SlideShare a Scribd company logo
1 of 14
Download to read offline
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/43193286
Vailu'u undersea volcano: The New Samoa
Article  in  Geochemistry Geophysics Geosystems · December 2000
DOI: 10.1029/2000GC000108 · Source: OAI
CITATIONS
52
READS
281
13 authors, including:
Some of the authors of this publication are also working on these related projects:
Ecuador Rhyolite Province View project
Plumes: Melt inclusions study: View project
Hubert Staudigel
University of California, San Diego
351 PUBLICATIONS   14,992 CITATIONS   
SEE PROFILE
Anthony A. P. Koppers
Oregon State University
278 PUBLICATIONS   5,983 CITATIONS   
SEE PROFILE
J. Blusztajn
Woods Hole Oceanographic Institution
195 PUBLICATIONS   8,847 CITATIONS   
SEE PROFILE
Rhea Foreman
University of Hawaiʻi at Mānoa
35 PUBLICATIONS   4,076 CITATIONS   
SEE PROFILE
All content following this page was uploaded by Hubert Staudigel on 28 May 2014.
The user has requested enhancement of the downloaded file.
Vailulu'u undersea volcano: The New Samoa
S. R. Hart
Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 (shart@whoi.edu)
H. Staudigel and A. A. P. Koppers
Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093
(hstaudig@ucsd.edu; akoppers@ucsd.edu)
J. Blusztajn
Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 (jblusztajn@whoi.edu)
E. T. Baker
Pacific Marine Environmental Laboratory, NOAA, Seattle, Washington 98115 (baker@pmel.noaa.gov)
R. Workman
Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 (rworkman@whoi.edu)
M. Jackson
Department of Geology and Geophysics, Yale University, New Haven, Connecticut 06511
(montanajacks@hotmail.com)
E. Hauri
Department of Terrestrial Magnetism, Carnegie Institution, Washington, D. C. 20015 (hauri@dtm.ciw.edu)
M. Kurz, K. Sims, and D. Fornari
Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
(mkurz@whoi.edu; ksims@whoi.edu; dfornari@whoi.edu)
A. Saal
Lamont-Doherty Geological Observatory, Palisades, New York 10964
(asaal@ldeo.columbia.edu)
S. Lyons
Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093
(slyons@ucsd.edu)
[1] Abstract: Vailulu'u Seamount is identified as an active volcano marking the current location of the
Samoan hotspot. This seamount is located 45 km east of Ta'u Island, Samoa, at 169803.50
W, 14812.90
S.
Vailulu'u defines the easternmost edge of the Samoan Swell, rising from the 5000-m ocean floor to a
summit depth of 590 m and marked by a 400-m-deep and 2-km-wide summit crater. Its broad western
rift and stellate morphology brand it as a juvenile progeny of Ta'u. Seven dredges, ranging from the
summit to the SE Rift zone at 4200 m, recovered only alkali basalts and picrites. Isotopically, the
volcano is strongly EM2 in character and clearly of Samoan pedigree (87
Sr/86
Sr: 0.7052±0.7067;
143
Nd/144
Nd: 0.51267±0.51277; 206
Pb/204
Pb: 19.19±19.40). The 210
Po-210
Pb data on two summit
basalts indicate ages younger than 50 years; all of the recovered rocks are extremely fresh and veneered
with glass. An earthquake swarm in early 1995 may attest to a recent eruption cycle. A detailed
G
3
G
3
Geochemistry
Geophysics
Geosystems
Published by AGU and the Geochemical Society
AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES
Geochemistry
Geophysics
Geosystems
Research Letter
Volume 1
December 8, 2000
Paper number 2000GC000108
ISSN: 1525-2027
Copyright 2000 by the American Geophysical Union
nephelometry survey of the water column shows clear evidence for hydrothermal plume activity in the
summit crater. The water inside the crater is very turbid (nephelometric turbidity unit (NTU) values up
to 1.4), and a halo of ``smog'' several hundred meters thick encircles and extends away from the summit
for at least 7 km. The turbid waters are highly enriched in manganese (up to 7.3 nmol/kg), providing
further evidence of hydrothermal activity. Vailulu'u is similar to Loihi (Hawaii) in being an active
volcanic construct at the eastern end of a hotspot chain; it differs importantly from the Hawaiian model
in its total lack of tholeiitic basalt compositions.
Keywords: Samoa; volcano; Vailulu'u; hydrothermal; nephelometry; isotopes.
Index terms: Volcanology; hydrothermal systems; isotopic composition/chemistry; igneous petrology.
Received September 6, 2000; Revised November 3, 2000; Accepted November 3, 2000;
Published December 8, 2000.
Hart, S. R., H. Staudigel, A. A. P. Koppers, J. Blusztajn, E. T. Baker, R. Workman, M. Jackson, E. Hauri, M. Kurz, K.
Sims, D. Fornari, A. Saal, and S. Lyons, 2000. Vailulu'u undersea volcano: The New Samoa, Geochem. Geophys.
Geosyst., vol. 1, Paper number 2000GC000108 [5202 words, 6 figures]. Published December 8, 2000.
1. Introduction
[2] Submarine volcanism and its associated
hydrothermal systems are among the most vivid
illustrations of the dynamic nature of the phy-
sical, chemical, and biological systems of planet
Earth. Studies of these features have contribu-
ted fundamentally to our understanding of how
the Earth works. These phenomena help us
understand how the Earth loses its heat [Wolery
and Sleep, 1976] and how processes of the solid
Earth interact with processes in the hydrosphere
and biosphere. The geochemistry of intraplate
oceanic hotspot volcanoes has revealed much
detail about how the Earth's crust-mantle sys-
tem has evolved through Earth history [Zindler
and Hart, 1986]. Submarine hydrothermal sys-
tems have received much attention because of
their impact on the geochemical cycles of many
elements and the character and evolution of
their biological habitats.
[3] Most of our knowledge of submarine vol-
canic-hydrothermal systems is based on stu-
dies from active spreading ridges. These
studies have shown that chemical fluxes and
the transport of heat can vary substantially
between different systems, complicating the
construction of generalized thermal or chemi-
cal budgets. Only one active intraplate sub-
marine volcanic system has been studied in
reasonable detail: Loihi, in the Hawaiian chain
[Fornari et al., 1988; Duennebier and the
1996 Loihi Science Team, 1997; Davis and
Clague, 1998]. A few others have received
cursory study: Macdonald [Stoffers et al.,
1989; Chemine
Âe et al., 1991]; Teahitia [Che-
mine
Âe et al., 1989; Michard et al., 1993];
Boomerang [Johnson et al., 2000]. In addition
to the paucity of attention given to intraplate
submarine hydrothermal systems, our under-
standing of hotspot volcanism itself is domi-
nated by concepts that have developed over
many decades of study of the Hawaiian archi-
pelago and its submarine slopes [e.g., Clague
and Dalrymple, 1989]. This has led to a
standard model for the evolution of oceanic
volcanoes that is strongly rooted in observa-
tions from Hawaii.
[4] In this letter, we report on the mapping and
investigation of Vailulu'u seamount, a new and
Geochemistry
Geophysics
Geosystems G
3
G
3 hart et al.: vailulu'u undersea volcano 2000GC000108
particularly interesting active submarine vol-
cano. We show that Vailulu'u is of Samoan
lineage and represents the current location of
the Samoan hotspot. Vailulu'u is an important
example for study, both because it is an active
and ``typical'' oceanic intraplate volcano and
because it offers unique features that other
submarine volcanoes do not. Its shallow depth
provides easy access, its simple morphology
and enclosed crater will allow estimation of
hydrothermal fluxes, and its geochemical pedi-
gree as a Samoan volcano gives it a highly
characteristic mantle source signature. We pre-
sent data here that document these aspects of
Vailulu'u and its potential to substantially
revise our views on ocean intraplate volcanism
and to further our understanding of submarine
hydrothermal systems in general. Vailulu'u
offers a valuable counterpoint to Loihi and to
the standard hotspot model commonly exem-
plified by Hawaii.
2. Structure and Morphology
[5] Vailulu'u Seamount1
was discovered on
October 18, 1975, by Rockne Johnson [John-
1
Vailulu'u Seamount was named in April 2000 by Samoan
high school students; the name refers to the sacred sprinkling of
rain that reportedly always fell as a blessing before a gathering of
King Tuimanu'a, the last king of the Samoan Nation. Previous,
informal names include Rockne Volcano [Johnson, 1984] and
Fa'afafine seamount [Hart et al., 1999].
-3000
14o
30'S
14o20'S
14o
10'S
Vailulu'u
Ta'u
169o
30'W 169o
20'W 169o
10'W 169o
00'W 168o
50'W
Tutuila
utuila
Upolu
Upolu
MaluMalu
MaluMalu
Muli
Muli
Sa
Savaii
aii
Tonga
onga
Trenc
rench
-4000
Figure 1. Bathymetry of Vailulu'u and nearby Ta'u Island, based on a SeaBeam bathymetric survey
performed during R/V Melville's AVON 2 and 3 cruises, augmented with satellite-derived bathymetry from
Smith and Sandwell [1996]. The inset shows the general location of Vailulu'u with respect to the Samoan
Archipelago; two other newly mapped and dredged seamounts (Malumalu and Muli, AVON 3 cruise) are
shown as well. Vailulu'u displays an overall asymmetric star-like pattern of rift zones and ridges, with a
geometry that would closely resemble the shape of Ta'u Island in its more juvenile days.
Geochemistry
Geophysics
Geosystems G
3
G
3 hart et al.: vailulu'u undersea volcano 2000GC000108
Depth
(m)
Institute
of
Geophysics
&
Planetary
Phyisics,
Scripps
Institution
of
Oceanography,
UCSD,
USA
NSF
OCE98-19038
Vailulu'u
Volcano
Samoan
Hotspot
Contour
Interval
=
125
meters
Grid
Size
=
55
meters
Sun
Azimuth
at
40˚
-5000
-4000
-3000
-2000
-1000
0
14
o
12'S
14
o
16'S
14
o
20'S
14
o
24'S
14
o
08'S
168
o
52'W
168
o
56'W
169
o
00'W
168
o
04'W
169
o
08'W
110˚
Geochemistry
Geophysics
Geosystems G
3
G
3 hart et al.: vailulu'u undersea volcano 2000GC000108
son, 1984] from the ketch Kawamee and
mapped in March 1999 with SeaBeam aboard
the R/V Melville during AVON cruises 2 and 3
(Figures 1 and 2). These cruises were motivated
by seismic events in this region that occurred in
1973 and 1995, respectively. The AVON cruises
were a direct attempt to find the current location
of the Samoan hotspot. Johnson [1984] accu-
rately defined Vailulu'u's location and summit
height, but his discovery remained virtually
unknown because he was unable to identify this
feature as an active volcano.
[6] Vailulu'u seamount is located at 1698
03.50
W, 14812.90
S, 45 km east of Ta'u island,
the easternmost island of the Samoan chain,
and defines the leading edge of the Samoan
swell at 5000-m water depth (Figure 1). Vailu-
lu'u rises from an ocean depth of 4800 m to its
crater-rim within 590 m of the sea surface, with
a total volume of 1050 km3
. Vailulu'u's
summit includes a 400-m-deep and 2-km-wide
crater (Figure 3). The current dimensions of the
volcano are consistent with Johnson's original
600-m summit depth [Johnson, 1984], indicat-
-
1
5
0
0
-1000
-2000
-2500 -2000 -1750 -1500 -1250 -1000 -750 -500
169o05'W 169o04 'W 169o03'W 169o02'W 169o01'W
14o14'S
14o
13'S
14o12'S 0
90
30
60
120
150
180
210
240
270
300
330
#1
#4
Figure 3. SeaBeam bathymetry map of the summit crater of Vailulu'u, showing the crater rim with three
peaks and three breaches, the location of CTDO casts 1 and 4, and the tow-yo track circumnavigated around
the summit. Dotted azimuth lines are given every 308 along the track, to correspond with the nephelometry
contour section shown in Figure 6.
Figure 2. Perspective view of Vailulu'u seamount looking NW, displaying three major rifts toward the east,
southeast, and west. The lower slopes of Vailulu'u and Ta'u merge along the west ridge, with a saddle at
3200 m. Vailulu'u is 35 km in diameter at its base.
Geochemistry
Geophysics
Geosystems G
3
G
3 hart et al.: vailulu'u undersea volcano 2000GC000108
ing that no major net volcanic growth or
collapse has occurred over the last 25 years.
[7] The overall shape of Vailulu'u is dominated
by two rift zones extending east and west from
the summit, defining a lineament that is parallel
to the Samoan hotspot track. This is similar to
the dominant trends defined by isolated (non-
buttressing) Hawaiian volcanoes that have been
explained by crustal extension at the crest of the
swell [Fiske and Jackson, 1972]. A third,
slightly less well developed rift extends SE
from the summit, and several minor ridges
extend out from the lower slopes of Vailulu'u,
giving it an overall asymmetric, star-like pat-
tern. Rift zones and ridges in the southern sector
are more strongly developed than those on the
northern flank, giving Vailulu'u a stunning
similarity to a ``Young Ta'u'' island (Figure
1). The three major rift zones define three high
points of the crater rim and thus are likely to be
part of the present-day plumbing system of the
volcano. Ridges emerging from the lower flanks
may be related to earlier constructive events in
the history of the volcano or may be landslide
deposits (Figures 1 and 2). In addition to the
constructive nature of the major rifts, Vailulu'u
shows clear signs of slope collapse and mass
wasting. Such features are prominently dis-
played at the emergence point of the western
rift, where it narrows owing to the amphithea-
ter-shaped scars on both the north and south
sides of its upper slopes. Steep, concave con-
tours of the upper slopes merge into convex
contours farther downslope, defining sedimen-
tary aprons (Figures 1 and 2). Similar structures
are common on other seamounts [Vogt and
Smoot, 1984]; on Vlinder Seamount these have
been related to intrusive oversteepening of the
upper rift zone slopes [Koppers et al., 1998].
[8] The crater and rim of Vailulu'u are oval-
shaped, with two well-developed pit craters
defining the northern two thirds of the crater
and two minor depressions present on a bench
in the southern third of the crater (Figure 3).
The crater wall has a ``scalloped'' appearance
that suggests mass wasting during multiple
crater-collapse events.
[9] A significant number of dredge samples
have been characterized with respect to major
and trace elements, radiogenic isotopes, and
volatile abundances. Analyses of 41 glass sam-
ples from 7 dredges show that the summit and
deeper east and SE rifts are relatively homo-
geneous alkali basalts (SiO2 = 46±48%, Na2O
+ K2O = 3.5±4.9%, MgO = 5±9%). Vailulu'u
does not show the extreme compositional varia-
bility of its Hawaiian counterpart, Loihi Sea-
mount, which ranges from tholeiite to basanite.
The shield and posterosional stages of Samoan
subaerial volcanism are also firmly alkalic,
again unlike the Hawaiian case.
[10] The major element compositional homo-
geneity of Vailulu'u lavas contrasts with its
variability in some radiogenic isotope ratios,
in particular, 87
Sr/86
Sr that varies between
0.7052±0.7067 (Figure 4). In addition to these
heterogeneitites in source region composition,
Vailulu'u glasses display significant variation in
volatile contents, largely indicating differences
in outgassing behavior. Summit lavas tend to be
more outgassed in H2O than lower rift zone
lavas. Summit samples typically have H2O/K2O
ratios less than 1, while the deep rift dredges
(3800 m) show ratios from 1 to 1.5. H2O/Cl
ratios are also different between shallow and
deep dredges (5±9 versus 7±20, respectively).
There is no indication in the Cl data for involve-
ment of seawater [Michael and Cornell, 1998]
in the magmatic plumbing system.
3. Temporal Aspects of Vailulu'u
Volcanism
[11] Several historical events suggest volcanic
activity at Vailulu'u volcano. There was a series
of sound fixing and ranging (SOFAR)-recorded
Geochemistry
Geophysics
Geosystems G
3
G
3 hart et al.: vailulu'u undersea volcano 2000GC000108
explosions on July 10, 1973, and during the
period January 9±29, 1995, the global seismic
network recorded a strong (M4.2±4.9) earth-
quake swarm in the vicinity of Vailulu'u. While
most of the 1995 earthquakes were formally
located NW of the volcano, their uncertainty
ellipses include Vailulu'u; a SeaBeam survey
carried out within the earthquake area did not
reveal any volcano tectonic features.
[12] Dredges, especially those from the summit
area, are dominated by extremely fresh volca-
nic rock, with pristine volcanic glass, many
original glassy surfaces, unaltered olivine phe-
nocrysts, and a virtual lack of vesicle fillings.
Furthermore, the intensities of SeaBeam side-
scan returns are extremely ``bright,'' suggesting
that fresh volcanic rocks occur ubiquitously
throughout the slopes of Vailulu'u and that
sediment cover is largely absent.
[13] Two basalt samples were analyzed for
complete U-series nuclides, one from the floor
of the crater and one from the outer NE slope of
the summit cone (210
Po and 210
Pb by counting
[Fleer and Bacon, 1984], 226
Ra and 230
Th by
mass spectrometry [Sims et al., 1999]). The
crater floor sample shows 210
Po/210
Pb equili-
brium but 210
Pb/226
Ra disequilibria (activity
ratio of 1.71). This suggests an eruption age
of less than 30±50 years. The other sample
shows both 210
Po/210
Pb and 210
Pb/226
Ra dis-
equilibria (1.12 and 1.20, respectively), con-
firming an ``age'' of less than 5±10 years. Note
Tutuila
Masefau
Shield
Vailulu'u
Ta'u
Shield
Muli
Tutuila
Pago Shield
Upolu
Shield
Malumalu
All
Post-Erosional
18.5
0.709
0.708
0.707
0.706
0.705
0.704
18.6
206Pb/ 204Pb
87
Sr/
86
Sr
18.7 18.8 18.9 19.0 19.1 19.2 19.3 19.4 19.5
Figure 4. Sr-Pb isotope plot for basalts from Vailulu'u volcano, in comparison with data from Muli and
Malumalu seamounts and the subaerial Samoan islands of Ta'u, Tutuila, Upolu, and Savai'i; see Figure 1 for
locations. The posterosional field includes basalts from Savai'i, Upolu, and Tutuila (data are from Wright and
White, 1987; Farley et al., 1992; Hauri and Hart, 1993; Hart et al., 1999; S. R. Hart et al., unpublished data,
2000).
Geochemistry
Geophysics
Geosystems G
3
G
3 hart et al.: vailulu'u undersea volcano 2000GC000108
that the excess of 210
Po found here is different
from the normal situation, where 210
Po is
degassed during eruption [Rubin et al., 1994].
4. Pedigree of Vailulu'u Volcano
[14] On the basis of its morphological connec-
tion to Ta'u Island via its west rift zone (Figure
1) and its expression as the easternmost volca-
nic construct along the Samoan chain, it is
natural to view Vailulu'u as a young volcano
of Samoan lineage. Proof of this comes from
isotopic fingerprinting of 18 basalt samples
from various locations on the volcano. The
87
Sr/86
Sr±206
Pb/204
Pb isotope data for these
samples is shown in Figure 4, in comparison
with data from other Samoan localities. Vailu-
lu'u shows a strong enriched mantle 2 (EM2)
mantle signature, which is the hallmark of
Samoan volcanism. While Vailulu'u partly
overlaps the existing Samoan field, it also
extends to higher 206
Pb/204
Pb than other
Samoan basalts, continuing a west-to-east trend
of increasing 206
Pb/204
Pb in Samoan shield
lavas. Helium isotope data on samples from
five dredges range from 7.8 to 10.4 Ra and
barely overlap the known range from subaerial
Samoa (10±26 Ra [Farley and Neroda, 1998]).
There is some indication that 3
He/4
He in the
Samoan plume peaked at 26 Ra during passage
under Tutuila and that it has been decreasing
since (subaerial and dredge samples from Ta'u
range in He from 13 to 19 Ra [Farley and
Neroda, 1998; S. R. Hart et al., unpublished
data, 2000]).
5. Water Column Characteristics
Over Vailulu'u Volcano
[15] During the DeepFreeze 2000 cruise in
March 2000, aboard the U.S. Coast Guard
Icebreaker Polar Star, conductivity temperature
depth optical (CTDO)/Niskin stations were
occupied at three places within the summit
crater and two outside the crater; in addition,
the summit area was circumnavigated in tow-
yo mode [Baker and Massoth, 1987] along an
1000-m contour (Figure 3). We studied parti-
culate distribution in the water column using a
light backscattering sensor (LBSS) attached to
a CTD/Niskin water sampling rosette. The
LBSS profile for station 4, inside the crater, is
compared to data for station 1, outside the
crater, in Figure 5. NTU values are essentially
at background between 200 and 600 m at both
stations. At 600-m depth in the crater profile
the NTU values increase sharply and in a
stepwise fashion, all the way to the bottom of
the crater at 996 m. The NTU values near the
bottom are very high, with values greater than
1.4; these are well above values associated with
active venting and plume formation on ridge
crests [Resing et al., 1999; Baker et al., 1995,
2000; Chin et al., 1998]. At station 1, outside
the crater, the LBSS ``smog'' layer starts at
about the same depth (610 m) but returns to
background values at a depth of 850 m. This
depth interval is comparable to the range of
elevations shown by the rim of the summit
crater, which has peaks at 590 m, and a deepest
breach at 780 m (Figure 3). At station 5, 7.5
km east of the crater rim, a small NTU anomaly
is still observable, with a value of 0.08 at a
depth of 600±720 m.
[16] There are high Mn concentrations asso-
ciated with these particulate anomalies, as
shown in Figure 5. Background Mn in deep
water outside the crater ranges from 0.002 to
0.003 ppb; inside the crater, in the deepest part
of the NTU smog layer, the Mn ranges up to
peak values of 0.4 ppb (7.3 nmol/kg). There is
a good correlation between the NTU values and
the Mn concentrations, with an overall ppb Mn/
NTU ratio of 0.5; this is significantly lower
than that observed in plumes on most ridges
(where ratios of 10±80 are reported [Mottl et
al., 1995; Chin et al., 1998; Resing et al.,
1999]). The low ratio at Vailulu'u is due both
to the much higher NTU values, and the sig-
Geochemistry
Geophysics
Geosystems G
3
G
3 hart et al.: vailulu'u undersea volcano 2000GC000108
nificantly lower Mn values (maximum Mn
concentrations in ridge crest plumes are com-
monly in the 2±15 ppb range [Field and
Sherrell, 2000; James and Elderfield, 1996;
Mottl et al., 1995; Resing et al., 1999; Baker
et al., 1993, 1995].
[17] During a complete 3608 circumnavigation
of the summit crater, we mapped the plume
between 500- and 900-m depth in tow-yo
mode. The track of this survey is shown in
map view in Figure 3; Figure 6 provides a 3608
panoramic view of the plume ``looking out''
from a central location in the crater, contoured
in NTU values. A projection of the elevation of
the crater rim is also shown in Figure 6,
providing an azimuthal view of its three major
peaks and breaches. Overall, the hydrothermal
plume (as visualized by NTU values) is con-
fined to a narrow depth interval bracketed
between the breaches and summits of the crater
wall (Figure 6). Its upper, neutral buoyancy,
level corresponds closely with the heights of
the peaks on the crater rim. Virtually no parti-
culate matter appears to be ejected from the
crater to heights above the peaks on the crater
rim nor does any settle below the breach depth,
during its dispersion laterally away from the
summit. Particulates are being generated within
the crater and are subsequently carried away
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
600 700 800 900 1000
Water Depth (meters)
NTU
0.02
0.02 0.22
0.22 0.28
0.28 0.26
0.26 0.38
0.38
Mn (ppb)
0.09
0.09 0.04
0.04 0.004
0.004
Cast 1
Cast 1
5.4
5.4
5.6
5.6
5.8
5.8
6.2
6.2
Temperature
˚C
6.0
6.0
Mn (ppb)
Cast 4
Cast 4
Figure 5. Temperature (red line) and light backscattering profiles for station 1 (green line), 1.2 km east of
the crater rim, and station 4 (blue line), NW basin of the summit crater (see Figure 3 for locations). The
nephelometry was done with a WET Labs light backscattering sensor (LBSS); data are calibrated using
standard particulate suspensions [Baker et al., 2000] and is reported as nephelometric turbidity units (NTUs).
The conductivity cell on the CTD worked only intermittently; thus no potential density data are available for
these profiles. The Mn data (numbers with arrows) are reported in ppb at discrete depths, next to the LBSS
profiles (note that 1 ppb Mn = 18.2 nmol/kg). Ambient Mn levels in the water column are in the range
0.002±0.004 ppb. Mn analyses were performed on-shore on acidified and 0.4-mm filtered water samples,
using an inductively coupled plasma-mass spectrometer procedure modified from Field et al. [1999].
Geochemistry
Geophysics
Geosystems G
3
G
3 hart et al.: vailulu'u undersea volcano 2000GC000108
from the crater region by ocean currents. The
presence of a plume in all directions around the
crater suggests that these currents cannot be
simple and unidirectional. However, a dominat-
ing current is indicated by the distribution of
particulate intensities within the plume. The
highest readings (NTU 0.5) are found in the
angular segment between 908 and 2008 and the
lowest readings (NTU  0.3) are found in the
angular segment between 2308 and 3608. These
two segments are in opposite quadrants, sug-
gesting a dominant current from 2808
(WNW). The 908±2008 segment also displays
the most extreme gradients in NTU values,
indicating that this plume region is least homo-
genized and most directly derived from the
source of the particulate matter.
[18] While the upper limit of the plume appears
to be at a rather constant depth of 600±630
m, the lower limit shows very substantial
azimuthal variability, ranging between 690
and 800 m. ``Upwind'' (NW), the plume fills
the complete depth range, from highest summit
elevation to deepest breach. ``Downwind'',
however, the anomaly reaches only halfway
down to the maximum depth of the breaches
and displays relatively clear water in the lower
half of the SE breach. This poses the problem
that the lower half of the downwind breach
appears to be venting clear water, despite the
fact that no clear water was found in the crater
and massive amounts of particulates are being
vented to the SE. This situation may arise by
upwelling of deep outside water in a downwind
0 30 60 90 120 150 180 210 240 270 300 330 360
400
450
500
550
600
650
700
750
800
850
900
950
Azimuth (deg)
Depth
(m)
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
Nephelometer Data (NTU)
Figure 6. Nephelometry data for the CTDO tow-yo circumnavigation of the summit (track shown in Figure
3), contoured in NTU values and displayed as an ``unwrapped'' azimuth versus depth section, annotated in
azimuth relative to the center of the volcano (north = 08, east = 908, etc.). The projection of the height of the
rim of the summit crater is shown as a heavy orange line; the CTDO tow-yo track is shown in gray.
Geochemistry
Geophysics
Geosystems G
3
G
3 hart et al.: vailulu'u undersea volcano 2000GC000108
``eddy,'' possibly even spilling deep ambient
water into the crater through the lower half of
the 1308 breach.
6. Illations and Implications
[19] Vailulu'u volcano is clearly a young and
currently active submarine volcano. Its activity
is reflected in seismic events in 1973 and 1995,
the lack of any sediment cover on the sea-
mount, fresh basalt and pristine glass in
dredges from all levels of the volcano, and
radiometric ages ranging from 5 to 50 years.
The summit is marked by a sharply delineated
crater over 400 m deep, filled with highly
turbid water with Mn concentration anomalies
that are several orders of magnitude above
ambient levels. This smog layer extends out
as a halo for many kilometers in all directions,
in a narrow depth interval defined by the range
in depths of the rim of the summit crater.
Hydrothermal activity in such a well-defined
venting geometry provides a natural laboratory
for a variety of quantitative tracer studies aimed
at delineating the circulation of seawater
through the seamount hydrothermal system, in
the water column near the seamount and in the
surrounding ocean basins.
[20] The ``standard'' model for hotspot or
plume volcanism posits the youngest volcanism
at the east end of Pacific volcanic island chains.
The Samoan chain, with Vailulu'u at the east
end, meets this test. Furthermore, the erosional
maturity of Samoan volcanoes increases to the
west; Ta'u is in undissected shield-building
stage, Tutuila and Upolu are dissected and
partly covered with rejuvenated flows, and
Savai'i has virtually no subaerially exposed
shield-stage lavas. This progression is similar
to Hawaii, where Loihi is the easternmost
volcano and where young rejuvenated lavas
are present many hundreds of kilometers west
of the current hotspot location (Oahu and
Savai'i are 400 km from Loihi and Vailulu'u
respectively). Unlike the Hawaiian chain, how-
ever, which is the archetype for the standard
hotspot model, Vailulu'u is composed solely of
alkali basalt, displays limited petrological
diversity, and no tholeiite is in evidence. Vai-
lulu'u does not merely represent the earliest
``Loihi'' stage of alkalic volcanism either, since
the Ta'u Island shield is also composed solely
of alkali basalts; tholeiites do occur on Tutuila
and Upolu but are not abundant. In fact, tho-
leiites are uncommon in the active submarine
and shield volcanism of many intraplate hot-
spot chains (Macdonald±Austral chain; Teahi-
tia±Society chain; Adams and Bounty±Pitcairn
chain). Thus Vailulu'u-Samoa may be a more
appropriate ``standard model'' for ocean island
volcanism than Loihi±Hawaii. It is likely that
the physical processes involved in melt genera-
tion and melt modification are related to the
total plume fluxes or mantle heat available. In
this respect, the Samoan chain is much closer to
a typical hotspot than Hawaii.
Acknowledgments
[21] This work would not have been possible without the
help of many individuals at sea, including Kendra
Arbesman, Ron Comer, Jennifer Dodds, Scott Herman,
Jasper Konter, Theresa-Mae Lassak, Gene Pillard, Ryan
Taylor, and the crew of the R/V Melville and the Coast
Guard's Polar Star. Kristin M. Sanborn helped us unlock
the SeaBird CTD software. Bob Engdahl kindly supplied
the 1995 earthquake locations. We acknowledge funding
from the NSF Ocean Science program, the VENTS
program of NOAA (PMEL contribution 2243), and the
U.S. Coast Guard for their generous support of our
endeavors on Vailulu'u.
References
Baker, E. T., and G. J. Massoth, Characteristics of hydro-
thermal plumes from two vent fields on the Juan de Fuca
Ridge, northeast Pacific Ocean, Earth Planet. Sci. Lett.,
85, 59±73, 1987.
Baker, E. T., G. J. Massoth, S. L. Walker, and R. W.
Embley, A method for quantitatively estimating diffuse
and discrete hydrothermal discharge, Earth Planet. Sci.
Lett., 118, 235±249, 1993.
Geochemistry
Geophysics
Geosystems G
3
G
3 hart et al.: vailulu'u undersea volcano 2000GC000108
Baker, E. T., C. R. German, and H. Elderfield, Hydro-
thermal plumes over spreading-center axes: Global
distribution and geological inferences, in Seafloor Hy-
drothermal Systems: Physical, Chemical, and Geolo-
gical Interactions, Geophys. Monogr. Ser., vol. 91,
edited by S. Humphris, R. Zierenberg, L. S. Mulli-
neaux, and R. Thomson, pp. 47±71,AGU, Washing-
ton, D. C., 1995.
Baker, E., D. Tennant, R. Feely, G. Lebon, and S. L.
Walker, Field and laboratory studies on the effect of
particle size and composition on optical backscattering
measurements in hydrothermal plumes, Deep Sea Res.,
in press, 2000.
Chemine
Âe, J.-L., R. He
Âkinian, J. Talandier, C. W. Devey,
F. Albare
Âde, J. Francheteau, and Y. Lancelot, Geology
of an active hot spot: Teahitia-Mehetia Region in the
south central Pacific, Mar. Geophys. Res., 11, 27±50,
1989.
Chemine
Âe, J.-L., P. Stoffers, G. McMurtry, H. Richnow,
D. Puteanus, and P. Sedwick, Gas-rich submarine exha-
lations during the 1989 eruption of Macdonald Sea-
mount, Earth Planet. Sci. Lett., 107, 318±327, 1991.
Chin, C. S., G. P. Klinkhammer, and C. Wilson, Detection
of hydrothermal plumes on the northern Mid-Atlantic
Ridge: Results from optical measurements, Earth Pla-
net. Sci. Lett., 162, 1±13, 1998.
Clague, D. A., and G. B. Dalrymple, Tectonics, geochro-
nology, and origin of the Hawaiian-Emperor chain, in
The Geology of North America: The Eastern Pacific
Ocean and Hawaii, edited by E. L. Winterer, D. M.
Hussong, and R. W. Decker, pp. 188±217,Geol. Soc.
of Am., Boulder, Colo., 1989.
Davis, A. S., and D. A. Clague, Changes in the hydro-
thermal system at Loihi Seamount after the formation of
Pele's pit in 1996, Geology, 26, 399±402, 1998.
Duennebier, F. K., and the 1996 Loihi Science Team,
Researchers rapidly respond to submarine activity at
Loihi Volcano, Hawaii, Eos Trans. AGU, 78, 231±
234, 1997.
Farley, K. A., and E. Neroda, Noble gases in the Earth's
mantle, Annu. Rev. Earth Planet. Sci., 26, 189±218,
1998.
Farley, K. A., J. H. Natland, and H. Craig, Binary mixing
of enriched and undergassed (primitive?) mantle com-
ponents (He, Sr, Nd, Pb) in Samoan lavas, Earth Planet.
Sci. Lett., 111, 183±199, 1992.
Field, M., and R. Sherrell, Dissolved and particular Fe in
a hydrothermal plume at 98450
N, East Pacific Rise: Slow
Fe (II) oxidation kinetics in Pacific plumes, Geochim.
Cosmochim. Acta, 64, 619±628, 2000.
Field, M. P., J. T. Cullen, and R. M. Sherrell, Direct
determination of 10 trace metals in 50 ml samples of
coastal seawater using desolvating micronebulization
sector field ICP-MS, J. Anal. Atomic Spectrometry, 14,
1425±1431, 1999.
Fiske, R. S., and E. D. Jackson, Orientation and growth of
Hawaiian volcanic rifts: The effect of regional structure
and gravitational stress, Philos. Trans. R. Soc. London,
Ser. A., 329, 299±326, 1972.
Fleer, A. P., and M. P. Bacon, Determination of 210
Pb and
210
Po in seawater and particulate matter, Nucl. Instrum.
Meth. Phys. Res., 223, 243±249, 1984.
Fornari, D. J., M. O. Garcia, R. C. Tyce, and D. G. Gallo,
Morphology and structure of Loihi Seamount based on
seabeam sonar mapping, J. Geophys. Res., 93, 15,227±
15,238, 1988.
Hart, S. R., H. Staudigel, M. D. Kurz, J. Blusztajn, R.
Workman, A. Saal, A. Koppers, E. H. Hauri, and S.
Lyons, Fa'afafine Volcano: The active Samoan Hotspot,
Eos Trans. AGU, 80, Fall Meet. Suppl., F1102, 1999.
Hauri, E. H., and S. R. Hart, Re-Os isotope systematics of
HIMU and EMII oceanic island basalts from the South
Pacific ocean, Earth Planet. Sci. Lett., 114, 353±371,
1993.
James, R. H., and H. Elderfield, Dissolved and particulate
trace metals in hydrothermal plumes at the Mid-Atlantic
Ridge, Geophys. Res. Lett., 23, 3499±3502, 1996.
Johnson, K., D. Graham, K. Nicolaysen, D. S. Scheirer,
D. W. Forsyth, L. M. Douglas-Priebe, E. T. Baker, and
K. H. Rubin, Boomerang Seamount: Active expression
of the Amsterdam-St Paul Hotspot, Southeast Indian
Ridge, Earth Planet. Sci. Lett., in press, 2000.
Johnson, R. H., Exploration of three submarine volcanos
in the South Pacific, Natl. Geogr. Soc. Res. Rep., 16,
405±420, 1984.
Koppers, A. A. P., H. Staudigel, J. R. Wijbrans, and M. S.
Pringle, The Magellan seamount trail: Implications for
Cretaceous hotspot volcanism and absolute Pacific plate
motion, Earth Planet. Sci. Lett., 163, 53±68, 1998.
Michael, P. J., and W. C. Cornell, Influence of spreading
rate and magma supply on crystallization and assimila-
tion beneath mid-ocean ridges: Evidence from chlorine
and major element chemistry of mid-ocean ridge basalts,
J. Geophys. Res., 103, 18,325±18,356, 1998.
Michard, A., G. Michard, D. Stu
Èben, P. Stoffers, J.-L.
Chemine
Âe, and N. Binard, Submarine thermal springs
associated with young volcanoes: The Teahitia vents,
Society Islands, Pacific Ocean, Geochim. Cosmochim.
Acta, 57, 4977±4986, 1993.
Mottl, M. J., F. T. Sansone, C. G. Wheat, J. A. Resing, E.
T. Baker, and J. E. Lupton, Manganese and methane in
hydrothermal plumes along the East Pacific Rise, 88400
to 118500
N, Geochim. Cosmochim. Acta, 59, 4147±
4166, 1995.
Resing, J., R. A. Feely, G. J. Massoth, and E. T. Baker,
The water-column chemical signature after the 1998
Geochemistry
Geophysics
Geosystems G
3
G
3 hart et al.: vailulu'u undersea volcano 2000GC000108
eruption of Axial Volcano, Geophys. Res. Lett., 26,
3645±3648, 1999.
Rubin, K. H., J. D. Macdougall, and M. R. Perfit,
210
Po-210
Pb dating of recent volcanic eruptions on the
sea floor, Nature, 368, 841±844, 1994.
Sims, K. W. W., D. J. DePaolo, M. T. Murrell, W. S.
Baldridge, S. Goldstein, D. Clague, and M. Jull, Poros-
ity of the melting zone and variations in the solid mantle
upwelling rate beneath Hawaii: Inferences from
238
U-230
Th-226
Ra and 235
U-231
Pa disequilibria, Geo-
chim. Cosmochim. Acta, 63, 4119±4138, 1999.
Smith, W. H. F., and D. Sandwell, Predicted bathymetry.
New global seafloor topography from satellite altimetry,
Eos Trans. AGU, 77(46), 315, 1996.
Stoffers, P., R. Botz, J. L. Cheminee, C. W. Devey, V.
Froger, G. P. Glasby, M. Hartmann, R. Hekinian, F.
Kogler, D. Laschek, P. Larque, W. Michaelis, R. K.
Muhe, D. Puteanus, and H. H. Richnow, Geology of
Macdonald Seamount Region, Austral Islands: Recent
hotspot volcanism in the South Pacific, Mar. Geophys.
Res., 11, 101±112, 1989.
Vogt, P. R., and N. C. Smoot, The Geisha guyots: Multi-
beam bathymetry and morphometric interpretation, J.
Geophys. Res., 89, 11,085±11,107, 1984.
Wolery, T. J., and N. H. Sleep, Hydrothermal circulation
and geochemical flux at mid-ocean ridges, J. Geol., 84,
249±275, 1976.
Wright, E., and W. M. White, The origin of Samoa: New
evidence from Sr, Nd and Pb isotopes, Earth Planet. Sci.
Lett., 81, 151±162, 1987.
Zindler, A., and S. Hart, Chemical geodynamics, Annu.
Rev. Earth Planet. Sci., 14, 493±571, 1986.
Geochemistry
Geophysics
Geosystems G
3
G
3 hart et al.: vailulu'u undersea volcano 2000GC000108
View publication stats
View publication stats

More Related Content

Similar to Vailuu_undersea_volcano_The_New_Samoa.pdf

ES 1010, Earth Science 1 Course Learning Outcomes for.docx
 ES 1010, Earth Science 1 Course Learning Outcomes for.docx ES 1010, Earth Science 1 Course Learning Outcomes for.docx
ES 1010, Earth Science 1 Course Learning Outcomes for.docxaryan532920
 
The Late Devonian Mass Extinction Period
The Late Devonian Mass Extinction PeriodThe Late Devonian Mass Extinction Period
The Late Devonian Mass Extinction PeriodAlison Reed
 
Question 1 Recall from your reading about the nature of volcanoe.docx
Question 1 Recall from your reading about the nature of volcanoe.docxQuestion 1 Recall from your reading about the nature of volcanoe.docx
Question 1 Recall from your reading about the nature of volcanoe.docxmakdul
 
Ofiolitas
OfiolitasOfiolitas
Ofiolitas2603 96
 
2.10 Tectonostratigraphy framework and paleo
2.10 Tectonostratigraphy framework and paleo2.10 Tectonostratigraphy framework and paleo
2.10 Tectonostratigraphy framework and paleoAnonymousiInKGkMC
 
Areps siddiqui etal 2013
Areps siddiqui etal 2013Areps siddiqui etal 2013
Areps siddiqui etal 2013Rainu Rajeev
 
Nature © Macmillan Publishers Ltd 19988letters to natu.docx
Nature © Macmillan Publishers Ltd 19988letters to natu.docxNature © Macmillan Publishers Ltd 19988letters to natu.docx
Nature © Macmillan Publishers Ltd 19988letters to natu.docxhallettfaustina
 
Nature © Macmillan Publishers Ltd 19988letters to natu.docx
Nature © Macmillan Publishers Ltd 19988letters to natu.docxNature © Macmillan Publishers Ltd 19988letters to natu.docx
Nature © Macmillan Publishers Ltd 19988letters to natu.docxvannagoforth
 
Hotspots and Mantle plumes
Hotspots and Mantle plumes Hotspots and Mantle plumes
Hotspots and Mantle plumes pikasu999
 
Chen 2013 Mesozoic Iron Oxide Copper-Gold Mineralization in the Central Andes...
Chen 2013 Mesozoic Iron Oxide Copper-Gold Mineralization in the Central Andes...Chen 2013 Mesozoic Iron Oxide Copper-Gold Mineralization in the Central Andes...
Chen 2013 Mesozoic Iron Oxide Copper-Gold Mineralization in the Central Andes...VictorValdivia20
 
Kim Cobb's Borneo stalagmite talk - AGU 2015
Kim Cobb's Borneo stalagmite talk - AGU 2015Kim Cobb's Borneo stalagmite talk - AGU 2015
Kim Cobb's Borneo stalagmite talk - AGU 2015Kim Cobb
 
8. the great time questions, part 2
8. the great time questions, part 28. the great time questions, part 2
8. the great time questions, part 2Ariel Roth
 
Geology Complete (Earth Science Topic)
Geology Complete (Earth Science Topic)Geology Complete (Earth Science Topic)
Geology Complete (Earth Science Topic)Avigail Gabaleo Maximo
 
HOW TO AVOID THE EXTINCTION OF HUMANITY FROM THREATS CAUSED BY PLANET EARTH A...
HOW TO AVOID THE EXTINCTION OF HUMANITY FROM THREATS CAUSED BY PLANET EARTH A...HOW TO AVOID THE EXTINCTION OF HUMANITY FROM THREATS CAUSED BY PLANET EARTH A...
HOW TO AVOID THE EXTINCTION OF HUMANITY FROM THREATS CAUSED BY PLANET EARTH A...Faga1939
 
2007 -- Fabricius et al_Octocorals Palau - Monogr
2007 -- Fabricius et al_Octocorals Palau - Monogr2007 -- Fabricius et al_Octocorals Palau - Monogr
2007 -- Fabricius et al_Octocorals Palau - MonogrPhil Alderslade
 
04VolcanicRelief.ppt
04VolcanicRelief.ppt04VolcanicRelief.ppt
04VolcanicRelief.pptEnginAltan4
 
Petrologic Significance of Varying Magmatic Compositions on Hot Spot Islands
Petrologic Significance of Varying Magmatic Compositions on Hot Spot IslandsPetrologic Significance of Varying Magmatic Compositions on Hot Spot Islands
Petrologic Significance of Varying Magmatic Compositions on Hot Spot IslandsShannon Brooks
 

Similar to Vailuu_undersea_volcano_The_New_Samoa.pdf (20)

ES 1010, Earth Science 1 Course Learning Outcomes for.docx
 ES 1010, Earth Science 1 Course Learning Outcomes for.docx ES 1010, Earth Science 1 Course Learning Outcomes for.docx
ES 1010, Earth Science 1 Course Learning Outcomes for.docx
 
The Late Devonian Mass Extinction Period
The Late Devonian Mass Extinction PeriodThe Late Devonian Mass Extinction Period
The Late Devonian Mass Extinction Period
 
Question 1 Recall from your reading about the nature of volcanoe.docx
Question 1 Recall from your reading about the nature of volcanoe.docxQuestion 1 Recall from your reading about the nature of volcanoe.docx
Question 1 Recall from your reading about the nature of volcanoe.docx
 
Ofiolitas
OfiolitasOfiolitas
Ofiolitas
 
2.10 Tectonostratigraphy framework and paleo
2.10 Tectonostratigraphy framework and paleo2.10 Tectonostratigraphy framework and paleo
2.10 Tectonostratigraphy framework and paleo
 
Areps siddiqui etal 2013
Areps siddiqui etal 2013Areps siddiqui etal 2013
Areps siddiqui etal 2013
 
Nature © Macmillan Publishers Ltd 19988letters to natu.docx
Nature © Macmillan Publishers Ltd 19988letters to natu.docxNature © Macmillan Publishers Ltd 19988letters to natu.docx
Nature © Macmillan Publishers Ltd 19988letters to natu.docx
 
Nature © Macmillan Publishers Ltd 19988letters to natu.docx
Nature © Macmillan Publishers Ltd 19988letters to natu.docxNature © Macmillan Publishers Ltd 19988letters to natu.docx
Nature © Macmillan Publishers Ltd 19988letters to natu.docx
 
Hotspots and Mantle plumes
Hotspots and Mantle plumes Hotspots and Mantle plumes
Hotspots and Mantle plumes
 
Chen 2013 Mesozoic Iron Oxide Copper-Gold Mineralization in the Central Andes...
Chen 2013 Mesozoic Iron Oxide Copper-Gold Mineralization in the Central Andes...Chen 2013 Mesozoic Iron Oxide Copper-Gold Mineralization in the Central Andes...
Chen 2013 Mesozoic Iron Oxide Copper-Gold Mineralization in the Central Andes...
 
Kim Cobb's Borneo stalagmite talk - AGU 2015
Kim Cobb's Borneo stalagmite talk - AGU 2015Kim Cobb's Borneo stalagmite talk - AGU 2015
Kim Cobb's Borneo stalagmite talk - AGU 2015
 
8. the great time questions, part 2
8. the great time questions, part 28. the great time questions, part 2
8. the great time questions, part 2
 
Costa_merapi
Costa_merapiCosta_merapi
Costa_merapi
 
Geology Complete (Earth Science Topic)
Geology Complete (Earth Science Topic)Geology Complete (Earth Science Topic)
Geology Complete (Earth Science Topic)
 
HOW TO AVOID THE EXTINCTION OF HUMANITY FROM THREATS CAUSED BY PLANET EARTH A...
HOW TO AVOID THE EXTINCTION OF HUMANITY FROM THREATS CAUSED BY PLANET EARTH A...HOW TO AVOID THE EXTINCTION OF HUMANITY FROM THREATS CAUSED BY PLANET EARTH A...
HOW TO AVOID THE EXTINCTION OF HUMANITY FROM THREATS CAUSED BY PLANET EARTH A...
 
2007 -- Fabricius et al_Octocorals Palau - Monogr
2007 -- Fabricius et al_Octocorals Palau - Monogr2007 -- Fabricius et al_Octocorals Palau - Monogr
2007 -- Fabricius et al_Octocorals Palau - Monogr
 
Geology of Maui
Geology of MauiGeology of Maui
Geology of Maui
 
Spe 168666-ms
Spe 168666-msSpe 168666-ms
Spe 168666-ms
 
04VolcanicRelief.ppt
04VolcanicRelief.ppt04VolcanicRelief.ppt
04VolcanicRelief.ppt
 
Petrologic Significance of Varying Magmatic Compositions on Hot Spot Islands
Petrologic Significance of Varying Magmatic Compositions on Hot Spot IslandsPetrologic Significance of Varying Magmatic Compositions on Hot Spot Islands
Petrologic Significance of Varying Magmatic Compositions on Hot Spot Islands
 

Recently uploaded

FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryAlex Henderson
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusNazaninKarimi6
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY1301aanya
 
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flypumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flyPRADYUMMAURYA1
 
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...Monika Rani
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Silpa
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Silpa
 
300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptxryanrooker
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)Areesha Ahmad
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxseri bangash
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Silpa
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professormuralinath2
 
Chemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdfChemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdfSumit Kumar yadav
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspectsmuralinath2
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bSérgio Sacani
 
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...Silpa
 
Introduction of DNA analysis in Forensic's .pptx
Introduction of DNA analysis in Forensic's .pptxIntroduction of DNA analysis in Forensic's .pptx
Introduction of DNA analysis in Forensic's .pptxrohankumarsinghrore1
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfSumit Kumar yadav
 
Use of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxUse of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxRenuJangid3
 

Recently uploaded (20)

FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
 
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flypumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
 
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.
 
300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
Chemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdfChemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdf
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspects
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
Introduction of DNA analysis in Forensic's .pptx
Introduction of DNA analysis in Forensic's .pptxIntroduction of DNA analysis in Forensic's .pptx
Introduction of DNA analysis in Forensic's .pptx
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdf
 
Use of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxUse of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptx
 

Vailuu_undersea_volcano_The_New_Samoa.pdf

  • 1. See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/43193286 Vailu'u undersea volcano: The New Samoa Article  in  Geochemistry Geophysics Geosystems · December 2000 DOI: 10.1029/2000GC000108 · Source: OAI CITATIONS 52 READS 281 13 authors, including: Some of the authors of this publication are also working on these related projects: Ecuador Rhyolite Province View project Plumes: Melt inclusions study: View project Hubert Staudigel University of California, San Diego 351 PUBLICATIONS   14,992 CITATIONS    SEE PROFILE Anthony A. P. Koppers Oregon State University 278 PUBLICATIONS   5,983 CITATIONS    SEE PROFILE J. Blusztajn Woods Hole Oceanographic Institution 195 PUBLICATIONS   8,847 CITATIONS    SEE PROFILE Rhea Foreman University of Hawaiʻi at Mānoa 35 PUBLICATIONS   4,076 CITATIONS    SEE PROFILE All content following this page was uploaded by Hubert Staudigel on 28 May 2014. The user has requested enhancement of the downloaded file.
  • 2. Vailulu'u undersea volcano: The New Samoa S. R. Hart Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 (shart@whoi.edu) H. Staudigel and A. A. P. Koppers Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093 (hstaudig@ucsd.edu; akoppers@ucsd.edu) J. Blusztajn Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 (jblusztajn@whoi.edu) E. T. Baker Pacific Marine Environmental Laboratory, NOAA, Seattle, Washington 98115 (baker@pmel.noaa.gov) R. Workman Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 (rworkman@whoi.edu) M. Jackson Department of Geology and Geophysics, Yale University, New Haven, Connecticut 06511 (montanajacks@hotmail.com) E. Hauri Department of Terrestrial Magnetism, Carnegie Institution, Washington, D. C. 20015 (hauri@dtm.ciw.edu) M. Kurz, K. Sims, and D. Fornari Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 (mkurz@whoi.edu; ksims@whoi.edu; dfornari@whoi.edu) A. Saal Lamont-Doherty Geological Observatory, Palisades, New York 10964 (asaal@ldeo.columbia.edu) S. Lyons Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093 (slyons@ucsd.edu) [1] Abstract: Vailulu'u Seamount is identified as an active volcano marking the current location of the Samoan hotspot. This seamount is located 45 km east of Ta'u Island, Samoa, at 169803.50 W, 14812.90 S. Vailulu'u defines the easternmost edge of the Samoan Swell, rising from the 5000-m ocean floor to a summit depth of 590 m and marked by a 400-m-deep and 2-km-wide summit crater. Its broad western rift and stellate morphology brand it as a juvenile progeny of Ta'u. Seven dredges, ranging from the summit to the SE Rift zone at 4200 m, recovered only alkali basalts and picrites. Isotopically, the volcano is strongly EM2 in character and clearly of Samoan pedigree (87 Sr/86 Sr: 0.7052±0.7067; 143 Nd/144 Nd: 0.51267±0.51277; 206 Pb/204 Pb: 19.19±19.40). The 210 Po-210 Pb data on two summit basalts indicate ages younger than 50 years; all of the recovered rocks are extremely fresh and veneered with glass. An earthquake swarm in early 1995 may attest to a recent eruption cycle. A detailed G 3 G 3 Geochemistry Geophysics Geosystems Published by AGU and the Geochemical Society AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Geochemistry Geophysics Geosystems Research Letter Volume 1 December 8, 2000 Paper number 2000GC000108 ISSN: 1525-2027 Copyright 2000 by the American Geophysical Union
  • 3. nephelometry survey of the water column shows clear evidence for hydrothermal plume activity in the summit crater. The water inside the crater is very turbid (nephelometric turbidity unit (NTU) values up to 1.4), and a halo of ``smog'' several hundred meters thick encircles and extends away from the summit for at least 7 km. The turbid waters are highly enriched in manganese (up to 7.3 nmol/kg), providing further evidence of hydrothermal activity. Vailulu'u is similar to Loihi (Hawaii) in being an active volcanic construct at the eastern end of a hotspot chain; it differs importantly from the Hawaiian model in its total lack of tholeiitic basalt compositions. Keywords: Samoa; volcano; Vailulu'u; hydrothermal; nephelometry; isotopes. Index terms: Volcanology; hydrothermal systems; isotopic composition/chemistry; igneous petrology. Received September 6, 2000; Revised November 3, 2000; Accepted November 3, 2000; Published December 8, 2000. Hart, S. R., H. Staudigel, A. A. P. Koppers, J. Blusztajn, E. T. Baker, R. Workman, M. Jackson, E. Hauri, M. Kurz, K. Sims, D. Fornari, A. Saal, and S. Lyons, 2000. Vailulu'u undersea volcano: The New Samoa, Geochem. Geophys. Geosyst., vol. 1, Paper number 2000GC000108 [5202 words, 6 figures]. Published December 8, 2000. 1. Introduction [2] Submarine volcanism and its associated hydrothermal systems are among the most vivid illustrations of the dynamic nature of the phy- sical, chemical, and biological systems of planet Earth. Studies of these features have contribu- ted fundamentally to our understanding of how the Earth works. These phenomena help us understand how the Earth loses its heat [Wolery and Sleep, 1976] and how processes of the solid Earth interact with processes in the hydrosphere and biosphere. The geochemistry of intraplate oceanic hotspot volcanoes has revealed much detail about how the Earth's crust-mantle sys- tem has evolved through Earth history [Zindler and Hart, 1986]. Submarine hydrothermal sys- tems have received much attention because of their impact on the geochemical cycles of many elements and the character and evolution of their biological habitats. [3] Most of our knowledge of submarine vol- canic-hydrothermal systems is based on stu- dies from active spreading ridges. These studies have shown that chemical fluxes and the transport of heat can vary substantially between different systems, complicating the construction of generalized thermal or chemi- cal budgets. Only one active intraplate sub- marine volcanic system has been studied in reasonable detail: Loihi, in the Hawaiian chain [Fornari et al., 1988; Duennebier and the 1996 Loihi Science Team, 1997; Davis and Clague, 1998]. A few others have received cursory study: Macdonald [Stoffers et al., 1989; Chemine Âe et al., 1991]; Teahitia [Che- mine Âe et al., 1989; Michard et al., 1993]; Boomerang [Johnson et al., 2000]. In addition to the paucity of attention given to intraplate submarine hydrothermal systems, our under- standing of hotspot volcanism itself is domi- nated by concepts that have developed over many decades of study of the Hawaiian archi- pelago and its submarine slopes [e.g., Clague and Dalrymple, 1989]. This has led to a standard model for the evolution of oceanic volcanoes that is strongly rooted in observa- tions from Hawaii. [4] In this letter, we report on the mapping and investigation of Vailulu'u seamount, a new and Geochemistry Geophysics Geosystems G 3 G 3 hart et al.: vailulu'u undersea volcano 2000GC000108
  • 4. particularly interesting active submarine vol- cano. We show that Vailulu'u is of Samoan lineage and represents the current location of the Samoan hotspot. Vailulu'u is an important example for study, both because it is an active and ``typical'' oceanic intraplate volcano and because it offers unique features that other submarine volcanoes do not. Its shallow depth provides easy access, its simple morphology and enclosed crater will allow estimation of hydrothermal fluxes, and its geochemical pedi- gree as a Samoan volcano gives it a highly characteristic mantle source signature. We pre- sent data here that document these aspects of Vailulu'u and its potential to substantially revise our views on ocean intraplate volcanism and to further our understanding of submarine hydrothermal systems in general. Vailulu'u offers a valuable counterpoint to Loihi and to the standard hotspot model commonly exem- plified by Hawaii. 2. Structure and Morphology [5] Vailulu'u Seamount1 was discovered on October 18, 1975, by Rockne Johnson [John- 1 Vailulu'u Seamount was named in April 2000 by Samoan high school students; the name refers to the sacred sprinkling of rain that reportedly always fell as a blessing before a gathering of King Tuimanu'a, the last king of the Samoan Nation. Previous, informal names include Rockne Volcano [Johnson, 1984] and Fa'afafine seamount [Hart et al., 1999]. -3000 14o 30'S 14o20'S 14o 10'S Vailulu'u Ta'u 169o 30'W 169o 20'W 169o 10'W 169o 00'W 168o 50'W Tutuila utuila Upolu Upolu MaluMalu MaluMalu Muli Muli Sa Savaii aii Tonga onga Trenc rench -4000 Figure 1. Bathymetry of Vailulu'u and nearby Ta'u Island, based on a SeaBeam bathymetric survey performed during R/V Melville's AVON 2 and 3 cruises, augmented with satellite-derived bathymetry from Smith and Sandwell [1996]. The inset shows the general location of Vailulu'u with respect to the Samoan Archipelago; two other newly mapped and dredged seamounts (Malumalu and Muli, AVON 3 cruise) are shown as well. Vailulu'u displays an overall asymmetric star-like pattern of rift zones and ridges, with a geometry that would closely resemble the shape of Ta'u Island in its more juvenile days. Geochemistry Geophysics Geosystems G 3 G 3 hart et al.: vailulu'u undersea volcano 2000GC000108
  • 6. son, 1984] from the ketch Kawamee and mapped in March 1999 with SeaBeam aboard the R/V Melville during AVON cruises 2 and 3 (Figures 1 and 2). These cruises were motivated by seismic events in this region that occurred in 1973 and 1995, respectively. The AVON cruises were a direct attempt to find the current location of the Samoan hotspot. Johnson [1984] accu- rately defined Vailulu'u's location and summit height, but his discovery remained virtually unknown because he was unable to identify this feature as an active volcano. [6] Vailulu'u seamount is located at 1698 03.50 W, 14812.90 S, 45 km east of Ta'u island, the easternmost island of the Samoan chain, and defines the leading edge of the Samoan swell at 5000-m water depth (Figure 1). Vailu- lu'u rises from an ocean depth of 4800 m to its crater-rim within 590 m of the sea surface, with a total volume of 1050 km3 . Vailulu'u's summit includes a 400-m-deep and 2-km-wide crater (Figure 3). The current dimensions of the volcano are consistent with Johnson's original 600-m summit depth [Johnson, 1984], indicat- - 1 5 0 0 -1000 -2000 -2500 -2000 -1750 -1500 -1250 -1000 -750 -500 169o05'W 169o04 'W 169o03'W 169o02'W 169o01'W 14o14'S 14o 13'S 14o12'S 0 90 30 60 120 150 180 210 240 270 300 330 #1 #4 Figure 3. SeaBeam bathymetry map of the summit crater of Vailulu'u, showing the crater rim with three peaks and three breaches, the location of CTDO casts 1 and 4, and the tow-yo track circumnavigated around the summit. Dotted azimuth lines are given every 308 along the track, to correspond with the nephelometry contour section shown in Figure 6. Figure 2. Perspective view of Vailulu'u seamount looking NW, displaying three major rifts toward the east, southeast, and west. The lower slopes of Vailulu'u and Ta'u merge along the west ridge, with a saddle at 3200 m. Vailulu'u is 35 km in diameter at its base. Geochemistry Geophysics Geosystems G 3 G 3 hart et al.: vailulu'u undersea volcano 2000GC000108
  • 7. ing that no major net volcanic growth or collapse has occurred over the last 25 years. [7] The overall shape of Vailulu'u is dominated by two rift zones extending east and west from the summit, defining a lineament that is parallel to the Samoan hotspot track. This is similar to the dominant trends defined by isolated (non- buttressing) Hawaiian volcanoes that have been explained by crustal extension at the crest of the swell [Fiske and Jackson, 1972]. A third, slightly less well developed rift extends SE from the summit, and several minor ridges extend out from the lower slopes of Vailulu'u, giving it an overall asymmetric, star-like pat- tern. Rift zones and ridges in the southern sector are more strongly developed than those on the northern flank, giving Vailulu'u a stunning similarity to a ``Young Ta'u'' island (Figure 1). The three major rift zones define three high points of the crater rim and thus are likely to be part of the present-day plumbing system of the volcano. Ridges emerging from the lower flanks may be related to earlier constructive events in the history of the volcano or may be landslide deposits (Figures 1 and 2). In addition to the constructive nature of the major rifts, Vailulu'u shows clear signs of slope collapse and mass wasting. Such features are prominently dis- played at the emergence point of the western rift, where it narrows owing to the amphithea- ter-shaped scars on both the north and south sides of its upper slopes. Steep, concave con- tours of the upper slopes merge into convex contours farther downslope, defining sedimen- tary aprons (Figures 1 and 2). Similar structures are common on other seamounts [Vogt and Smoot, 1984]; on Vlinder Seamount these have been related to intrusive oversteepening of the upper rift zone slopes [Koppers et al., 1998]. [8] The crater and rim of Vailulu'u are oval- shaped, with two well-developed pit craters defining the northern two thirds of the crater and two minor depressions present on a bench in the southern third of the crater (Figure 3). The crater wall has a ``scalloped'' appearance that suggests mass wasting during multiple crater-collapse events. [9] A significant number of dredge samples have been characterized with respect to major and trace elements, radiogenic isotopes, and volatile abundances. Analyses of 41 glass sam- ples from 7 dredges show that the summit and deeper east and SE rifts are relatively homo- geneous alkali basalts (SiO2 = 46±48%, Na2O + K2O = 3.5±4.9%, MgO = 5±9%). Vailulu'u does not show the extreme compositional varia- bility of its Hawaiian counterpart, Loihi Sea- mount, which ranges from tholeiite to basanite. The shield and posterosional stages of Samoan subaerial volcanism are also firmly alkalic, again unlike the Hawaiian case. [10] The major element compositional homo- geneity of Vailulu'u lavas contrasts with its variability in some radiogenic isotope ratios, in particular, 87 Sr/86 Sr that varies between 0.7052±0.7067 (Figure 4). In addition to these heterogeneitites in source region composition, Vailulu'u glasses display significant variation in volatile contents, largely indicating differences in outgassing behavior. Summit lavas tend to be more outgassed in H2O than lower rift zone lavas. Summit samples typically have H2O/K2O ratios less than 1, while the deep rift dredges (3800 m) show ratios from 1 to 1.5. H2O/Cl ratios are also different between shallow and deep dredges (5±9 versus 7±20, respectively). There is no indication in the Cl data for involve- ment of seawater [Michael and Cornell, 1998] in the magmatic plumbing system. 3. Temporal Aspects of Vailulu'u Volcanism [11] Several historical events suggest volcanic activity at Vailulu'u volcano. There was a series of sound fixing and ranging (SOFAR)-recorded Geochemistry Geophysics Geosystems G 3 G 3 hart et al.: vailulu'u undersea volcano 2000GC000108
  • 8. explosions on July 10, 1973, and during the period January 9±29, 1995, the global seismic network recorded a strong (M4.2±4.9) earth- quake swarm in the vicinity of Vailulu'u. While most of the 1995 earthquakes were formally located NW of the volcano, their uncertainty ellipses include Vailulu'u; a SeaBeam survey carried out within the earthquake area did not reveal any volcano tectonic features. [12] Dredges, especially those from the summit area, are dominated by extremely fresh volca- nic rock, with pristine volcanic glass, many original glassy surfaces, unaltered olivine phe- nocrysts, and a virtual lack of vesicle fillings. Furthermore, the intensities of SeaBeam side- scan returns are extremely ``bright,'' suggesting that fresh volcanic rocks occur ubiquitously throughout the slopes of Vailulu'u and that sediment cover is largely absent. [13] Two basalt samples were analyzed for complete U-series nuclides, one from the floor of the crater and one from the outer NE slope of the summit cone (210 Po and 210 Pb by counting [Fleer and Bacon, 1984], 226 Ra and 230 Th by mass spectrometry [Sims et al., 1999]). The crater floor sample shows 210 Po/210 Pb equili- brium but 210 Pb/226 Ra disequilibria (activity ratio of 1.71). This suggests an eruption age of less than 30±50 years. The other sample shows both 210 Po/210 Pb and 210 Pb/226 Ra dis- equilibria (1.12 and 1.20, respectively), con- firming an ``age'' of less than 5±10 years. Note Tutuila Masefau Shield Vailulu'u Ta'u Shield Muli Tutuila Pago Shield Upolu Shield Malumalu All Post-Erosional 18.5 0.709 0.708 0.707 0.706 0.705 0.704 18.6 206Pb/ 204Pb 87 Sr/ 86 Sr 18.7 18.8 18.9 19.0 19.1 19.2 19.3 19.4 19.5 Figure 4. Sr-Pb isotope plot for basalts from Vailulu'u volcano, in comparison with data from Muli and Malumalu seamounts and the subaerial Samoan islands of Ta'u, Tutuila, Upolu, and Savai'i; see Figure 1 for locations. The posterosional field includes basalts from Savai'i, Upolu, and Tutuila (data are from Wright and White, 1987; Farley et al., 1992; Hauri and Hart, 1993; Hart et al., 1999; S. R. Hart et al., unpublished data, 2000). Geochemistry Geophysics Geosystems G 3 G 3 hart et al.: vailulu'u undersea volcano 2000GC000108
  • 9. that the excess of 210 Po found here is different from the normal situation, where 210 Po is degassed during eruption [Rubin et al., 1994]. 4. Pedigree of Vailulu'u Volcano [14] On the basis of its morphological connec- tion to Ta'u Island via its west rift zone (Figure 1) and its expression as the easternmost volca- nic construct along the Samoan chain, it is natural to view Vailulu'u as a young volcano of Samoan lineage. Proof of this comes from isotopic fingerprinting of 18 basalt samples from various locations on the volcano. The 87 Sr/86 Sr±206 Pb/204 Pb isotope data for these samples is shown in Figure 4, in comparison with data from other Samoan localities. Vailu- lu'u shows a strong enriched mantle 2 (EM2) mantle signature, which is the hallmark of Samoan volcanism. While Vailulu'u partly overlaps the existing Samoan field, it also extends to higher 206 Pb/204 Pb than other Samoan basalts, continuing a west-to-east trend of increasing 206 Pb/204 Pb in Samoan shield lavas. Helium isotope data on samples from five dredges range from 7.8 to 10.4 Ra and barely overlap the known range from subaerial Samoa (10±26 Ra [Farley and Neroda, 1998]). There is some indication that 3 He/4 He in the Samoan plume peaked at 26 Ra during passage under Tutuila and that it has been decreasing since (subaerial and dredge samples from Ta'u range in He from 13 to 19 Ra [Farley and Neroda, 1998; S. R. Hart et al., unpublished data, 2000]). 5. Water Column Characteristics Over Vailulu'u Volcano [15] During the DeepFreeze 2000 cruise in March 2000, aboard the U.S. Coast Guard Icebreaker Polar Star, conductivity temperature depth optical (CTDO)/Niskin stations were occupied at three places within the summit crater and two outside the crater; in addition, the summit area was circumnavigated in tow- yo mode [Baker and Massoth, 1987] along an 1000-m contour (Figure 3). We studied parti- culate distribution in the water column using a light backscattering sensor (LBSS) attached to a CTD/Niskin water sampling rosette. The LBSS profile for station 4, inside the crater, is compared to data for station 1, outside the crater, in Figure 5. NTU values are essentially at background between 200 and 600 m at both stations. At 600-m depth in the crater profile the NTU values increase sharply and in a stepwise fashion, all the way to the bottom of the crater at 996 m. The NTU values near the bottom are very high, with values greater than 1.4; these are well above values associated with active venting and plume formation on ridge crests [Resing et al., 1999; Baker et al., 1995, 2000; Chin et al., 1998]. At station 1, outside the crater, the LBSS ``smog'' layer starts at about the same depth (610 m) but returns to background values at a depth of 850 m. This depth interval is comparable to the range of elevations shown by the rim of the summit crater, which has peaks at 590 m, and a deepest breach at 780 m (Figure 3). At station 5, 7.5 km east of the crater rim, a small NTU anomaly is still observable, with a value of 0.08 at a depth of 600±720 m. [16] There are high Mn concentrations asso- ciated with these particulate anomalies, as shown in Figure 5. Background Mn in deep water outside the crater ranges from 0.002 to 0.003 ppb; inside the crater, in the deepest part of the NTU smog layer, the Mn ranges up to peak values of 0.4 ppb (7.3 nmol/kg). There is a good correlation between the NTU values and the Mn concentrations, with an overall ppb Mn/ NTU ratio of 0.5; this is significantly lower than that observed in plumes on most ridges (where ratios of 10±80 are reported [Mottl et al., 1995; Chin et al., 1998; Resing et al., 1999]). The low ratio at Vailulu'u is due both to the much higher NTU values, and the sig- Geochemistry Geophysics Geosystems G 3 G 3 hart et al.: vailulu'u undersea volcano 2000GC000108
  • 10. nificantly lower Mn values (maximum Mn concentrations in ridge crest plumes are com- monly in the 2±15 ppb range [Field and Sherrell, 2000; James and Elderfield, 1996; Mottl et al., 1995; Resing et al., 1999; Baker et al., 1993, 1995]. [17] During a complete 3608 circumnavigation of the summit crater, we mapped the plume between 500- and 900-m depth in tow-yo mode. The track of this survey is shown in map view in Figure 3; Figure 6 provides a 3608 panoramic view of the plume ``looking out'' from a central location in the crater, contoured in NTU values. A projection of the elevation of the crater rim is also shown in Figure 6, providing an azimuthal view of its three major peaks and breaches. Overall, the hydrothermal plume (as visualized by NTU values) is con- fined to a narrow depth interval bracketed between the breaches and summits of the crater wall (Figure 6). Its upper, neutral buoyancy, level corresponds closely with the heights of the peaks on the crater rim. Virtually no parti- culate matter appears to be ejected from the crater to heights above the peaks on the crater rim nor does any settle below the breach depth, during its dispersion laterally away from the summit. Particulates are being generated within the crater and are subsequently carried away 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 600 700 800 900 1000 Water Depth (meters) NTU 0.02 0.02 0.22 0.22 0.28 0.28 0.26 0.26 0.38 0.38 Mn (ppb) 0.09 0.09 0.04 0.04 0.004 0.004 Cast 1 Cast 1 5.4 5.4 5.6 5.6 5.8 5.8 6.2 6.2 Temperature ˚C 6.0 6.0 Mn (ppb) Cast 4 Cast 4 Figure 5. Temperature (red line) and light backscattering profiles for station 1 (green line), 1.2 km east of the crater rim, and station 4 (blue line), NW basin of the summit crater (see Figure 3 for locations). The nephelometry was done with a WET Labs light backscattering sensor (LBSS); data are calibrated using standard particulate suspensions [Baker et al., 2000] and is reported as nephelometric turbidity units (NTUs). The conductivity cell on the CTD worked only intermittently; thus no potential density data are available for these profiles. The Mn data (numbers with arrows) are reported in ppb at discrete depths, next to the LBSS profiles (note that 1 ppb Mn = 18.2 nmol/kg). Ambient Mn levels in the water column are in the range 0.002±0.004 ppb. Mn analyses were performed on-shore on acidified and 0.4-mm filtered water samples, using an inductively coupled plasma-mass spectrometer procedure modified from Field et al. [1999]. Geochemistry Geophysics Geosystems G 3 G 3 hart et al.: vailulu'u undersea volcano 2000GC000108
  • 11. from the crater region by ocean currents. The presence of a plume in all directions around the crater suggests that these currents cannot be simple and unidirectional. However, a dominat- ing current is indicated by the distribution of particulate intensities within the plume. The highest readings (NTU 0.5) are found in the angular segment between 908 and 2008 and the lowest readings (NTU 0.3) are found in the angular segment between 2308 and 3608. These two segments are in opposite quadrants, sug- gesting a dominant current from 2808 (WNW). The 908±2008 segment also displays the most extreme gradients in NTU values, indicating that this plume region is least homo- genized and most directly derived from the source of the particulate matter. [18] While the upper limit of the plume appears to be at a rather constant depth of 600±630 m, the lower limit shows very substantial azimuthal variability, ranging between 690 and 800 m. ``Upwind'' (NW), the plume fills the complete depth range, from highest summit elevation to deepest breach. ``Downwind'', however, the anomaly reaches only halfway down to the maximum depth of the breaches and displays relatively clear water in the lower half of the SE breach. This poses the problem that the lower half of the downwind breach appears to be venting clear water, despite the fact that no clear water was found in the crater and massive amounts of particulates are being vented to the SE. This situation may arise by upwelling of deep outside water in a downwind 0 30 60 90 120 150 180 210 240 270 300 330 360 400 450 500 550 600 650 700 750 800 850 900 950 Azimuth (deg) Depth (m) 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 Nephelometer Data (NTU) Figure 6. Nephelometry data for the CTDO tow-yo circumnavigation of the summit (track shown in Figure 3), contoured in NTU values and displayed as an ``unwrapped'' azimuth versus depth section, annotated in azimuth relative to the center of the volcano (north = 08, east = 908, etc.). The projection of the height of the rim of the summit crater is shown as a heavy orange line; the CTDO tow-yo track is shown in gray. Geochemistry Geophysics Geosystems G 3 G 3 hart et al.: vailulu'u undersea volcano 2000GC000108
  • 12. ``eddy,'' possibly even spilling deep ambient water into the crater through the lower half of the 1308 breach. 6. Illations and Implications [19] Vailulu'u volcano is clearly a young and currently active submarine volcano. Its activity is reflected in seismic events in 1973 and 1995, the lack of any sediment cover on the sea- mount, fresh basalt and pristine glass in dredges from all levels of the volcano, and radiometric ages ranging from 5 to 50 years. The summit is marked by a sharply delineated crater over 400 m deep, filled with highly turbid water with Mn concentration anomalies that are several orders of magnitude above ambient levels. This smog layer extends out as a halo for many kilometers in all directions, in a narrow depth interval defined by the range in depths of the rim of the summit crater. Hydrothermal activity in such a well-defined venting geometry provides a natural laboratory for a variety of quantitative tracer studies aimed at delineating the circulation of seawater through the seamount hydrothermal system, in the water column near the seamount and in the surrounding ocean basins. [20] The ``standard'' model for hotspot or plume volcanism posits the youngest volcanism at the east end of Pacific volcanic island chains. The Samoan chain, with Vailulu'u at the east end, meets this test. Furthermore, the erosional maturity of Samoan volcanoes increases to the west; Ta'u is in undissected shield-building stage, Tutuila and Upolu are dissected and partly covered with rejuvenated flows, and Savai'i has virtually no subaerially exposed shield-stage lavas. This progression is similar to Hawaii, where Loihi is the easternmost volcano and where young rejuvenated lavas are present many hundreds of kilometers west of the current hotspot location (Oahu and Savai'i are 400 km from Loihi and Vailulu'u respectively). Unlike the Hawaiian chain, how- ever, which is the archetype for the standard hotspot model, Vailulu'u is composed solely of alkali basalt, displays limited petrological diversity, and no tholeiite is in evidence. Vai- lulu'u does not merely represent the earliest ``Loihi'' stage of alkalic volcanism either, since the Ta'u Island shield is also composed solely of alkali basalts; tholeiites do occur on Tutuila and Upolu but are not abundant. In fact, tho- leiites are uncommon in the active submarine and shield volcanism of many intraplate hot- spot chains (Macdonald±Austral chain; Teahi- tia±Society chain; Adams and Bounty±Pitcairn chain). Thus Vailulu'u-Samoa may be a more appropriate ``standard model'' for ocean island volcanism than Loihi±Hawaii. It is likely that the physical processes involved in melt genera- tion and melt modification are related to the total plume fluxes or mantle heat available. In this respect, the Samoan chain is much closer to a typical hotspot than Hawaii. Acknowledgments [21] This work would not have been possible without the help of many individuals at sea, including Kendra Arbesman, Ron Comer, Jennifer Dodds, Scott Herman, Jasper Konter, Theresa-Mae Lassak, Gene Pillard, Ryan Taylor, and the crew of the R/V Melville and the Coast Guard's Polar Star. Kristin M. Sanborn helped us unlock the SeaBird CTD software. Bob Engdahl kindly supplied the 1995 earthquake locations. We acknowledge funding from the NSF Ocean Science program, the VENTS program of NOAA (PMEL contribution 2243), and the U.S. Coast Guard for their generous support of our endeavors on Vailulu'u. References Baker, E. T., and G. J. Massoth, Characteristics of hydro- thermal plumes from two vent fields on the Juan de Fuca Ridge, northeast Pacific Ocean, Earth Planet. Sci. Lett., 85, 59±73, 1987. Baker, E. T., G. J. Massoth, S. L. Walker, and R. W. Embley, A method for quantitatively estimating diffuse and discrete hydrothermal discharge, Earth Planet. Sci. Lett., 118, 235±249, 1993. Geochemistry Geophysics Geosystems G 3 G 3 hart et al.: vailulu'u undersea volcano 2000GC000108
  • 13. Baker, E. T., C. R. German, and H. Elderfield, Hydro- thermal plumes over spreading-center axes: Global distribution and geological inferences, in Seafloor Hy- drothermal Systems: Physical, Chemical, and Geolo- gical Interactions, Geophys. Monogr. Ser., vol. 91, edited by S. Humphris, R. Zierenberg, L. S. Mulli- neaux, and R. Thomson, pp. 47±71,AGU, Washing- ton, D. C., 1995. Baker, E., D. Tennant, R. Feely, G. Lebon, and S. L. Walker, Field and laboratory studies on the effect of particle size and composition on optical backscattering measurements in hydrothermal plumes, Deep Sea Res., in press, 2000. Chemine Âe, J.-L., R. He Âkinian, J. Talandier, C. W. Devey, F. Albare Âde, J. Francheteau, and Y. Lancelot, Geology of an active hot spot: Teahitia-Mehetia Region in the south central Pacific, Mar. Geophys. Res., 11, 27±50, 1989. Chemine Âe, J.-L., P. Stoffers, G. McMurtry, H. Richnow, D. Puteanus, and P. Sedwick, Gas-rich submarine exha- lations during the 1989 eruption of Macdonald Sea- mount, Earth Planet. Sci. Lett., 107, 318±327, 1991. Chin, C. S., G. P. Klinkhammer, and C. Wilson, Detection of hydrothermal plumes on the northern Mid-Atlantic Ridge: Results from optical measurements, Earth Pla- net. Sci. Lett., 162, 1±13, 1998. Clague, D. A., and G. B. Dalrymple, Tectonics, geochro- nology, and origin of the Hawaiian-Emperor chain, in The Geology of North America: The Eastern Pacific Ocean and Hawaii, edited by E. L. Winterer, D. M. Hussong, and R. W. Decker, pp. 188±217,Geol. Soc. of Am., Boulder, Colo., 1989. Davis, A. S., and D. A. Clague, Changes in the hydro- thermal system at Loihi Seamount after the formation of Pele's pit in 1996, Geology, 26, 399±402, 1998. Duennebier, F. K., and the 1996 Loihi Science Team, Researchers rapidly respond to submarine activity at Loihi Volcano, Hawaii, Eos Trans. AGU, 78, 231± 234, 1997. Farley, K. A., and E. Neroda, Noble gases in the Earth's mantle, Annu. Rev. Earth Planet. Sci., 26, 189±218, 1998. Farley, K. A., J. H. Natland, and H. Craig, Binary mixing of enriched and undergassed (primitive?) mantle com- ponents (He, Sr, Nd, Pb) in Samoan lavas, Earth Planet. Sci. Lett., 111, 183±199, 1992. Field, M., and R. Sherrell, Dissolved and particular Fe in a hydrothermal plume at 98450 N, East Pacific Rise: Slow Fe (II) oxidation kinetics in Pacific plumes, Geochim. Cosmochim. Acta, 64, 619±628, 2000. Field, M. P., J. T. Cullen, and R. M. Sherrell, Direct determination of 10 trace metals in 50 ml samples of coastal seawater using desolvating micronebulization sector field ICP-MS, J. Anal. Atomic Spectrometry, 14, 1425±1431, 1999. Fiske, R. S., and E. D. Jackson, Orientation and growth of Hawaiian volcanic rifts: The effect of regional structure and gravitational stress, Philos. Trans. R. Soc. London, Ser. A., 329, 299±326, 1972. Fleer, A. P., and M. P. Bacon, Determination of 210 Pb and 210 Po in seawater and particulate matter, Nucl. Instrum. Meth. Phys. Res., 223, 243±249, 1984. Fornari, D. J., M. O. Garcia, R. C. Tyce, and D. G. Gallo, Morphology and structure of Loihi Seamount based on seabeam sonar mapping, J. Geophys. Res., 93, 15,227± 15,238, 1988. Hart, S. R., H. Staudigel, M. D. Kurz, J. Blusztajn, R. Workman, A. Saal, A. Koppers, E. H. Hauri, and S. Lyons, Fa'afafine Volcano: The active Samoan Hotspot, Eos Trans. AGU, 80, Fall Meet. Suppl., F1102, 1999. Hauri, E. H., and S. R. Hart, Re-Os isotope systematics of HIMU and EMII oceanic island basalts from the South Pacific ocean, Earth Planet. Sci. Lett., 114, 353±371, 1993. James, R. H., and H. Elderfield, Dissolved and particulate trace metals in hydrothermal plumes at the Mid-Atlantic Ridge, Geophys. Res. Lett., 23, 3499±3502, 1996. Johnson, K., D. Graham, K. Nicolaysen, D. S. Scheirer, D. W. Forsyth, L. M. Douglas-Priebe, E. T. Baker, and K. H. Rubin, Boomerang Seamount: Active expression of the Amsterdam-St Paul Hotspot, Southeast Indian Ridge, Earth Planet. Sci. Lett., in press, 2000. Johnson, R. H., Exploration of three submarine volcanos in the South Pacific, Natl. Geogr. Soc. Res. Rep., 16, 405±420, 1984. Koppers, A. A. P., H. Staudigel, J. R. Wijbrans, and M. S. Pringle, The Magellan seamount trail: Implications for Cretaceous hotspot volcanism and absolute Pacific plate motion, Earth Planet. Sci. Lett., 163, 53±68, 1998. Michael, P. J., and W. C. Cornell, Influence of spreading rate and magma supply on crystallization and assimila- tion beneath mid-ocean ridges: Evidence from chlorine and major element chemistry of mid-ocean ridge basalts, J. Geophys. Res., 103, 18,325±18,356, 1998. Michard, A., G. Michard, D. Stu Èben, P. Stoffers, J.-L. Chemine Âe, and N. Binard, Submarine thermal springs associated with young volcanoes: The Teahitia vents, Society Islands, Pacific Ocean, Geochim. Cosmochim. Acta, 57, 4977±4986, 1993. Mottl, M. J., F. T. Sansone, C. G. Wheat, J. A. Resing, E. T. Baker, and J. E. Lupton, Manganese and methane in hydrothermal plumes along the East Pacific Rise, 88400 to 118500 N, Geochim. Cosmochim. Acta, 59, 4147± 4166, 1995. Resing, J., R. A. Feely, G. J. Massoth, and E. T. Baker, The water-column chemical signature after the 1998 Geochemistry Geophysics Geosystems G 3 G 3 hart et al.: vailulu'u undersea volcano 2000GC000108
  • 14. eruption of Axial Volcano, Geophys. Res. Lett., 26, 3645±3648, 1999. Rubin, K. H., J. D. Macdougall, and M. R. Perfit, 210 Po-210 Pb dating of recent volcanic eruptions on the sea floor, Nature, 368, 841±844, 1994. Sims, K. W. W., D. J. DePaolo, M. T. Murrell, W. S. Baldridge, S. Goldstein, D. Clague, and M. Jull, Poros- ity of the melting zone and variations in the solid mantle upwelling rate beneath Hawaii: Inferences from 238 U-230 Th-226 Ra and 235 U-231 Pa disequilibria, Geo- chim. Cosmochim. Acta, 63, 4119±4138, 1999. Smith, W. H. F., and D. Sandwell, Predicted bathymetry. New global seafloor topography from satellite altimetry, Eos Trans. AGU, 77(46), 315, 1996. Stoffers, P., R. Botz, J. L. Cheminee, C. W. Devey, V. Froger, G. P. Glasby, M. Hartmann, R. Hekinian, F. Kogler, D. Laschek, P. Larque, W. Michaelis, R. K. Muhe, D. Puteanus, and H. H. Richnow, Geology of Macdonald Seamount Region, Austral Islands: Recent hotspot volcanism in the South Pacific, Mar. Geophys. Res., 11, 101±112, 1989. Vogt, P. R., and N. C. Smoot, The Geisha guyots: Multi- beam bathymetry and morphometric interpretation, J. Geophys. Res., 89, 11,085±11,107, 1984. Wolery, T. J., and N. H. Sleep, Hydrothermal circulation and geochemical flux at mid-ocean ridges, J. Geol., 84, 249±275, 1976. Wright, E., and W. M. White, The origin of Samoa: New evidence from Sr, Nd and Pb isotopes, Earth Planet. Sci. Lett., 81, 151±162, 1987. Zindler, A., and S. Hart, Chemical geodynamics, Annu. Rev. Earth Planet. Sci., 14, 493±571, 1986. Geochemistry Geophysics Geosystems G 3 G 3 hart et al.: vailulu'u undersea volcano 2000GC000108 View publication stats View publication stats