach to the
Gaussian density
• Long-tailed jump density:
Lévy distribution
• At intermediate times:
the tail behavior is given by
extreme jumps
2
2 / 2
( , ) e (t )
t
p t
  
 


• Normal diffusion
2 2
( ) ( )
X t t t



( ) 1
h k

 

| | /
( , ) e (t )
k t
p t

 
 


( , ) ( ) ( | | )
t
p x t h x x

 
,
t 
9
Extreme Times
• At which time the
return leaves a
given interval [a,b]
for the first time?
• Mean Exit Time
(MET):
, 0 , 0
( ) ( )
a b a b
T x t x

J. Masoliver, M. Montero, J. Perelló Phys. Rev. E 71, 056130 (2005)
10
Integral Equation
for the MET
• is the mean time between jumps.
• The MET does NOT depend on
– the whole time distribution
– the coupling between jumps and waiting times
• Mean First Passage Time (MFPT) to a certain
critical value:
0 0
( ) ( ) ( )
b
a
T x h x x T x dx

  


0 , 0 0 0 , 0 0
( ) lim ( ) if or ( ) lim ( ) if
c c
c a a x c c b x b c
T x T x x x T x T x x x
 
   
11
An exact solution
• Laplace (exponential) distribution:
jump variance:
• Exact solution:
| |
( )
2
x
h x e 
 

2 2
2/
 

 
2 2 2
0 0
( ) 1 1 2 ( ( )/ 2)
2
T x L x a b

 
 
     
 
 
2
(0) 1 1 2
2
T L


 
  
 
( / 2)
b a L
  
• Symmetrical interval
• For the Laplace pdf the approximate and
the exact MET coincide
It is also quadratic in L
12
Exponential jumps
13
Approximate solution
• We need to specify the jump pdf
• We want to get a solution as much general as
possible
• We get an approximate solution when:
– the interval L is smaller than the jump variance
– jump pdf is an even function and zero-mean with scaling:
1
( )
x
h x H
 
 
  
 
 
2 3
2
(0) 1 (0) '(0 ) / 4 (0)
L L L
T H H H O

  
 
     
     
 
     
     
 
 
2
( jump variance)
 
14
Models and data
4
3
1.70 10 ,
(0) 4.45 10 ,
'(0 ) 1.54
H
H
 

 
 
 
 
2
2
(0) 1 (0) '(0 ) / 4 (0)
L L
T H H H

 
 
   
   
 
   
   
 
 
15
Some
Generalizations
• Introduction of correlations by a Markov-chain model.
Assuming jumps are correlated:
 
1
( | ') Prob | '
n n
h x x dx x X x dx X x

      
• Integral equation for the MET:
   
0 0 0 0 0
| | ( | ) |
b
a
T x x x h x x x T x x dx

      

M. Montero, J. Perelló, J. Masoliver, F. Lillo, S. Miccichè, R.N. Mantegna
Phys. Rev. E, 72, 056101 (2005).
16
A two-state Markov chain model
     
|
2 2
c ry c ry
h x y x c x c
c c
 
 
   
r = correlation between the magnitude
of two consequtive jumps
 
   
1
1
cov ,
var var
n n
n n
X X
r
X X


 

 
Integral equation Difference equations
         
0 0 0
1
| 1 | 1 |
2
T x c c T x c c c T x c c

       
 
 
 
0 0
| 0 if
T x c c x b c
     
0 0
| 0 if
T x c c x a c
    
17
 
2
1 2 1
2 1 1
1 2 1 2
r L r L
T L
r c r c


   
   
   
 
   
( )
L b a
 
• Solution mid-point:
• Scaling time
 
 
2
1
1
sc
T L
r
T L
r 

 
  

 
Large values of L
( )
L c
  2
sc
T L L Stock independent
18
tick-by-tick data
of 20 highly capita-
lized stocks traded
at the NYSE in the
4 year period 95-98;
more than 12 milion
transactions.
L b a
 
   
2 2 2
|
y x h x y dx c



 

19
• “Low frequency” data (daily, weekly,...)
Diffusion models
( )
dS
dt dW t
S
 
 
Geometric Browinian Motion
(Einstein-Bachelier model)
• The assumption of constant volatility does not properly
account for important features of the market
Stochastic Volatility Models
II – Stochastic
Volatility models
20
2
( ) ( ) ( )
dY F Y dt G Y dW t
 
i ii
( ) ( ') ( '), 1,
j ij ij
t t t t
      
   
1
( ) ( )
dS
dt t dW t
S
 
 
 
( ) ( )
t Y t
 

Wiener processes
( ) ( 1,2)
i
W t i  ( ) ( )
i i
dW t t dt


Two-dimensional
diffusions
21
1. The Ornstein-Uhlenbeck model
2
( ')
2
, ( ) ( ), ( )
( ) ( ) ( )
( ) ( ')
t
t t
Y F Y Y m G Y k
d t Y m dt kdW t
t m k e dW t

 
 
  

    
   
  
E. Stein and J. Stein, Rev. Fin. Studies 4, 727 (1991).
J. Masoliver and J. Perelló, Int. J. Theor. Appl. Finance 5, 541 (2002).
22
2. The CIR-Heston model
2
2
2 ( ')
2
, ( ) ( ), ( )
( ) ( ) ( )
Y( ) ( ') ( ')
t
t t
Y F Y Y m G Y k Y
dY t Y m dt k YdW t
t m k e Y t dW t

 

 

    
   
  
Cox, J., Ingersoll, J., and S. Ross, (1985a), Econometrica, 53, 385 (1985).
S. Heston, Rev. Fin. Studies 6, 327 (1993).
A. Dragulescu and V. Yakovenko, Quant. Finance 2, 443 (2002).
23
3. The Exponential Ornstein-Uhlenbeck model
2
( ')
2
, ( ) ( ), ( )
( ) ( )
Y( ) ( ')
Y
t
t t
me F Y Y m G Y k
k
dY t Ydt dW t
m
k
t e dW t
m

 

 

    
  
 
J.-P. Fouque, G. Papanicolau and K. R. Sircar, Int. J. Theor. Appl. Finance 3, 101 (2002).
J. Masoliver and J. Perelló, Quant. Finance (2006).
24
In SV models the volatility proces is described by a
one-dimensional diffusion
( ) ( ) ( ) ( )
d t f dt g dW t
  
 
• The OU model: ( ) ( ) ( )
d t Y m dt kdW t
 
   
• The CIR-Heston model:
1
( ) ( )
2
m
d t dt kdW t
  

 
   
 
 
• The ExpOU model:  
( ) ln ( )
d t dt k dW t
m

  
  
25
Extreme times for the
volatility process
• The MFPT to certain level  
 0
 
( reflecting)
( )
( )
2
0
( ) 2
( )
y y
x e
T e dx dy
g y
 



 
  
• Averaged MFPT
0
1
( ) ( )
T T d


  

 
2
( )
( ) 2
( )
f x
x dx
g x

 

 
 

( )
( )
2
0 0
2
( )
( )
y y
x e
T xe dx dy
g y
 




  
26
• Scaling
st
L


  
st st
p d
   


 
1 - OU model st m
 
2 - CIR-Heston model
 
2
1 2
2
1 2
2
2
2
st
m
k
k
m
k




 
 
 
 

 
 
 
3- ExpOU model
2
4
k
st me 
 
st
  normal level of the volatility
27
Some analytical results
1 - OU model
   
2 2
( 1)
0
( ) erf erf ( 1)
L
x
T L xe x dx
L

 
 


  
 
 

Assymptotics
2
2
2
2
( )
3
m
T L L
k
 
1
L
•
2 2
2
2
( )
2
L
m L
T L e
k



 
1
L
•
 
m k
 

28
2 - CIR-Heston model
 
2 2
2
2
1 2
2
0
2
( ) F 1;1 ;
1 2
2
L
m
T L x x dx
L
m





 
 
 
 
 
 
 
 

 
 
2
, 1 2
m k m k
   
  
Assymptotics 2
2
2
( )
3
st
T L L
k


 
1
L
•
2 2
2
2
( )
2
L
st
m
T L Le
k

 

 
1
L
•
 
F ; ;
a c x  Kummer’s function of first kind
29
3 - ExpOU model    
1 2
1 2 2
ln
2
k
x x m
k



 
 
 
 
Assymptotics
 
2
2
( )
ln
k
e
T L
L m



 
1
L
•
 
2 2
ln
3
( )
2
L m k
L
T L e
km

   
1
L
•
 
F ; ;
a c x  Kummer’s function of second kind
 
2
2 2
1 1
( ) ; ;
2 2
k kx
L
m
T L e e U x dx
L
 



 

 
  
 

30
Empirical Data
Financial Indices
1- DJIA: 1900-2004 (28545 points)
2- S&P 500: 1943-2003 (15152 points)
3- DAX: 1959-2003 (11024 points)
4- NIKKEI: 1970-2003 (8359 points)
5- NASDAQ: 1971-2004 (8359 points)
6- FTSE-100: 1984-2004 (5191 points)
7- IBEX-35: 1987-2004 (4375 points)
8- CAC-40: 1983-2003 (4100 points)
Nomal Level (daily volatility)
1- DJIA: 0.71 %
2- S&P-500: 0.62 %
3- DAX: 0.84 %
4- NIKKEI: 0.96 %
5- NASDAQ: 0.78 %
6- FTSE-100: 0.77 %
7- IBEX-35: 0.96 %
8- CAC-40: 1.02 %
31
32
33
34
35
36
Conclusions (I)
• The CTRW provides insight relating the market
microstructure with the distributions of intraday
prices and even longer-time prices.
• It is specially suited to treat high frequency data.
• It allows a thorough description of extreme times
under a very general setting.
• MET’s do not depend on any potential coupling
between waiting times and jumps.
• Empirical verification of the analytical estimates
using a very large time series of USD/DEM
transaction data.
• The formalism allows for generalizations to
include price correlations.
37
Conclusions (II)
• The “macroscopic” description of the market is
quite well described by SV models.
• Many SV models allow a analytical treatment of the
MFPT.
• The MFPT may help to determine a suitable SV
model
• OU and CIR-Heston models yield a quadratic
behavior of the MFPT for small volatilities that is not
conflicting with data. For large volatilities their
exponential growth does not agree with data.
• In a first approximation the ExpOU model seems to
agree with data for both small and large volatilities.
38
39
• The Laplace MET is larger than the MET
when return follows a Wiener process:
0 0
( ) ( )
CTRW RW
T x T x

* *
2 2
1 1
(0) (0)
2
CTRW RW
T T
L L
 
  
• We conjecture that this is true in any situation:
• The Wiener process underestimates the MET.
Practical consequences for risk control and
pricing exotic derivatives.
Comparison with the
Wiener Process
40
* *
2 2
1 1
(0) (0)
2
CTRW RW
T T
L L
 
  
*
2 2
CTRW
CTRW
T
T
L
 

2
*
2
2
RW RW
T T
L


*
(0) 1 8
RW
T 
The Wiener process
underestimates the MET

More Related Content

Similar to extreme times in finance heston model.ppt

22nd BSS meeting poster
22nd BSS meeting poster 22nd BSS meeting poster
22nd BSS meeting poster Samuel Gbari
 
Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformSimen Li
 
Nonlinear Stochastic Optimization by the Monte-Carlo Method
Nonlinear Stochastic Optimization by the Monte-Carlo MethodNonlinear Stochastic Optimization by the Monte-Carlo Method
Nonlinear Stochastic Optimization by the Monte-Carlo MethodSSA KPI
 
Engineering Mathematics 2 questions & answers
Engineering Mathematics 2 questions & answersEngineering Mathematics 2 questions & answers
Engineering Mathematics 2 questions & answersMzr Zia
 
Engineering Mathematics 2 questions & answers(2)
Engineering Mathematics 2 questions & answers(2)Engineering Mathematics 2 questions & answers(2)
Engineering Mathematics 2 questions & answers(2)Mzr Zia
 
A03401001005
A03401001005A03401001005
A03401001005theijes
 
New Mathematical Tools for the Financial Sector
New Mathematical Tools for the Financial SectorNew Mathematical Tools for the Financial Sector
New Mathematical Tools for the Financial SectorSSA KPI
 
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...IOSR Journals
 
Scalable inference for a full multivariate stochastic volatility
Scalable inference for a full multivariate stochastic volatilityScalable inference for a full multivariate stochastic volatility
Scalable inference for a full multivariate stochastic volatilitySYRTO Project
 
11.generalized and subset integrated autoregressive moving average bilinear t...
11.generalized and subset integrated autoregressive moving average bilinear t...11.generalized and subset integrated autoregressive moving average bilinear t...
11.generalized and subset integrated autoregressive moving average bilinear t...Alexander Decker
 
Stochastic Local Volatility Models: Theory and Implementation
Stochastic Local Volatility Models: Theory and ImplementationStochastic Local Volatility Models: Theory and Implementation
Stochastic Local Volatility Models: Theory and ImplementationVolatility
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Simen Li
 
Calibrating the Lee-Carter and the Poisson Lee-Carter models via Neural Netw...
Calibrating the Lee-Carter and the Poisson Lee-Carter models  via Neural Netw...Calibrating the Lee-Carter and the Poisson Lee-Carter models  via Neural Netw...
Calibrating the Lee-Carter and the Poisson Lee-Carter models via Neural Netw...Salvatore Scognamiglio
 
Efficient Numerical PDE Methods to Solve Calibration and Pricing Problems in ...
Efficient Numerical PDE Methods to Solve Calibration and Pricing Problems in ...Efficient Numerical PDE Methods to Solve Calibration and Pricing Problems in ...
Efficient Numerical PDE Methods to Solve Calibration and Pricing Problems in ...Volatility
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) inventionjournals
 
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...SYRTO Project
 
Metodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang LandauMetodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang Landauangely alcendra
 
Computational Information Geometry on Matrix Manifolds (ICTP 2013)
Computational Information Geometry on Matrix Manifolds (ICTP 2013)Computational Information Geometry on Matrix Manifolds (ICTP 2013)
Computational Information Geometry on Matrix Manifolds (ICTP 2013)Frank Nielsen
 

Similar to extreme times in finance heston model.ppt (20)

22nd BSS meeting poster
22nd BSS meeting poster 22nd BSS meeting poster
22nd BSS meeting poster
 
Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace Transform
 
Nonlinear Stochastic Optimization by the Monte-Carlo Method
Nonlinear Stochastic Optimization by the Monte-Carlo MethodNonlinear Stochastic Optimization by the Monte-Carlo Method
Nonlinear Stochastic Optimization by the Monte-Carlo Method
 
Engineering Mathematics 2 questions & answers
Engineering Mathematics 2 questions & answersEngineering Mathematics 2 questions & answers
Engineering Mathematics 2 questions & answers
 
Engineering Mathematics 2 questions & answers(2)
Engineering Mathematics 2 questions & answers(2)Engineering Mathematics 2 questions & answers(2)
Engineering Mathematics 2 questions & answers(2)
 
A03401001005
A03401001005A03401001005
A03401001005
 
New Mathematical Tools for the Financial Sector
New Mathematical Tools for the Financial SectorNew Mathematical Tools for the Financial Sector
New Mathematical Tools for the Financial Sector
 
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
 
Scalable inference for a full multivariate stochastic volatility
Scalable inference for a full multivariate stochastic volatilityScalable inference for a full multivariate stochastic volatility
Scalable inference for a full multivariate stochastic volatility
 
11.generalized and subset integrated autoregressive moving average bilinear t...
11.generalized and subset integrated autoregressive moving average bilinear t...11.generalized and subset integrated autoregressive moving average bilinear t...
11.generalized and subset integrated autoregressive moving average bilinear t...
 
Stochastic Local Volatility Models: Theory and Implementation
Stochastic Local Volatility Models: Theory and ImplementationStochastic Local Volatility Models: Theory and Implementation
Stochastic Local Volatility Models: Theory and Implementation
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
 
Forecast2007
Forecast2007Forecast2007
Forecast2007
 
Calibrating the Lee-Carter and the Poisson Lee-Carter models via Neural Netw...
Calibrating the Lee-Carter and the Poisson Lee-Carter models  via Neural Netw...Calibrating the Lee-Carter and the Poisson Lee-Carter models  via Neural Netw...
Calibrating the Lee-Carter and the Poisson Lee-Carter models via Neural Netw...
 
Efficient Numerical PDE Methods to Solve Calibration and Pricing Problems in ...
Efficient Numerical PDE Methods to Solve Calibration and Pricing Problems in ...Efficient Numerical PDE Methods to Solve Calibration and Pricing Problems in ...
Efficient Numerical PDE Methods to Solve Calibration and Pricing Problems in ...
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
 
D04302031042
D04302031042D04302031042
D04302031042
 
Metodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang LandauMetodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang Landau
 
Computational Information Geometry on Matrix Manifolds (ICTP 2013)
Computational Information Geometry on Matrix Manifolds (ICTP 2013)Computational Information Geometry on Matrix Manifolds (ICTP 2013)
Computational Information Geometry on Matrix Manifolds (ICTP 2013)
 

Recently uploaded

GenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxGenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxBerniceCayabyab1
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxyaramohamed343013
 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentationtahreemzahra82
 
‏‏VIRUS - 123455555555555555555555555555555555555555
‏‏VIRUS -  123455555555555555555555555555555555555555‏‏VIRUS -  123455555555555555555555555555555555555555
‏‏VIRUS - 123455555555555555555555555555555555555555kikilily0909
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPirithiRaju
 
Forest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are importantForest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are importantadityabhardwaj282
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Solution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsSolution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsHajira Mahmood
 
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPirithiRaju
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxNandakishor Bhaurao Deshmukh
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxMurugaveni B
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxpriyankatabhane
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 

Recently uploaded (20)

GenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxGenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docx
 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentation
 
‏‏VIRUS - 123455555555555555555555555555555555555555
‏‏VIRUS -  123455555555555555555555555555555555555555‏‏VIRUS -  123455555555555555555555555555555555555555
‏‏VIRUS - 123455555555555555555555555555555555555555
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
 
Forest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are importantForest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are important
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Solution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsSolution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutions
 
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
 
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort ServiceHot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 

extreme times in finance heston model.ppt

  • 1. 1 Extreme Times in Finance J. Masoliver, M. Montero and J. Perelló Departament de Fisica Fonamental Universitat de Barcelona
  • 2. 2 Financial Makets: two levels of description • “Microscopic” description Tick-by-tick data Continuous Time Random Walk • “Mesoscopic” description Daily, weekly... data Diffusion processes Stochastic Volatility Models
  • 3. 3 I - CTRW formalism • First developed by Montroll and Weiss (1965) • Aimed to study the microstructure of random processes • Applications: transport in random media, random networks, self-organized criticallity, earthquake modeling, and… now in financial markets
  • 4. 4 CTRW dynamics • The log-return and the zero-mean return: 0 ( ) ( ) ln ( ) S t t Z t S t         ( ) ( ) ( ) X t Z t Z t     1 2 1 1 ( ) changes at random times , , ,..., ,... Sojourns, , are iid random variables with pdf ( ) At each sojourn ( ) suffers a random change ( ) ( ) ( ) with pdf ( ) Waiti o n n n n n n X t t t t t T t t t X t X t X t X t h x             ng times and increments are governed by a joint pdf ( , ) x t  J. Masoliver, M. Montero, G.H. Weiss Phys. Rev E 67, 021112 (2003)
  • 6. 6 Return distribution 0 ( , ) ( ) ( ) ' ( ', ') ( ', ') ' t p x t t x dt x t p x x t t dx            [1 ( )]/ ( , ) 1 ( , ) s s p s s          ( , ) Prob ( ) p x t dx x X t x dx     • Renewal equation • Formal solution joint distribution of increments and waiting times ( , ) x t  • Objective
  • 7. 7 Are jumps and waiting times related to each other? a) If they are independent: b) If they are positively correlated. Some choices: ( , ) ( ) ( ) x t h x t    1/ ( , ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( ) 1 t t h s s h s s h s                                       
  • 8. 8 General Results • Approach to the Gaussian density • Long-tailed jump density: Lévy distribution • At intermediate times: the tail behavior is given by extreme jumps 2 2 / 2 ( , ) e (t ) t p t        • Normal diffusion 2 2 ( ) ( ) X t t t    ( ) 1 h k     | | / ( , ) e (t ) k t p t        ( , ) ( ) ( | | ) t p x t h x x    , t 
  • 9. 9 Extreme Times • At which time the return leaves a given interval [a,b] for the first time? • Mean Exit Time (MET): , 0 , 0 ( ) ( ) a b a b T x t x  J. Masoliver, M. Montero, J. Perelló Phys. Rev. E 71, 056130 (2005)
  • 10. 10 Integral Equation for the MET • is the mean time between jumps. • The MET does NOT depend on – the whole time distribution – the coupling between jumps and waiting times • Mean First Passage Time (MFPT) to a certain critical value: 0 0 ( ) ( ) ( ) b a T x h x x T x dx       0 , 0 0 0 , 0 0 ( ) lim ( ) if or ( ) lim ( ) if c c c a a x c c b x b c T x T x x x T x T x x x      
  • 11. 11 An exact solution • Laplace (exponential) distribution: jump variance: • Exact solution: | | ( ) 2 x h x e     2 2 2/      2 2 2 0 0 ( ) 1 1 2 ( ( )/ 2) 2 T x L x a b                2 (0) 1 1 2 2 T L          ( / 2) b a L    • Symmetrical interval • For the Laplace pdf the approximate and the exact MET coincide It is also quadratic in L
  • 13. 13 Approximate solution • We need to specify the jump pdf • We want to get a solution as much general as possible • We get an approximate solution when: – the interval L is smaller than the jump variance – jump pdf is an even function and zero-mean with scaling: 1 ( ) x h x H            2 3 2 (0) 1 (0) '(0 ) / 4 (0) L L L T H H H O                                     2 ( jump variance)  
  • 14. 14 Models and data 4 3 1.70 10 , (0) 4.45 10 , '(0 ) 1.54 H H            2 2 (0) 1 (0) '(0 ) / 4 (0) L L T H H H                           
  • 15. 15 Some Generalizations • Introduction of correlations by a Markov-chain model. Assuming jumps are correlated:   1 ( | ') Prob | ' n n h x x dx x X x dx X x         • Integral equation for the MET:     0 0 0 0 0 | | ( | ) | b a T x x x h x x x T x x dx          M. Montero, J. Perelló, J. Masoliver, F. Lillo, S. Miccichè, R.N. Mantegna Phys. Rev. E, 72, 056101 (2005).
  • 16. 16 A two-state Markov chain model       | 2 2 c ry c ry h x y x c x c c c         r = correlation between the magnitude of two consequtive jumps       1 1 cov , var var n n n n X X r X X        Integral equation Difference equations           0 0 0 1 | 1 | 1 | 2 T x c c T x c c c T x c c                0 0 | 0 if T x c c x b c       0 0 | 0 if T x c c x a c     
  • 17. 17   2 1 2 1 2 1 1 1 2 1 2 r L r L T L r c r c                     ( ) L b a   • Solution mid-point: • Scaling time     2 1 1 sc T L r T L r           Large values of L ( ) L c   2 sc T L L Stock independent
  • 18. 18 tick-by-tick data of 20 highly capita- lized stocks traded at the NYSE in the 4 year period 95-98; more than 12 milion transactions. L b a       2 2 2 | y x h x y dx c      
  • 19. 19 • “Low frequency” data (daily, weekly,...) Diffusion models ( ) dS dt dW t S     Geometric Browinian Motion (Einstein-Bachelier model) • The assumption of constant volatility does not properly account for important features of the market Stochastic Volatility Models II – Stochastic Volatility models
  • 20. 20 2 ( ) ( ) ( ) dY F Y dt G Y dW t   i ii ( ) ( ') ( '), 1, j ij ij t t t t            1 ( ) ( ) dS dt t dW t S       ( ) ( ) t Y t    Wiener processes ( ) ( 1,2) i W t i  ( ) ( ) i i dW t t dt   Two-dimensional diffusions
  • 21. 21 1. The Ornstein-Uhlenbeck model 2 ( ') 2 , ( ) ( ), ( ) ( ) ( ) ( ) ( ) ( ') t t t Y F Y Y m G Y k d t Y m dt kdW t t m k e dW t                      E. Stein and J. Stein, Rev. Fin. Studies 4, 727 (1991). J. Masoliver and J. Perelló, Int. J. Theor. Appl. Finance 5, 541 (2002).
  • 22. 22 2. The CIR-Heston model 2 2 2 ( ') 2 , ( ) ( ), ( ) ( ) ( ) ( ) Y( ) ( ') ( ') t t t Y F Y Y m G Y k Y dY t Y m dt k YdW t t m k e Y t dW t                    Cox, J., Ingersoll, J., and S. Ross, (1985a), Econometrica, 53, 385 (1985). S. Heston, Rev. Fin. Studies 6, 327 (1993). A. Dragulescu and V. Yakovenko, Quant. Finance 2, 443 (2002).
  • 23. 23 3. The Exponential Ornstein-Uhlenbeck model 2 ( ') 2 , ( ) ( ), ( ) ( ) ( ) Y( ) ( ') Y t t t me F Y Y m G Y k k dY t Ydt dW t m k t e dW t m                  J.-P. Fouque, G. Papanicolau and K. R. Sircar, Int. J. Theor. Appl. Finance 3, 101 (2002). J. Masoliver and J. Perelló, Quant. Finance (2006).
  • 24. 24 In SV models the volatility proces is described by a one-dimensional diffusion ( ) ( ) ( ) ( ) d t f dt g dW t      • The OU model: ( ) ( ) ( ) d t Y m dt kdW t       • The CIR-Heston model: 1 ( ) ( ) 2 m d t dt kdW t               • The ExpOU model:   ( ) ln ( ) d t dt k dW t m       
  • 25. 25 Extreme times for the volatility process • The MFPT to certain level    0   ( reflecting) ( ) ( ) 2 0 ( ) 2 ( ) y y x e T e dx dy g y           • Averaged MFPT 0 1 ( ) ( ) T T d         2 ( ) ( ) 2 ( ) f x x dx g x          ( ) ( ) 2 0 0 2 ( ) ( ) y y x e T xe dx dy g y         
  • 26. 26 • Scaling st L      st st p d         1 - OU model st m   2 - CIR-Heston model   2 1 2 2 1 2 2 2 2 st m k k m k                    3- ExpOU model 2 4 k st me    st   normal level of the volatility
  • 27. 27 Some analytical results 1 - OU model     2 2 ( 1) 0 ( ) erf erf ( 1) L x T L xe x dx L                Assymptotics 2 2 2 2 ( ) 3 m T L L k   1 L • 2 2 2 2 ( ) 2 L m L T L e k      1 L •   m k   
  • 28. 28 2 - CIR-Heston model   2 2 2 2 1 2 2 0 2 ( ) F 1;1 ; 1 2 2 L m T L x x dx L m                           2 , 1 2 m k m k        Assymptotics 2 2 2 ( ) 3 st T L L k     1 L • 2 2 2 2 ( ) 2 L st m T L Le k       1 L •   F ; ; a c x  Kummer’s function of first kind
  • 29. 29 3 - ExpOU model     1 2 1 2 2 ln 2 k x x m k            Assymptotics   2 2 ( ) ln k e T L L m      1 L •   2 2 ln 3 ( ) 2 L m k L T L e km      1 L •   F ; ; a c x  Kummer’s function of second kind   2 2 2 1 1 ( ) ; ; 2 2 k kx L m T L e e U x dx L                
  • 30. 30 Empirical Data Financial Indices 1- DJIA: 1900-2004 (28545 points) 2- S&P 500: 1943-2003 (15152 points) 3- DAX: 1959-2003 (11024 points) 4- NIKKEI: 1970-2003 (8359 points) 5- NASDAQ: 1971-2004 (8359 points) 6- FTSE-100: 1984-2004 (5191 points) 7- IBEX-35: 1987-2004 (4375 points) 8- CAC-40: 1983-2003 (4100 points) Nomal Level (daily volatility) 1- DJIA: 0.71 % 2- S&P-500: 0.62 % 3- DAX: 0.84 % 4- NIKKEI: 0.96 % 5- NASDAQ: 0.78 % 6- FTSE-100: 0.77 % 7- IBEX-35: 0.96 % 8- CAC-40: 1.02 %
  • 31. 31
  • 32. 32
  • 33. 33
  • 34. 34
  • 35. 35
  • 36. 36 Conclusions (I) • The CTRW provides insight relating the market microstructure with the distributions of intraday prices and even longer-time prices. • It is specially suited to treat high frequency data. • It allows a thorough description of extreme times under a very general setting. • MET’s do not depend on any potential coupling between waiting times and jumps. • Empirical verification of the analytical estimates using a very large time series of USD/DEM transaction data. • The formalism allows for generalizations to include price correlations.
  • 37. 37 Conclusions (II) • The “macroscopic” description of the market is quite well described by SV models. • Many SV models allow a analytical treatment of the MFPT. • The MFPT may help to determine a suitable SV model • OU and CIR-Heston models yield a quadratic behavior of the MFPT for small volatilities that is not conflicting with data. For large volatilities their exponential growth does not agree with data. • In a first approximation the ExpOU model seems to agree with data for both small and large volatilities.
  • 38. 38
  • 39. 39 • The Laplace MET is larger than the MET when return follows a Wiener process: 0 0 ( ) ( ) CTRW RW T x T x  * * 2 2 1 1 (0) (0) 2 CTRW RW T T L L      • We conjecture that this is true in any situation: • The Wiener process underestimates the MET. Practical consequences for risk control and pricing exotic derivatives. Comparison with the Wiener Process
  • 40. 40 * * 2 2 1 1 (0) (0) 2 CTRW RW T T L L      * 2 2 CTRW CTRW T T L    2 * 2 2 RW RW T T L   * (0) 1 8 RW T  The Wiener process underestimates the MET