SlideShare a Scribd company logo
1 of 44
B. Fillon
CEA LITEN Grenoble
December 2010, Boston
Challenges for the future sustainable energy
generation, distribution and use.
Content
Introduce CEA/LITEN
Critical Material substitutes for energy transport applications
Energy storage
Energy conversion
Critical Material substitutes for solar energy
Bulk silicon
Thin film PV cells
Conclusion
R & D
for nuclear
energy
Fundamental
Research
Defense
programs
Technological
Research
for industry
One BU of Technological Research Division
15.000 researchers
3 Billions Euros annual
AREVA industrial group
Getting ready for the
New Economy
LITEN : New energy technologies
Electric
Transports
Electric Power
Batteries
Fuel Cells
Hybridation
Recycling
µ-power
sources
Nanomaterials
Organic Electronic
Energy recovery
Nano Surfaces
Solar Energy
& Buildings
Solar Energy
Solar PV, CSP,CPV
Electrical systems
Energetic efficiency
Biomass
& Hydrogen
Solid Storage
H2 Production
H2 Storage
Usages
30%
30%
20%
20%
Grenoble
Transport électrique &
nanomatériaux
550 P.
Chambéry
Solaire & Bâtiments à faible
consommation d’énergie
200 p.
Effectif 2010
750 Ingénieurs &
Techniciens
Brevets
350 actifs
135 dépôts en 2009
Budget 2010
120 M€
90 M€ de recettes externes
30 M€ de subvention CEA
LITEN: Key numbers
Building/Solar Energy
Transport
Nomad
Large companies SME
• Photovoltaic devices
• Thermal devices
• Fuel cell
• Energy storage
• Hydrogen
• Micro power sources
• Energy scavenging
M E T I S
Industrial partnerships
• Positive energy building
• Organic Electronic
Critical materials substitution in alignment with LITEN strategy
Harvesting Storage
Conversion
Content
Introduce CEA/LITEN
Critical Material substitutes for energy transport applications
Energy storage
Energy conversion
Critical Material substitutes for solar energy
Bulk silicon
Thin film PV cells
Conclusion
-Synthetic fuel – gen 2,
-Exhaust system,
-Air treatment,
-Thermal exchange system.
-Hydrogen storage and
production,
-Coupling with Renewable
energy,
2010 2010-15 2020-2030
Road-Map of motorization technologies
Thermal
Motorisation
Hybride
Motorisation
Fuel Cell
Motorisation
Hybride
Motorisation
2015-20
-High energy
batteries
-Energy storage,
-Energy management.
Nanotextured surfaces for catalysis
Less catalyst and well disperse:
Nanosized (dia.= 20 nm)
Nanoscattered (Pt =20 nm)
Cost of Li2CO3
Cost per kg
1°/Cobalt,
2°/Nickel
3°/Lithium
4°/Manganèse
5°/Aluminium
6°/Fer
Material and cost for the cathode component
25% of cobalt is used
for phone market in 2010
Cathode Anode
Li +
Cobalt (LiCoO2)
Manganese (LiMn2O4)
Phosphate (LiFePO4)
NCA (LiNiCoAlO2)
NMC (LiNiMnCoO2)
…
Graphite
Hard Carbone
Titanate
Lithium Oxydes :
Li-ion picture: courtesy of Prof. M. Winter
 Cathode : Avoid cobalt for cost/security
 Anode : Replace graphite by Ti oxydes for cost/security
Lithium-ion battery family : multiple contents
+ New material
development !!
Think recycling
Content
Introduce CEA/LITEN
Critical Material substitutes for energy transport applications
Energy storage
Energy conversion
Critical Material substitutes for solar energy
Bulk silicon
Thin film PV cells
Conclusion
Membrane-Electrodes Assemblies for PEMFC
Electrodes (carbon support +
catalyst + protonic polymer
conductor)
Monopolar plate
Oxygen Reduction
Reaction (cathode):
O2 + 4e- + 4H+ 2H2O
Hydrogen Oxidation
Reaction (anode)
H2 2H+ + 2e-
Heat
Heat
Electricity production
Excess Air/O2
output
H2
input
Excess H2
output
Air / O2
input
Polymer membrane
Strength of the CEA: it masters the whole
chain, from components to systems, through
assemblies and stacks
LITEN PEMFC for transport
EPICEA 2 kW
Composite
stack
GENEPAC 20 kW
Metallic stack
SPACT 80
30 kW
Composite stack
GENEPAC 80 kW
Metallic stack
Marathon Shell
200 W
Graphite stack
RobotPAC
200 W
Graphite stack
• Development of new materials and
substitution of critical material
• Optimization of materials and
membrane electrode assembly
• Design, manufacture and tests of
stacks
• Membrane degradation
mechanisms analysis
• Development of electrochemical
constitutive equations coupled with
thermohydraulic analysis
Bipolar plates
Active layer ?
• Catalyst = Pt
(1720 US$/oz = 45€/g ; 100kW  30g  1347€ )
PEMFC: Increase the contact surface
Catalysts Synthesis
Substitute noble metal by a
transition metal
Nano-achitectures
of catalyst layers
MEA engineering
Deposition of catalyst at the most
interesting place
Three potential approaches to substitute Pt
Same performances with a third of platinum quantity
Genepac 80KW
PEMFC : development on MEA with less Pt
1) Minimize Pt quantity
1) Minimize Pt quantity
MEA engineering
Deposition of catalyst at the most
interesting place
Optimized dispersion of catalyst in the MEA :
• inlet / outlet
• channel / Ribs
• composition of ink (hydrophilic/ hydrophobic)
 Optimize the distribution of catalysts on MEA
for each design of bipolar plate and application
Nano-achitectures
of catalyst layers
Figure : Pt dendritic structures, K. Yamada et
al. J. Power Sources 180 (2008)181-184
Figure : tetrahexahedrals Pt nanoparticules
,N.Tian, Science Vol.316 may (2007) 732-735
Dr. Michael Brett / GLancing Angle Deposition
iCORE, NRC (Can)
Pt nanowire, nanotubes and
nanoflowers on carbon support,
CEA, (F)
Pt nanowire, on carbon support,
Dodelet and Sun (Can)
2) Improve the active layer structure
Catalysts synthesis
Substitute noble metal by a
transition metal
J-P. Dodelet INRS (Can)
P. Zelenay, LANL (USA)
V. Artero, CEA/IRTSV (F)
P. Gouérec, Sté GPMaterials (F)
B. Popov, Univ. South carolina (USA)
P. Zelenay, LANL (USA)
M.K Debe, 3M (USA)
Multimetallics
Core-Shell /
hollow spheres
R. Adzick, BNL (USA)
M.K Debe, 3M (USA)
P. Strasser, ORNL (USA)
Non noble and /
bio-mimetic
catalysts
3) Propose new materials
Content
Introduce CEA/LITEN
Critical Material substitutes for energy transport applications
Energy storage
Energy conversion
Critical Material substitutes for solar energy
Bulk silicon
Thin film PV cells
Conclusion
Silicon
Lingot
Wafer
Cell
Module
System
2,4 €/Wp
2 €/Wp
0,6 €/Wp
2008
5 €/Wp
0,8 €/Wp
0,2 €/Wp
1 €/Wp
2015/20
2 €/Wp
Photovoltaic cell : road map
New concepts
3rdgénération cells
Crystalline Si cells
Thin film technologies a-
Si/mc-Si, CIGS (CuInSe,
CdTe)
Three main categories for solar cells
PV Recycling : volume and value recycling
PV
Tech.
Silicon
Semi-conductor
compounds
Dye –
cells
Organic…
New concepts…
Crystal
Thin Film
Multi-junction
III-V / concen.
Thin Film
polycrystal.
Solid
Electrolyte
Liquid
Electrolyte
…
…
…
m-Si
p-Si
a-Si / µ-cryst.
Crystal.
CIS / CIGS
CdTe
• Material PV wastes
upcoming (<> tech.)
• Potential material
sourcing risks (rare
materials)
Ag
In
In, Ga
In, Pt, Ru
Ga, Ge, In, Au
Te, Cd toxicity
New concepts
3rdgénération cells
Crystalline Si cells
Thin film technologies a-
Si/mc-Si, CIGS (CuInSe,
CdTe)
Three main categories for solar cells
Radial junction silicon nanowire technology
 High efficiency (>15%)
 Enhanced optical absorption of silicon nanowire arrays
 Effective extraction of photogenerated charges in the radial junction
configuration
 Low cost
 Low silicon material usage
 Metal substrate
Advantage of Si nanowires: enhanced optical absorption
5000 nm
 Si nanowire arrays with optimized periodicity offer an enhanced optical absorption
compared to Si thin films with same thickness
 Si nanowire arrays would allow to reach a higher ultimate efficiency, while reducing Si
material usage
J. Li et al., Appl. Phys. Lett. 95, 243113 (2009).
(diameter = periodicity / 2)
State of the art of radial junction Si nanowire technology
Group Substrate Nanowire (or
microwire)
Radial junction Front contact Energy conversion
efficiency
L. Tsakalakos, General Electric,
Appl. Phys. Lett. 91, 233117 (2007)
Metal CVD (gold) a-Si by PECVD ITO by PVD
Metal grid
0.1%
1.8 cm²
P. Yang, Univ. California, Berkeley,
J. Am. Chem. Soc. 130, 9224 (2008)
c-Si Wet etching (AgNO3
+ HF)
c-Si by CVD + RTA Metal grid 0.5%
0.1 cm²
H. A. Atwater, CalTech,
33rd IEEE Photovoltaic Specialist Conf. (2008)
c-Si RIE Diffusion Point contact 6%
0.04 cm²
O. Gunawan and S. Guha, IBM,
Sol. Energy Mater. Sol. Cell. 93, 1388 (2009)
c-Si CVD (gold) c-Si by CVD
Al2O3 by ALD
Metal grid 2%
0.5 cm²
P. Yang, Univ. California, Berkeley,
Nano. Lett. 10, 1082 (2010)
c-Si RIE Diffusion Metal grid 5%
0.25 cm²
T. S. Mayer, Pennsylvania State Univ.,
Appl. Phys. Lett. 96, 213503 (2010)
c-Si RIE Diffusion Point contact 9%
0.07 cm²
H. A. Atwater, CalTech,
Energy Environ. Sci. 3, 1037 (2010)
c-Si CVD (copper) Diffusion ITO by PVD 7.9%
0.0021 cm²
S. Guha, IBM Yorktown
Prog. Photovolt. Res. Appl. (2010)
c-Si RIE Diffusion Metal grid 5%
1 cm²
 The advantage of CVD over etching is the ability to directly prepare silicon nanowire arrays
on large-area, low-cost substrates (as demonstrated by General Electric)
 Promising results have been obtained experimentally by CVD (CalTech has demonstrated
very recently efficiencies up to 7.9% with an active volume of Si equivalent to a 4 µm thick Si
wafer).
New concepts
3rdgénération cells
Crystalline Si cells
Thin film technologies a-
Si/mc-Si, CIGS (CuInSe,
CdTe)
Three main categories for solar cells
2nd generation
(thin films)
1st generation
(bulk silicon)
Largest potential for improvement among thin film technologies
Potential of CIGS technology
Veeco, Photon’s PV Production Equipment Conf. (2009)
DEPOSITION METHOD
FOR CIGS LAYER
EFFICIENCY
Best laboratory cell
(~ 1 cm²)
Best pilot line module
(30x30 cm²)
Commercial module
(~ 1 m²)
Co-evaporation
19% - 20%
ZSW, HZB (DE)
NREL (US)
14%
ZSW (DE)
8% - 12%
Würth Solar, Q-Cells, Solarion (DE)
Global Solar, Ascent Solar (US)
Sputtering of precursors
+ selenization/sulfurization
-
15% - 16%
Solar Frontier (JP)
Avancis (DE)
7% - 12%
Solar Frontier, Honda Soltec (JP)
Avancis, Sulfurcell, Bosch Solar (DE)
Sunshine PV (TW)
Printing of precursors
+ selenization/sulfurization
10% - 12%
IBM (US)
-
8% - 11% (?)
Nanosolar (US)
25th European Photovoltaic Solar Energy Conference (2010)
Cu(In,Ga)Se2 (1-2 µm)
Absorber layer (p type)
Buffer layer (n type)
Back contact
Substrate
Mo (0.2 µm) by sputtering
CdS or ZnS or In2S3 (0.05 µm) in chemical bath
ZnO:Al (0.5 µm) by sputtering
Glass, metal, polymer
Intrinsic ZnO (0.05 µm) by sputtering
Transparent conductive oxide
State of the art of CIGS technology
M. A. Green, Prog. Photovolt. Res. Appl. 17, 347 (2009).
G. Phipps et al., Renewable Energy Focus, July/August 2008, 56-59.
• Forecast: supply of « virgin » In can be increased up to 1000
tons/year at prices consistent with photovoltaic use (<1600 $/kg).
• Demand of In for CIGS module fabrication < 0.1 g/Wp
 In is abundant enough for 10 GWp/year of production
capacity
Cu(In,Ga)(S,Se)2 (CIGS)  Cu2(Zn,Sn)(S,Se)4 (CZTS)
Deposition method for CZTS layer Best laboratory cell ( 1 cm²)
Sputtering
+ selenization/sulfurization
6.7%
Nagaoka National College of Technology 1
Wet deposition
11.2%
IBM 2
1 H. Katagiri et al., Applied Physics Express 1, 041204 (2008)
2 T. K. Todorov et al., 25th European Photovoltaic Solar Energy Conference (2010)
Indium supply issue
State of the art of CZTS technology
Content
Introduce CEA/LITEN
Critical Material substitutes for energy transport applications
Energy storage
Energy conversion
Critical Material substitutes for solar energy
Bulk silicon
Thin film PV cells
Conclusion
High price volatility prior to current crisis
The Hype Cycle: Five stages
New product
“take off”
From revolution to evolution
Lithium
Hyper-
entusiasm
Market
saturation
Productivity
plateau
Rare earth
Gallium
Demand
and
price
Mass
production
R&D
Indium
Selenium
Conclusion
 Lithium for batteries
 Indium, Tellurium,.. for photovoltaics
 Pt for fuel cell
1) Three examples of potential crisis at short, medium
and long term for sustainable energy components.
2) Three potential approaches to avoid the crisis
 Decrease the amount of material in the component
 Develop new architectures
 Replacement with non noble or non rare earth materials
3) Think « Life Cycle »
 Integrate recycling considerations in R&D for new
technologies
Thank you
Thank you for your attention
A bientôt
Bertrand FILLON
Tel:0033685324833
bertrand.fillon@cea.fr
CxHy
CO
NOx
CO2
H2O
N2
O2
Pt ou Pd for CO et CxHy oxydation
Rh for NOx reduction
Transport : Exhaust gas
Today technology TWC
Washcoat Al2O3 (20-60 µm)
+ catalyst (Pt(Pd)/Rh) par
imprégnation (1-2% wt)
DECADE
LCA studies & evaluation
 Technical & economical evaluations
 Life cycle analysis (LCA)
Optimisation of energy process
Support to technology
development : targeting prioritary
R&D
Ecoinvent
Evaluation
Design /
Dimens.
Demonstration
Active layer ?
• Catalyst = Pt
(1720 US$/oz = 45€/g ; 100kW  30g  1347€ )
 Minimize the Pt quantity
 Improve the active layer structure
 Propose new materials
PEMFC: Increase the contact surface
• Bottlenecks :
Turn over frequency !
(more reactions)
f (s-1)= i / (eN)
i – current (A.cm-2),
e – electron charge(1.6 10-19 C)
N – Active site density (cm-2)
Non noble metal
Gasteiger et al. Science 324, 48 (2009)
 recent progress :
Iron based catalyst similar of Pt nanoparticules
3) Propose new materials
Lefèvre et al, Science, 324, 71 (2009)
Los Alamos Nat Lab. (2010)
 Durability?
• Specific properties obtain with some architecture of transition metal oxide.
3) Propose new materials

More Related Content

Similar to Session_B2_Fillion.ppt

Mse phd lecture
Mse phd lectureMse phd lecture
Mse phd lecture
Toru Hara
 
Nanotechnology and display applications.pdf
Nanotechnology and display applications.pdfNanotechnology and display applications.pdf
Nanotechnology and display applications.pdf
NirmalM15
 
What can Materials Science tell us about Solar Energy of the Future?
What can Materials Science tell us about Solar Energy of the Future?What can Materials Science tell us about Solar Energy of the Future?
What can Materials Science tell us about Solar Energy of the Future?
glyndwruni
 
Heterojunction silicon based solar cells
Heterojunction silicon based solar cellsHeterojunction silicon based solar cells
Heterojunction silicon based solar cells
dinomasch
 
Zr doped TiO2 nanocomposites for dye sensitized solar cells
Zr doped TiO2 nanocomposites for dye sensitized solar cellsZr doped TiO2 nanocomposites for dye sensitized solar cells
Zr doped TiO2 nanocomposites for dye sensitized solar cells
venkatamanthina
 

Similar to Session_B2_Fillion.ppt (20)

Mse phd lecture
Mse phd lectureMse phd lecture
Mse phd lecture
 
Carbon Nanotubes
Carbon NanotubesCarbon Nanotubes
Carbon Nanotubes
 
solar technology
solar technologysolar technology
solar technology
 
Nanotechnology and display applications.pdf
Nanotechnology and display applications.pdfNanotechnology and display applications.pdf
Nanotechnology and display applications.pdf
 
The Materials Project and computational materials discovery
The Materials Project and computational materials discoveryThe Materials Project and computational materials discovery
The Materials Project and computational materials discovery
 
Science Vale UK energy event renewable energy technology - solar
Science Vale UK energy event renewable energy technology - solarScience Vale UK energy event renewable energy technology - solar
Science Vale UK energy event renewable energy technology - solar
 
IRJET- Black Phosphorous as an Alternative to Current Semiconductor Materials
IRJET- Black Phosphorous as an Alternative to Current Semiconductor MaterialsIRJET- Black Phosphorous as an Alternative to Current Semiconductor Materials
IRJET- Black Phosphorous as an Alternative to Current Semiconductor Materials
 
Energia r.p.h.chang
Energia r.p.h.changEnergia r.p.h.chang
Energia r.p.h.chang
 
Titaniumdioxide solarcells (1)
Titaniumdioxide solarcells (1)Titaniumdioxide solarcells (1)
Titaniumdioxide solarcells (1)
 
What can Materials Science tell us about Solar Energy of the Future?
What can Materials Science tell us about Solar Energy of the Future?What can Materials Science tell us about Solar Energy of the Future?
What can Materials Science tell us about Solar Energy of the Future?
 
Nanolithography
NanolithographyNanolithography
Nanolithography
 
Heterojunction silicon based solar cells
Heterojunction silicon based solar cellsHeterojunction silicon based solar cells
Heterojunction silicon based solar cells
 
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of BangorDye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
 
Summary of Wei-Ta's work
Summary of Wei-Ta's workSummary of Wei-Ta's work
Summary of Wei-Ta's work
 
Lecture 08
Lecture 08Lecture 08
Lecture 08
 
III-Nitride Semiconductors based Optical Power Splitter Device Design for und...
III-Nitride Semiconductors based Optical Power Splitter Device Design for und...III-Nitride Semiconductors based Optical Power Splitter Device Design for und...
III-Nitride Semiconductors based Optical Power Splitter Device Design for und...
 
NREL PV seminar
NREL PV seminarNREL PV seminar
NREL PV seminar
 
Band edge engineering of composite photoanodes for dye sensitized solar cells
Band edge engineering of composite photoanodes for dye sensitized solar cellsBand edge engineering of composite photoanodes for dye sensitized solar cells
Band edge engineering of composite photoanodes for dye sensitized solar cells
 
Zr doped TiO2 nanocomposites for dye sensitized solar cells
Zr doped TiO2 nanocomposites for dye sensitized solar cellsZr doped TiO2 nanocomposites for dye sensitized solar cells
Zr doped TiO2 nanocomposites for dye sensitized solar cells
 
Photocatalytic reduction of CO2
Photocatalytic reduction of CO2Photocatalytic reduction of CO2
Photocatalytic reduction of CO2
 

More from Ammr2 (9)

bioinfo_00-introduction.ppt
bioinfo_00-introduction.pptbioinfo_00-introduction.ppt
bioinfo_00-introduction.ppt
 
176539.ppt
176539.ppt176539.ppt
176539.ppt
 
cours_2_alignement_2022.pptx
cours_2_alignement_2022.pptxcours_2_alignement_2022.pptx
cours_2_alignement_2022.pptx
 
SDPV31306.ppt
SDPV31306.pptSDPV31306.ppt
SDPV31306.ppt
 
12_pv.ppt
12_pv.ppt12_pv.ppt
12_pv.ppt
 
Cour1 BioInfo(Ait-Ali).pptx
Cour1 BioInfo(Ait-Ali).pptxCour1 BioInfo(Ait-Ali).pptx
Cour1 BioInfo(Ait-Ali).pptx
 
911200007162525.ppt
911200007162525.ppt911200007162525.ppt
911200007162525.ppt
 
algèbre de boole.pdf
algèbre de boole.pdfalgèbre de boole.pdf
algèbre de boole.pdf
 
Structure Machine 2-2020.pdf
Structure Machine 2-2020.pdfStructure Machine 2-2020.pdf
Structure Machine 2-2020.pdf
 

Recently uploaded

Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
fonyou31
 

Recently uploaded (20)

Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 

Session_B2_Fillion.ppt

  • 1. B. Fillon CEA LITEN Grenoble December 2010, Boston Challenges for the future sustainable energy generation, distribution and use.
  • 2. Content Introduce CEA/LITEN Critical Material substitutes for energy transport applications Energy storage Energy conversion Critical Material substitutes for solar energy Bulk silicon Thin film PV cells Conclusion
  • 3. R & D for nuclear energy Fundamental Research Defense programs Technological Research for industry One BU of Technological Research Division 15.000 researchers 3 Billions Euros annual AREVA industrial group Getting ready for the New Economy
  • 4. LITEN : New energy technologies Electric Transports Electric Power Batteries Fuel Cells Hybridation Recycling µ-power sources Nanomaterials Organic Electronic Energy recovery Nano Surfaces Solar Energy & Buildings Solar Energy Solar PV, CSP,CPV Electrical systems Energetic efficiency Biomass & Hydrogen Solid Storage H2 Production H2 Storage Usages 30% 30% 20% 20%
  • 5. Grenoble Transport électrique & nanomatériaux 550 P. Chambéry Solaire & Bâtiments à faible consommation d’énergie 200 p. Effectif 2010 750 Ingénieurs & Techniciens Brevets 350 actifs 135 dépôts en 2009 Budget 2010 120 M€ 90 M€ de recettes externes 30 M€ de subvention CEA LITEN: Key numbers
  • 6. Building/Solar Energy Transport Nomad Large companies SME • Photovoltaic devices • Thermal devices • Fuel cell • Energy storage • Hydrogen • Micro power sources • Energy scavenging M E T I S Industrial partnerships • Positive energy building • Organic Electronic
  • 7. Critical materials substitution in alignment with LITEN strategy Harvesting Storage Conversion
  • 8. Content Introduce CEA/LITEN Critical Material substitutes for energy transport applications Energy storage Energy conversion Critical Material substitutes for solar energy Bulk silicon Thin film PV cells Conclusion
  • 9. -Synthetic fuel – gen 2, -Exhaust system, -Air treatment, -Thermal exchange system. -Hydrogen storage and production, -Coupling with Renewable energy, 2010 2010-15 2020-2030 Road-Map of motorization technologies Thermal Motorisation Hybride Motorisation Fuel Cell Motorisation Hybride Motorisation 2015-20 -High energy batteries -Energy storage, -Energy management.
  • 10. Nanotextured surfaces for catalysis Less catalyst and well disperse: Nanosized (dia.= 20 nm) Nanoscattered (Pt =20 nm)
  • 12. Cost per kg 1°/Cobalt, 2°/Nickel 3°/Lithium 4°/Manganèse 5°/Aluminium 6°/Fer Material and cost for the cathode component 25% of cobalt is used for phone market in 2010
  • 13. Cathode Anode Li + Cobalt (LiCoO2) Manganese (LiMn2O4) Phosphate (LiFePO4) NCA (LiNiCoAlO2) NMC (LiNiMnCoO2) … Graphite Hard Carbone Titanate Lithium Oxydes : Li-ion picture: courtesy of Prof. M. Winter  Cathode : Avoid cobalt for cost/security  Anode : Replace graphite by Ti oxydes for cost/security Lithium-ion battery family : multiple contents + New material development !! Think recycling
  • 14. Content Introduce CEA/LITEN Critical Material substitutes for energy transport applications Energy storage Energy conversion Critical Material substitutes for solar energy Bulk silicon Thin film PV cells Conclusion
  • 15. Membrane-Electrodes Assemblies for PEMFC Electrodes (carbon support + catalyst + protonic polymer conductor) Monopolar plate Oxygen Reduction Reaction (cathode): O2 + 4e- + 4H+ 2H2O Hydrogen Oxidation Reaction (anode) H2 2H+ + 2e- Heat Heat Electricity production Excess Air/O2 output H2 input Excess H2 output Air / O2 input Polymer membrane Strength of the CEA: it masters the whole chain, from components to systems, through assemblies and stacks
  • 16. LITEN PEMFC for transport EPICEA 2 kW Composite stack GENEPAC 20 kW Metallic stack SPACT 80 30 kW Composite stack GENEPAC 80 kW Metallic stack Marathon Shell 200 W Graphite stack RobotPAC 200 W Graphite stack • Development of new materials and substitution of critical material • Optimization of materials and membrane electrode assembly • Design, manufacture and tests of stacks • Membrane degradation mechanisms analysis • Development of electrochemical constitutive equations coupled with thermohydraulic analysis Bipolar plates
  • 17. Active layer ? • Catalyst = Pt (1720 US$/oz = 45€/g ; 100kW  30g  1347€ ) PEMFC: Increase the contact surface
  • 18. Catalysts Synthesis Substitute noble metal by a transition metal Nano-achitectures of catalyst layers MEA engineering Deposition of catalyst at the most interesting place Three potential approaches to substitute Pt
  • 19. Same performances with a third of platinum quantity Genepac 80KW PEMFC : development on MEA with less Pt 1) Minimize Pt quantity
  • 20. 1) Minimize Pt quantity MEA engineering Deposition of catalyst at the most interesting place Optimized dispersion of catalyst in the MEA : • inlet / outlet • channel / Ribs • composition of ink (hydrophilic/ hydrophobic)  Optimize the distribution of catalysts on MEA for each design of bipolar plate and application
  • 21. Nano-achitectures of catalyst layers Figure : Pt dendritic structures, K. Yamada et al. J. Power Sources 180 (2008)181-184 Figure : tetrahexahedrals Pt nanoparticules ,N.Tian, Science Vol.316 may (2007) 732-735 Dr. Michael Brett / GLancing Angle Deposition iCORE, NRC (Can) Pt nanowire, nanotubes and nanoflowers on carbon support, CEA, (F) Pt nanowire, on carbon support, Dodelet and Sun (Can) 2) Improve the active layer structure
  • 22. Catalysts synthesis Substitute noble metal by a transition metal J-P. Dodelet INRS (Can) P. Zelenay, LANL (USA) V. Artero, CEA/IRTSV (F) P. Gouérec, Sté GPMaterials (F) B. Popov, Univ. South carolina (USA) P. Zelenay, LANL (USA) M.K Debe, 3M (USA) Multimetallics Core-Shell / hollow spheres R. Adzick, BNL (USA) M.K Debe, 3M (USA) P. Strasser, ORNL (USA) Non noble and / bio-mimetic catalysts 3) Propose new materials
  • 23. Content Introduce CEA/LITEN Critical Material substitutes for energy transport applications Energy storage Energy conversion Critical Material substitutes for solar energy Bulk silicon Thin film PV cells Conclusion
  • 24. Silicon Lingot Wafer Cell Module System 2,4 €/Wp 2 €/Wp 0,6 €/Wp 2008 5 €/Wp 0,8 €/Wp 0,2 €/Wp 1 €/Wp 2015/20 2 €/Wp Photovoltaic cell : road map
  • 25. New concepts 3rdgénération cells Crystalline Si cells Thin film technologies a- Si/mc-Si, CIGS (CuInSe, CdTe) Three main categories for solar cells
  • 26. PV Recycling : volume and value recycling PV Tech. Silicon Semi-conductor compounds Dye – cells Organic… New concepts… Crystal Thin Film Multi-junction III-V / concen. Thin Film polycrystal. Solid Electrolyte Liquid Electrolyte … … … m-Si p-Si a-Si / µ-cryst. Crystal. CIS / CIGS CdTe • Material PV wastes upcoming (<> tech.) • Potential material sourcing risks (rare materials) Ag In In, Ga In, Pt, Ru Ga, Ge, In, Au Te, Cd toxicity
  • 27. New concepts 3rdgénération cells Crystalline Si cells Thin film technologies a- Si/mc-Si, CIGS (CuInSe, CdTe) Three main categories for solar cells
  • 28. Radial junction silicon nanowire technology  High efficiency (>15%)  Enhanced optical absorption of silicon nanowire arrays  Effective extraction of photogenerated charges in the radial junction configuration  Low cost  Low silicon material usage  Metal substrate
  • 29. Advantage of Si nanowires: enhanced optical absorption 5000 nm  Si nanowire arrays with optimized periodicity offer an enhanced optical absorption compared to Si thin films with same thickness  Si nanowire arrays would allow to reach a higher ultimate efficiency, while reducing Si material usage J. Li et al., Appl. Phys. Lett. 95, 243113 (2009). (diameter = periodicity / 2)
  • 30. State of the art of radial junction Si nanowire technology Group Substrate Nanowire (or microwire) Radial junction Front contact Energy conversion efficiency L. Tsakalakos, General Electric, Appl. Phys. Lett. 91, 233117 (2007) Metal CVD (gold) a-Si by PECVD ITO by PVD Metal grid 0.1% 1.8 cm² P. Yang, Univ. California, Berkeley, J. Am. Chem. Soc. 130, 9224 (2008) c-Si Wet etching (AgNO3 + HF) c-Si by CVD + RTA Metal grid 0.5% 0.1 cm² H. A. Atwater, CalTech, 33rd IEEE Photovoltaic Specialist Conf. (2008) c-Si RIE Diffusion Point contact 6% 0.04 cm² O. Gunawan and S. Guha, IBM, Sol. Energy Mater. Sol. Cell. 93, 1388 (2009) c-Si CVD (gold) c-Si by CVD Al2O3 by ALD Metal grid 2% 0.5 cm² P. Yang, Univ. California, Berkeley, Nano. Lett. 10, 1082 (2010) c-Si RIE Diffusion Metal grid 5% 0.25 cm² T. S. Mayer, Pennsylvania State Univ., Appl. Phys. Lett. 96, 213503 (2010) c-Si RIE Diffusion Point contact 9% 0.07 cm² H. A. Atwater, CalTech, Energy Environ. Sci. 3, 1037 (2010) c-Si CVD (copper) Diffusion ITO by PVD 7.9% 0.0021 cm² S. Guha, IBM Yorktown Prog. Photovolt. Res. Appl. (2010) c-Si RIE Diffusion Metal grid 5% 1 cm²  The advantage of CVD over etching is the ability to directly prepare silicon nanowire arrays on large-area, low-cost substrates (as demonstrated by General Electric)  Promising results have been obtained experimentally by CVD (CalTech has demonstrated very recently efficiencies up to 7.9% with an active volume of Si equivalent to a 4 µm thick Si wafer).
  • 31. New concepts 3rdgénération cells Crystalline Si cells Thin film technologies a- Si/mc-Si, CIGS (CuInSe, CdTe) Three main categories for solar cells
  • 32. 2nd generation (thin films) 1st generation (bulk silicon) Largest potential for improvement among thin film technologies Potential of CIGS technology Veeco, Photon’s PV Production Equipment Conf. (2009)
  • 33. DEPOSITION METHOD FOR CIGS LAYER EFFICIENCY Best laboratory cell (~ 1 cm²) Best pilot line module (30x30 cm²) Commercial module (~ 1 m²) Co-evaporation 19% - 20% ZSW, HZB (DE) NREL (US) 14% ZSW (DE) 8% - 12% Würth Solar, Q-Cells, Solarion (DE) Global Solar, Ascent Solar (US) Sputtering of precursors + selenization/sulfurization - 15% - 16% Solar Frontier (JP) Avancis (DE) 7% - 12% Solar Frontier, Honda Soltec (JP) Avancis, Sulfurcell, Bosch Solar (DE) Sunshine PV (TW) Printing of precursors + selenization/sulfurization 10% - 12% IBM (US) - 8% - 11% (?) Nanosolar (US) 25th European Photovoltaic Solar Energy Conference (2010) Cu(In,Ga)Se2 (1-2 µm) Absorber layer (p type) Buffer layer (n type) Back contact Substrate Mo (0.2 µm) by sputtering CdS or ZnS or In2S3 (0.05 µm) in chemical bath ZnO:Al (0.5 µm) by sputtering Glass, metal, polymer Intrinsic ZnO (0.05 µm) by sputtering Transparent conductive oxide State of the art of CIGS technology
  • 34. M. A. Green, Prog. Photovolt. Res. Appl. 17, 347 (2009). G. Phipps et al., Renewable Energy Focus, July/August 2008, 56-59. • Forecast: supply of « virgin » In can be increased up to 1000 tons/year at prices consistent with photovoltaic use (<1600 $/kg). • Demand of In for CIGS module fabrication < 0.1 g/Wp  In is abundant enough for 10 GWp/year of production capacity Cu(In,Ga)(S,Se)2 (CIGS)  Cu2(Zn,Sn)(S,Se)4 (CZTS) Deposition method for CZTS layer Best laboratory cell ( 1 cm²) Sputtering + selenization/sulfurization 6.7% Nagaoka National College of Technology 1 Wet deposition 11.2% IBM 2 1 H. Katagiri et al., Applied Physics Express 1, 041204 (2008) 2 T. K. Todorov et al., 25th European Photovoltaic Solar Energy Conference (2010) Indium supply issue State of the art of CZTS technology
  • 35. Content Introduce CEA/LITEN Critical Material substitutes for energy transport applications Energy storage Energy conversion Critical Material substitutes for solar energy Bulk silicon Thin film PV cells Conclusion
  • 36. High price volatility prior to current crisis
  • 37. The Hype Cycle: Five stages New product “take off” From revolution to evolution Lithium Hyper- entusiasm Market saturation Productivity plateau Rare earth Gallium Demand and price Mass production R&D Indium Selenium
  • 38. Conclusion  Lithium for batteries  Indium, Tellurium,.. for photovoltaics  Pt for fuel cell 1) Three examples of potential crisis at short, medium and long term for sustainable energy components. 2) Three potential approaches to avoid the crisis  Decrease the amount of material in the component  Develop new architectures  Replacement with non noble or non rare earth materials 3) Think « Life Cycle »  Integrate recycling considerations in R&D for new technologies
  • 39. Thank you Thank you for your attention A bientôt Bertrand FILLON Tel:0033685324833 bertrand.fillon@cea.fr
  • 40. CxHy CO NOx CO2 H2O N2 O2 Pt ou Pd for CO et CxHy oxydation Rh for NOx reduction Transport : Exhaust gas Today technology TWC Washcoat Al2O3 (20-60 µm) + catalyst (Pt(Pd)/Rh) par imprégnation (1-2% wt) DECADE
  • 41. LCA studies & evaluation  Technical & economical evaluations  Life cycle analysis (LCA) Optimisation of energy process Support to technology development : targeting prioritary R&D Ecoinvent Evaluation Design / Dimens. Demonstration
  • 42. Active layer ? • Catalyst = Pt (1720 US$/oz = 45€/g ; 100kW  30g  1347€ )  Minimize the Pt quantity  Improve the active layer structure  Propose new materials PEMFC: Increase the contact surface
  • 43. • Bottlenecks : Turn over frequency ! (more reactions) f (s-1)= i / (eN) i – current (A.cm-2), e – electron charge(1.6 10-19 C) N – Active site density (cm-2) Non noble metal Gasteiger et al. Science 324, 48 (2009)  recent progress : Iron based catalyst similar of Pt nanoparticules 3) Propose new materials
  • 44. Lefèvre et al, Science, 324, 71 (2009) Los Alamos Nat Lab. (2010)  Durability? • Specific properties obtain with some architecture of transition metal oxide. 3) Propose new materials