SlideShare a Scribd company logo
1 of 41
Download to read offline
Academic year 2013-‘14
UNIVERSITY OF TURIN
Materials Science Master Degree
Production and characterisation of diamond’s
nanocrystals with luminescent singel centres
Supervisor:
Dr. Paolo Olivero
Candidate:
Alessandro Marsura
Examiner:
Dr. Marco Truccato
Thesis outline
Theoretical aspects:
• Single photon sources
• Diamond
Production’s optimisation:
• Pre-radiation chemical treatments
• Ionic radiation and annealing
• Post-annealing chemical treatments
Opto-physics characterisation:
• Sample’s mapping
• Photoluminescence spectra
• HBT interferometry
Conclusions and prospects:
• Production’s optimisation
• Opto-physics characterisation
Sviluppo del lavoro di tesi
Theoretical aspects:
• Single photon sources
• Diamond
Production’s optimisation:
• Pre-radiation chemical treatments
• Ionic radiation and annealing
• Post-annealing chemical treatment
Opto-physics characterisation:
• Sample’s mapping
• Photoluminescence spectra
• HBT interferometry
Conclusions and prospects:
• Production’s optimisation
• Opto-physics characterisation
Thesis outline
Single photon sources
What are they?
Devices capable of emitting a single photon in
response to an excitation signal
Applications?
Quantum computing, quantum communication
and criptography, metrology.
3
I.Aharonovich et al., Rep.Prog.Phys.74,076501, 2011.
Technological state of the art:
A. Strongly attenuated pulsed laser
• “on demand” ✓
• multi-photonic components ✗
B. Parametric down conversion (PDC)
• “heralded” photons ✓
• non deterministic technique ✗
C. Quantum dots in semiconductors
• only mono-photonics components ✓
• cryogenic work’s temperature ✗
D. Luminescent centres in solids
• isolated quantum systems, manipulable at room temperature ✓
• “on demand”, only mono-photonics components ✓
What are they?
Devices capable of emitting a single photon in
response to an excitation signal
Applications?
Quantum computing, quantum communication
and criptography, metrology.
3
Technological state of the art:
A. Strongly attenuated pulsed laser
• “on demand” ✓
• multi-photonic components ✗
B. Parametric down conversion (PDC)
• “heralded” photons ✓
• non deterministic technique ✗
C. Quantum dots in semiconductors
• only mono-photonics components ✓
• cryogenic work’s temperature ✗
D. Luminescent centres in solids
• isolated quantum systems, manipulable at room temperature ✓
• “on demand”, only mono-photonics components ✓
Single photon sources
What are they?
Devices capable of emitting a single photon in
response to an excitation signal
3
Technological state of the art:
A. Strongly attenuated pulsed laser
• “on demand” ✓
• multi-photonic components ✗
B. Parametric down conversion (PDC)
• “heralded” photons ✓
• non deterministic technique ✗
C. Quantum dots in semiconductors
• only mono-photonics components ✓
• cryogenic work’s temperature ✗
D. Luminescent centres in solids
• isolated quantum systems, manipulable at room temperature ✓
• “on demand”, only mono-photonics components ✓
Applications?
Quantum computing, quantum communication
and criptography, metrology.
Single photon sources
3
What are they?
Devices capable of emitting a single photon in
response to an excitation signal
Technological state of the art:
A. Strongly attenuated pulsed laser
• “on demand” ✓
• multi-photonic components ✗
B. Parametric down conversion (PDC)
• “heralded” photons ✓
• non deterministic technique ✗
C. Quantum dots in semiconductors
• only mono-photonics components ✓
• cryogenic work’s temperature ✗
D. Luminescent centres in solids
• isolated quantum systems, manipulable at room temperature ✓
• “on demand”, only mono-photonics components ✓
Applications?
Quantum computing, quantum communication
and criptography, metrology.
Single photon sources
Chemical composition:
Allotrope of carbon sp3 hybridised
Crystallographic characteristics:
• F.c.c. unit cell
• Lattice bases (0,0,0) (1/4,1/4,1/4)
• Lattice constant equal to 3.57Å
• Atomic density 1.77×1023 cm-3
Opto-electronics properties:
• Energy Gap equal to 5.5 eV
• Insulating material
• Transparent form FIR to NUV
4
Diamond
Chemical composition:
Allotrope of carbon sp3 hybridised
Crystallographic characteristics:
• F.c.c. unit cell
• Lattice bases (0,0,0) (1/4,1/4,1/4)
• Lattice constant equal to 3.57Å
• Atomic density 1.77×1023 cm-3
Opto-electronics properties:
• Energy Gap equal to 5.5 eV
• Insulating material
• Transparent form FIR to NUV
4
Diamond
Chemical composition:
Allotrope of carbon sp3 hybridised
Crystallographic characteristics:
• F.c.c. unit cell
• Lattice bases (0,0,0) (1/4,1/4,1/4)
• Lattice constant equal to 3.57Å
• Atomic density 1.77×1023 cm-3
Opto-electronics properties:
• Energy Gap equal to 5.5 eV
• Insulating material
• Transparent form FIR to NUV
4
Diamond
What are they?
Defects of the crystal lattice (vacancies, sostituzional-interstitial atoms)
• energetic levels in the band gap
• radiative transitions when exited
5
I.Aharonovich et al., Rep.Prog.Phys.74,076501, 2011.
Luminescent centres in diamond
Diamond
Thesis outline
Theoretical aspects:
• Single photon sources
• Diamond
Production’s optimisation:
• Pre-radiation chemical treatments
• Ionic radiation and annealing
• Post-annealing chemical treatment
Opto-physics characterisation:
• Sample’s mapping
• Photoluminescence spectra
• HBT interferometry
Conclusions and prospects:
• Production’s optimisation
• Opto-physics characterisation
Pre-radiation chemical treatments
batch model diameter (nm)
nitrogen’s concentration
(ppm)
diamond type
d_p_06 micron + mda 0-.25 0-250 100 Ib
batch reagent used
temperature
(°C)
temporal duration
(h)
treatments name
d_p_06
HNO3 100 48 “A"
H2SO4/HNO3 (9:1) 75 72 “B"
Original sample
Chemical treatments
6
Pre-radiation chemical treatments
batch model diameter (nm)
nitrogen’s concentration
(ppm)
diamond type
d_p_06 micron + mda 0-.25 0-250 100 Ib
batch reagent used
temperature
(°C)
temporal duration
(h)
treatments name
d_p_06
HNO3 100 48 “A"
H2SO4/HNO3 (9:1) 75 72 “B"
Original sample
Chemical treatments
6
Pre-radiation chemical treatments
batch model diameter (nm)
nitrogen’s concentration
(ppm)
diamond type
d_p_06 micron + mda 0-.25 0-250 100 Ib
batch reagent used
temperature
(°C)
temporal duration
(h)
treatments name
d_p_06
HNO3 100 48 “A"
H2SO4/HNO3 (9:1) 75 72 “B"
Original sample
Chemical treatments
6
vibrational modes of “sp3” carbon
vibrational modes of “sp2” carbon
Pre-radiation chemical treatments
batch model diameter (nm)
nitrogen’s concentration
(ppm)
diamond type
d_p_06 micron + mda 0-.25 0-250 100 Ib
batch reagent used
temperature
(°C)
temporal duration
(h)
treatments name
d_p_06
HNO3 100 48 “A"
H2SO4/HNO3 (9:1) 75 72 “B"
Original sample
Chemical treatments
6
symmetric stretching -SO3
−
asymmetric stretching -SO3
−
Ionic radiation and annealing
ionic
species
ionic energy
(MeV)
beam
dimensions
(mm2)
ionic courent
(nA)
radiation time
(s)
resulting fluence
(cm-2)
corresponding
samples
protons 2
7×3 86 574 5 x 1013
1_A 1_B
7×3 186 585 1 x 1014
2_A 2_B
7×3 186 1158 2 x 1014
3_A 3_B
7×3 397 1207 5 x 1014
4_A 4_B
Ionic radiation
Annealing
pressure
(mBar)
treatment’s phase
initial
temperature (°C)
final
temperature (°C)
temporal
duration
(min)
gradient
(°C min-1)
800
(di N2)
heating 50 800 75 +10
plateau 800 800 60 ///////////////////////////
cooling 800 50 75 -10
ρV=λV×F
7
Ionic radiation and annealing
ionic
species
ionic energy
(MeV)
beam
dimensions
(mm2)
ionic courent
(nA)
radiation time
(s)
resulting fluence
(cm-2)
corresponding
samples
protons 2
7×3 86 574 5 x 1013 1_A 1_B
7×3 186 585 1 x 1014 2_A 2_B
7×3 186 1158 2 x 1014 3_A 3_B
7×3 397 1207 5 x 1014 4_A 4_B
Ionic radiation
Annealing
pressure
(mBar)
treatment’s phase
initial
temperature (°C)
final
temperature (°C)
temporal
duration
(min)
gradient
(°C min-1)
800
(di N2)
heating 50 800 75 +10
plateau 800 800 60 ///////////////////////////
cooling 800 50 75 -10
7
Post-annealing chemical treatment
treated samples treatment’s phase
quantity
(parts)
temporal
duration
(min)
3_A, 1_A, 1_B
attacco con H2SO4 3 30
aggiunta di H2O2 1 20
rinsing in “piranha”
solution
8
vibrational modes of “sp3” carbon
vibrational modes of “sp2” carbon
asymmetric stretching -SO4
2−
Post-annealing chemical treatment
8
treated samples treatment’s phase
quantity
(parts)
temporal
duration
(min)
3_A, 1_A, 1_B
attacco con H2SO4 3 30
aggiunta di H2O2 1 20
rinsing in “piranha”
solution
symmetric stretching -SO3
−
asymmetric stretching -SO3
−
asymmetric stretching -SO4
2−
Thesis outline
Theoretical aspects:
• Single photon sources
• Diamond
Production’s optimisation:
• Pre-radiation chemical treatments
• Ionic radiation and annealing
• Post-annealing chemical treatment
Opto-physics characterisation:
• Sample’s mapping
• Photoluminescence spectra
• HBT interferometry
Conclusions and prospects:
• Production’s optimisation
• Opto-physics characterisation
Sample’s mapping
9
Confocal microscope
Features:
• Pinholes ensure the acquisition of the radiation belonging to the only
desired focal plane
• Theoretical spatial resolution is equal to the diffraction limit of light
• Surface mapping point by point
• Optical localisation of the single centres of luminescence
Sample’s mapping
Instrumental apparatus
2
3
5 5
6
7
8 9
10
11
12
13
13
10
(2)
(6)
(4)
(5)(5)
(3)
(10)
(7)(8)
(9)
Optical chain
(1)
4
Additional components:
11. Spectrometer-monochromator
12. Beam-splitter
13. Single photon detector
Technical data of pulsed laser:
emission
wave-
lenght
(nm)
maximum
repetition
frequency
(MHz)
temporal
duration of
single pulse (ps)
instantaneous
power per single
pulse (mW)
532 80 <100 20
1
2
3
4 4
5
6
7 8
9
10
11
12
12
3_A sample
11
Area#1 Area#2
Parameters:
• Laser’s repetition frequency equal to 80 MHz
• (80×80) μm2, (320×320) pixel
• Dwell time 10 ms
Parameters:
• Laser’s repetition frequency equal to 80 MHz
• (80×80) μm2, (533×533) pixel
• Dwell time 10 ms
[F=2×1014 cm-2]
Sample’s mapping
1_A sample
12
Parameters:
• Laser’s repetition frequency equal to 80 MHz
• (80×80) μm2, (400×400) pixel
• Dwell time 5 ms
[F=5×1013 cm-2]
Sample’s mapping
12
20×
1_A#1 centre
Parameters:
• Laser’s repetition frequency equal to 40 MHz
• (5×5) μm2, (70×70) pixel
• Dwell time 10 ms
Sample’s mapping
1_A sample
1_A sample
12
1_A#2 centre
7×
Parameters:
• Laser’s repetition frequency equal to 10 MHz
• (10×10) μm2, (144×144) pixel
• Dwell time 5 ms
Sample’s mapping
1_B sample
13
Parameters:
• Laser’s repetition frequency equal to 80 MHz
• (80×80) μm2, (1600×1600) pixel
• Dwell time 5 ms
[F=5×1013 cm-2]
Sample’s mapping
20×
1_B#1 centre1_B sample
13
Parameters:
• Laser’s repetition frequency equal to 10 MHz
• (5×5) μm2, (90×90) pixel
• Dwell time 10 ms
Sample’s mapping
Photoluminescence spectra
600 650 700 750
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
Fotoluminescenza[a.u.]
Lunghezza d'onda [nm]
Spettro di emissione del campione 3A - area 1
Spettro di emissione del campione 3A - area 2
Area#1
Area#2
14
ZPL NV−
(638 nm)
3_A sample [F=2×1014 cm-2]
Aggregate’s spectra
Area#1
Area#2
14
Y. Dumegie, et al., Journal of Luminescence, 109, 61-67, 2004.
Bibliographical reference
3_A sample [F=2×1014 cm-2]
Photoluminescence spectra
15
Centro1_A#1
Centro1_A#2
1_A & 1_B samples [F=5×1013 cm-2]
Centro1_B#1
Single nano-crystal’s spectra
Photoluminescence spectra
HBT interferometry
16
Features:
• Determination of statistics characterising coincident events
• Discrimination of the luminescent cetre’s nature
source’s type value of g(2)(0) comment
classical
source
g(2)(0) ≥ 1
g(2)(0) ≥ g(2)(τ)
g(2)(0) = 1 ⇔ I(t)=cost.
coherent
source
g(2)(0) = 1 ⩝ t
quantum
source
g(2)(0) < 1
g(2)(0) < 0.5 ⇒
single photon source
g 2( )
t( )=
I t( )⋅ I t +τ( )
I t( )
2
classical
coherent
quantum
Delay times [ns]
g(2)(t)
Hambury Brown & Twiss interferometer
17
Components:
• Beam Splitter;
• 2 start & stop single photon detector (operating in “Geiger mode”);
• Time to Amplitude Converter (TAC);
• Multi Channel Analyzer (MCA);
• Counter.
Instrumental apparatus
HBT interferometry
18
1_A#1 centre
gsperimentale
2( )
t = 0( )=
A t = 0( )
A t ≠ 0( )
gcorretta
2( )
t = 0( )=
gsperimentale
2( )
t = 0( )+ ρ2
−1
ρ2
S = Ri = 102 kcps
B = 20 kcps
= 0.73± 0.02
R1 = R2 = 102 kcps
T = 1000 s
tr = 25 ns
C * t( )=
C t( )
R1R2T tr
ρ =
S
S + B
I = S + B
backflash’s peak
coincident events’s “dip”
HBT interferometry
Interferometry’s results:
18
gsperimentale
2( )
t = 0( )=
A t = 0( )
A t ≠ 0( )
gcorretta
2( )
t = 0( )=
gsperimentale
2( )
t = 0( )+ ρ2
−1
ρ2
S = Ri = 102 kcps
B = 20 kcps
= 0.73± 0.02
R1 = R2 = 102 kcps
T = 1000 s
tr = 25 ns
C * t( )=
C t( )
R1R2T tr
ρ =
S
S + B
I = S + B
HBT interferometry
Interferometry’s results:
backflash’s peak
coincident events’s “dip”
1_A#1 centre
1_A#2 centre:
• R1=R2=38 kcps=S
• B=15 kcps
• T=1000 s
• tr=100 ns
gcorretta
2( )
t = 0( )= 0.26 ± 0.02
gcorretta
2( )
t = 0( )= 0.085 ± 0.003
Centro 1_B#1:
• R1=R2=25.750 kcps=S
• B=9.500 kcps
• T=1000 s
• tr=100 ns
19
HBT interferometry
Interferometry’s results:
Centro 1_A#2:
• R1=R2=38 kcps=S
• B=15 kcps
• T=1000 s
• tr=100 ns
gcorretta
2( )
t = 0( )= 0.26 ± 0.02
gcorretta
2( )
t = 0( )= 0.085 ± 0.003
1_B#1 centre:
• R1=R2=25.750 kcps=S
• B=9.500 kcps
• T=1000 s
• tr=100 ns
19
HBT interferometry
Interferometry’s results:
Thesis outline
Theoretical aspects:
• Single photon sources
• Diamond
Production’s optimisation:
• Pre-radiation chemical treatments
• Ionic radiation and annealing
• Post-annealing chemical treatment
Opto-physics characterisation:
• Sample’s mapping
• Photoluminescence spectra
• HBT interferometry
Conclusions and prospects:
• Production’s optimisation
• Opto-physics characterisation
20
Conclusions:
• we have implemented 2 nano-diamond’s SPS fabrication protocols
• both chemical treatments ("A" and "B") are effective
• by SRIM code, we have identified the optimal fluency
• g(2)(t) values extremely promising which confirm the effectiveness of the
production protocols
Prospects:
• make a comparison between chemical treatments of equal duration
• implement the micro-processing of the substrates (possibly transparent and
conductive)
• enter nano-diamonds in special photonic structures
Production’s optimisation &
opto-physics characterisation
Production’s optimisation &
opto-physics characterisation
20
Conclusions:
• we have implemented 2 nano-diamond’s SPS fabrication protocols
• both chemical treatments ("A" and "B") are effective
• by SRIM code, we have identified the optimal fluency
• g(2)(t) values extremely promising which confirm the effectiveness of the
production protocols
Prospects:
• make a comparison between chemical treatments of equal duration
• implement the micro-processing of the substrates (possibly transparent and
conductive)
• enter nano-diamonds in special photonic structures

More Related Content

What's hot

Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...Chelsey Crosse
 
Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivit...
Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivit...Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivit...
Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivit...Pawan Kumar
 
MAT-CS Techniques Brochure
MAT-CS Techniques BrochureMAT-CS Techniques Brochure
MAT-CS Techniques Brochurescottbaumann
 
Noble Metal Free, Visible Light Driven Photocatalysis Using TiO2 Nanotube Arr...
Noble Metal Free, Visible Light Driven Photocatalysis Using TiO2 Nanotube Arr...Noble Metal Free, Visible Light Driven Photocatalysis Using TiO2 Nanotube Arr...
Noble Metal Free, Visible Light Driven Photocatalysis Using TiO2 Nanotube Arr...Pawan Kumar
 
Photocatalytic Studies of Anatase and Rutile phase TiO2 Nanocrystals Prepared...
Photocatalytic Studies of Anatase and Rutile phase TiO2 Nanocrystals Prepared...Photocatalytic Studies of Anatase and Rutile phase TiO2 Nanocrystals Prepared...
Photocatalytic Studies of Anatase and Rutile phase TiO2 Nanocrystals Prepared...IJERA Editor
 
Atomic absorption spectroscopy
Atomic absorption spectroscopy Atomic absorption spectroscopy
Atomic absorption spectroscopy AyeshaRasty
 
atomic absorption spectroscopy
atomic absorption spectroscopyatomic absorption spectroscopy
atomic absorption spectroscopyJyotiMhoprekar
 
Vapor Deposition of Semiconducting Phosphorus Allotropes into TiO2 Nanotube A...
Vapor Deposition of Semiconducting Phosphorus Allotropes into TiO2 Nanotube A...Vapor Deposition of Semiconducting Phosphorus Allotropes into TiO2 Nanotube A...
Vapor Deposition of Semiconducting Phosphorus Allotropes into TiO2 Nanotube A...Pawan Kumar
 
An introduction to analytical atomic spectrometry l. ebdon
An introduction to analytical atomic spectrometry   l. ebdonAn introduction to analytical atomic spectrometry   l. ebdon
An introduction to analytical atomic spectrometry l. ebdonMohamedGhait
 
Vapor growth of binary and ternary phosphorus-based semiconductors into TiO2 ...
Vapor growth of binary and ternary phosphorus-based semiconductors into TiO2 ...Vapor growth of binary and ternary phosphorus-based semiconductors into TiO2 ...
Vapor growth of binary and ternary phosphorus-based semiconductors into TiO2 ...Pawan Kumar
 
Atomic absorption spectroscopy ahmed abdelmohsen fame master
Atomic absorption spectroscopy  ahmed abdelmohsen  fame masterAtomic absorption spectroscopy  ahmed abdelmohsen  fame master
Atomic absorption spectroscopy ahmed abdelmohsen fame masterAhmed Hashem Abdelmohsen
 
Carbon International Conference 2007 Bin Zhao Oral Presentation
Carbon International Conference  2007   Bin Zhao Oral PresentationCarbon International Conference  2007   Bin Zhao Oral Presentation
Carbon International Conference 2007 Bin Zhao Oral Presentationbinzhao2004
 
Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...
Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...
Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...Pawan Kumar
 

What's hot (17)

Surface analysisversion3
Surface analysisversion3Surface analysisversion3
Surface analysisversion3
 
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
 
Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivit...
Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivit...Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivit...
Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivit...
 
79035bb0 a6be-4cc1-8f52-b943b8d5af78 (1)
79035bb0 a6be-4cc1-8f52-b943b8d5af78 (1)79035bb0 a6be-4cc1-8f52-b943b8d5af78 (1)
79035bb0 a6be-4cc1-8f52-b943b8d5af78 (1)
 
MAT-CS Techniques Brochure
MAT-CS Techniques BrochureMAT-CS Techniques Brochure
MAT-CS Techniques Brochure
 
Noble Metal Free, Visible Light Driven Photocatalysis Using TiO2 Nanotube Arr...
Noble Metal Free, Visible Light Driven Photocatalysis Using TiO2 Nanotube Arr...Noble Metal Free, Visible Light Driven Photocatalysis Using TiO2 Nanotube Arr...
Noble Metal Free, Visible Light Driven Photocatalysis Using TiO2 Nanotube Arr...
 
Photocatalytic Studies of Anatase and Rutile phase TiO2 Nanocrystals Prepared...
Photocatalytic Studies of Anatase and Rutile phase TiO2 Nanocrystals Prepared...Photocatalytic Studies of Anatase and Rutile phase TiO2 Nanocrystals Prepared...
Photocatalytic Studies of Anatase and Rutile phase TiO2 Nanocrystals Prepared...
 
Atomic absorption spectroscopy
Atomic absorption spectroscopy Atomic absorption spectroscopy
Atomic absorption spectroscopy
 
Basic principle of spectrophotometry & colorimetry
Basic principle of spectrophotometry & colorimetryBasic principle of spectrophotometry & colorimetry
Basic principle of spectrophotometry & colorimetry
 
atomic absorption spectroscopy
atomic absorption spectroscopyatomic absorption spectroscopy
atomic absorption spectroscopy
 
Vapor Deposition of Semiconducting Phosphorus Allotropes into TiO2 Nanotube A...
Vapor Deposition of Semiconducting Phosphorus Allotropes into TiO2 Nanotube A...Vapor Deposition of Semiconducting Phosphorus Allotropes into TiO2 Nanotube A...
Vapor Deposition of Semiconducting Phosphorus Allotropes into TiO2 Nanotube A...
 
An introduction to analytical atomic spectrometry l. ebdon
An introduction to analytical atomic spectrometry   l. ebdonAn introduction to analytical atomic spectrometry   l. ebdon
An introduction to analytical atomic spectrometry l. ebdon
 
Vapor growth of binary and ternary phosphorus-based semiconductors into TiO2 ...
Vapor growth of binary and ternary phosphorus-based semiconductors into TiO2 ...Vapor growth of binary and ternary phosphorus-based semiconductors into TiO2 ...
Vapor growth of binary and ternary phosphorus-based semiconductors into TiO2 ...
 
Atomic absorption spectroscopy ahmed abdelmohsen fame master
Atomic absorption spectroscopy  ahmed abdelmohsen  fame masterAtomic absorption spectroscopy  ahmed abdelmohsen  fame master
Atomic absorption spectroscopy ahmed abdelmohsen fame master
 
Carbon International Conference 2007 Bin Zhao Oral Presentation
Carbon International Conference  2007   Bin Zhao Oral PresentationCarbon International Conference  2007   Bin Zhao Oral Presentation
Carbon International Conference 2007 Bin Zhao Oral Presentation
 
Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...
Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...
Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...
 
Powder 2005
Powder 2005Powder 2005
Powder 2005
 

Similar to Thesis Presentation

Heterogeneous Catalyst-opportunity and challenges.ppt
Heterogeneous Catalyst-opportunity and challenges.pptHeterogeneous Catalyst-opportunity and challenges.ppt
Heterogeneous Catalyst-opportunity and challenges.pptManoj Mohapatra
 
Heterogeneous Catalysis - Opportunities and Challenges
Heterogeneous Catalysis - Opportunities and ChallengesHeterogeneous Catalysis - Opportunities and Challenges
Heterogeneous Catalysis - Opportunities and ChallengesManoj Mohapatra
 
20231122(Cryo-EM).pdf
20231122(Cryo-EM).pdf20231122(Cryo-EM).pdf
20231122(Cryo-EM).pdfelsarazavi1
 
Electrochemical synthesis of nanoparticles
Electrochemical synthesis of nanoparticlesElectrochemical synthesis of nanoparticles
Electrochemical synthesis of nanoparticlesJohn Wachira
 
Atomic Absorption Spectroscopy
Atomic Absorption Spectroscopy Atomic Absorption Spectroscopy
Atomic Absorption Spectroscopy GaneshBhagure1
 
Atomic Spectrophotometry
Atomic SpectrophotometryAtomic Spectrophotometry
Atomic SpectrophotometrySarah Khallad
 
Catalyst Synthesis by Solvothermal Process (Ghanekar,Deshmukh)_Prof PN Dange-...
Catalyst Synthesis by Solvothermal Process (Ghanekar,Deshmukh)_Prof PN Dange-...Catalyst Synthesis by Solvothermal Process (Ghanekar,Deshmukh)_Prof PN Dange-...
Catalyst Synthesis by Solvothermal Process (Ghanekar,Deshmukh)_Prof PN Dange-...Gandhar Ghanekar
 
2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx
2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx
2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptxlwang78
 
Enhancement in the efficiency of solar cells final ppt
Enhancement in the efficiency of solar cells final pptEnhancement in the efficiency of solar cells final ppt
Enhancement in the efficiency of solar cells final pptSwapnil Agarwal
 
Principal of AAS.ppt
Principal of AAS.pptPrincipal of AAS.ppt
Principal of AAS.pptsamehm3
 
Intertek Allentown
Intertek AllentownIntertek Allentown
Intertek AllentownEllen Link
 
Infrared spectroscopy
Infrared spectroscopyInfrared spectroscopy
Infrared spectroscopyANKUSH JADHAV
 
Permanent_Magnets_101_Trout_brief
Permanent_Magnets_101_Trout_briefPermanent_Magnets_101_Trout_brief
Permanent_Magnets_101_Trout_briefStan Trout
 

Similar to Thesis Presentation (20)

Rahman-INFN-LNL
Rahman-INFN-LNLRahman-INFN-LNL
Rahman-INFN-LNL
 
Heterogeneous Catalyst-opportunity and challenges.ppt
Heterogeneous Catalyst-opportunity and challenges.pptHeterogeneous Catalyst-opportunity and challenges.ppt
Heterogeneous Catalyst-opportunity and challenges.ppt
 
Heterogeneous Catalysis - Opportunities and Challenges
Heterogeneous Catalysis - Opportunities and ChallengesHeterogeneous Catalysis - Opportunities and Challenges
Heterogeneous Catalysis - Opportunities and Challenges
 
Atomic Absorbtion
Atomic AbsorbtionAtomic Absorbtion
Atomic Absorbtion
 
20231122(Cryo-EM).pdf
20231122(Cryo-EM).pdf20231122(Cryo-EM).pdf
20231122(Cryo-EM).pdf
 
Electrochemical synthesis of nanoparticles
Electrochemical synthesis of nanoparticlesElectrochemical synthesis of nanoparticles
Electrochemical synthesis of nanoparticles
 
Atomic Absorption Spectroscopy
Atomic Absorption Spectroscopy Atomic Absorption Spectroscopy
Atomic Absorption Spectroscopy
 
Atomic Spectrophotometry
Atomic SpectrophotometryAtomic Spectrophotometry
Atomic Spectrophotometry
 
M.S.ThesisDefense
M.S.ThesisDefenseM.S.ThesisDefense
M.S.ThesisDefense
 
Catalyst Synthesis by Solvothermal Process (Ghanekar,Deshmukh)_Prof PN Dange-...
Catalyst Synthesis by Solvothermal Process (Ghanekar,Deshmukh)_Prof PN Dange-...Catalyst Synthesis by Solvothermal Process (Ghanekar,Deshmukh)_Prof PN Dange-...
Catalyst Synthesis by Solvothermal Process (Ghanekar,Deshmukh)_Prof PN Dange-...
 
2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx
2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx
2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx
 
Enhancement in the efficiency of solar cells final ppt
Enhancement in the efficiency of solar cells final pptEnhancement in the efficiency of solar cells final ppt
Enhancement in the efficiency of solar cells final ppt
 
ZnO PPT.pptx
ZnO PPT.pptxZnO PPT.pptx
ZnO PPT.pptx
 
Presentation.pptx
Presentation.pptxPresentation.pptx
Presentation.pptx
 
7 imaging
7 imaging7 imaging
7 imaging
 
Principal of AAS.ppt
Principal of AAS.pptPrincipal of AAS.ppt
Principal of AAS.ppt
 
Intertek Allentown
Intertek AllentownIntertek Allentown
Intertek Allentown
 
Infrared spectroscopy
Infrared spectroscopyInfrared spectroscopy
Infrared spectroscopy
 
Session 21 ic2011 kukay
Session 21 ic2011 kukaySession 21 ic2011 kukay
Session 21 ic2011 kukay
 
Permanent_Magnets_101_Trout_brief
Permanent_Magnets_101_Trout_briefPermanent_Magnets_101_Trout_brief
Permanent_Magnets_101_Trout_brief
 

Thesis Presentation

  • 1. Academic year 2013-‘14 UNIVERSITY OF TURIN Materials Science Master Degree Production and characterisation of diamond’s nanocrystals with luminescent singel centres Supervisor: Dr. Paolo Olivero Candidate: Alessandro Marsura Examiner: Dr. Marco Truccato
  • 2. Thesis outline Theoretical aspects: • Single photon sources • Diamond Production’s optimisation: • Pre-radiation chemical treatments • Ionic radiation and annealing • Post-annealing chemical treatments Opto-physics characterisation: • Sample’s mapping • Photoluminescence spectra • HBT interferometry Conclusions and prospects: • Production’s optimisation • Opto-physics characterisation
  • 3. Sviluppo del lavoro di tesi Theoretical aspects: • Single photon sources • Diamond Production’s optimisation: • Pre-radiation chemical treatments • Ionic radiation and annealing • Post-annealing chemical treatment Opto-physics characterisation: • Sample’s mapping • Photoluminescence spectra • HBT interferometry Conclusions and prospects: • Production’s optimisation • Opto-physics characterisation Thesis outline
  • 4. Single photon sources What are they? Devices capable of emitting a single photon in response to an excitation signal Applications? Quantum computing, quantum communication and criptography, metrology. 3 I.Aharonovich et al., Rep.Prog.Phys.74,076501, 2011. Technological state of the art: A. Strongly attenuated pulsed laser • “on demand” ✓ • multi-photonic components ✗ B. Parametric down conversion (PDC) • “heralded” photons ✓ • non deterministic technique ✗ C. Quantum dots in semiconductors • only mono-photonics components ✓ • cryogenic work’s temperature ✗ D. Luminescent centres in solids • isolated quantum systems, manipulable at room temperature ✓ • “on demand”, only mono-photonics components ✓
  • 5. What are they? Devices capable of emitting a single photon in response to an excitation signal Applications? Quantum computing, quantum communication and criptography, metrology. 3 Technological state of the art: A. Strongly attenuated pulsed laser • “on demand” ✓ • multi-photonic components ✗ B. Parametric down conversion (PDC) • “heralded” photons ✓ • non deterministic technique ✗ C. Quantum dots in semiconductors • only mono-photonics components ✓ • cryogenic work’s temperature ✗ D. Luminescent centres in solids • isolated quantum systems, manipulable at room temperature ✓ • “on demand”, only mono-photonics components ✓ Single photon sources
  • 6. What are they? Devices capable of emitting a single photon in response to an excitation signal 3 Technological state of the art: A. Strongly attenuated pulsed laser • “on demand” ✓ • multi-photonic components ✗ B. Parametric down conversion (PDC) • “heralded” photons ✓ • non deterministic technique ✗ C. Quantum dots in semiconductors • only mono-photonics components ✓ • cryogenic work’s temperature ✗ D. Luminescent centres in solids • isolated quantum systems, manipulable at room temperature ✓ • “on demand”, only mono-photonics components ✓ Applications? Quantum computing, quantum communication and criptography, metrology. Single photon sources
  • 7. 3 What are they? Devices capable of emitting a single photon in response to an excitation signal Technological state of the art: A. Strongly attenuated pulsed laser • “on demand” ✓ • multi-photonic components ✗ B. Parametric down conversion (PDC) • “heralded” photons ✓ • non deterministic technique ✗ C. Quantum dots in semiconductors • only mono-photonics components ✓ • cryogenic work’s temperature ✗ D. Luminescent centres in solids • isolated quantum systems, manipulable at room temperature ✓ • “on demand”, only mono-photonics components ✓ Applications? Quantum computing, quantum communication and criptography, metrology. Single photon sources
  • 8. Chemical composition: Allotrope of carbon sp3 hybridised Crystallographic characteristics: • F.c.c. unit cell • Lattice bases (0,0,0) (1/4,1/4,1/4) • Lattice constant equal to 3.57Å • Atomic density 1.77×1023 cm-3 Opto-electronics properties: • Energy Gap equal to 5.5 eV • Insulating material • Transparent form FIR to NUV 4 Diamond
  • 9. Chemical composition: Allotrope of carbon sp3 hybridised Crystallographic characteristics: • F.c.c. unit cell • Lattice bases (0,0,0) (1/4,1/4,1/4) • Lattice constant equal to 3.57Å • Atomic density 1.77×1023 cm-3 Opto-electronics properties: • Energy Gap equal to 5.5 eV • Insulating material • Transparent form FIR to NUV 4 Diamond
  • 10. Chemical composition: Allotrope of carbon sp3 hybridised Crystallographic characteristics: • F.c.c. unit cell • Lattice bases (0,0,0) (1/4,1/4,1/4) • Lattice constant equal to 3.57Å • Atomic density 1.77×1023 cm-3 Opto-electronics properties: • Energy Gap equal to 5.5 eV • Insulating material • Transparent form FIR to NUV 4 Diamond
  • 11. What are they? Defects of the crystal lattice (vacancies, sostituzional-interstitial atoms) • energetic levels in the band gap • radiative transitions when exited 5 I.Aharonovich et al., Rep.Prog.Phys.74,076501, 2011. Luminescent centres in diamond Diamond
  • 12. Thesis outline Theoretical aspects: • Single photon sources • Diamond Production’s optimisation: • Pre-radiation chemical treatments • Ionic radiation and annealing • Post-annealing chemical treatment Opto-physics characterisation: • Sample’s mapping • Photoluminescence spectra • HBT interferometry Conclusions and prospects: • Production’s optimisation • Opto-physics characterisation
  • 13. Pre-radiation chemical treatments batch model diameter (nm) nitrogen’s concentration (ppm) diamond type d_p_06 micron + mda 0-.25 0-250 100 Ib batch reagent used temperature (°C) temporal duration (h) treatments name d_p_06 HNO3 100 48 “A" H2SO4/HNO3 (9:1) 75 72 “B" Original sample Chemical treatments 6
  • 14. Pre-radiation chemical treatments batch model diameter (nm) nitrogen’s concentration (ppm) diamond type d_p_06 micron + mda 0-.25 0-250 100 Ib batch reagent used temperature (°C) temporal duration (h) treatments name d_p_06 HNO3 100 48 “A" H2SO4/HNO3 (9:1) 75 72 “B" Original sample Chemical treatments 6
  • 15. Pre-radiation chemical treatments batch model diameter (nm) nitrogen’s concentration (ppm) diamond type d_p_06 micron + mda 0-.25 0-250 100 Ib batch reagent used temperature (°C) temporal duration (h) treatments name d_p_06 HNO3 100 48 “A" H2SO4/HNO3 (9:1) 75 72 “B" Original sample Chemical treatments 6 vibrational modes of “sp3” carbon vibrational modes of “sp2” carbon
  • 16. Pre-radiation chemical treatments batch model diameter (nm) nitrogen’s concentration (ppm) diamond type d_p_06 micron + mda 0-.25 0-250 100 Ib batch reagent used temperature (°C) temporal duration (h) treatments name d_p_06 HNO3 100 48 “A" H2SO4/HNO3 (9:1) 75 72 “B" Original sample Chemical treatments 6 symmetric stretching -SO3 − asymmetric stretching -SO3 −
  • 17. Ionic radiation and annealing ionic species ionic energy (MeV) beam dimensions (mm2) ionic courent (nA) radiation time (s) resulting fluence (cm-2) corresponding samples protons 2 7×3 86 574 5 x 1013 1_A 1_B 7×3 186 585 1 x 1014 2_A 2_B 7×3 186 1158 2 x 1014 3_A 3_B 7×3 397 1207 5 x 1014 4_A 4_B Ionic radiation Annealing pressure (mBar) treatment’s phase initial temperature (°C) final temperature (°C) temporal duration (min) gradient (°C min-1) 800 (di N2) heating 50 800 75 +10 plateau 800 800 60 /////////////////////////// cooling 800 50 75 -10 ρV=λV×F 7
  • 18. Ionic radiation and annealing ionic species ionic energy (MeV) beam dimensions (mm2) ionic courent (nA) radiation time (s) resulting fluence (cm-2) corresponding samples protons 2 7×3 86 574 5 x 1013 1_A 1_B 7×3 186 585 1 x 1014 2_A 2_B 7×3 186 1158 2 x 1014 3_A 3_B 7×3 397 1207 5 x 1014 4_A 4_B Ionic radiation Annealing pressure (mBar) treatment’s phase initial temperature (°C) final temperature (°C) temporal duration (min) gradient (°C min-1) 800 (di N2) heating 50 800 75 +10 plateau 800 800 60 /////////////////////////// cooling 800 50 75 -10 7
  • 19. Post-annealing chemical treatment treated samples treatment’s phase quantity (parts) temporal duration (min) 3_A, 1_A, 1_B attacco con H2SO4 3 30 aggiunta di H2O2 1 20 rinsing in “piranha” solution 8 vibrational modes of “sp3” carbon vibrational modes of “sp2” carbon asymmetric stretching -SO4 2−
  • 20. Post-annealing chemical treatment 8 treated samples treatment’s phase quantity (parts) temporal duration (min) 3_A, 1_A, 1_B attacco con H2SO4 3 30 aggiunta di H2O2 1 20 rinsing in “piranha” solution symmetric stretching -SO3 − asymmetric stretching -SO3 − asymmetric stretching -SO4 2−
  • 21. Thesis outline Theoretical aspects: • Single photon sources • Diamond Production’s optimisation: • Pre-radiation chemical treatments • Ionic radiation and annealing • Post-annealing chemical treatment Opto-physics characterisation: • Sample’s mapping • Photoluminescence spectra • HBT interferometry Conclusions and prospects: • Production’s optimisation • Opto-physics characterisation
  • 22. Sample’s mapping 9 Confocal microscope Features: • Pinholes ensure the acquisition of the radiation belonging to the only desired focal plane • Theoretical spatial resolution is equal to the diffraction limit of light • Surface mapping point by point • Optical localisation of the single centres of luminescence
  • 23. Sample’s mapping Instrumental apparatus 2 3 5 5 6 7 8 9 10 11 12 13 13 10 (2) (6) (4) (5)(5) (3) (10) (7)(8) (9) Optical chain (1) 4 Additional components: 11. Spectrometer-monochromator 12. Beam-splitter 13. Single photon detector Technical data of pulsed laser: emission wave- lenght (nm) maximum repetition frequency (MHz) temporal duration of single pulse (ps) instantaneous power per single pulse (mW) 532 80 <100 20
  • 24. 1 2 3 4 4 5 6 7 8 9 10 11 12 12 3_A sample 11 Area#1 Area#2 Parameters: • Laser’s repetition frequency equal to 80 MHz • (80×80) μm2, (320×320) pixel • Dwell time 10 ms Parameters: • Laser’s repetition frequency equal to 80 MHz • (80×80) μm2, (533×533) pixel • Dwell time 10 ms [F=2×1014 cm-2] Sample’s mapping
  • 25. 1_A sample 12 Parameters: • Laser’s repetition frequency equal to 80 MHz • (80×80) μm2, (400×400) pixel • Dwell time 5 ms [F=5×1013 cm-2] Sample’s mapping
  • 26. 12 20× 1_A#1 centre Parameters: • Laser’s repetition frequency equal to 40 MHz • (5×5) μm2, (70×70) pixel • Dwell time 10 ms Sample’s mapping 1_A sample
  • 27. 1_A sample 12 1_A#2 centre 7× Parameters: • Laser’s repetition frequency equal to 10 MHz • (10×10) μm2, (144×144) pixel • Dwell time 5 ms Sample’s mapping
  • 28. 1_B sample 13 Parameters: • Laser’s repetition frequency equal to 80 MHz • (80×80) μm2, (1600×1600) pixel • Dwell time 5 ms [F=5×1013 cm-2] Sample’s mapping
  • 29. 20× 1_B#1 centre1_B sample 13 Parameters: • Laser’s repetition frequency equal to 10 MHz • (5×5) μm2, (90×90) pixel • Dwell time 10 ms Sample’s mapping
  • 30. Photoluminescence spectra 600 650 700 750 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 Fotoluminescenza[a.u.] Lunghezza d'onda [nm] Spettro di emissione del campione 3A - area 1 Spettro di emissione del campione 3A - area 2 Area#1 Area#2 14 ZPL NV− (638 nm) 3_A sample [F=2×1014 cm-2] Aggregate’s spectra
  • 31. Area#1 Area#2 14 Y. Dumegie, et al., Journal of Luminescence, 109, 61-67, 2004. Bibliographical reference 3_A sample [F=2×1014 cm-2] Photoluminescence spectra
  • 32. 15 Centro1_A#1 Centro1_A#2 1_A & 1_B samples [F=5×1013 cm-2] Centro1_B#1 Single nano-crystal’s spectra Photoluminescence spectra
  • 33. HBT interferometry 16 Features: • Determination of statistics characterising coincident events • Discrimination of the luminescent cetre’s nature source’s type value of g(2)(0) comment classical source g(2)(0) ≥ 1 g(2)(0) ≥ g(2)(τ) g(2)(0) = 1 ⇔ I(t)=cost. coherent source g(2)(0) = 1 ⩝ t quantum source g(2)(0) < 1 g(2)(0) < 0.5 ⇒ single photon source g 2( ) t( )= I t( )⋅ I t +τ( ) I t( ) 2 classical coherent quantum Delay times [ns] g(2)(t) Hambury Brown & Twiss interferometer
  • 34. 17 Components: • Beam Splitter; • 2 start & stop single photon detector (operating in “Geiger mode”); • Time to Amplitude Converter (TAC); • Multi Channel Analyzer (MCA); • Counter. Instrumental apparatus HBT interferometry
  • 35. 18 1_A#1 centre gsperimentale 2( ) t = 0( )= A t = 0( ) A t ≠ 0( ) gcorretta 2( ) t = 0( )= gsperimentale 2( ) t = 0( )+ ρ2 −1 ρ2 S = Ri = 102 kcps B = 20 kcps = 0.73± 0.02 R1 = R2 = 102 kcps T = 1000 s tr = 25 ns C * t( )= C t( ) R1R2T tr ρ = S S + B I = S + B backflash’s peak coincident events’s “dip” HBT interferometry Interferometry’s results:
  • 36. 18 gsperimentale 2( ) t = 0( )= A t = 0( ) A t ≠ 0( ) gcorretta 2( ) t = 0( )= gsperimentale 2( ) t = 0( )+ ρ2 −1 ρ2 S = Ri = 102 kcps B = 20 kcps = 0.73± 0.02 R1 = R2 = 102 kcps T = 1000 s tr = 25 ns C * t( )= C t( ) R1R2T tr ρ = S S + B I = S + B HBT interferometry Interferometry’s results: backflash’s peak coincident events’s “dip” 1_A#1 centre
  • 37. 1_A#2 centre: • R1=R2=38 kcps=S • B=15 kcps • T=1000 s • tr=100 ns gcorretta 2( ) t = 0( )= 0.26 ± 0.02 gcorretta 2( ) t = 0( )= 0.085 ± 0.003 Centro 1_B#1: • R1=R2=25.750 kcps=S • B=9.500 kcps • T=1000 s • tr=100 ns 19 HBT interferometry Interferometry’s results:
  • 38. Centro 1_A#2: • R1=R2=38 kcps=S • B=15 kcps • T=1000 s • tr=100 ns gcorretta 2( ) t = 0( )= 0.26 ± 0.02 gcorretta 2( ) t = 0( )= 0.085 ± 0.003 1_B#1 centre: • R1=R2=25.750 kcps=S • B=9.500 kcps • T=1000 s • tr=100 ns 19 HBT interferometry Interferometry’s results:
  • 39. Thesis outline Theoretical aspects: • Single photon sources • Diamond Production’s optimisation: • Pre-radiation chemical treatments • Ionic radiation and annealing • Post-annealing chemical treatment Opto-physics characterisation: • Sample’s mapping • Photoluminescence spectra • HBT interferometry Conclusions and prospects: • Production’s optimisation • Opto-physics characterisation
  • 40. 20 Conclusions: • we have implemented 2 nano-diamond’s SPS fabrication protocols • both chemical treatments ("A" and "B") are effective • by SRIM code, we have identified the optimal fluency • g(2)(t) values extremely promising which confirm the effectiveness of the production protocols Prospects: • make a comparison between chemical treatments of equal duration • implement the micro-processing of the substrates (possibly transparent and conductive) • enter nano-diamonds in special photonic structures Production’s optimisation & opto-physics characterisation
  • 41. Production’s optimisation & opto-physics characterisation 20 Conclusions: • we have implemented 2 nano-diamond’s SPS fabrication protocols • both chemical treatments ("A" and "B") are effective • by SRIM code, we have identified the optimal fluency • g(2)(t) values extremely promising which confirm the effectiveness of the production protocols Prospects: • make a comparison between chemical treatments of equal duration • implement the micro-processing of the substrates (possibly transparent and conductive) • enter nano-diamonds in special photonic structures