SlideShare a Scribd company logo
1 of 9
Download to read offline
Beighton Score: A Valid Measure for Generalized Hypermobility in Children
Bouwien Smits-Engelsman, PhD, Marie¨tte Klerks, MS, and Amanda Kirby, MRCGP, PhD
Objective To evaluate the validity of the Beighton score as a generalized measure of hypermobility and to mea-
sure the prevalence of hypermobility and pain in a random population of school age children.
Study design Prospective study of 551 children attending various Dutch elementary schools participated; 47%
were males (258) and 53% (293) females, age range was 6 to 12 years. Children’s joints and movements were as-
sessed according to the Beighton score by qualified physiotherapists and by use of goniometry measuring 16 pas-
sive ranges of motion of joints on both sides of the body.
Results More than 35% of children scored more than 5/9 on the Beighton score. Children who scored high on the
Beighton score also showed increased range of motion in the other joints measured. Moreover 12.3% of children
had symptoms of joint pain, and 9.1% complained of pain after exercise or sports. Importantly, this percentage was
independent of the Beighton score. There were no significant differences in Beighton score for sex in this popula-
tion.
Conclusion The Beighton score, when goniometry is used, is a valid instrument to measure generalized joint mo-
bility in school-age children 6 to 12 years. No extra items are needed to improve the scale. (J Pediatr 2010;-:---).
J
oint hypermobility, defined as a more-than-normal range of movement (ROM) in a joint, is either localized (increased
ROM of a single joint) or generalized. The prevalence of asymptomatic generalized hypermobility in children has been
variably and widely reported, between 3% and 30%.1-12
Generalized joint hypermobility (GJH) is said to be more prev-
alent among girls than boys with sex ratios of approximately 3:1 to 2:1, females/males.1-8
In children, joint mobility is also in-
versely related with age, with younger children showing higher joint mobility than older children and with sex differences noted
as they get older.1-3,6,12
Symptomatic generalized hypermobility is believed to be less common10-12
and poorly recognized in childhood.12
In 1967,
Kirk et al11
described musculoskeletal complaints in association with general hypermobility in adults, which was called hyper-
mobility syndrome.
Joint hypermobility syndrome (JHS) is diagnosed when, in addition to the hypermobility, individuals report musculoskeletal
symptoms in more than 4 joints, including pain over a period of more than 12 weeks, and when other heritable disorders of
connective tissue and other causes of the symptoms have been excluded.13-15
Individuals with collagen disorders, such as
Ehlers-Danlos syndrome, have also been described with the term JHS with their heritable disorders of connective tissue diag-
nosis.16
Joint hypermobility in children is commonly diagnosed with criteria for an adult population and ROM is judged by eye. To
evaluate hypermobility, clinicians mainly use two scoring systems: the Beighton score (Table I)1
and the Bulbena Criteria.17
The Beighton score, more commonly used in diagnosing hypermobility in childhood,2-9,18
has its cutoff point internationally
debated.2,6,9,18
Originally the Beighton score cutoff points offered no differentiation between adults and children, sex, and eth-
nicity. However, given the noted variations, it would seem that cutoff values that take these into account are required. The lack
of specific criteria for children motivated this study. A standardized protocol is lacking, and a uniform description of the test
items in children is needed for reliable testing of hypermobility. For example, it is not clear whether the Beighton score has to be
performed actively or passively.1,19
Juul et al19
defined a standardized protocol for the Beighton score with passive range of
motion for clinical studies of reproducibility in adults. To standardize the Beighton score for children, we described and tested
a goniometry protocol (Appendix; available at www.jpeds.com).
The Beighton score has never been tested for validity, although it is used clinically as a basis of examination and diagnosis.20,21
Therefore a second aim of the study concerned the validation of the Beighton score as a measure of generalized hypermobility in
children. A third aim was to examine the prevalence of reported pain after exercise or sport, and pes planus in a random pop-
ulation, to consider whether this was associated with the classification of mobil-
ity. A final consideration was to measure the prevalence of hypermobility in
From the Faculty of Kinesiology and Rehabilitation
Sciences, K.U.Leuven, Avans, University for
Professionals, Breda (B.S.), The Netherlands; Private
Practice, Peize (M.K.), The Netherlands, and the
Dyscovery Centre, School of Education, University of
Wales, Newport, Wales, United Kingdom (A.K.)
The authors declare no conflicts of interest.
0022-3476/$ - see front matter. Copyright Ó 2010 Mosby Inc.
All rights reserved. 10.1016/j.jpeds.2010.07.021
GJH Generalized joint hypermobility
JHS Joint hypermobility syndrome
ROM Range of movement
SBP Standardized Beighton score protocol
SJP Standardized joint-mobility protocol
1
a random population of elementary school–age children and
to consider whether there were sex or body side differences in
the population.
Method
Standardized Beighton Score Protocol
All the items were described and visualized with photos.
Cutoff points for declaring an item as positive or negative
were included (Appendix). Goniometry was used to
measure the passive bilateral dorsiflexion of the fifth
metacarpophalangeal joint and the passive bilateral
hyperextension of the elbow and knee.
Standardized Joint Mobility Protocol
To obtain a reliable impression of overall joint mobility, an
extended ‘‘standardized joint mobility protocol’’ (SJP) was
developed. This describes test position, positioning of the go-
niometer, anatomic landmarks, and motion to be tested. In
this protocol passive range of motion was used to standardize
the measurement as much as possible and to be less depen-
dent on the child’s notion of a full range of movement. Six-
teen ROMs of 8 different joints were measured bilaterally to
the nearest 1-degree with a standard 2-legged 360-degree type
Collehon extendable goniometer (01135; Lafayette Instru-
ment Company, Lafayette, Indiana). For small joints, a plastic
180-degree goniometer (type HIRes) was used. Included in
this protocol are several extra observations that are clearly de-
scribed, including pes planus and ‘‘heel-to-the-buttock’’
movement.
Training Procedure
To collect reliable data, 6 pediatric physical therapists were
trained. The protocol was explained, and items were taught
under supervision. Then therapists used SBP and SJP to mea-
sure the passive joint mobility and the Beighton score of 6
healthy Dutch children. Intraclass correlation between the
first and second measurements was high (0.99), indicating
excellent reliability. The mean difference (absolute [Measure-
ment 1 À Measurement 2]) between all the joints measured
by the 6 therapists was 8.05 degrees (SD 5.9), with the exor-
otation of the shoulder being the least reliable (mean absolute
difference of 15.8 degrees) and the passive extensions of the
hip and knee being the best reproducible maneuvers (mean
absolute difference of 4.5 degrees). The standard error of
measurement for the ranges of motion for the joints included
in the SBP (knee and elbow extension and dorsiflexion of the
fifth metacarpophalangeal) was 2 degrees.
Test Procedure
All children were measured by the 6 trained pediatric physical
therapists according to the SBP and the full bilateral SJP.
Children wore shorts and shirts and no shoes. Before the as-
sessment, the movement was demonstrated by the tester first,
supported with verbal instructions. Children were instructed
to relax their muscles as much as possible, and the maneuver
was performed without evoking pain. Additionally, the pres-
ence of pes planus (the arch lowers and flattens fully, exces-
sively and easily, with the talus bulging medially22
) and
muscle length of the rectus femoris were assessed (heel to
buttock in prone position) (Appendix). Background
information about the child’s health was also gathered with
a questionnaire.
Participants
A total of 551 children, attending 11 Dutch elementary
schools, participated in the study. Teachers selected every
second child of the register in the respective classes. Approval
was gained from the local ethics committee. Parental consent
was obtained and additional assent from children before par-
ticipation.
Of this sample, 86% were white, and 14% were from first-
generation Dutch families (all the children were born in the
Netherlands). There were 46.8% males (258) and 53.2%
(293) females in the group. Nearly 13% of children were
left handed.
Data Analysis
Totals on the Beighton score were compared by use of inde-
pendent samples t testing for sex differences and side of the
body. Scores on the Beighton score were calculated on the ba-
sis of the SBP. Based on cutoff scores reported in the litera-
ture, children were placed into 3 bands as follows: band 1:
not hypermobile (0-4); band 2: increased mobility (5-6);
band 3: hypermobile (7-9). These Beighton score bands
were used as independent variables to compare the 16 mea-
sured ROM of the joints (means of left and right side were
used) with analysis of variance. Frequency of reported pain
after exercise and sport and pes planus were analyzed with
Table II. Demographic information
Mean Range
Age 8 years, 9 months 6-12 years
Weight 31 kg 17-83 kg
Height 1 m 37cm 1m 5 cm–1 m 73 cm
BMI 16.5* 10-36
*Overall, 14% of the children in this sample were overweight.
Table III. Distribution of Beighton score total
Frequency Percent Cumulative percent
Band 1: 0-4 Normal ROM
0 40 7.3 7.3
1 46 8.3 15.6
2 102 18.5 34.1
3 64 11.6 45.7
4 103 18.7 64.4
Band 2: 5-6 Increased ROM
5 69 12.5 77.0
6 77 14.0 90.9
Band 3: 7-9 Hypermobile
7 33 6.0 96.9
8 16 2.9 99.8
9 1 .2 100.0
Total 551 100.0
THE JOURNAL OF PEDIATRICS  www.jpeds.com Vol. -, No. -
2 Smits-Engelsman, Klerks, and Kirby
ARTICLE IN PRESS
the c2
test. Data were analyzed with SPSS version 15.0 (SPSS
Inc., Chicago, Illinois).
Results
In this random sample, 9.1% of the children scored 7 or more
out of a possible 9 points on the Beighton score, and 35.6%
scored 5 or more (Table III). Complaints of pain in joints,
muscles, or ligaments were quite common. Overall, 13.3%,
12.8%, and 4.1% of participants cited this in respective
Beighton score bands 1, 2 and 3. Pain after exercise or
sport was reported for 8.8%, 9.6%, and 10% of the
children, in bands 1, 2, and 3, respectively. These
percentages were not significantly different between
children with less or more mobility and therefore do not
seem to be specific for children with high Beighton scores.
Scale Analysis
The question to be answered in this study was, ‘‘Is the
Beighton score a valid measure for generalized hypermobility
in children?’’ To answer this question, 16 mean ROMs of all
major extremity joints were compared between groups on the
basis of the 3 bands of the Beighton score (Table IV). The
analysis of variance revealed significant differences between
the degrees of motion of all joints examined. Moreover, as
shown in Table V, post-hoc tests also showed that the
ROMs of all joints were significantly different between the
classification groups (flexion knee: P = .02 extension hip:
P = .06, all the other joints P  .001).
Sex Differences
With the Beighton score, where 9 points is the maximum
possible score, no significant differences (P = .22) for sex
were found. If analyzed per item, only hands on the floor
(item 5) was different (t (1549) = 4.66, P  .001); with girls
being more flexible than boys.
Differences in Right and Left Sides on Testing
Comparing scores on the left and the right sides of the body,
there was a significant difference, with right-sided measures
showing less mobility than those on the left side (t (1550)
= 2.14, P  .032). Mean scores for right side were 1.75 and
for the left side, 1.82. If analyzed per item, only the item
‘‘thumb to volar aspect of the forearm’’ (item 2) was signifi-
cantly different (t (1550) = 2.42, P  .016), with the left
thumb being more flexible.
Asymmetric mobility was also examined. Children were
defined as asymmetrically mobile if the difference between
the summed left and right part of the Beighton score was
more than 2 points (4 being the maximum score for one
side). In total, 4.9% of the children were classified to have
asymmetric mobility (3.5% showed larger movements on
the left side, 1.8% on the right). Moreover, 19.6% showed
a 1-point advantage in ROM on the left side of the body,
and the respective figure was 15.4% for the joints on the right
side. No sex differences in asymmetry were found.
Table IV. ROM in degrees per joint for the 3 Beighton
score bands (mean and standard deviation)
Joint
Beighton
score Bands
Number
of
participants
ROM
mean
ROM
SD
Lower Extremity
Extension MTP1
0-4 355 69 11
5-6 146 74 9
7-9 50 77 10
Dorsal flexion ankle
0-4 355 24 7
5-6 146 27 6
7-9 50 30 6
Plantar flexion ankle
0-4 355 61 8
5-6 146 67 7
7-9 50 69 6
Flexion knee
0-4 355 155 10
5-6 146 157 4
7-9 50 158 4
Extension knee
0-4 355 4 4
5-6 146 8 4
7-9 50 10 3
Flexion hip
0-4 355 108 8
5-6 146 111 8
7-9 50 114 5
Extension hip
0-4 355 22 7
5-6 146 23 7
7-9 50 24 7
Exorotation hip
0-4 355 49 8
5-6 146 52 10
7-9 50 57 12
Endorotation hip
0-4 355 49 8
5-6 146 53 10
7-9 50 59 11
Upper extremity
Dorsiflexion MCP Digit 5
0-4 355 82 12
5-6 146 91 10
7-9 50 96 9
Extention wrist
0-4 355 93 8
5-6 146 100 8
7-9 50 103 8
Flexion wrist
0-4 355 100 10
5-6 146 109 11
7-9 50 111 9
Flexion elbow
0-4 355 151 6
5-6 146 153 5
7-9 50 154 5
Extension elbow
0-4 355 9 6
5-6 146 13 6
7-9 50 16 5
Flexion shoulder
0-4 355 171 14
5-6 146 178 13
7-9 50 184 12
Exorotation shoulder
0-4 355 88 14
5-6 146 98 13
7-9 50 105 13
- 2010 ORIGINAL ARTICLES
Beighton Score: A Valid Measure for Generalized Hypermobility in Children 3
ARTICLE IN PRESS
Pes Planus
In this typically developing sample, 30% of children were ob-
served to have pes planus as described in the protocol. There
was an increasing prevalence (c2
5.29, df = 1 , P = .021) in pes
planus per mobility band (band 1: 27%, band 2: 32.2%, band
3: 44%).
Heel to Buttock
To explore supplementary value of other hypermobility ma-
neuvers, ‘‘heel to buttock’’ was also tested. In 87% of the chil-
dren, the heels could passively be brought to contact the
buttocks. Twelve percent of children were unable to do so
with two legs and 1% with one leg. Importantly, the frequen-
cies of difficulty with ‘‘heel to buttock’’ were not different for
children in the 3 Beighton score bands.
Discussion
The Beighton score is a valid measure for generalized joint hy-
permobility in children, on the basis of the detailed analysis of
the ranges of motion of all major joints. Although the
Beighton score covers a sample of joints, it was shown that in-
creased mobility is present in other joints not covered. Pain
over a period of time or after exercise does not seem to be valid
extra information in hypermobility related complaints in
children under 13 years. This concurs with the study by El-
Metwally et al who reported that hypermobility (Beighton
6/9) was not predictive of future musculoskeletal pain in pre-
teen and adolescent children.23
However, it may be useful to
explore pain symptoms such as waking in the night.
Pes planus is a frequent symptom in children (33%), not
only in children with hypermobile joints but in all children.
Adib12
found that pes planus was one of the main features
in children with JHS, and this is confirmed for children
with a high Beighton score, but its high frequency is not re-
stricted just to this group. Because the mean ROMs of all
joints measured were significantly increased if children
were classified as hypermobile, it was concluded that the
Table V. Post hoc test (Tukey HSD)
Dependent
Variable
(I) Beighton
Band
(J) Beighton
Band
Mean
Difference
(I-J) P value
Lower extremity
Extension MTP1
0-4 5-6 -5.49* .000
7-9 -7.98* .000
5-6 0-4 5.49* .000
7-9 -2.48 .330
Dorsal flexion ankle
0-4 5-6 -2.93* .000
7-9 -6.48* .000
5-6 0-4 2.93* .000
7-9 -3.54* .003
Plantar flexion ankle
0-4 5-6 -5.77* .000
7-9 -7.71* .000
5-6 0-4 5.77* .000
7-9 -1.94 .296
Flexion knee
0-4 5-6 -1.76 .080
7-9 -2.72 .078
5-6 0-4 1.76 .080
7-9 -.96 .761
Extension knee
0-4 5-6 -3.82* .000
7-9 -5.96* .000
5-6 0-4 3.82* .000
7-9 -2.13* .003
Flexion hip
0-4 5-6 -3.22* .000
7-9 -5.55* .000
5-6 0-4 3.22* .000
7-9 -2.33 .177
Extension hip
0-4 5-6 -1.58* .045
7-9 -2.59* .031
5-6 0-4 1.58* .045
7-9 -1.00 .636
Exorotation hip
0-4 5-6 -3.78* .000
7-9 -8.55* .000
5-6 0-4 3.78* .000
7-9 -4.77* .003
Endorotation hip
0-4 5-6 -3.87* .000
7-9 -9.82* .000
5-6 0-4 3.87* .000
7-9 -5.95* .000
Upper extremity
Dorsiflexion MCP Digit 5
0-4 5-6 -9.45* .000
7-9 -14.10* .000
5-6 0-4 9.45* .000
7-9 -4.65* .029
Extension wrist
0-4 5-6 -6.55* .000
7-9 -10.12* .000
5-6 0-4 6.55* .000
7-9 -3.57* .016
Flexion wrist
0-4 5-6 -8.55* .000
7-9 -10.53* .000
5-6 0-4 8.55* .000
7-9 -1.97 .481
Flexion elbow
0-4 5-6 -1.99* .001
7-9 -3.35* .000
5-6 0-4 1.99* .001
7-9 -1.36 .293
Extension elbow
(continued )
Table V. Continued
Dependent
Variable
(I) Beighton
Band
(J) Beighton
Band
Mean
Difference
(I-J) P value
0-4 5-6 -4.23* .000
7-9 -7.26* .000
5-6 0-4 4.23* .000
7-9 -3.02* .005
Flexion shoulder
0-4 5-6 -6.88* .000
7-9 -13.11* .000
5-6 0-4 6.88* .000
7-9 -6.23* .012
Exorotation shoulder
0-4 5-6 -10.41* .000
7-9 -16.80* .000
5-6 0-4 10.41* .000
7-9 -6.39* .011
*The mean difference is significant at the .05 level.
THE JOURNAL OF PEDIATRICS  www.jpeds.com Vol. -, No. -
4 Smits-Engelsman, Klerks, and Kirby
ARTICLE IN PRESS
currently used standardized protocol of the Beighton score is
a valid measure for generalized hypermobility in children.
Therefore we see no advantage in adding more joints or ma-
neuvers to this scale, nor adding joint pain as part of the scale,
because it is not specific to hypermobility in children. Pain
measures a different construct, which may be more time sen-
sitive than joint mobility, and its presence as a complaint in
all children should always be explored.
Our impression that too many children are classified as hy-
permobile by use of a threshold of 5/9 was confirmed. With
the Beighton score 5/9 scoring system led to a prevalence of
35.6%, which is greater than an earlier study in which gener-
alized hypermobile joints were reported in 11.1% of the
Dutch population between the ages of 4 to 12.18
Comparison
between studies is hard to undertake because no standardized
description of the Beighton score existed, and ranges of mo-
tion were estimated, but not measured. Future studies with
this standardized protocol may help determine the best cutoff
scores, and validation of these scores for diagnostic purposes
requires scores to show both high sensitivity and specificity.
Studies are needed that explore different cutoff scores in
groups of children with JHS and typically developing chil-
dren.
On the basis of statistical grounds and in conjunction
with Jansson et al,6
a stricter cutoff score for hypermobility
should be considered. If a score between 7/9 were used to
classify hypermobility, the percentage in our study would
drop to 9%.
When comparing sides of the body, it was found that hy-
permobility was greater on the left side of the body. This also
confirms earlier results.1-3,18
Asymmetry in typically develop-
ing children was rare (5%), and 60% of the children had an
identical Beighton score for the right and left sides. For quick
screening procedures, one could rely on the left-sided
Beighton protocol. In a clinical situation it is recommended
to use the full standardized Beighton protocol.
Sex difference for cutoff points were not found in using the
Standardized Beighton Protocol in Dutch children at the age
6 to 12 years, which corroborates with findings of Rikken et
al,2
El-Garf et al,3
and van der Giessen et al,18
but contrasts
with others.5-7
The Beighton score calculated with the standardized
Beighton protocol is a valid instrument to evaluate general-
ized joint mobility in primary school–aged children. No extra
items are needed to improve the scale. In white children be-
tween 6 and 12 years of age, it is recommended that 7/9 be the
cutoff for the Beighton score. n
We thank the pediatric physiotherapists for measuring all the children
and the children for their participation.
Submitted for publication Jan 28, 2010; last revision received Jun 15, 2010;
accepted Jul 13, 2010.
Reprint requests: Bouwien Smits-Engelsman, Avans+ University for
Professionals, P.O. Box 2087, 4800 CB Breda, The Netherlands. E-mail:
bengelsman@avansplus.nl.
References
1. Beighton P, Solomon L, Soskolne CL. Articular mobility in an African
population. Ann Rheum Dis 1973;32:413-8.
2. Rikken-Bultman DGA, Wellink L, Dongen van PWJ. Hypermobility in
two Dutch school populations. Eur J Obstet Gynecol Reprod Biol
1997;73:189-92.
3. El Garf AK, Mahmoud GA, Mahgoub EH. Hypermobility among Egyp-
tian children: prevalence and features. J Rheumatol 1998;25:3-5.
4. Seow CC, Chow PK, Khong KS. A study of joint mobility in a normal
population. Ann Acad Med Singapore 1999;28:231-6.
5. Sec¸kin }U, Tur BS, Yilmaz }O, Yagci I, Bodur H, Arasil T, Tur BS. The
prevalence of joint hypermobility among high school students. Rheuma-
tol Int 2005;25:260-3.
6. Jansson A, Saartok T, Werner S, Renstro¨m P. General joint laxity in 1845
Swedish school children of different ages: age-and gender-specific distri-
butions. Acta Paediatr 2004;9:1202-6.
7. Qvindesland A, Jonsson H. Articular hypermobility in Icelandic 12-years
olds. Rheumatology 1999;38:1014-6.
8. Birrell FN, Adebajo AO, Hazleman BL, Silman AJ. High Hypermobility
of joint laxity in West Africans. Br J Rheumatology 1994;33:56-9.
9. Al-Rawi ZS, Al-Aszawi AJ, Al-Chalabi T. Joint mobility among univer-
sity students in Iraq. Br J Rheumatology 1985;24:326-31.
10. Remvig L, Jensen DV, Ward RC. Epidemiology of general joint hy-
permobility and basis for the proposed criteria for benign joint hy-
permobility syndrome: review of the literature. J Rheumatology
2007;34:804-9.
11. Kirk JH, Ansell BA, Bywaters EGL. The hypermobility syndrome. Ann
Rheum Dis 1967;26:425.
12. Adib N, Davies K, Grahame R, Woo P, Murray KJ. Joint hypermobility
syndrome in childhood. A not so benign multisystem disorder? Rheuma-
tol 2005;44:744-50.
13. Mishra MB, Ryan P, Atkinson P, et al. Extra-articular features of benign
joint hypermobility syndrome. Br J Rheumatol 1996;35:861-6.
14. Grahame R. Brighton Diagnosis Criteria for the Benign Joint Hypermo-
bility Syndrome. Br J Rheumatol 2000;27:1777-9.
15. Grahame R, Bird HA, Child A. The revised (Brighton 1998) criteria for
the diagnosis of benign joint hypermobility syndrome (BJHS) J Rheuma-
tol 2000;27:1777-9.
16. Tofts LJ, Elliott EJ, Munns C, Pacey V, Silence D. The differential diag-
nosis of children with joint hypermobility: a review of the literature. Pe-
diatric Rheumatol Online 2009;7:1.
17. Bulbena A, Duro JC, Porta M, Faus S, Vallescar R, Martin-Santos R.
Clinical assessment of hypermobility of joints: assembling criteria. J
Rheumatol 1992;19:115-22.
18. Van der Giessen LJ, Liekens D, Rutgers KJM, Hartman A, Mulder PGH,
Oranje AP. Validation of Beighton score and prevalence of connective tis-
sue signs in 773 Dutch-Caucasian Children. J Rheumatol 2001;28:2726-30.
19. Juul B, Rogind H, Jensen DV, Remvig L. Inter-examiner reproducibility
of tests and criteria for generalized joint hypermobility and benign joint
hypermobility syndrome. Rheumatology 2007;46:1835-41.
20. Remvig L, Jensen DV, Ward RC. Are diagnostic criteria for general joint
hypermobility and benign joint hypermobility syndrome based on re-
producible and valid tests? A review of the literature. J Rheumatol
2007;34:798-803.
21. Grahame R, Keer R. Hypermobility syndrome: recognition and manage-
ment for physiotherapist. Philadelphia: Butterworth Heinemann Elsev-
ier Limited; 2003.
22. Kirby A, Davies R. Developmental coordination disorder and joint hy-
permobility syndrome—overlapping disorders? Implications for re-
search and clinical practice. Child Care Health Dev 2006;33:513-9.
23. El-Metwally A, Salminen JJ, Auvinen A, Macfarlane G, Mikkelsson M.
Risk factors for development of non-specific musculoskeletal pain in
preteens and early adolescents: a prospective 1-year follow-up study.
BMC Musculoskeletal Dis 2007;23:8-46.
- 2010 ORIGINAL ARTICLES
Beighton Score: A Valid Measure for Generalized Hypermobility in Children 5
ARTICLE IN PRESS
Appendix. Standardized test positions and goniometer positioning of the Beighton score protocol.
THE JOURNAL OF PEDIATRICS  www.jpeds.com Vol. -, No. -
5.e1 Smits-Engelsman, Klerks, and Kirby
ARTICLE IN PRESS
Appendix. Continued
- 2010 ORIGINAL ARTICLES
Beighton Score: A Valid Measure for Generalized Hypermobility in Children 5.e2
ARTICLE IN PRESS
Appendix. Continued
THE JOURNAL OF PEDIATRICS  www.jpeds.com Vol. -, No. -
5.e3 Smits-Engelsman, Klerks, and Kirby
ARTICLE IN PRESS
Table I. The 9-point Beighton score of hypermobility
Description Bilateral Testing
Scoring
(max. points)
Passive dorsiflexion of the fifth metacarpophalangeal joint to $ 90 degrees Yes 2
Passive hyperextension of the elbow $ 10 degrees Yes 2
Passive hyperextension of the knee $ 10 degrees Yes 2
Passive apposition of the thumb to the flexor side of the forearm, while shoulder
is flexed 90 degrees, elbow is extended, and hand is pronated
Yes 2
Forward flexion of the trunk, with the knees straight, so that the hand palms rest easily on the floor No 1
Total 9
- 2010 ORIGINAL ARTICLES
Beighton Score: A Valid Measure for Generalized Hypermobility in Children 5.e4
ARTICLE IN PRESS

More Related Content

What's hot

Limb deficiencies and amputations
Limb deficiencies and amputationsLimb deficiencies and amputations
Limb deficiencies and amputationsZule Kha
 
ADVANCED UPPER LIMB ORTHOTIC MANAGEMENT IN STROKE PPT.pptx
ADVANCED UPPER LIMB ORTHOTIC MANAGEMENT IN STROKE PPT.pptxADVANCED UPPER LIMB ORTHOTIC MANAGEMENT IN STROKE PPT.pptx
ADVANCED UPPER LIMB ORTHOTIC MANAGEMENT IN STROKE PPT.pptxDibyaRanjanSwain3
 
Shoulder Sjsu Rehab
Shoulder Sjsu RehabShoulder Sjsu Rehab
Shoulder Sjsu RehabRoss Nakaji
 
Gait_ Introduction, Analysis & Re-education Principles
Gait_ Introduction, Analysis & Re-education PrinciplesGait_ Introduction, Analysis & Re-education Principles
Gait_ Introduction, Analysis & Re-education PrinciplesVivek Ramanandi
 
Spine Examination And Scoliosis
Spine Examination And ScoliosisSpine Examination And Scoliosis
Spine Examination And Scoliosisdrkmliau
 
Ankle & foot biomechanics
Ankle & foot biomechanicsAnkle & foot biomechanics
Ankle & foot biomechanicsMeghan Phutane
 
5b observation of Knee Joint
5b observation of Knee Joint5b observation of Knee Joint
5b observation of Knee JointSaurab Sharma
 
Anatomy and biomechanics of lumbar spine
Anatomy and biomechanics of lumbar spineAnatomy and biomechanics of lumbar spine
Anatomy and biomechanics of lumbar spineShalu Thariwal
 
orthopedics.Cerebral palsy.(dr.baxtyar rasul)
orthopedics.Cerebral palsy.(dr.baxtyar rasul)orthopedics.Cerebral palsy.(dr.baxtyar rasul)
orthopedics.Cerebral palsy.(dr.baxtyar rasul)student
 
Principal of arthrodesis
Principal of arthrodesisPrincipal of arthrodesis
Principal of arthrodesisRajesh Kumar
 
Key points of control illustrations by examples
Key points of control illustrations by examplesKey points of control illustrations by examples
Key points of control illustrations by examplesSara Sheikh
 
Spinal cord injury (sci) Rehab
Spinal cord injury (sci) RehabSpinal cord injury (sci) Rehab
Spinal cord injury (sci) RehabQuan Fu Gan
 
Reciprocating Gait Orthosis
Reciprocating Gait OrthosisReciprocating Gait Orthosis
Reciprocating Gait OrthosisJoe Antony
 
Knee Arthrodesis
Knee ArthrodesisKnee Arthrodesis
Knee Arthrodesisdrsp46
 
Tarsal tunnel syndrome
Tarsal tunnel syndromeTarsal tunnel syndrome
Tarsal tunnel syndromeAnant Patel
 

What's hot (20)

Spinal orthoses
Spinal orthosesSpinal orthoses
Spinal orthoses
 
Limb deficiencies and amputations
Limb deficiencies and amputationsLimb deficiencies and amputations
Limb deficiencies and amputations
 
Orthosis of hand ppt
Orthosis of hand pptOrthosis of hand ppt
Orthosis of hand ppt
 
ADVANCED UPPER LIMB ORTHOTIC MANAGEMENT IN STROKE PPT.pptx
ADVANCED UPPER LIMB ORTHOTIC MANAGEMENT IN STROKE PPT.pptxADVANCED UPPER LIMB ORTHOTIC MANAGEMENT IN STROKE PPT.pptx
ADVANCED UPPER LIMB ORTHOTIC MANAGEMENT IN STROKE PPT.pptx
 
Shoulder Sjsu Rehab
Shoulder Sjsu RehabShoulder Sjsu Rehab
Shoulder Sjsu Rehab
 
Gait_ Introduction, Analysis & Re-education Principles
Gait_ Introduction, Analysis & Re-education PrinciplesGait_ Introduction, Analysis & Re-education Principles
Gait_ Introduction, Analysis & Re-education Principles
 
Spine Examination And Scoliosis
Spine Examination And ScoliosisSpine Examination And Scoliosis
Spine Examination And Scoliosis
 
Ankle & foot biomechanics
Ankle & foot biomechanicsAnkle & foot biomechanics
Ankle & foot biomechanics
 
Hip osteoarthritis
Hip osteoarthritisHip osteoarthritis
Hip osteoarthritis
 
5b observation of Knee Joint
5b observation of Knee Joint5b observation of Knee Joint
5b observation of Knee Joint
 
Anatomy and biomechanics of lumbar spine
Anatomy and biomechanics of lumbar spineAnatomy and biomechanics of lumbar spine
Anatomy and biomechanics of lumbar spine
 
orthopedics.Cerebral palsy.(dr.baxtyar rasul)
orthopedics.Cerebral palsy.(dr.baxtyar rasul)orthopedics.Cerebral palsy.(dr.baxtyar rasul)
orthopedics.Cerebral palsy.(dr.baxtyar rasul)
 
Principal of arthrodesis
Principal of arthrodesisPrincipal of arthrodesis
Principal of arthrodesis
 
Snapping hip syndrome
Snapping hip syndromeSnapping hip syndrome
Snapping hip syndrome
 
Key points of control illustrations by examples
Key points of control illustrations by examplesKey points of control illustrations by examples
Key points of control illustrations by examples
 
Spinal cord injury (sci) Rehab
Spinal cord injury (sci) RehabSpinal cord injury (sci) Rehab
Spinal cord injury (sci) Rehab
 
Reciprocating Gait Orthosis
Reciprocating Gait OrthosisReciprocating Gait Orthosis
Reciprocating Gait Orthosis
 
Knee Arthrodesis
Knee ArthrodesisKnee Arthrodesis
Knee Arthrodesis
 
Shoulder arthroplasty
Shoulder arthroplastyShoulder arthroplasty
Shoulder arthroplasty
 
Tarsal tunnel syndrome
Tarsal tunnel syndromeTarsal tunnel syndrome
Tarsal tunnel syndrome
 

Similar to Beighton score

Bone health in_children_and_adolescents_with.7
Bone health in_children_and_adolescents_with.7Bone health in_children_and_adolescents_with.7
Bone health in_children_and_adolescents_with.7Uriel Hernandez Santamaria
 
Assessment of nutritional status of children in al hilla city
Assessment of nutritional status of children in al hilla cityAssessment of nutritional status of children in al hilla city
Assessment of nutritional status of children in al hilla cityAlexander Decker
 
Effect of smart phone using duration and gender on dynamic balance
Effect of smart phone using duration and gender on dynamic balanceEffect of smart phone using duration and gender on dynamic balance
Effect of smart phone using duration and gender on dynamic balancedbpublications
 
OutlineThesis Statement Due to racism, African Americans are mo
OutlineThesis Statement Due to racism, African Americans are moOutlineThesis Statement Due to racism, African Americans are mo
OutlineThesis Statement Due to racism, African Americans are molianaalbee2qly
 
OutlineThesis Statement Due to racism, African Americans are mo.docx
OutlineThesis Statement Due to racism, African Americans are mo.docxOutlineThesis Statement Due to racism, African Americans are mo.docx
OutlineThesis Statement Due to racism, African Americans are mo.docxkarlhennesey
 
Company Chosen Suncorp Bank Across Australia and globally, th.docx
Company Chosen Suncorp Bank Across Australia and globally, th.docxCompany Chosen Suncorp Bank Across Australia and globally, th.docx
Company Chosen Suncorp Bank Across Australia and globally, th.docxjanthony65
 
Company Chosen Suncorp Bank Across Australia and globally, th.docx
Company Chosen Suncorp Bank Across Australia and globally, th.docxCompany Chosen Suncorp Bank Across Australia and globally, th.docx
Company Chosen Suncorp Bank Across Australia and globally, th.docxtemplestewart19
 
Company Chosen Suncorp Bank Across Australia and globally, th.docx
Company Chosen Suncorp Bank Across Australia and globally, th.docxCompany Chosen Suncorp Bank Across Australia and globally, th.docx
Company Chosen Suncorp Bank Across Australia and globally, th.docxmccormicknadine86
 
A Comprehensive Mixed-Longitudinal Study of Growth in Boys with Autism Spectr...
A Comprehensive Mixed-Longitudinal Study of Growth in Boys with Autism Spectr...A Comprehensive Mixed-Longitudinal Study of Growth in Boys with Autism Spectr...
A Comprehensive Mixed-Longitudinal Study of Growth in Boys with Autism Spectr...Cherie Green
 
Assessing the Relationship between Body Composition and Spinal Curvatures in ...
Assessing the Relationship between Body Composition and Spinal Curvatures in ...Assessing the Relationship between Body Composition and Spinal Curvatures in ...
Assessing the Relationship between Body Composition and Spinal Curvatures in ...peertechzpublication
 
Body mass-index-quality-of-life-and-migraine-in-students
Body mass-index-quality-of-life-and-migraine-in-studentsBody mass-index-quality-of-life-and-migraine-in-students
Body mass-index-quality-of-life-and-migraine-in-studentsAnnex Publishers
 
Effectiveness of Stretch Interventions for Children With Neuromuscular Disabi...
Effectiveness of Stretch Interventions for Children With Neuromuscular Disabi...Effectiveness of Stretch Interventions for Children With Neuromuscular Disabi...
Effectiveness of Stretch Interventions for Children With Neuromuscular Disabi...Sarah Craig
 
BB - Poster template(2)
BB - Poster template(2)BB - Poster template(2)
BB - Poster template(2)Joel Huskisson
 
Gait biomechanics in Cerebral Palsy
Gait biomechanics in Cerebral PalsyGait biomechanics in Cerebral Palsy
Gait biomechanics in Cerebral PalsyDaniel Yazbek
 
Am J Health Behav.™ 2018;42(3)47-55 47 The obesity epidem.docx
Am J Health Behav.™ 2018;42(3)47-55 47 The obesity epidem.docxAm J Health Behav.™ 2018;42(3)47-55 47 The obesity epidem.docx
Am J Health Behav.™ 2018;42(3)47-55 47 The obesity epidem.docxdaniahendric
 

Similar to Beighton score (20)

Bone health in_children_and_adolescents_with.7
Bone health in_children_and_adolescents_with.7Bone health in_children_and_adolescents_with.7
Bone health in_children_and_adolescents_with.7
 
Assessment of nutritional status of children in al hilla city
Assessment of nutritional status of children in al hilla cityAssessment of nutritional status of children in al hilla city
Assessment of nutritional status of children in al hilla city
 
Effect of smart phone using duration and gender on dynamic balance
Effect of smart phone using duration and gender on dynamic balanceEffect of smart phone using duration and gender on dynamic balance
Effect of smart phone using duration and gender on dynamic balance
 
OutlineThesis Statement Due to racism, African Americans are mo
OutlineThesis Statement Due to racism, African Americans are moOutlineThesis Statement Due to racism, African Americans are mo
OutlineThesis Statement Due to racism, African Americans are mo
 
OutlineThesis Statement Due to racism, African Americans are mo.docx
OutlineThesis Statement Due to racism, African Americans are mo.docxOutlineThesis Statement Due to racism, African Americans are mo.docx
OutlineThesis Statement Due to racism, African Americans are mo.docx
 
Company Chosen Suncorp Bank Across Australia and globally, th.docx
Company Chosen Suncorp Bank Across Australia and globally, th.docxCompany Chosen Suncorp Bank Across Australia and globally, th.docx
Company Chosen Suncorp Bank Across Australia and globally, th.docx
 
Company Chosen Suncorp Bank Across Australia and globally, th.docx
Company Chosen Suncorp Bank Across Australia and globally, th.docxCompany Chosen Suncorp Bank Across Australia and globally, th.docx
Company Chosen Suncorp Bank Across Australia and globally, th.docx
 
Company Chosen Suncorp Bank Across Australia and globally, th.docx
Company Chosen Suncorp Bank Across Australia and globally, th.docxCompany Chosen Suncorp Bank Across Australia and globally, th.docx
Company Chosen Suncorp Bank Across Australia and globally, th.docx
 
PHYSICAL ACTIVITY AND POLIO
PHYSICAL ACTIVITY AND POLIOPHYSICAL ACTIVITY AND POLIO
PHYSICAL ACTIVITY AND POLIO
 
Adeyeye adeyemi elijah synopsis faculty presentation july 18, 2019.edited
Adeyeye adeyemi  elijah synopsis faculty presentation  july 18, 2019.editedAdeyeye adeyemi  elijah synopsis faculty presentation  july 18, 2019.edited
Adeyeye adeyemi elijah synopsis faculty presentation july 18, 2019.edited
 
A Comprehensive Mixed-Longitudinal Study of Growth in Boys with Autism Spectr...
A Comprehensive Mixed-Longitudinal Study of Growth in Boys with Autism Spectr...A Comprehensive Mixed-Longitudinal Study of Growth in Boys with Autism Spectr...
A Comprehensive Mixed-Longitudinal Study of Growth in Boys with Autism Spectr...
 
Assessing the Relationship between Body Composition and Spinal Curvatures in ...
Assessing the Relationship between Body Composition and Spinal Curvatures in ...Assessing the Relationship between Body Composition and Spinal Curvatures in ...
Assessing the Relationship between Body Composition and Spinal Curvatures in ...
 
Body mass-index-quality-of-life-and-migraine-in-students
Body mass-index-quality-of-life-and-migraine-in-studentsBody mass-index-quality-of-life-and-migraine-in-students
Body mass-index-quality-of-life-and-migraine-in-students
 
Associated risk factors in children who had late DDH.pdf
Associated risk factors in children who had late DDH.pdfAssociated risk factors in children who had late DDH.pdf
Associated risk factors in children who had late DDH.pdf
 
Agostinis sobrinho2018
Agostinis sobrinho2018Agostinis sobrinho2018
Agostinis sobrinho2018
 
Effectiveness of Stretch Interventions for Children With Neuromuscular Disabi...
Effectiveness of Stretch Interventions for Children With Neuromuscular Disabi...Effectiveness of Stretch Interventions for Children With Neuromuscular Disabi...
Effectiveness of Stretch Interventions for Children With Neuromuscular Disabi...
 
BB - Poster template(2)
BB - Poster template(2)BB - Poster template(2)
BB - Poster template(2)
 
Gait biomechanics in Cerebral Palsy
Gait biomechanics in Cerebral PalsyGait biomechanics in Cerebral Palsy
Gait biomechanics in Cerebral Palsy
 
Am J Health Behav.™ 2018;42(3)47-55 47 The obesity epidem.docx
Am J Health Behav.™ 2018;42(3)47-55 47 The obesity epidem.docxAm J Health Behav.™ 2018;42(3)47-55 47 The obesity epidem.docx
Am J Health Behav.™ 2018;42(3)47-55 47 The obesity epidem.docx
 
2014_AAHPERD_Poster
2014_AAHPERD_Poster2014_AAHPERD_Poster
2014_AAHPERD_Poster
 

More from Paul Coelho, MD

Suicidality Poster References.docx
Suicidality Poster References.docxSuicidality Poster References.docx
Suicidality Poster References.docxPaul Coelho, MD
 
Opioid Milli-equivalence Conversion Factors CDC
Opioid Milli-equivalence Conversion Factors CDCOpioid Milli-equivalence Conversion Factors CDC
Opioid Milli-equivalence Conversion Factors CDCPaul Coelho, MD
 
Labeling Woefulness: The Social Construction of Fibromyalgia
Labeling Woefulness: The Social Construction of FibromyalgiaLabeling Woefulness: The Social Construction of Fibromyalgia
Labeling Woefulness: The Social Construction of FibromyalgiaPaul Coelho, MD
 
Outcomes in Long-term Opioid Tapering and Buprenorphine Transition: A Retrosp...
Outcomes in Long-term Opioid Tapering and Buprenorphine Transition: A Retrosp...Outcomes in Long-term Opioid Tapering and Buprenorphine Transition: A Retrosp...
Outcomes in Long-term Opioid Tapering and Buprenorphine Transition: A Retrosp...Paul Coelho, MD
 
Pain Phenotyping Tool For Primary Care
Pain Phenotyping Tool For Primary CarePain Phenotyping Tool For Primary Care
Pain Phenotyping Tool For Primary CarePaul Coelho, MD
 
Fibromyalgia & Somatic Symptom Disorder Patient Handout
Fibromyalgia & Somatic Symptom Disorder Patient HandoutFibromyalgia & Somatic Symptom Disorder Patient Handout
Fibromyalgia & Somatic Symptom Disorder Patient HandoutPaul Coelho, MD
 
Community Catastrophizing
Community CatastrophizingCommunity Catastrophizing
Community CatastrophizingPaul Coelho, MD
 
Risk-Benefit High-Dose LTOT
Risk-Benefit High-Dose LTOTRisk-Benefit High-Dose LTOT
Risk-Benefit High-Dose LTOTPaul Coelho, MD
 
Mortality quadrupled among opioid-driven hospitalizations notably within lowe...
Mortality quadrupled among opioid-driven hospitalizations notably within lowe...Mortality quadrupled among opioid-driven hospitalizations notably within lowe...
Mortality quadrupled among opioid-driven hospitalizations notably within lowe...Paul Coelho, MD
 
Prescriptions filled following an opioid-related hospitalization.
Prescriptions filled following an opioid-related hospitalization.Prescriptions filled following an opioid-related hospitalization.
Prescriptions filled following an opioid-related hospitalization.Paul Coelho, MD
 
Jamapsychiatry santavirta 2017_oi_170084
Jamapsychiatry santavirta 2017_oi_170084Jamapsychiatry santavirta 2017_oi_170084
Jamapsychiatry santavirta 2017_oi_170084Paul Coelho, MD
 
Correlation of opioid mortality with prescriptions and social determinants -a...
Correlation of opioid mortality with prescriptions and social determinants -a...Correlation of opioid mortality with prescriptions and social determinants -a...
Correlation of opioid mortality with prescriptions and social determinants -a...Paul Coelho, MD
 
Gao recommendations to CMS
Gao recommendations to CMSGao recommendations to CMS
Gao recommendations to CMSPaul Coelho, MD
 
Prescribing by specialty
Prescribing by specialtyPrescribing by specialty
Prescribing by specialtyPaul Coelho, MD
 
The place-of-antipsychotics-in-the-therapy-of-anxiety-disorders-and-obsessive...
The place-of-antipsychotics-in-the-therapy-of-anxiety-disorders-and-obsessive...The place-of-antipsychotics-in-the-therapy-of-anxiety-disorders-and-obsessive...
The place-of-antipsychotics-in-the-therapy-of-anxiety-disorders-and-obsessive...Paul Coelho, MD
 
Structured opioid refill clinic epic smartphrases
Structured opioid refill clinic epic smartphrases Structured opioid refill clinic epic smartphrases
Structured opioid refill clinic epic smartphrases Paul Coelho, MD
 
Opioids for the Treatment of Chronic Pain: Mistakes Made, Lessons Learned, an...
Opioids for the Treatment of Chronic Pain: Mistakes Made, Lessons Learned, an...Opioids for the Treatment of Chronic Pain: Mistakes Made, Lessons Learned, an...
Opioids for the Treatment of Chronic Pain: Mistakes Made, Lessons Learned, an...Paul Coelho, MD
 
The potential adverse influence of physicians’ words.
The potential adverse influence of physicians’ words.The potential adverse influence of physicians’ words.
The potential adverse influence of physicians’ words.Paul Coelho, MD
 
Ctaf chronic pain__evidence_report_100417
Ctaf chronic pain__evidence_report_100417Ctaf chronic pain__evidence_report_100417
Ctaf chronic pain__evidence_report_100417Paul Coelho, MD
 

More from Paul Coelho, MD (20)

Suicidality Poster References.docx
Suicidality Poster References.docxSuicidality Poster References.docx
Suicidality Poster References.docx
 
Opioid Milli-equivalence Conversion Factors CDC
Opioid Milli-equivalence Conversion Factors CDCOpioid Milli-equivalence Conversion Factors CDC
Opioid Milli-equivalence Conversion Factors CDC
 
Labeling Woefulness: The Social Construction of Fibromyalgia
Labeling Woefulness: The Social Construction of FibromyalgiaLabeling Woefulness: The Social Construction of Fibromyalgia
Labeling Woefulness: The Social Construction of Fibromyalgia
 
Outcomes in Long-term Opioid Tapering and Buprenorphine Transition: A Retrosp...
Outcomes in Long-term Opioid Tapering and Buprenorphine Transition: A Retrosp...Outcomes in Long-term Opioid Tapering and Buprenorphine Transition: A Retrosp...
Outcomes in Long-term Opioid Tapering and Buprenorphine Transition: A Retrosp...
 
Pain Phenotyping Tool For Primary Care
Pain Phenotyping Tool For Primary CarePain Phenotyping Tool For Primary Care
Pain Phenotyping Tool For Primary Care
 
Fibromyalgia & Somatic Symptom Disorder Patient Handout
Fibromyalgia & Somatic Symptom Disorder Patient HandoutFibromyalgia & Somatic Symptom Disorder Patient Handout
Fibromyalgia & Somatic Symptom Disorder Patient Handout
 
Community Catastrophizing
Community CatastrophizingCommunity Catastrophizing
Community Catastrophizing
 
Risk-Benefit High-Dose LTOT
Risk-Benefit High-Dose LTOTRisk-Benefit High-Dose LTOT
Risk-Benefit High-Dose LTOT
 
Space Trial
Space TrialSpace Trial
Space Trial
 
Mortality quadrupled among opioid-driven hospitalizations notably within lowe...
Mortality quadrupled among opioid-driven hospitalizations notably within lowe...Mortality quadrupled among opioid-driven hospitalizations notably within lowe...
Mortality quadrupled among opioid-driven hospitalizations notably within lowe...
 
Prescriptions filled following an opioid-related hospitalization.
Prescriptions filled following an opioid-related hospitalization.Prescriptions filled following an opioid-related hospitalization.
Prescriptions filled following an opioid-related hospitalization.
 
Jamapsychiatry santavirta 2017_oi_170084
Jamapsychiatry santavirta 2017_oi_170084Jamapsychiatry santavirta 2017_oi_170084
Jamapsychiatry santavirta 2017_oi_170084
 
Correlation of opioid mortality with prescriptions and social determinants -a...
Correlation of opioid mortality with prescriptions and social determinants -a...Correlation of opioid mortality with prescriptions and social determinants -a...
Correlation of opioid mortality with prescriptions and social determinants -a...
 
Gao recommendations to CMS
Gao recommendations to CMSGao recommendations to CMS
Gao recommendations to CMS
 
Prescribing by specialty
Prescribing by specialtyPrescribing by specialty
Prescribing by specialty
 
The place-of-antipsychotics-in-the-therapy-of-anxiety-disorders-and-obsessive...
The place-of-antipsychotics-in-the-therapy-of-anxiety-disorders-and-obsessive...The place-of-antipsychotics-in-the-therapy-of-anxiety-disorders-and-obsessive...
The place-of-antipsychotics-in-the-therapy-of-anxiety-disorders-and-obsessive...
 
Structured opioid refill clinic epic smartphrases
Structured opioid refill clinic epic smartphrases Structured opioid refill clinic epic smartphrases
Structured opioid refill clinic epic smartphrases
 
Opioids for the Treatment of Chronic Pain: Mistakes Made, Lessons Learned, an...
Opioids for the Treatment of Chronic Pain: Mistakes Made, Lessons Learned, an...Opioids for the Treatment of Chronic Pain: Mistakes Made, Lessons Learned, an...
Opioids for the Treatment of Chronic Pain: Mistakes Made, Lessons Learned, an...
 
The potential adverse influence of physicians’ words.
The potential adverse influence of physicians’ words.The potential adverse influence of physicians’ words.
The potential adverse influence of physicians’ words.
 
Ctaf chronic pain__evidence_report_100417
Ctaf chronic pain__evidence_report_100417Ctaf chronic pain__evidence_report_100417
Ctaf chronic pain__evidence_report_100417
 

Recently uploaded

Call Girl In Zirakpur ❤️♀️@ 9988299661 Zirakpur Call Girls Near Me ❤️♀️@ Sexy...
Call Girl In Zirakpur ❤️♀️@ 9988299661 Zirakpur Call Girls Near Me ❤️♀️@ Sexy...Call Girl In Zirakpur ❤️♀️@ 9988299661 Zirakpur Call Girls Near Me ❤️♀️@ Sexy...
Call Girl In Zirakpur ❤️♀️@ 9988299661 Zirakpur Call Girls Near Me ❤️♀️@ Sexy...Sheetaleventcompany
 
Bangalore call girl 👯‍♀️@ Simran Independent Call Girls in Bangalore GIUXUZ...
Bangalore call girl  👯‍♀️@ Simran Independent Call Girls in Bangalore  GIUXUZ...Bangalore call girl  👯‍♀️@ Simran Independent Call Girls in Bangalore  GIUXUZ...
Bangalore call girl 👯‍♀️@ Simran Independent Call Girls in Bangalore GIUXUZ...Gfnyt
 
VIP Call Girls Noida Sia 9711199171 High Class Call Girl Near Me
VIP Call Girls Noida Sia 9711199171 High Class Call Girl Near MeVIP Call Girls Noida Sia 9711199171 High Class Call Girl Near Me
VIP Call Girls Noida Sia 9711199171 High Class Call Girl Near Memriyagarg453
 
Call Girls Hyderabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Hyderabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Hyderabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Hyderabad Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Russian Escorts Aishbagh Road * 9548273370 Naughty Call Girls Service in Lucknow
Russian Escorts Aishbagh Road * 9548273370 Naughty Call Girls Service in LucknowRussian Escorts Aishbagh Road * 9548273370 Naughty Call Girls Service in Lucknow
Russian Escorts Aishbagh Road * 9548273370 Naughty Call Girls Service in Lucknowgragteena
 
VIP Call Girl Sector 25 Gurgaon Just Call Me 9899900591
VIP Call Girl Sector 25 Gurgaon Just Call Me 9899900591VIP Call Girl Sector 25 Gurgaon Just Call Me 9899900591
VIP Call Girl Sector 25 Gurgaon Just Call Me 9899900591adityaroy0215
 
💚😋Chandigarh Escort Service Call Girls, ₹5000 To 25K With AC💚😋
💚😋Chandigarh Escort Service Call Girls, ₹5000 To 25K With AC💚😋💚😋Chandigarh Escort Service Call Girls, ₹5000 To 25K With AC💚😋
💚😋Chandigarh Escort Service Call Girls, ₹5000 To 25K With AC💚😋Sheetaleventcompany
 
Russian Call Girls Gurgaon Swara 9711199012 Independent Escort Service Gurgaon
Russian Call Girls Gurgaon Swara 9711199012 Independent Escort Service GurgaonRussian Call Girls Gurgaon Swara 9711199012 Independent Escort Service Gurgaon
Russian Call Girls Gurgaon Swara 9711199012 Independent Escort Service GurgaonCall Girls Service Gurgaon
 
Russian Call Girls in Chandigarh Ojaswi ❤️🍑 9907093804 👄🫦 Independent Escort ...
Russian Call Girls in Chandigarh Ojaswi ❤️🍑 9907093804 👄🫦 Independent Escort ...Russian Call Girls in Chandigarh Ojaswi ❤️🍑 9907093804 👄🫦 Independent Escort ...
Russian Call Girls in Chandigarh Ojaswi ❤️🍑 9907093804 👄🫦 Independent Escort ...High Profile Call Girls Chandigarh Aarushi
 
Vip sexy Call Girls Service In Sector 137,9999965857 Young Female Escorts Ser...
Vip sexy Call Girls Service In Sector 137,9999965857 Young Female Escorts Ser...Vip sexy Call Girls Service In Sector 137,9999965857 Young Female Escorts Ser...
Vip sexy Call Girls Service In Sector 137,9999965857 Young Female Escorts Ser...Call Girls Noida
 
Chandigarh Call Girls 👙 7001035870 👙 Genuine WhatsApp Number for Real Meet
Chandigarh Call Girls 👙 7001035870 👙 Genuine WhatsApp Number for Real MeetChandigarh Call Girls 👙 7001035870 👙 Genuine WhatsApp Number for Real Meet
Chandigarh Call Girls 👙 7001035870 👙 Genuine WhatsApp Number for Real Meetpriyashah722354
 
Basics of Anatomy- Language of Anatomy.pptx
Basics of Anatomy- Language of Anatomy.pptxBasics of Anatomy- Language of Anatomy.pptx
Basics of Anatomy- Language of Anatomy.pptxAyush Gupta
 
indian Call Girl Panchkula ❤️🍑 9907093804 Low Rate Call Girls Ludhiana Tulsi
indian Call Girl Panchkula ❤️🍑 9907093804 Low Rate Call Girls Ludhiana Tulsiindian Call Girl Panchkula ❤️🍑 9907093804 Low Rate Call Girls Ludhiana Tulsi
indian Call Girl Panchkula ❤️🍑 9907093804 Low Rate Call Girls Ludhiana TulsiHigh Profile Call Girls Chandigarh Aarushi
 
Jalandhar Female Call Girls Contact Number 9053900678 💚Jalandhar Female Call...
Jalandhar  Female Call Girls Contact Number 9053900678 💚Jalandhar Female Call...Jalandhar  Female Call Girls Contact Number 9053900678 💚Jalandhar Female Call...
Jalandhar Female Call Girls Contact Number 9053900678 💚Jalandhar Female Call...Call Girls Service Chandigarh Ayushi
 
VIP Call Girl Sector 88 Gurgaon Delhi Just Call Me 9899900591
VIP Call Girl Sector 88 Gurgaon Delhi Just Call Me 9899900591VIP Call Girl Sector 88 Gurgaon Delhi Just Call Me 9899900591
VIP Call Girl Sector 88 Gurgaon Delhi Just Call Me 9899900591adityaroy0215
 

Recently uploaded (20)

Call Girl In Zirakpur ❤️♀️@ 9988299661 Zirakpur Call Girls Near Me ❤️♀️@ Sexy...
Call Girl In Zirakpur ❤️♀️@ 9988299661 Zirakpur Call Girls Near Me ❤️♀️@ Sexy...Call Girl In Zirakpur ❤️♀️@ 9988299661 Zirakpur Call Girls Near Me ❤️♀️@ Sexy...
Call Girl In Zirakpur ❤️♀️@ 9988299661 Zirakpur Call Girls Near Me ❤️♀️@ Sexy...
 
Bangalore call girl 👯‍♀️@ Simran Independent Call Girls in Bangalore GIUXUZ...
Bangalore call girl  👯‍♀️@ Simran Independent Call Girls in Bangalore  GIUXUZ...Bangalore call girl  👯‍♀️@ Simran Independent Call Girls in Bangalore  GIUXUZ...
Bangalore call girl 👯‍♀️@ Simran Independent Call Girls in Bangalore GIUXUZ...
 
Model Call Girl in Subhash Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Subhash Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Subhash Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Subhash Nagar Delhi reach out to us at 🔝9953056974🔝
 
VIP Call Girls Noida Sia 9711199171 High Class Call Girl Near Me
VIP Call Girls Noida Sia 9711199171 High Class Call Girl Near MeVIP Call Girls Noida Sia 9711199171 High Class Call Girl Near Me
VIP Call Girls Noida Sia 9711199171 High Class Call Girl Near Me
 
#9711199012# African Student Escorts in Delhi 😘 Call Girls Delhi
#9711199012# African Student Escorts in Delhi 😘 Call Girls Delhi#9711199012# African Student Escorts in Delhi 😘 Call Girls Delhi
#9711199012# African Student Escorts in Delhi 😘 Call Girls Delhi
 
Russian Call Girls in Dehradun Komal 🔝 7001305949 🔝 📍 Independent Escort Serv...
Russian Call Girls in Dehradun Komal 🔝 7001305949 🔝 📍 Independent Escort Serv...Russian Call Girls in Dehradun Komal 🔝 7001305949 🔝 📍 Independent Escort Serv...
Russian Call Girls in Dehradun Komal 🔝 7001305949 🔝 📍 Independent Escort Serv...
 
Call Girls Hyderabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Hyderabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Hyderabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Hyderabad Just Call 9907093804 Top Class Call Girl Service Available
 
Russian Escorts Aishbagh Road * 9548273370 Naughty Call Girls Service in Lucknow
Russian Escorts Aishbagh Road * 9548273370 Naughty Call Girls Service in LucknowRussian Escorts Aishbagh Road * 9548273370 Naughty Call Girls Service in Lucknow
Russian Escorts Aishbagh Road * 9548273370 Naughty Call Girls Service in Lucknow
 
VIP Call Girl Sector 25 Gurgaon Just Call Me 9899900591
VIP Call Girl Sector 25 Gurgaon Just Call Me 9899900591VIP Call Girl Sector 25 Gurgaon Just Call Me 9899900591
VIP Call Girl Sector 25 Gurgaon Just Call Me 9899900591
 
💚😋Chandigarh Escort Service Call Girls, ₹5000 To 25K With AC💚😋
💚😋Chandigarh Escort Service Call Girls, ₹5000 To 25K With AC💚😋💚😋Chandigarh Escort Service Call Girls, ₹5000 To 25K With AC💚😋
💚😋Chandigarh Escort Service Call Girls, ₹5000 To 25K With AC💚😋
 
Russian Call Girls Gurgaon Swara 9711199012 Independent Escort Service Gurgaon
Russian Call Girls Gurgaon Swara 9711199012 Independent Escort Service GurgaonRussian Call Girls Gurgaon Swara 9711199012 Independent Escort Service Gurgaon
Russian Call Girls Gurgaon Swara 9711199012 Independent Escort Service Gurgaon
 
Russian Call Girls in Chandigarh Ojaswi ❤️🍑 9907093804 👄🫦 Independent Escort ...
Russian Call Girls in Chandigarh Ojaswi ❤️🍑 9907093804 👄🫦 Independent Escort ...Russian Call Girls in Chandigarh Ojaswi ❤️🍑 9907093804 👄🫦 Independent Escort ...
Russian Call Girls in Chandigarh Ojaswi ❤️🍑 9907093804 👄🫦 Independent Escort ...
 
Vip sexy Call Girls Service In Sector 137,9999965857 Young Female Escorts Ser...
Vip sexy Call Girls Service In Sector 137,9999965857 Young Female Escorts Ser...Vip sexy Call Girls Service In Sector 137,9999965857 Young Female Escorts Ser...
Vip sexy Call Girls Service In Sector 137,9999965857 Young Female Escorts Ser...
 
VIP Call Girls Lucknow Isha 🔝 9719455033 🔝 🎶 Independent Escort Service Lucknow
VIP Call Girls Lucknow Isha 🔝 9719455033 🔝 🎶 Independent Escort Service LucknowVIP Call Girls Lucknow Isha 🔝 9719455033 🔝 🎶 Independent Escort Service Lucknow
VIP Call Girls Lucknow Isha 🔝 9719455033 🔝 🎶 Independent Escort Service Lucknow
 
Chandigarh Call Girls 👙 7001035870 👙 Genuine WhatsApp Number for Real Meet
Chandigarh Call Girls 👙 7001035870 👙 Genuine WhatsApp Number for Real MeetChandigarh Call Girls 👙 7001035870 👙 Genuine WhatsApp Number for Real Meet
Chandigarh Call Girls 👙 7001035870 👙 Genuine WhatsApp Number for Real Meet
 
Basics of Anatomy- Language of Anatomy.pptx
Basics of Anatomy- Language of Anatomy.pptxBasics of Anatomy- Language of Anatomy.pptx
Basics of Anatomy- Language of Anatomy.pptx
 
Call Girls in Lucknow Esha 🔝 8923113531 🔝 🎶 Independent Escort Service Lucknow
Call Girls in Lucknow Esha 🔝 8923113531  🔝 🎶 Independent Escort Service LucknowCall Girls in Lucknow Esha 🔝 8923113531  🔝 🎶 Independent Escort Service Lucknow
Call Girls in Lucknow Esha 🔝 8923113531 🔝 🎶 Independent Escort Service Lucknow
 
indian Call Girl Panchkula ❤️🍑 9907093804 Low Rate Call Girls Ludhiana Tulsi
indian Call Girl Panchkula ❤️🍑 9907093804 Low Rate Call Girls Ludhiana Tulsiindian Call Girl Panchkula ❤️🍑 9907093804 Low Rate Call Girls Ludhiana Tulsi
indian Call Girl Panchkula ❤️🍑 9907093804 Low Rate Call Girls Ludhiana Tulsi
 
Jalandhar Female Call Girls Contact Number 9053900678 💚Jalandhar Female Call...
Jalandhar  Female Call Girls Contact Number 9053900678 💚Jalandhar Female Call...Jalandhar  Female Call Girls Contact Number 9053900678 💚Jalandhar Female Call...
Jalandhar Female Call Girls Contact Number 9053900678 💚Jalandhar Female Call...
 
VIP Call Girl Sector 88 Gurgaon Delhi Just Call Me 9899900591
VIP Call Girl Sector 88 Gurgaon Delhi Just Call Me 9899900591VIP Call Girl Sector 88 Gurgaon Delhi Just Call Me 9899900591
VIP Call Girl Sector 88 Gurgaon Delhi Just Call Me 9899900591
 

Beighton score

  • 1. Beighton Score: A Valid Measure for Generalized Hypermobility in Children Bouwien Smits-Engelsman, PhD, Marie¨tte Klerks, MS, and Amanda Kirby, MRCGP, PhD Objective To evaluate the validity of the Beighton score as a generalized measure of hypermobility and to mea- sure the prevalence of hypermobility and pain in a random population of school age children. Study design Prospective study of 551 children attending various Dutch elementary schools participated; 47% were males (258) and 53% (293) females, age range was 6 to 12 years. Children’s joints and movements were as- sessed according to the Beighton score by qualified physiotherapists and by use of goniometry measuring 16 pas- sive ranges of motion of joints on both sides of the body. Results More than 35% of children scored more than 5/9 on the Beighton score. Children who scored high on the Beighton score also showed increased range of motion in the other joints measured. Moreover 12.3% of children had symptoms of joint pain, and 9.1% complained of pain after exercise or sports. Importantly, this percentage was independent of the Beighton score. There were no significant differences in Beighton score for sex in this popula- tion. Conclusion The Beighton score, when goniometry is used, is a valid instrument to measure generalized joint mo- bility in school-age children 6 to 12 years. No extra items are needed to improve the scale. (J Pediatr 2010;-:---). J oint hypermobility, defined as a more-than-normal range of movement (ROM) in a joint, is either localized (increased ROM of a single joint) or generalized. The prevalence of asymptomatic generalized hypermobility in children has been variably and widely reported, between 3% and 30%.1-12 Generalized joint hypermobility (GJH) is said to be more prev- alent among girls than boys with sex ratios of approximately 3:1 to 2:1, females/males.1-8 In children, joint mobility is also in- versely related with age, with younger children showing higher joint mobility than older children and with sex differences noted as they get older.1-3,6,12 Symptomatic generalized hypermobility is believed to be less common10-12 and poorly recognized in childhood.12 In 1967, Kirk et al11 described musculoskeletal complaints in association with general hypermobility in adults, which was called hyper- mobility syndrome. Joint hypermobility syndrome (JHS) is diagnosed when, in addition to the hypermobility, individuals report musculoskeletal symptoms in more than 4 joints, including pain over a period of more than 12 weeks, and when other heritable disorders of connective tissue and other causes of the symptoms have been excluded.13-15 Individuals with collagen disorders, such as Ehlers-Danlos syndrome, have also been described with the term JHS with their heritable disorders of connective tissue diag- nosis.16 Joint hypermobility in children is commonly diagnosed with criteria for an adult population and ROM is judged by eye. To evaluate hypermobility, clinicians mainly use two scoring systems: the Beighton score (Table I)1 and the Bulbena Criteria.17 The Beighton score, more commonly used in diagnosing hypermobility in childhood,2-9,18 has its cutoff point internationally debated.2,6,9,18 Originally the Beighton score cutoff points offered no differentiation between adults and children, sex, and eth- nicity. However, given the noted variations, it would seem that cutoff values that take these into account are required. The lack of specific criteria for children motivated this study. A standardized protocol is lacking, and a uniform description of the test items in children is needed for reliable testing of hypermobility. For example, it is not clear whether the Beighton score has to be performed actively or passively.1,19 Juul et al19 defined a standardized protocol for the Beighton score with passive range of motion for clinical studies of reproducibility in adults. To standardize the Beighton score for children, we described and tested a goniometry protocol (Appendix; available at www.jpeds.com). The Beighton score has never been tested for validity, although it is used clinically as a basis of examination and diagnosis.20,21 Therefore a second aim of the study concerned the validation of the Beighton score as a measure of generalized hypermobility in children. A third aim was to examine the prevalence of reported pain after exercise or sport, and pes planus in a random pop- ulation, to consider whether this was associated with the classification of mobil- ity. A final consideration was to measure the prevalence of hypermobility in From the Faculty of Kinesiology and Rehabilitation Sciences, K.U.Leuven, Avans, University for Professionals, Breda (B.S.), The Netherlands; Private Practice, Peize (M.K.), The Netherlands, and the Dyscovery Centre, School of Education, University of Wales, Newport, Wales, United Kingdom (A.K.) The authors declare no conflicts of interest. 0022-3476/$ - see front matter. Copyright Ó 2010 Mosby Inc. All rights reserved. 10.1016/j.jpeds.2010.07.021 GJH Generalized joint hypermobility JHS Joint hypermobility syndrome ROM Range of movement SBP Standardized Beighton score protocol SJP Standardized joint-mobility protocol 1
  • 2. a random population of elementary school–age children and to consider whether there were sex or body side differences in the population. Method Standardized Beighton Score Protocol All the items were described and visualized with photos. Cutoff points for declaring an item as positive or negative were included (Appendix). Goniometry was used to measure the passive bilateral dorsiflexion of the fifth metacarpophalangeal joint and the passive bilateral hyperextension of the elbow and knee. Standardized Joint Mobility Protocol To obtain a reliable impression of overall joint mobility, an extended ‘‘standardized joint mobility protocol’’ (SJP) was developed. This describes test position, positioning of the go- niometer, anatomic landmarks, and motion to be tested. In this protocol passive range of motion was used to standardize the measurement as much as possible and to be less depen- dent on the child’s notion of a full range of movement. Six- teen ROMs of 8 different joints were measured bilaterally to the nearest 1-degree with a standard 2-legged 360-degree type Collehon extendable goniometer (01135; Lafayette Instru- ment Company, Lafayette, Indiana). For small joints, a plastic 180-degree goniometer (type HIRes) was used. Included in this protocol are several extra observations that are clearly de- scribed, including pes planus and ‘‘heel-to-the-buttock’’ movement. Training Procedure To collect reliable data, 6 pediatric physical therapists were trained. The protocol was explained, and items were taught under supervision. Then therapists used SBP and SJP to mea- sure the passive joint mobility and the Beighton score of 6 healthy Dutch children. Intraclass correlation between the first and second measurements was high (0.99), indicating excellent reliability. The mean difference (absolute [Measure- ment 1 À Measurement 2]) between all the joints measured by the 6 therapists was 8.05 degrees (SD 5.9), with the exor- otation of the shoulder being the least reliable (mean absolute difference of 15.8 degrees) and the passive extensions of the hip and knee being the best reproducible maneuvers (mean absolute difference of 4.5 degrees). The standard error of measurement for the ranges of motion for the joints included in the SBP (knee and elbow extension and dorsiflexion of the fifth metacarpophalangeal) was 2 degrees. Test Procedure All children were measured by the 6 trained pediatric physical therapists according to the SBP and the full bilateral SJP. Children wore shorts and shirts and no shoes. Before the as- sessment, the movement was demonstrated by the tester first, supported with verbal instructions. Children were instructed to relax their muscles as much as possible, and the maneuver was performed without evoking pain. Additionally, the pres- ence of pes planus (the arch lowers and flattens fully, exces- sively and easily, with the talus bulging medially22 ) and muscle length of the rectus femoris were assessed (heel to buttock in prone position) (Appendix). Background information about the child’s health was also gathered with a questionnaire. Participants A total of 551 children, attending 11 Dutch elementary schools, participated in the study. Teachers selected every second child of the register in the respective classes. Approval was gained from the local ethics committee. Parental consent was obtained and additional assent from children before par- ticipation. Of this sample, 86% were white, and 14% were from first- generation Dutch families (all the children were born in the Netherlands). There were 46.8% males (258) and 53.2% (293) females in the group. Nearly 13% of children were left handed. Data Analysis Totals on the Beighton score were compared by use of inde- pendent samples t testing for sex differences and side of the body. Scores on the Beighton score were calculated on the ba- sis of the SBP. Based on cutoff scores reported in the litera- ture, children were placed into 3 bands as follows: band 1: not hypermobile (0-4); band 2: increased mobility (5-6); band 3: hypermobile (7-9). These Beighton score bands were used as independent variables to compare the 16 mea- sured ROM of the joints (means of left and right side were used) with analysis of variance. Frequency of reported pain after exercise and sport and pes planus were analyzed with Table II. Demographic information Mean Range Age 8 years, 9 months 6-12 years Weight 31 kg 17-83 kg Height 1 m 37cm 1m 5 cm–1 m 73 cm BMI 16.5* 10-36 *Overall, 14% of the children in this sample were overweight. Table III. Distribution of Beighton score total Frequency Percent Cumulative percent Band 1: 0-4 Normal ROM 0 40 7.3 7.3 1 46 8.3 15.6 2 102 18.5 34.1 3 64 11.6 45.7 4 103 18.7 64.4 Band 2: 5-6 Increased ROM 5 69 12.5 77.0 6 77 14.0 90.9 Band 3: 7-9 Hypermobile 7 33 6.0 96.9 8 16 2.9 99.8 9 1 .2 100.0 Total 551 100.0 THE JOURNAL OF PEDIATRICS www.jpeds.com Vol. -, No. - 2 Smits-Engelsman, Klerks, and Kirby ARTICLE IN PRESS
  • 3. the c2 test. Data were analyzed with SPSS version 15.0 (SPSS Inc., Chicago, Illinois). Results In this random sample, 9.1% of the children scored 7 or more out of a possible 9 points on the Beighton score, and 35.6% scored 5 or more (Table III). Complaints of pain in joints, muscles, or ligaments were quite common. Overall, 13.3%, 12.8%, and 4.1% of participants cited this in respective Beighton score bands 1, 2 and 3. Pain after exercise or sport was reported for 8.8%, 9.6%, and 10% of the children, in bands 1, 2, and 3, respectively. These percentages were not significantly different between children with less or more mobility and therefore do not seem to be specific for children with high Beighton scores. Scale Analysis The question to be answered in this study was, ‘‘Is the Beighton score a valid measure for generalized hypermobility in children?’’ To answer this question, 16 mean ROMs of all major extremity joints were compared between groups on the basis of the 3 bands of the Beighton score (Table IV). The analysis of variance revealed significant differences between the degrees of motion of all joints examined. Moreover, as shown in Table V, post-hoc tests also showed that the ROMs of all joints were significantly different between the classification groups (flexion knee: P = .02 extension hip: P = .06, all the other joints P .001). Sex Differences With the Beighton score, where 9 points is the maximum possible score, no significant differences (P = .22) for sex were found. If analyzed per item, only hands on the floor (item 5) was different (t (1549) = 4.66, P .001); with girls being more flexible than boys. Differences in Right and Left Sides on Testing Comparing scores on the left and the right sides of the body, there was a significant difference, with right-sided measures showing less mobility than those on the left side (t (1550) = 2.14, P .032). Mean scores for right side were 1.75 and for the left side, 1.82. If analyzed per item, only the item ‘‘thumb to volar aspect of the forearm’’ (item 2) was signifi- cantly different (t (1550) = 2.42, P .016), with the left thumb being more flexible. Asymmetric mobility was also examined. Children were defined as asymmetrically mobile if the difference between the summed left and right part of the Beighton score was more than 2 points (4 being the maximum score for one side). In total, 4.9% of the children were classified to have asymmetric mobility (3.5% showed larger movements on the left side, 1.8% on the right). Moreover, 19.6% showed a 1-point advantage in ROM on the left side of the body, and the respective figure was 15.4% for the joints on the right side. No sex differences in asymmetry were found. Table IV. ROM in degrees per joint for the 3 Beighton score bands (mean and standard deviation) Joint Beighton score Bands Number of participants ROM mean ROM SD Lower Extremity Extension MTP1 0-4 355 69 11 5-6 146 74 9 7-9 50 77 10 Dorsal flexion ankle 0-4 355 24 7 5-6 146 27 6 7-9 50 30 6 Plantar flexion ankle 0-4 355 61 8 5-6 146 67 7 7-9 50 69 6 Flexion knee 0-4 355 155 10 5-6 146 157 4 7-9 50 158 4 Extension knee 0-4 355 4 4 5-6 146 8 4 7-9 50 10 3 Flexion hip 0-4 355 108 8 5-6 146 111 8 7-9 50 114 5 Extension hip 0-4 355 22 7 5-6 146 23 7 7-9 50 24 7 Exorotation hip 0-4 355 49 8 5-6 146 52 10 7-9 50 57 12 Endorotation hip 0-4 355 49 8 5-6 146 53 10 7-9 50 59 11 Upper extremity Dorsiflexion MCP Digit 5 0-4 355 82 12 5-6 146 91 10 7-9 50 96 9 Extention wrist 0-4 355 93 8 5-6 146 100 8 7-9 50 103 8 Flexion wrist 0-4 355 100 10 5-6 146 109 11 7-9 50 111 9 Flexion elbow 0-4 355 151 6 5-6 146 153 5 7-9 50 154 5 Extension elbow 0-4 355 9 6 5-6 146 13 6 7-9 50 16 5 Flexion shoulder 0-4 355 171 14 5-6 146 178 13 7-9 50 184 12 Exorotation shoulder 0-4 355 88 14 5-6 146 98 13 7-9 50 105 13 - 2010 ORIGINAL ARTICLES Beighton Score: A Valid Measure for Generalized Hypermobility in Children 3 ARTICLE IN PRESS
  • 4. Pes Planus In this typically developing sample, 30% of children were ob- served to have pes planus as described in the protocol. There was an increasing prevalence (c2 5.29, df = 1 , P = .021) in pes planus per mobility band (band 1: 27%, band 2: 32.2%, band 3: 44%). Heel to Buttock To explore supplementary value of other hypermobility ma- neuvers, ‘‘heel to buttock’’ was also tested. In 87% of the chil- dren, the heels could passively be brought to contact the buttocks. Twelve percent of children were unable to do so with two legs and 1% with one leg. Importantly, the frequen- cies of difficulty with ‘‘heel to buttock’’ were not different for children in the 3 Beighton score bands. Discussion The Beighton score is a valid measure for generalized joint hy- permobility in children, on the basis of the detailed analysis of the ranges of motion of all major joints. Although the Beighton score covers a sample of joints, it was shown that in- creased mobility is present in other joints not covered. Pain over a period of time or after exercise does not seem to be valid extra information in hypermobility related complaints in children under 13 years. This concurs with the study by El- Metwally et al who reported that hypermobility (Beighton 6/9) was not predictive of future musculoskeletal pain in pre- teen and adolescent children.23 However, it may be useful to explore pain symptoms such as waking in the night. Pes planus is a frequent symptom in children (33%), not only in children with hypermobile joints but in all children. Adib12 found that pes planus was one of the main features in children with JHS, and this is confirmed for children with a high Beighton score, but its high frequency is not re- stricted just to this group. Because the mean ROMs of all joints measured were significantly increased if children were classified as hypermobile, it was concluded that the Table V. Post hoc test (Tukey HSD) Dependent Variable (I) Beighton Band (J) Beighton Band Mean Difference (I-J) P value Lower extremity Extension MTP1 0-4 5-6 -5.49* .000 7-9 -7.98* .000 5-6 0-4 5.49* .000 7-9 -2.48 .330 Dorsal flexion ankle 0-4 5-6 -2.93* .000 7-9 -6.48* .000 5-6 0-4 2.93* .000 7-9 -3.54* .003 Plantar flexion ankle 0-4 5-6 -5.77* .000 7-9 -7.71* .000 5-6 0-4 5.77* .000 7-9 -1.94 .296 Flexion knee 0-4 5-6 -1.76 .080 7-9 -2.72 .078 5-6 0-4 1.76 .080 7-9 -.96 .761 Extension knee 0-4 5-6 -3.82* .000 7-9 -5.96* .000 5-6 0-4 3.82* .000 7-9 -2.13* .003 Flexion hip 0-4 5-6 -3.22* .000 7-9 -5.55* .000 5-6 0-4 3.22* .000 7-9 -2.33 .177 Extension hip 0-4 5-6 -1.58* .045 7-9 -2.59* .031 5-6 0-4 1.58* .045 7-9 -1.00 .636 Exorotation hip 0-4 5-6 -3.78* .000 7-9 -8.55* .000 5-6 0-4 3.78* .000 7-9 -4.77* .003 Endorotation hip 0-4 5-6 -3.87* .000 7-9 -9.82* .000 5-6 0-4 3.87* .000 7-9 -5.95* .000 Upper extremity Dorsiflexion MCP Digit 5 0-4 5-6 -9.45* .000 7-9 -14.10* .000 5-6 0-4 9.45* .000 7-9 -4.65* .029 Extension wrist 0-4 5-6 -6.55* .000 7-9 -10.12* .000 5-6 0-4 6.55* .000 7-9 -3.57* .016 Flexion wrist 0-4 5-6 -8.55* .000 7-9 -10.53* .000 5-6 0-4 8.55* .000 7-9 -1.97 .481 Flexion elbow 0-4 5-6 -1.99* .001 7-9 -3.35* .000 5-6 0-4 1.99* .001 7-9 -1.36 .293 Extension elbow (continued ) Table V. Continued Dependent Variable (I) Beighton Band (J) Beighton Band Mean Difference (I-J) P value 0-4 5-6 -4.23* .000 7-9 -7.26* .000 5-6 0-4 4.23* .000 7-9 -3.02* .005 Flexion shoulder 0-4 5-6 -6.88* .000 7-9 -13.11* .000 5-6 0-4 6.88* .000 7-9 -6.23* .012 Exorotation shoulder 0-4 5-6 -10.41* .000 7-9 -16.80* .000 5-6 0-4 10.41* .000 7-9 -6.39* .011 *The mean difference is significant at the .05 level. THE JOURNAL OF PEDIATRICS www.jpeds.com Vol. -, No. - 4 Smits-Engelsman, Klerks, and Kirby ARTICLE IN PRESS
  • 5. currently used standardized protocol of the Beighton score is a valid measure for generalized hypermobility in children. Therefore we see no advantage in adding more joints or ma- neuvers to this scale, nor adding joint pain as part of the scale, because it is not specific to hypermobility in children. Pain measures a different construct, which may be more time sen- sitive than joint mobility, and its presence as a complaint in all children should always be explored. Our impression that too many children are classified as hy- permobile by use of a threshold of 5/9 was confirmed. With the Beighton score 5/9 scoring system led to a prevalence of 35.6%, which is greater than an earlier study in which gener- alized hypermobile joints were reported in 11.1% of the Dutch population between the ages of 4 to 12.18 Comparison between studies is hard to undertake because no standardized description of the Beighton score existed, and ranges of mo- tion were estimated, but not measured. Future studies with this standardized protocol may help determine the best cutoff scores, and validation of these scores for diagnostic purposes requires scores to show both high sensitivity and specificity. Studies are needed that explore different cutoff scores in groups of children with JHS and typically developing chil- dren. On the basis of statistical grounds and in conjunction with Jansson et al,6 a stricter cutoff score for hypermobility should be considered. If a score between 7/9 were used to classify hypermobility, the percentage in our study would drop to 9%. When comparing sides of the body, it was found that hy- permobility was greater on the left side of the body. This also confirms earlier results.1-3,18 Asymmetry in typically develop- ing children was rare (5%), and 60% of the children had an identical Beighton score for the right and left sides. For quick screening procedures, one could rely on the left-sided Beighton protocol. In a clinical situation it is recommended to use the full standardized Beighton protocol. Sex difference for cutoff points were not found in using the Standardized Beighton Protocol in Dutch children at the age 6 to 12 years, which corroborates with findings of Rikken et al,2 El-Garf et al,3 and van der Giessen et al,18 but contrasts with others.5-7 The Beighton score calculated with the standardized Beighton protocol is a valid instrument to evaluate general- ized joint mobility in primary school–aged children. No extra items are needed to improve the scale. In white children be- tween 6 and 12 years of age, it is recommended that 7/9 be the cutoff for the Beighton score. n We thank the pediatric physiotherapists for measuring all the children and the children for their participation. Submitted for publication Jan 28, 2010; last revision received Jun 15, 2010; accepted Jul 13, 2010. Reprint requests: Bouwien Smits-Engelsman, Avans+ University for Professionals, P.O. Box 2087, 4800 CB Breda, The Netherlands. E-mail: bengelsman@avansplus.nl. References 1. Beighton P, Solomon L, Soskolne CL. Articular mobility in an African population. Ann Rheum Dis 1973;32:413-8. 2. Rikken-Bultman DGA, Wellink L, Dongen van PWJ. Hypermobility in two Dutch school populations. Eur J Obstet Gynecol Reprod Biol 1997;73:189-92. 3. El Garf AK, Mahmoud GA, Mahgoub EH. Hypermobility among Egyp- tian children: prevalence and features. J Rheumatol 1998;25:3-5. 4. Seow CC, Chow PK, Khong KS. A study of joint mobility in a normal population. Ann Acad Med Singapore 1999;28:231-6. 5. Sec¸kin }U, Tur BS, Yilmaz }O, Yagci I, Bodur H, Arasil T, Tur BS. The prevalence of joint hypermobility among high school students. Rheuma- tol Int 2005;25:260-3. 6. Jansson A, Saartok T, Werner S, Renstro¨m P. General joint laxity in 1845 Swedish school children of different ages: age-and gender-specific distri- butions. Acta Paediatr 2004;9:1202-6. 7. Qvindesland A, Jonsson H. Articular hypermobility in Icelandic 12-years olds. Rheumatology 1999;38:1014-6. 8. Birrell FN, Adebajo AO, Hazleman BL, Silman AJ. High Hypermobility of joint laxity in West Africans. Br J Rheumatology 1994;33:56-9. 9. Al-Rawi ZS, Al-Aszawi AJ, Al-Chalabi T. Joint mobility among univer- sity students in Iraq. Br J Rheumatology 1985;24:326-31. 10. Remvig L, Jensen DV, Ward RC. Epidemiology of general joint hy- permobility and basis for the proposed criteria for benign joint hy- permobility syndrome: review of the literature. J Rheumatology 2007;34:804-9. 11. Kirk JH, Ansell BA, Bywaters EGL. The hypermobility syndrome. Ann Rheum Dis 1967;26:425. 12. Adib N, Davies K, Grahame R, Woo P, Murray KJ. Joint hypermobility syndrome in childhood. A not so benign multisystem disorder? Rheuma- tol 2005;44:744-50. 13. Mishra MB, Ryan P, Atkinson P, et al. Extra-articular features of benign joint hypermobility syndrome. Br J Rheumatol 1996;35:861-6. 14. Grahame R. Brighton Diagnosis Criteria for the Benign Joint Hypermo- bility Syndrome. Br J Rheumatol 2000;27:1777-9. 15. Grahame R, Bird HA, Child A. The revised (Brighton 1998) criteria for the diagnosis of benign joint hypermobility syndrome (BJHS) J Rheuma- tol 2000;27:1777-9. 16. Tofts LJ, Elliott EJ, Munns C, Pacey V, Silence D. The differential diag- nosis of children with joint hypermobility: a review of the literature. Pe- diatric Rheumatol Online 2009;7:1. 17. Bulbena A, Duro JC, Porta M, Faus S, Vallescar R, Martin-Santos R. Clinical assessment of hypermobility of joints: assembling criteria. J Rheumatol 1992;19:115-22. 18. Van der Giessen LJ, Liekens D, Rutgers KJM, Hartman A, Mulder PGH, Oranje AP. Validation of Beighton score and prevalence of connective tis- sue signs in 773 Dutch-Caucasian Children. J Rheumatol 2001;28:2726-30. 19. Juul B, Rogind H, Jensen DV, Remvig L. Inter-examiner reproducibility of tests and criteria for generalized joint hypermobility and benign joint hypermobility syndrome. Rheumatology 2007;46:1835-41. 20. Remvig L, Jensen DV, Ward RC. Are diagnostic criteria for general joint hypermobility and benign joint hypermobility syndrome based on re- producible and valid tests? A review of the literature. J Rheumatol 2007;34:798-803. 21. Grahame R, Keer R. Hypermobility syndrome: recognition and manage- ment for physiotherapist. Philadelphia: Butterworth Heinemann Elsev- ier Limited; 2003. 22. Kirby A, Davies R. Developmental coordination disorder and joint hy- permobility syndrome—overlapping disorders? Implications for re- search and clinical practice. Child Care Health Dev 2006;33:513-9. 23. El-Metwally A, Salminen JJ, Auvinen A, Macfarlane G, Mikkelsson M. Risk factors for development of non-specific musculoskeletal pain in preteens and early adolescents: a prospective 1-year follow-up study. BMC Musculoskeletal Dis 2007;23:8-46. - 2010 ORIGINAL ARTICLES Beighton Score: A Valid Measure for Generalized Hypermobility in Children 5 ARTICLE IN PRESS
  • 6. Appendix. Standardized test positions and goniometer positioning of the Beighton score protocol. THE JOURNAL OF PEDIATRICS www.jpeds.com Vol. -, No. - 5.e1 Smits-Engelsman, Klerks, and Kirby ARTICLE IN PRESS
  • 7. Appendix. Continued - 2010 ORIGINAL ARTICLES Beighton Score: A Valid Measure for Generalized Hypermobility in Children 5.e2 ARTICLE IN PRESS
  • 8. Appendix. Continued THE JOURNAL OF PEDIATRICS www.jpeds.com Vol. -, No. - 5.e3 Smits-Engelsman, Klerks, and Kirby ARTICLE IN PRESS
  • 9. Table I. The 9-point Beighton score of hypermobility Description Bilateral Testing Scoring (max. points) Passive dorsiflexion of the fifth metacarpophalangeal joint to $ 90 degrees Yes 2 Passive hyperextension of the elbow $ 10 degrees Yes 2 Passive hyperextension of the knee $ 10 degrees Yes 2 Passive apposition of the thumb to the flexor side of the forearm, while shoulder is flexed 90 degrees, elbow is extended, and hand is pronated Yes 2 Forward flexion of the trunk, with the knees straight, so that the hand palms rest easily on the floor No 1 Total 9 - 2010 ORIGINAL ARTICLES Beighton Score: A Valid Measure for Generalized Hypermobility in Children 5.e4 ARTICLE IN PRESS