SlideShare a Scribd company logo
1 of 42
http://lawrencekok.blogspot.com
Prepared by
Lawrence Kok
Tutorial on Standard Electrode Potential, Standard
Reduction Potential and Electrochemical Series.
Potential Diff bet Zn/Zn2+
Electrode potential Zn/Zn2+
= -ve
-
Electrode Potential
Redox Equilibrium
Zn2+
Zn → Zn 2+
+ 2e
(Oxidation)
Zn 2+
+ 2e → Zn
(Reduction)
Zn 2+
+ 2e ↔ Zn
(At equilibrium)
Metal Zn placed in its sol Zn2+
ion
Equilibrium bet Zn/Zn2+
Zn metal reactive lose e form Zn2+
Equilibrium shift to right ←
Potential Diff form bet Zn/Zn2+
Potential Diff
Electrode potential = -ve
Zn2+
Zn2+
Zn
Zn2+
Zn
Zn2+
Zn2+
Zn2+
Zn 2+
+ 2e ↔ Zn
Equi shift to ←
-
--
Zn
-
-
-
-
+
+
+
+
+ +
+ +
+
Voltage of Zn/Zn2+
can’t be measured.
Abs electrode potential can’t measured.
Only Diff in electrode potential can be measured.
Cannot measure
Abs Potential
Metal Cu placed in its sol Cu2+
ion
Equilibrium bet Cu/Cu2+
Cu2+
ion gain -2e form Cu
Equilibrium shift to left ←
Potential Diff form bet Cu/Cu2+
Potential Diff
Electrode potential = +ve
Cu
Cu2+
Cu2+
Cu2+
Cu2+
Cu → Cu2+
+ 2e
(Oxidation)
Cu2+
+ 2e → Cu
(Reduction)
Cu2+
+ 2e ↔ Cu
(At equilibrium)
Cu
-e
-e
-e
Cu2+
Cu2+
Cu2+
Cu2+
+ 2e ↔ Cu
Equi shift to →
Zn Half Cell
+
+
+
Cu
+
+
+
-
--
-
--- ----
--
Potential Diff bet Cu/Cu2+
Electrode potential Cu/Cu2+
= +ve
Cannot measure
Abs Potential
Voltage of Cu/Cu2+
can’t be measured.
Abs electrode potential can’t measured.
Only Diff in electrode potential can be measured.
PDF version
Online version
Click here chem database
(std electrode potential)
Click here chem database
(std electrode potential)
Click here interactive ECS Click here pdf version ECS
Cu Half Cell
Potential Diff Cu/Cu2+
Electrode potential
Cu/Cu2+
= +ve
Potential Diff Zn/Zn2+
Electrode potential
Zn/Zn2+
= -ve
Zn2+
Zn → Zn 2+
+ 2e
(Oxidation)
Zn 2+
+ 2e → Zn
(Reduction)
Zn 2+
+ 2e ↔ Zn
(At equilibrium)
Zn2+
Zn2+
Zn
Zn2+
Zn
Zn2+
Zn2+
Zn2+
Zn 2+
+ 2e ↔ Zn
Equi shift to ←
-
-
-
Zn
-
--
-
+
++
+
+ +
+
+
+
Can’t measure
Abs Potential
Cu
Cu2+
Cu2+
Cu2+
Cu2+
Cu → Cu2+
+ 2e
(Oxidation)
Cu2+
+ 2e → Cu
(Reduction)
Cu2+
+ 2e ↔ Cu
(At equilibrium)
Cu
-e
-e
-e
Cu2+
Cu2+
Cu2+
Cu2+
+ 2e ↔ Cu
Equi shift to →
Zn Half Cell
+
+
+
Cu
+
+
+
-
Cu Half Cell
Zn/Cu Voltaic Cell
External circuit – flow of electrons
Complete circuit
-
--
--
-
-
----
-- -
Connect 2 Half Cell with wire/ salt bridge
Zn half cell (-ve)
Oxidation
Cu half cell (+ve)
Reduction
Salt Bridge – flow of ions
Complete the circuit
Cu2+
+ 2e → CuZn → Zn 2+
+ 2e
Zn + Cu2+
→ Zn2+
+ Cu
Anode Cathode
Maintain electrical
neutrality
Salt bridge – saturated KNO3
Zn2+
increase ↑
NO3
-
flow in to balance excess Zn2+
Cu2+ decrease ↓, excess –ve ion ↑
K+
flow in to balance loss of Cu2+
Zn Cu
--
-
-
Zn2+
Zn2+
Zn2+
Excess of Zn2+
ion
+
+
++
-
-
-
-
---
-
-
-
-
-
Excess of –ve ion
+
+
+
+
++
+
Without Salt Bridge
-+
+
+
+
With Salt Bridge
(electron unable to flow due to ESF)
NO3
-
NO3
-
NO3
-
NO3
-
+
+
+ K
+
K
+
K
+
-
-
-
K+
flow in to balance
excess of – ion
NO3
-
flow in to balance
excess of + ion
2 Half Cell to make a Voltaic Cell
-e -e
-
-
-
-
+
+
+
+
Potential Diff Cu/Cu2+
Electrode potential
Cu/Cu2+
= +ve
Potential Diff Zn/Zn2+
Electrode potential
Zn/Zn2+
= -ve
Zn2+
Zn → Zn 2+
+ 2e
(Oxidation)
Zn 2+
+ 2e → Zn
(Reduction)
Zn 2+
+ 2e ↔ Zn
(At equilibrium)
Zn2+
Zn2+
Zn
Zn2+
Zn
Zn2+
Zn2+
Zn2+
Zn 2+
+ 2e ↔ Zn
Equi shift to ←
-
-
-
Zn
-
--
-
+
++
+
+ +
+
+
+
Can’t measure
Abs Potential
Cu
Cu2+
Cu2+
Cu2+
Cu2+
Cu → Cu2+
+ 2e
(Oxidation)
Cu2+
+ 2e → Cu
(Reduction)
Cu2+
+ 2e ↔ Cu
(At equilibrium)
Cu
-e
-e
-e
Cu2+
Cu2+
Cu2+
Cu2+
+ 2e ↔ Cu
Equi shift to →
+
+
+
Cu
+
+
+
-
External circuit – flow of electrons
Complete circuit
-
--
--
-
-
----
-- -
Connect 2 Half Cell with wire/ salt bridge
Zn half cell (-ve)
Oxidation
Cu half cell (+ve)
Reduction
Voltmeter – High resistance
(No current flow) Salt Bridge – flow of ions
Complete the circuit
Cu2+
+ 2e → CuZn → Zn 2+
+ 2e
1.10Volt
Potential diff can be measured.
Voltmeter across – EMF
1.10 Volt
Zn + Cu2+
→ Zn2+
+ Cu
Anode Cathode
Zn(s) | Zn2+
(aq) || Cu2+
(aq)| Cu (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Phase boundarySalt Bridge Flow
electrons
Maintain electrical
neutrality
Salt bridge – saturated KNO3
Zn2+
increase ↑
NO3
-
flow in to balance excess Zn2+
Cu2+ decrease ↓
K+
flow in to balance loss of Cu2+
Zn/Cu Voltaic Cell 2 Half Cell to make a Voltaic Cell
Zn Half Cell Cu Half Cell
-e -e
-
-
-
-
+
+
+
+
Potential Diff Ag/Ag2+
Electrode potential
Ag/Ag2+
= +ve
Potential Diff Zn/Zn2+
Electrode potential
Zn/Zn2+
= -ve
Zn2+
Zn → Zn 2+
+ 2e
(Oxidation)
Zn 2+
+ 2e → Zn
(Reduction)
Zn 2+
+ 2e ↔ Zn
(At equilibrium)
Zn2+
Zn2+
Zn
Zn2+
Zn
Zn2+
Zn2+
Zn2+
Zn 2+
+ 2e ↔ Zn
Equi shift to ←
-
-
-
Zn
-
--
-
+
++
+
+ +
+
+
+
Can’t measure
Abs Potential
Ag
Ag+
Ag+
Ag+
Ag+
Ag → Ag+
+ e
(Oxidation)
Ag+
+ e → Ag
(Reduction)
Ag+
+ e ↔ Ag
(At equilibrium)
Ag
-e
-e
-e
Ag+
Ag+
Ag+
Ag+
+ e ↔ Ag
Equi shift to →
+
+
+
Ag
+
+
+
-
External circuit – flow of electrons
Complete circuit
-
--
--
-
-
----
-- -
Connect 2 Half Cell with wire/ salt bridge
Zn half cell (-ve)
Oxidation
Ag half cell (+ve)
Reduction
Voltmeter – High resistance
(No current flow) Salt Bridge – flow of ions
Complete the circuit
Ag+
+ e → AgZn → Zn 2+
+ 2e
1.56Volt
Potential diff can be measured.
Voltmeter across – EMF
1.56 Volt
Zn + 2Ag+
→ Zn2+
+ 2Ag
Anode Cathode
Zn(s) | Zn2+
(aq) || Ag+
(aq)| Ag (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Phase boundarySalt Bridge Flow
electrons
Maintain electrical
neutrality
Salt bridge – saturated KNO3
Zn2+
increase ↑
NO3
-
flow in to balance excess Zn2+
Ag+ decrease ↓
K+
flow in to balance loss of Ag+
Zn/Ag Voltaic Cell 2 Half Cell to make a Voltaic Cell
Zn Half Cell Ag Half Cell
Ag
Ag+
-e -e
-
-
-
-
+
+
+
+
Potential Diff Ag/Ag2+
Electrode potential
Ag/Ag2+
= +ve
Potential Diff Cu/Cu2+
Electrode potential
Cu/Cu2+
= -ve
Cu2+
Cu → Cu 2+
+ 2e
(Oxidation)
Cu 2+
+ 2e → Cu
(Reduction)
Cu 2+
+ 2e ↔ Cu
(At equilibrium)
Cu2+
Cu2+
Cu
Cu2+
Cu
Cu2+
Cu2+
Cu2+
Cu 2+
+ 2e ↔ Cu
Equi shift to ←
-
-
-
Cu
-
--
-
+
++
+
+ +
+
+
+
Can’t measure
Abs Potential
Ag
Ag+
Ag+
Ag+
Ag+
Ag → Ag+
+ e
(Oxidation)
Ag+
+ e → Ag
(Reduction)
Ag+
+ e ↔ Ag
(At equilibrium)
Ag
-e
-e
-e
Ag+
Ag+
Ag+
Ag+
+ e ↔ Ag
Equi shift to →
+
+
+
Ag
+
+
+
-
External circuit – flow of electrons
Complete circuit
-
--
--
-
-
----
-- -
Connect 2 Half Cell with wire/ salt bridge
Cu half cell (-ve)
Oxidation
Ag half cell (+ve)
Reduction
Voltmeter – High resistance
(No current flow) Salt Bridge – flow of ions
Complete the circuit
Ag+
+ e Ag→Cu → Cu 2+
+ 2e
0.46Volt
Potential diff can be measured.
Voltmeter across – EMF
0.46 Volt
Cu + 2Ag+
→ Cu2+
+ 2Ag
Anode Cathode
Cu(s) | Cu2+
(aq) || Ag+
(aq)| Ag (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Phase boundarySalt Bridge Flow
electrons
Maintain electrical
neutrality
Salt bridge – saturated KNO3
Cu2+
increase ↑
NO3
-
flow in to balance excess Cu2+
Ag+ decrease ↓
K+
flow in to balance loss of Ag+
Cu/Ag Voltaic Cell 2 Half Cell to make a Voltaic Cell
Cu Half Cell Ag Half Cell
Ag
Ag+
Cu
Cu2+
-e -e
-
-
-
-
+
+
+
+
Standard Electrode Potential
Standard Hydrogen Electrode (SHE)
Platinum coat with Platinum oxide/black
– increase surface area for adsorption H2
- catalyze equilibrium bet H2 /H+
- H2 ↔ 2H+
+ 2e-
Eθ
Standard Reference electrode
All Cell Potential are measured against
• Conc ( 1M)
• Pressure (1 atm)
• Temp (298K)
• Platinum- inert electrode
(sys without metal)
Standard
condition
H2 at 1 atm
Platinum
H2 gas
Pt wire
Platinum
2H+
+ 2e ↔ H2
Eθ
= 0V
Types of Half Cells
Metal/ Ion (M/M+
)
Gas/ Ion (M/M-
)
Ion/ Ion (Fe3+
/Fe2+
)
• Pure Zn metal
• Conc (1M Zn2+
)
• Pressure (1 atm)
• Temp (298K)
Condition Std Zn/Zn2+
Condition Std CI2/CI-
• CI2 gas
• Platinum electrode
• Conc (1M CI-
)
• Pressure (1 atm)
• Temp (298K)
• Platinum electrode
• Conc (1M Fe3+
/Fe2+
)
• Pressure (1 atm)
• Temp (298K)
Condition Std Fe3+
/ Fe2+
Zn2+
Zn
Fe3+
/Fe2+
CI-
Condition for Standard
C
A
N
T
M
E
A
S
U
R
E
A
B
S
P
O
T
E
N
T
I
A
L
1
2
3
How to measure
electrode
potential ?
Pt
1M H+
Measure
Difference?
Standard Electrode Potential
Std Hydrogen Electrode (SHE)
Eθ
= 0V
Types of Half Cells
Metal/ Ion (M/M+)
Gas/ Ion (M/M+
)
Ion/ Ion (Fe3+
/Fe2+
)
• Pure Zn metal
• Conc (1M Zn2+
)
• Pressure (1 atm)
• Temp (298K)
Condition Std Zn/Zn2+
Condition Std CI2/CI-
• CI2 gas
• Platinum electrode
• Conc (1M CI-
)
• Pressure (1 atm)
• Temp (298K)
• Platinum electrode
• Conc (1M Fe3+
/Fe2+
)
• Pressure (1 atm)
• Temp (298K)
Condition Std Fe3+
/ Fe2+
Zn2+
Zn
Fe3+
/Fe2+
1
2
3
Connect to SHE
Connect to SHE
Connect to SHE
Eθ
= 0V
Eθ
= 0V
Eθ
= -0.76V
Standard electrode potential Zn/Zn2+
= -0.76V
Eθ
cell = -0.76V
Eθ
= +0.77V
Eθ
= +1.35V
Standard electrode potential Fe3+
/Fe2+
= +0.77V
Eθ
cell = +0.77V
Standard electrode potential CI2 /CI-
= +1.35V
Eθ
cell = +1.35V
Eθ
= -0.76V
Eθ
= +0.77V
Eθ
= +1.35V
2 Half Cell with SHE as reference electrode
CI-
Pt
+
+
+
Pt
Standard Electrode Potential
Std Electrode Potential diff systems
Eθ
= 0V
Eθ
= 0V
Eθ
= 0V
Eθ
= -0.76V
Standard electrode potential Zn/Zn2+
= -0.76V
Eθ
cell = -0.76V
Eθ
= +0.77V
Eθ
= +1.35V
Standard electrode potential Fe3+
/Fe2+
= +0.77V
Eθ
cell = +0.77V
Standard electrode potential CI2 /CI-
= +1.35V
Eθ
cell = +1.35V
Eθ
= -0.76V
Eθ
= +0.77V
Eθ
= +1.35V
STANDARD Reduction potential – Hydrogen as std
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
H2O + e- 1/2H↔ 2 -0.83
Zn2+
+ 2e- Zn↔ -0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
Pb2+
+ 2e- Pb↔ -0.13
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
Fe3+
+ e- ↔ Fe2+
+0.77
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br-
+1.07
1/2O2 + 2H+
+2e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+ 7H2O +1.33
1/2CI2 + e- ↔ CI-
+1.35
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
1/2F2 + e- ↔ F +2.87
-ve
reduction
potential
+ve
reduction
potential
Click here std analogy video
Click here std analogy
PDF version
Click here chem database
(std electrode potential)
Compared to
H2 as std
Eθ
cell/Cell Potential = EMF in volt
EMF prod when half cell connect to SHE at std condition
Std electrode potential written as std reduction potential
Zn half cell (-ve)
Oxidation
H2 half cell (+ve)
Reduction
Anode Cathode
Zn(s) | Zn2+
(aq) || H+
(aq) , H2(g) | Pt (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = 0.00 – ( Eθ
Zn )
0.76 = 0.00 - Eθ
Zn
Eθ
Zn = -0.76V
Zn2+
+ 2e Zn E↔ θ
= ?
2H+
+ 2e ↔ H2 Eθ
= 0.00V
Std electrode potential as std reduction potential
Find Eθ
cell (use formula)
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
H2O + e- 1/2H↔ 2 + OH-
-0.83
Zn2+
+ 2e- Zn↔ ????
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
Pb2+
+ 2e- Pb↔ -0.13
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
Fe3+
+ e- ↔ Fe2+
+ 0.77
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br-
+1.07
1/2O2 + 2H+
+2e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+ 7H2O +1.33
1/2CI2 + e- ↔ CI-
+1.36
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
1/2F2 + e- ↔ F +2.87
-0.76V
+ve/high electrode potential is cathode (+)
-ve/ low electrode potential is anode (-)
Electrons flow from anode (- ) to cathode (+ )
Eθ
Zn/H2 = 0.76V
Zn/H2
Zn
Zn2+
H+
Pt
H2
-
-
- +
-e
Zn/H2 Cell Determine Eθ
cell Zn/Zn2+
Eθ
value DO NOT depend on stoichiometric coefficient
(Independent of stoichiometric eqn)
H2 half cell (-ve)
Oxidation
Fe3+/2+
half cell (+ve)
Reduction
Anode Cathode
Pt(s) | H2, H+
(aq) || Fe3+
Fe2+
| Pt (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Std electrode potential as std reduction potential
Find Eθ
cell (use formula)
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
H2O + e- 1/2H↔ 2 + OH-
-0.83
Zn2+
+ 2e- Zn↔ -0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
Pb2+
+ 2e- Pb↔ -0.13
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
Fe3+
+ e- ↔ Fe2+
?????
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br-
+1.07
1/2O2 + 2H+
+2e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+ 7H2O +1.33
1/2CI2 + e- ↔ CI-
+1.36
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
1/2F2 + e- ↔ F +2.87
+0.77V
+ve/high electrode potential is cathode (+)
-ve/ low electrode potential is anode (-)
Electrons flow from anode (- ) to cathode (+ )
Eθ
H2 /Fe3+
= 0.77V
Pt
Fe3+
H+
Pt
H2
+
+
+--
-e
H2 /Fe3+
,Fe2+
Cell
H2 /Fe3+
,Fe2+
2H+
+ 2e ↔ H2 Eθ
= 0.00V
Fe3+
+ e Fe↔ 2+
Eθ
= ????
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = Eθ
Fe3+
– (-0.00)
0.77 = Eθ
Fe3+
Determine Eθ
cell Fe 3+
/Fe2+
Eθ
value DO NOT depend on stoichiometric coefficient
(Independent of stoichiometric eqn)
H2 half cell (-ve)
Oxidation
CI2 half cell (+ve)
Reduction
Anode
Pt(s) | H2, H+
(aq) || CI2 ,CI-
| Pt (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Std electrode potential as std reduction potential
Find Eθ
cell (use formula)
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
H2O + e- 1/2H↔ 2 + OH-
-0.83
Zn2+
+ 2e- Zn↔ -0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
Pb2+
+ 2e- Pb↔ -0.13
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
Fe3+
+ e- ↔ Fe2+
+ 0.77
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br-
+1.07
1/2O2 + 2H+
+2e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+ 7H2O +1.33
1/2CI2 + e- ↔ CI-
?????
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
1/2F2 + e- ↔ F +2.87
+1.35V
+ve/high electrode potential is cathode (+)
-ve/ low electrode potential is anode (-)
Electrons flow from anode (- ) to cathode (+ )
Eθ
H2 /CI2 = 1.35V
H+
Pt
H2 --
-e
H2 /CI2 Cell
2H+
+ 2e ↔ H2 Eθ
= 0.00V
CI + e CI↔ -
Eθ
= ?????
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = Eθ
CI2 – (-0.00)
1.35 = Eθ
CI2
H2 /CI2 Cell
+
Pt
CI - CI2
Determine Eθ
cell H2 /CI2
Eθ
value DO NOT depend on stoichiometric coefficient
(Independent of stoichiometric eqn)
Zn half cell (-ve)
Oxidation
Cu half cell (+ve)
Reduction
Anode Cathode
Zn(s) | Zn2+
(aq) || Cu2+
(aq) | Cu (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Zn/Cu Voltaic Cell
-e -e
Zn/Cu half cells
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +0.34 – (-0.76) = +1.10V
Zn 2+
+ 2e Zn (anode) E↔ θ
= -0.76V
Cu2+
+ 2e Cu (cathode) E↔ θ
= +0.34V
Std electrode potential as std reduction potential
Find Eθ
cell (use reduction potential)Find Eθ
cell (use formula)
Zn + Cu2+
Zn→ 2+
+ Cu Eθ
= ?????
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Zn 2+
+ 2e Zn E↔ θ
= -0.76V
Cu2+
+ 2e Cu E↔ θ
= +0.34V
Zn Zn↔ 2+
+ 2e Eθ
= +0.76
Cu2+
+ 2e Cu E↔ θ
= +0.34
Zn + Cu2+
Zn→ 2+
+ Cu Eθ
= +1.10V
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
H2O + e- 1/2H↔ 2 + OH-
-0.83
Zn2+
+ 2e- Zn↔ - 0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
Pb2+
+ 2e- Pb↔ -0.13
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu + 0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
Fe3+
+ e- ↔ Fe2+
+0.77
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br-
+1.07
1/2O2 + 2H+
+2e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+ 7H2O +1.33
1/2CI2 + e- ↔ CI-
+1.35
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
1/2F2 + e- ↔ F +2.87
+
+1.10 V
Eθ
Zn/Cu = 1.10V
Cu2+
+ve/high electrode potential is cathode (+)
-ve/ low electrode potential is anode (-)
Electrons flow from anode (- ) to cathode (+ )
-
-
-
-
Zn Cu
+
+
+
+
Eθ
value DO NOT depend on stoichiometric coefficient
(Independent of stoichiometric eqn)
Zn half cell (-ve)
Oxidation
Ag half cell (+ve)
Reduction
Anode Cathode
Zn(s) | Zn2+
(aq) || Ag+
(aq) | Ag (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Zn/Ag Voltaic Cell
-e -e
Zn/Ag half cells
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +0.80 – (-0.76) = +1.56V
Zn 2+
+ 2e Zn (anode) E↔ θ
= -0.76V
Ag+
+ e Ag(cathode) E↔ θ
= +0.80V
Std electrode potential as std reduction potential
Find Eθ
cell (use reduction potential)Find Eθ
cell (use formula)
Zn + Ag+
Zn→ 2+
+ Ag Eθ
= ?????
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Zn 2+
+ 2e Zn E↔ θ
= -0.76V
Ag+
+ e Ag E↔ θ
= +0.80V
Zn Zn↔ 2+
+ 2e Eθ
= +0.76
2Ag+
+2e 2Ag E↔ θ
= +0.80
Zn + Ag+
Zn→ 2+
+ Ag Eθ
= +1.56V
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
H2O + e- 1/2H↔ 2 + OH-
-0.83
Zn2+
+ 2e- Zn↔ - 0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
Pb2+
+ 2e- Pb↔ -0.13
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
Fe3+
+ e- ↔ Fe2+
+0.77
Ag+
+ e- ↔ Ag + 0.80
1/2Br2 + e- ↔ Br-
+1.07
1/2O2 + 2H+
+2e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+ 7H2O +1.33
1/2CI2 + e- ↔ CI-
+1.36
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
1/2F2 + e- ↔ F +2.87
+
+1.56 V
Ag
Eθ
Zn/Ag = 1.56V
Ag+
+ve/high electrode potential is cathode (+)
-ve/ low electrode potential is anode (-)
Electrons flow from anode (- ) to cathode (+ )
-
-
-
-
+
+
+
+
Zn
Eθ
value DO NOT depend on stoichiometric coefficient
(Independent of stoichiometric eqn)
Cu half cell (-ve)
Oxidation
Ag half cell (+ve)
Reduction
Anode Cathode
Cu(s) | Cu2+
(aq) || Ag+
(aq) | Ag (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Cu/Ag Voltaic Cell
-e -e
Cu/Ag half cells
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +0.80 – (+0.34) = +0.46V
Cu 2+
+ 2e Cu (anode) E↔ θ
= +0.34V
Ag+
+ e Ag(cathode) E↔ θ
= +0.80V
Std electrode potential as std reduction potential
Find Eθ
cell (use reduction potential)Find Eθ
cell (use formula)
Cu + 2Ag+
Cu→ 2+
+ 2Ag Eθ
= ?????
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Cu 2+
+ 2e Cu E↔ θ
= +0.34V
Ag+
+ e Ag E↔ θ
= +0.80V
Cu Cu↔ 2+
+ 2e Eθ
= -0.34
2Ag+
+ 2e 2Ag E↔ θ
= +0.80
Cu + 2Ag+
Cu→ 2+
+ 2Ag Eθ
= +0.46V
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
H2O + e- 1/2H↔ 2 + OH-
-0.83
Zn2+
+ 2e- Zn↔ -0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
Pb2+
+ 2e- Pb↔ -0.13
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
Fe3+
+ e- ↔ Fe2+
+0.77
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br-
+1.07
1/2O2 + 2H+
+2e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+ 7H2O +1.33
1/2CI2 + e- ↔ CI-
+1.36
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
1/2F2 + e- ↔ F +2.87
+
+0.46V
AgCu
Cu2+
Half cell- high electrode potential is cathode (+)
Half cell - low electrode potential is anode (-)
Electrons flow from anode (- ) to cathode (+ )
Eθ
Cu/Ag = 0.46V
Ag+
-
-
-
-
+
+
+
+
Eθ
value DO NOT depend on stoichiometric coefficient
(Independent of stoichiometric eqn)
Mn half cell (-ve)
Oxidation
Ni half cell (+ve)
Reduction
Anode Cathode
Mn(s) | Mn2+
(aq) || Ni2+
(aq) | Ni (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Mn/Ni Voltaic Cell
-e -e
Mn/Ni half cells
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = -0.26 – (-1.19) = +0.93V
Mn 2+
+ 2e Mn (anode) E↔ θ
= -1.19V
Ni2+
+ 2e Ni (cathode) E↔ θ
= -0.26V
Std electrode potential as std reduction potential
Find Eθ
cell (use reduction potential)Find Eθ
cell (use formula)
Mn + Ni2+
Mn→ 2+
+ Ni Eθ
= ?????
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Mn 2+
+ 2e Mn E↔ θ
= -1.19V
Ni2+
+ 2e Ni E↔ θ
= -0.26V
Mn Mn↔ 2+
+ 2e Eθ
= +1.19
Ni2+
+ 2e Ni E↔ θ
= -0.26
Mn + Ni2+
Mn→ 2+
+ Ni Eθ
= +0.93V
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
H2O + e- 1/2H↔ 2 + OH-
-0.83
Zn2+
+ 2e- Zn↔ -0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ - 0.26
Sn2+
+ 2e- Sn↔ -0.14
Pb2+
+ 2e- Pb↔ -0.13
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
Fe3+
+ e- ↔ Fe2+
+0.77
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br-
+1.07
1/2O2 + 2H+
+2e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+ 7H2O +1.33
1/2CI2 + e- ↔ CI-
+1.36
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
1/2F2 + e- ↔ F +2.87
+
+0.93 V
Eθ
Mn/Ni = 0.93V
Ni2+
+ve/high electrode potential is cathode (+)
-ve/ low electrode potential is anode (-)
Electrons flow from anode (- ) to cathode (+ )
-
-
-
-
NiMn
+
+
+
+Mn2+
Eθ
value DO NOT depend on stoichiometric coefficient
(Independent of stoichiometric eqn)
Fe half cell (-ve)
Oxidation
MnO4- half cell (+ve)
Reduction
Anode Cathode
Fe(s) | Fe2+
(aq) || MnO4
-
,H+
, Mn2+
| Pt (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Fe/MnO4
-
Voltaic Cell
-e -e
Fe/MnO4
-
half cells
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +1.51 – (-0.45) = +1.96V
Fe2+
+ 2e Fe E↔ θ
= -0.45V
MnO4
-
+ 5e ↔ Mn2+
+ 4H2O Eθ
= +1.51V
Std electrode potential as std reduction potential
Find Eθ
cell (use reduction potential)Find Eθ
cell (use formula)
5Fe + 2MnO4
-
+ 16H+
5Fe→ 2+
+2Mn2+
+ 8H2O Eθ
= ?
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Fe 2+
+ 2e Fe E↔ θ
= -0.45V
MnO4
-
+ 5e ↔ Mn2+
+ 4H2O Eθ
= +1.51V
Fe Fe↔ 2+
+ 2e Eθ
= +0.45
MnO4
-
+5e Mn↔ 2+
+ 4H2O Eθ
= +1.51
Fe + MnO4
-
Mn→ 2+
+ Fe2+
Eθ
= +1.96V
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
H2O + e- 1/2H↔ 2 + OH-
-0.83
Zn2+
+ 2e- Zn↔ -0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
Pb2+
+ 2e- Pb↔ -0.13
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
Fe3+
+ e- ↔ Fe2+
+0.77
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br-
+1.07
1/2O2 + 2H+
+2e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+ 7H2O +1.33
1/2CI2 + e- ↔ CI-
+1.36
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
1/2F2 + e- ↔ F +2.87
+
+1.96V
PtFe
Fe2+
Eθ
Fe/MnO4
-
= 1.96V
MnO4
-
Mn2+
Using platinum electrode
+ve/high electrode potential is cathode (+)
-ve/ low electrode potential is anode (-)
Electrons flow from anode (- ) to cathode (+ )
-
-
-
-
+
+
+
+
Eθ
value DO NOT depend on stoichiometric coefficient
(Independent of stoichiometric eqn)
Zn half cell (-ve)
Oxidation
Fe3+/2+
half cell (+ve)
Reduction
Anode Cathode
Zn(s) | Zn2+
(aq) || Fe3+
, Fe2+
(aq) | Pt (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Zn/Fe3+
,Fe2+
Cell
-e -e
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +0.77 – (-0.76) = +1.53V
Zn2+
+ 2e Zn E↔ θ
= -0.76V
Fe3+
+ e ↔ Fe2+
Eθ
= +0.77V
Std electrode potential as std reduction potential
Find Eθ
cell (use reduction potential)Find Eθ
cell (use formula)
Zn + 2Fe3+
Zn→ 2+
+2Fe2+
Eθ
= ?
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Zn 2+
+ 2e Zn E↔ θ
= -0.76V
Fe3+
+ e ↔ Fe2+
Eθ
= +0.77V
Zn Zn↔ 2+
+ 2e Eθ
= +0.76
2Fe3
+2e 2Fe↔ 2+
Eθ
= +0.77
Zn + 2Fe3+
Zn→ 2+
+ 2Fe2+
Eθ
= +1.53V
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
H2O + e- 1/2H↔ 2 + OH-
-0.83
Zn2+
+ 2e- Zn↔ -0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
Pb2+
+ 2e- Pb↔ -0.13
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
Fe3+
+ e- ↔ Fe2+
+ 0.77
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br-
+1.07
1/2O2 + 2H+
+2e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+ 7H2O +1.33
1/2CI2 + e- ↔ CI-
+1.36
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
1/2F2 + e- ↔ F +2.87
+
+1.53V
PtZn
Zn2+
+ve/high electrode potential is cathode (+)
-ve/ low electrode potential is anode (-)
Electrons flow from anode (- ) to cathode (+ )
Eθ
Zn/Fe3+
= 1.53V
Fe3+-
Fe2+
Using platinum electrode
Zn/Fe3+
,Fe2+
-
-
-
-
+
+
+
+
Eθ
value DO NOT depend on stoichiometric coefficient
(Independent of stoichiometric eqn)
Zn half cell (-ve)
Oxidation
I2 half cell (+ve)
Reduction
Anode Cathode
Zn(s) | Zn2+
(aq) || I2 , I-
(aq) | Pt (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Zn/I2 , I-
Cell
-e -e
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +0.54 – (-0.76) = +1.30V
Zn2+
+ 2e Zn E↔ θ
= -0.76V
I2 + 2e ↔ 2I-
Eθ
= +0.54V
Std electrode potential as std reduction potential
Find Eθ
cell (use reduction potential)Find Eθ
cell (use formula)
Zn + I2 Zn→ 2+
+2I-
Eθ
= ?
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Zn Zn↔ 2+
+ 2e Eθ
= +0.76
I2 + 2e 2I↔ -
Eθ
= +0.54
Zn + I2 Zn→ 2+
+ 2I-
Eθ
= +1.30V
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
H2O + e- 1/2H↔ 2 + OH-
-0.83
Zn2+
+ 2e- Zn↔ -0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
Pb2+
+ 2e- Pb↔ -0.13
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
Fe3+
+ e- ↔ Fe2+
+ 0.77
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br-
+1.07
1/2O2 + 2H+
+2e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+ 7H2O +1.33
1/2CI2 + e- ↔ CI-
+1.36
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
1/2F2 + e- ↔ F +2.87
+
+1.30V
PtZn
Zn2+
+ve/high electrode potential is cathode (+)
-ve/ low electrode potential is anode (-)
Electrons flow from anode (- ) to cathode (+ )
Eθ
Zn/I2 = 1.30V
I--
I2
Using platinum electrode
-
-
-
-
+
+
+
+
Zn/I2 , I-
Zn2+
+ 2e Zn E↔ θ
= -0.76V
I2 + 2e ↔ 2I-
Eθ
= +0.54V
Eθ
value DO NOT depend on stoichiometric coefficient
(Independent of stoichiometric eqn)
Zn half cell (-ve)
Oxidation
H2 half cell (+ve)
Reduction
Anode Cathode
Zn(s) | Zn2+
(aq) || H+
(aq) , H2(g) | Pt (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = 0.00 – (-0.76) = +0.76V
Zn2+
+ 2e Zn E↔ θ
= -0.76V
2H+
+ 2e ↔ H2 Eθ
= 0.00V
Std electrode potential as std reduction potential
Find Eθ
cell (use reduction potential)Find Eθ
cell (use formula)
Zn + 2H+
Zn→ 2+
+ H2 Eθ
= ?
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Zn 2+
+ 2e Zn E↔ θ
= -0.76V
2H+
+ 2e ↔ H2 Eθ
= 0.00V
Zn Zn↔ 2+
+ 2e Eθ
= +0.76
2H+
+2e H↔ 2 Eθ
= 0.00
Zn + 2H+
Zn→ 2+
+ H2 Eθ
= +0.76V
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
H2O + e- 1/2H↔ 2 + OH-
-0.83
Zn2+
+ 2e- Zn↔ -0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
Pb2+
+ 2e- Pb↔ -0.13
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
Fe3+
+ e- ↔ Fe2+
+ 0.77
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br-
+1.07
1/2O2 + 2H+
+2e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+ 7H2O +1.33
1/2CI2 + e- ↔ CI-
+1.36
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
1/2F2 + e- ↔ F +2.87
+
+0.76V
+ve/high electrode potential is cathode (+)
-ve/ low electrode potential is anode (-)
Electrons flow from anode (- ) to cathode (+ )
Eθ
Zn/H2 = 0.76V
Using platinum electrode/H2
Zn/H2
Zn
Zn2+
H+
Pt
H2
-
-
- +
-e
Zn/H2 Cell
Eθ
value DO NOT depend on stoichiometric coefficient
(Independent of stoichiometric eqn)
H2 half cell (-ve)
Oxidation
Ag half cell (+ve)
Reduction
Anode Cathode
Pt(s) | H2, H+
(aq) || Ag+
(aq) | Ag (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
H2/Ag Cell
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +0.80 – (-0.00) = +0.80V
2H+
+ 2e ↔ H2 Eθ
= 0.00V
Ag+
+ e Ag E↔ θ
= +0.80V
Std electrode potential as std reduction potential
Find Eθ
cell (use reduction potential)Find Eθ
cell (use formula)
H2 + 2Ag+
2H→ +
+ 2Ag Eθ
= ?
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
H2 2H↔ +
+ 2e Eθ
= +0.00
2Ag+
+2e 2Ag E↔ θ
= +0.80
H2 + 2Ag+
2H→ +
+ 2Ag Eθ
= +0.80V
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
H2O + e- 1/2H↔ 2 + OH-
-0.83
Zn2+
+ 2e- Zn↔ -0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
Pb2+
+ 2e- Pb↔ -0.13
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
Fe3+
+ e- ↔ Fe2+
+ 0.77
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br-
+1.07
1/2O2 + 2H+
+2e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+ 7H2O +1.33
1/2CI2 + e- ↔ CI-
+1.36
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
1/2F2 + e- ↔ F +2.87
+
+0.80V
+ve/high electrode potential is cathode (+)
-ve/ low electrode potential is anode (-)
Electrons flow from anode (- ) to cathode (+ )
Eθ
H2 /Ag = 0.80V
Using platinum electrode/H2
H2/Ag
Ag
Ag+
H+
Pt
H2
2H+
+ 2e ↔ H2 Eθ
= 0.00V
Ag+
+ e Ag E↔ θ
= +0.80V
+
+
+--
-e
Eθ
value DO NOT depend on stoichiometric coefficient
(Independent of stoichiometric eqn)
H2 half cell (-ve)
Oxidation
Fe3+/2+
half cell (+ve)
Reduction
Anode Cathode
Pt(s) | H2, H+
(aq) || Fe3+
Fe2+
| Pt (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Std electrode potential as std reduction potential
Find Eθ
cell (use reduction potential)Find Eθ
cell (use formula)
H2 + 2Fe3+
2H→ +
+ 2Fe 2+
Eθ
= ?
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
H2 2H↔ +
+ 2e Eθ
= +0.00
2Fe3+
+2e 2Fe↔ 2+
Eθ
= +0.77
H2 + 2Fe3+
2H→ +
+ 2Fe2+
Eθ
= +0.77V
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
H2O + e- 1/2H↔ 2 + OH-
-0.83
Zn2+
+ 2e- Zn↔ -0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
Pb2+
+ 2e- Pb↔ -0.13
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
Fe3+
+ e- ↔ Fe2+
+ 0.77
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br-
+1.07
1/2O2 + 2H+
+2e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+ 7H2O +1.33
1/2CI2 + e- ↔ CI-
+1.36
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
1/2F2 + e- ↔ F +2.87
+
+0.77V
+ve/high electrode potential is cathode (+)
-ve/ low electrode potential is anode (-)
Electrons flow from anode (- ) to cathode (+ )
Eθ
H2 /Fe3+
= 0.77V
Using platinum electrode/H2
Pt
Fe3+
H+
Pt
H2
+
+
+--
-e
H2 /Fe3+
,Fe2+
Cell
H2 /Fe3+
,Fe2+
2H+
+ 2e ↔ H2 Eθ
= 0.00V
Fe3+
+ e Fe↔ 2+
Eθ
= +0.77V
2H+
+ 2e ↔ H2 Eθ
= 0.00V
Fe3+
+ e Fe↔ 2+
Eθ
= +0.77V
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +0.77– (-0.00) = +0.77V
Eθ
value DO NOT depend on stoichiometric coefficient
(Independent of stoichiometric eqn)
H2 half cell (-ve)
Oxidation
CI2 half cell (+ve)
Reduction
Anode Cathode
Pt(s) | H2, H+
(aq) || CI2 ,CI-
| Pt (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Std electrode potential as std reduction potential
Find Eθ
cell (use reduction potential)Find Eθ
cell (use formula)
CI2 + H2 2CI→ -
+ 2H+
Eθ
= ?
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
H2 2H↔ +
+ 2e Eθ
= +0.00
CI2 +2e 2CI↔ -
Eθ
= +1.35
H2 + CI2 2H→ +
+ 2CI-
Eθ
= +1.35V
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
H2O + e- 1/2H↔ 2 + OH-
-0.83
Zn2+
+ 2e- Zn↔ -0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
Pb2+
+ 2e- Pb↔ -0.13
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
Fe3+
+ e- ↔ Fe2+
+ 0.77
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br-
+1.07
1/2O2 + 2H+
+2e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+ 7H2O +1.33
1/2CI2 + e- ↔ CI-
+1.35
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+1.51
1/2F2 + e- ↔ F +2.87
+
+1.35V
+ve/high electrode potential is cathode (+)
-ve/ low electrode potential is anode (-)
Electrons flow from anode (- ) to cathode (+ )
Eθ
H2 /CI2 = 1.35V
Using platinum electrode/H2
Eθ
value DO NOT depend on stoichiometric coefficient
(Independent of stoichiometric eqn)
H+
Pt
H2 --
-e
H2 /CI2 Cell
2H+
+ 2e ↔ H2 Eθ
= 0.00V
CI + e CI↔ -
Eθ
= +1.35V
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +1.35 – (-0.00) = +1.35V
H2 /CI2 Cell
2H+
+ 2e ↔ H2 Eθ
= 0.00V
CI + e CI↔ -
Eθ
= +1.35V
+
Pt
CI - CI2
Standard Electrode Potential
STANDARD Reduction potential – H2 as std
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
H2O + e- H↔ 2+OH-
-0.83
Zn2+
+ 2e- Zn↔ -0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
Pb2+
+ 2e- Pb↔ -0.13
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
Fe3+
+ e- ↔ Fe2+
+0.77
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br-
+1.07
1/2O2 + 2H+
+2e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+7H2O +1.33
1/2CI2 + e- ↔ CI-
+1.36
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
1/2F2 + e- ↔ F-
+2.87
-ve
reduction
potential
+ve
reduction
potential
Compared to
H2 as std
Eθ
cell/Cell Potential = EMF in volt
EMF when half cell connect to SHE std condition
Std potential written as std reduction potential
TOP right
• High ↑ tendency lose e
• Li Li→ +
+ e
• Eθ
Li = +3.04V
• STRONG reducing Agent
•Oxi favourable
(Eθ
=+ve)
TOP right
• High ↑ tendency lose e
• Li Li→ +
+ e
• Eθ
Li = +3.04V
• STRONG reducing Agent
•Oxi favourable
(Eθ
=+ve)
STRONG
Reducing Agent
WEAK
Reducing Agent
BOTTOM right
• Low ↓ tendency lose e
• F -
1/2F→ 2 + e
• Eθ
F2 = - 2.87V
• WEAK reducing Agent
•Oxi NOT favourable (Eθ
=-ve)
BOTTOM right
• Low ↓ tendency lose e
• F -
1/2F→ 2 + e
• Eθ
F2 = - 2.87V
• WEAK reducing Agent
•Oxi NOT favourable (Eθ
=-ve)
WEAK
Oxidizing Agent
STRONG
Oxidizing Agent
TOP left
• Low ↓ tendency gain e
• Li+
+ e Li→
• Eθ
Li= - 3.04V
• WEAK oxidizing Agent
• Red NOT favourable
(Eθ
=-ve)
TOP left
• Low ↓ tendency gain e
• Li+
+ e Li→
• Eθ
Li= - 3.04V
• WEAK oxidizing Agent
• Red NOT favourable
(Eθ
=-ve)
BOTTOM left
• High ↑ tendency gain e
• F2 + 2e 2F→ -
• Eθ
F2= +2.87V
• STRONG oxidizing Agent
•Red favourable (Eθ
=+ve)
BOTTOM left
• High ↑ tendency gain e
• F2 + 2e 2F→ -
• Eθ
F2= +2.87V
• STRONG oxidizing Agent
•Red favourable (Eθ
=+ve)
О
О
О
О
Standard Electrode Potential
STANDARD Reduction potential – H2 as std
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
H2O + e- H↔ 2+OH-
-0.83
Zn2+
+ 2e- Zn↔ -0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
Pb2+
+ 2e- Pb↔ -0.13
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
Fe3+
+ e- ↔ Fe2+
+0.77
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br-
+1.07
1/2O2 + 2H+
+2e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+7H2O +1.33
1/2CI2 + e- ↔ CI-
+1.36
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
1/2F2 + e- ↔ F -
+2.87
Eθ
cell/Cell Potential = EMF in volt
EMF when half cell connect to SHE std condition
Std potential written as std reduction potential
TOP right
• High ↑ tendency lose e
• Li Li→ +
+ e
• Eθ
Li = +3.04V
• STRONG reducing Agent
•Oxi favourable (Eθ
=+ve)
TOP right
• High ↑ tendency lose e
• Li Li→ +
+ e
• Eθ
Li = +3.04V
• STRONG reducing Agent
•Oxi favourable (Eθ
=+ve)
STRONG
Reducing Agent
STRONG
Oxidizing Agent
BOTTOM left
• High ↑ tendency gain e
• F2 + 2e 2F→ -
• Eθ
F2= +2.87V
• STRONG oxidizing Agent
•Red favourable (Eθ =+ve)
BOTTOM left
• High ↑ tendency gain e
• F2 + 2e 2F→ -
• Eθ
F2= +2.87V
• STRONG oxidizing Agent
•Red favourable (Eθ =+ve)
Li Li→ +
+ e Eθ
Li = +3.04VLi Li→ +
+ e Eθ
Li = +3.04V
1/2F2 + e F→ - Eθ
F2 = + 2.87V1/2F2 + e F→ -
Eθ
F2 = + 2.87V
Click here ebook notes
Click here interactive ECS
Click here chem database
(std electrode potential)
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
H2O + e- H↔ 2+OH-
-0.83
Zn2+
+ 2e- Zn↔ -0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
Pb2+
+ 2e- Pb↔ -0.13
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
Fe3+
+ e- ↔ Fe2+
+0.77
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br-
+1.07
1/2O2 + 2H+
+2e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+7H2O +1.33
1/2CI2 + e- ↔ CI-
+1.36
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
1/2F2 + e- ↔ F -
+2.87
-ve
potential
+ve
potential
Uses of Standard Electrode Potential (SEP) Data1
TOP left
• Low ↓ tendency gain e
• Li+
+ e Li→
• Eθ
Li= - 3.04V
• Red NOT favourable (Eθ
=-ve)
TOP left
• Low ↓ tendency gain e
• Li+
+ e Li→
• Eθ
Li= - 3.04V
• Red NOT favourable (Eθ
=-ve)
WEAK
Oxidizing
Agent
STRONG
Oxidizing
Agent
О
TOP right
• High ↑ tendency lose e
• Li Li→ +
+ e
• Eθ
Li = +3.04V
•Oxi favourable (Eθ
=+ve)
TOP right
• High ↑ tendency lose e
• Li Li→ +
+ e
• Eθ
Li = +3.04V
•Oxi favourable (Eθ
=+ve)
STRONG
Reducing
Agent
О
WEAK
Reducing
Agent
BOTTOM left
• High ↑ tendency gain e
• F2 + 2e 2F→ -
• Eθ
F2= +2.87V
•Red favourable (Eθ
=+ve)
BOTTOM left
• High ↑ tendency gain e
• F2 + 2e 2F→ -
• Eθ
F2= +2.87V
•Red favourable (Eθ
=+ve)
О
BOTTOM right
• Low ↓ tendency lose e
• F -
1/2F→ 2 + e
• Eθ
F2 = - 2.87V
•Oxi NOT favour (Eθ
=-ve)
BOTTOM right
• Low ↓ tendency lose e
• F -
1/2F→ 2 + e
• Eθ
F2 = - 2.87V
•Oxi NOT favour (Eθ
=-ve)
О
Relative strength of Oxidizing/Reducing Agent
Eθ
= +ve SEP
↓
Strong oxidizing
↓
Weak reducing agent
↓
F2 strongest
oxidizing agent
↓
F-
ion weakest
reducing agent
Eθ
= -ve SEP
↓
Weak oxidizing
↓
Strong reducing agent
↓
Li+
ion weakest
oxidizing agent
↓
Li metal strongest
reducing agent
Reaction to happen
↓
1 Oxidizing + 1 Reducing agent
(Strong) (Strong)
from both side
Reaction NEVER happen
↓
TWO Oxidizing agent
from same sides
or
TWO Reducing agent
from same sides
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
H2O + e- H↔ 2+OH-
-0.83
Zn2+
+ 2e- Zn↔ -0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
Pb2+
+ 2e- Pb↔ -0.13
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
Fe3+
+ e- Fe↔ 2+
+0.77
Ag+
+ e- ↔ Ag +0.80
1/2O2 + 2H+
+2e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+7H2O +1.33
1/2CI2 + e- ↔ CI-
+1.36
1/2F2 + e- ↔ F -
+2.87
Uses of Standard Electrode Potential (SEP) Data1
TOP left
• Low ↓ tendency gain e
• Na+
+ e Na→
• Eθ
Na = - 2.71V
• Red NOT favourable (Eθ
=-ve)
TOP left
• Low ↓ tendency gain e
• Na+
+ e Na→
• Eθ
Na = - 2.71V
• Red NOT favourable (Eθ
=-ve)
WEAK
Oxidizing
Agent
STRONG
Oxidizing
Agent
TOP right
• High ↑ tendency lose e
• Li Li→ +
+ e
• Eθ
Li = +3.04V
•Oxi favourable (Eθ
=+ve)
TOP right
• High ↑ tendency lose e
• Li Li→ +
+ e
• Eθ
Li = +3.04V
•Oxi favourable (Eθ
=+ve)
STRONG
Reducing
Agent
WEAK
Reducing
Agent
BOTTOM left
• High ↑ tendency gain e
• F2 + 2e 2F→ -
• Eθ
F2= +2.87V
•Red favourable (Eθ
=+ve)
BOTTOM left
• High ↑ tendency gain e
• F2 + 2e 2F→ -
• Eθ
F2= +2.87V
•Red favourable (Eθ
=+ve)
BOTTOM right
• Low ↓ tendency lose e
• Ag Ag→ +
+ e
• Eθ
Ag = - 0.80V
•Oxi NOT favour (Eθ
=-ve)
BOTTOM right
• Low ↓ tendency lose e
• Ag Ag→ +
+ e
• Eθ
Ag = - 0.80V
•Oxi NOT favour (Eθ
=-ve)
О
Relative strength of Oxidizing/Reducing Agent
ОО
Rxn feasible
Rxn not feasible
Rxn not feasible
Rxn feasible
О
Reaction to happen
↓
1 Oxidizing + 1 Reducing agent
(Strong) (Strong)
from both side
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
Zn2+
+ 2e- Zn↔ -0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
1/2I2 + e- ↔ I-
+0.54
Fe3+
+ e- Fe↔ 2+
+0.77
Ag+
+ e- ↔ Ag +0.80
Pb2+
+ 2e- Pb↔ -0.13
1/2O2 + 2H+
+2e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+1.33
1/2CI2 + e- ↔ CI-
+1.36
1/2F2 + e- ↔ F -
+2.87
Uses of Standard Electrode Potential (SEP) Data1
WEAK
Oxidizing
Agent
STRONG
Reducing
Agent
Relative strength of Oxidizing/Reducing Agent
О
Zsign
Zn Zn↔ 2+
+ 2e Eθ
= +0.76V
Sn2+
+ 2e Sn E↔ θ
= -0.14V
Zn + Sn2+
Zn→ 2+
+ Sn Eθ
= +0.62V
Rxn bet Zn + Sn2+
Will it happen ?
Eθ
= +0.62V
+ve (spontaneous)
О
О
О
Zsign
Reaction to happen
↓
1 Oxidizing + 1 Reducing agent
(Strong) (Strong)
from both side
Rxn bet CI2 + I-
Will it happen ?
2I-
I↔ 2 + 2e Eθ
= -0.54V
CI2 + 2e 2CI↔ -
Eθ
= +1.36V
CI2 + 2I-
2CI→ -
+ I2 Eθ
= +0.82V
Eθ
= +0.82V
+ve (spontaneous)
Zn CI2
Both gaining electron
NON spontaneous
Oxidized sp ↔ Reduced sp Eθ
/V
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Mn2+
+ 2e- Mn↔ -1.19
Zn2+
+ 2e- Zn↔ -0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
I2 + e- ↔ I-
+0.54
Fe3+
+ e- Fe↔ 2+
+0.77
Ag+
+ e- ↔ Ag +0.80
Pb2+
+ 2e- Pb↔ -0.13
1/2O2 + 2H+
+2e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+7H2O +1.33
CI2 + e- ↔ CI-
+1.36
1/2F2 + e- ↔ F -
+2.87
Uses of Standard Electrode Potential (SEP) Data1
WEAK
Oxidizing
Agent
STRONG
Oxidizing
Agent
STRONG
Reducing
Agent
WEAK
Reducing
Agent
Relative strength of Oxidizing/Reducing Agent
О
О
Rxn bet CI2 + I2
Will it happen ?
ОRxn NEVER happen
↓
TWO Oxidizing agent
from same sides
Rxn NEVER happen
↓
TWO Reducing agent
from same sides
Rxn bet Zn + Sn
Will it happen ?
Both losing electron
NON spontaneous
О
Rxn NEVER happen
↓
1 Oxidizing + 1 Reducing agent
(WEAK) (WEAK)
from both side
Rxn bet Mg + K +
Will it happen ?
О
ОEθ
= -ve
-ve (Non spontaneous)
Zn half cell (-ve)
Oxidation
Cu half cell (+ve)
Reduction
Anode Cathode
Zn(s) | Zn2+
(aq) || Cu2+
(aq) | Cu (s)
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
-e -e
Zn/Cu half cells
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +0.34 – (-0.76) = +1.10V
Zn 2+
+ 2e Zn (anode) E↔ θ
= -0.76V
Cu2+
+ 2e Cu (cathode) E↔ θ
= +0.34V
Std electrode potential as std reduction potential
Find Eθ
cell (use reduction potential)Find Eθ
cell (use formula)
Zn + Cu2+
Zn→ 2+
+ Cu Eθ
= ?????
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Zn 2+
+ 2e Zn E↔ θ
= -0.76V
Cu2+
+ 2e Cu E↔ θ
= +0.34V
Zn Zn↔ 2+
+ 2e Eθ
= +0.76
Cu2+
+ 2e Cu E↔ θ
= +0.34
Zn + Cu2+
Zn→ 2+
+ Cu Eθ
= +1.10V
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
H2O + e- 1/2H↔ 2 + OH-
-0.83
Zn2+
+ 2e- Zn↔ - 0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
Pb2+
+ 2e- Pb↔ -0.13
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu + 0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
Fe3+
+ e- ↔ Fe2+
+0.77
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br-
+1.07
1/2O2 + 2H+
+2e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+ 7H2O +1.33
1/2CI2 + e- ↔ CI-
+1.35
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
1/2F2 + e- ↔ F +2.87
+
+1.10 V
Eθ
Zn/Cu = 1.10V
Cu2+
-
-
-
-
Zn Cu
+
+
+
+
Uses of Standard Electrode Potential (SEP) Data2
Find Eθ using std electrode potential data for Zn/Cu half cell
Cu half cell (-ve)
Oxidation
Ag half cell (+ve)
Reduction
Anode Cathode
Cu(s) | Cu2+
(aq) || Ag+
(aq) | Ag (s)
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
-e -e
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +0.80 – (+0.34) = +0.46V
Cu 2+
+ 2e Cu (anode) E↔ θ
= +0.34V
Ag+
+ e Ag(cathode) E↔ θ
= +0.80V
Std electrode potential as std reduction potential
Find Eθ
cell (use reduction potential)Find Eθ
cell (use formula)
Cu + 2Ag+
Cu→ 2+
+ 2Ag Eθ
= ?????
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Cu 2+
+ 2e Cu E↔ θ
= +0.34V
Ag+
+ e Ag E↔ θ
= +0.80V
Cu Cu↔ 2+
+ 2e Eθ
= -0.34
2Ag+
+ 2e 2Ag E↔ θ
= +0.80
Cu + 2Ag+
Cu→ 2+
+ 2Ag Eθ
= +0.46V
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
H2O + e- 1/2H↔ 2 -0.83
Zn2+
+ 2e- Zn↔ -0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
Pb2+
+ 2e- Pb↔ -0.13
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
Fe3+
+ e- ↔ Fe2+
+0.77
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br-
+1.07
1/2O2 + 2H+
+2e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+ 7H2O +1.33
1/2CI2 + e- ↔ CI-
+1.36
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
1/2F2 + e- ↔ F +2.87
+
+0.46V
AgCu
Cu2+
Eθ
Cu/Ag = 0.46V
Ag+
-
-
-
-
+
+
+
+
Uses of Standard Electrode Potential (SEP) Data2
Find Eθ using std electrode potential data for Cu/Ag half cell
Mn half cell (-ve)
Oxidation
Ni half cell (+ve)
Reduction
Anode Cathode
Mn(s) | Mn2+
(aq) || Ni2+
(aq) | Ni (s)
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
-e -e
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = -0.26 – (-1.19) = +0.93V
Mn 2+
+ 2e Mn (anode) E↔ θ
= -1.19V
Ni2+
+ 2e Ni (cathode) E↔ θ
= -0.26V
Std electrode potential as std reduction potential
Find Eθ
cell (use reduction potential)Find Eθ
cell (use formula)
Mn + Ni2+
Mn→ 2+
+ Ni Eθ
= ?????
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Mn 2+
+ 2e Mn E↔ θ
= -1.19V
Ni2+
+ 2e Ni E↔ θ
= -0.26V
Mn Mn↔ 2+
+ 2e Eθ
= +1.19
Ni2+
+ 2e Ni E↔ θ
= -0.26
Mn + Ni2+
Mn→ 2+
+ Ni Eθ
= +0.93V
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
H2O + e- 1/2H↔ 2 + OH-
-0.83
Zn2+
+ 2e- Zn↔ -0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ - 0.26
Sn2+
+ 2e- Sn↔ -0.14
Pb2+
+ 2e- Pb↔ -0.13
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
Fe3+
+ e- ↔ Fe2+
+0.77
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br-
+1.07
1/2O2 + 2H+
+2e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+ 7H2O +1.33
1/2CI2 + e- ↔ CI-
+1.36
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
1/2F2 + e- ↔ F +2.87
+
+0.93 V
Eθ
Mn/Ni = 0.93V
Ni2+
-
-
-
-
NiMn
+
+
+
+Mn2+
2 Uses of Standard Electrode Potential (SEP) Data
Find Eθ using std electrode potential data for Mn/Ni half cell
Eθ
= -0.20V
-ve (NON spontaneous)
Reaction to happen
↓
1 Oxidizing + 1 Reducing agent
(Strong) (Strong)
from both side
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
Zn2+
+ 2e- Zn↔ -0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
I2 + 2e- ↔ I-
+0.54
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- Br↔ -
+1.07
1/2O2 + 2H+
+2e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+7H2O +1.33
1/2CI2 + e- ↔ CI-
+1.36
MnO4
-
+ 8H+
+ 5e- Mn↔ 2+
+ 4H2O +1.51
1/2F2 + e- ↔ F -
+2.87
Uses of Standard Electrode Potential (SEP) Data3
WEAK
Oxidizing
Agent
STRONG
Oxidizing
Agent
STRONG
Reducing
Agent
WEAK
Reducing
Agent
О
Z
Zn Zn↔ 2+
+ 2e Eθ
= +0.76
Sn2+
+ 2e Sn E↔ θ
= -0.14
Zn + Sn2+
Zn→ 2+
+ Sn Eθ
= +0.62V
Rxn bet Zn + Sn2+
Will it happen ?
Eθ
= +0.62V
+ve (spontaneous)
Reaction NEVER happen
↓
1 Oxidizing + 1 Reducing agent
(WEAK) (WEAK)
from both side
Rxn bet Cu2+
+I-
Will it happen ?
О
Rxn feasible
О
О
2I-
I↔ 2 + 2e Eθ
= -0.54
Cu2+
+ 2e Cu E↔ θ
= +0.34
2I-
+ Cu2+
Cu→ + I2 Eθ
= -0.20V
Eθ
= -0.20V
-ve (NON spontaneous)
Rxn not feasible
Zn(s) | Zn2+
(aq) || Sn2+
(aq) | Sn (s)
(Oxidation) (Reduction)
Anode Cathode
Find Eθ
cell (use formula)
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = -0.14 – (-0.76) = +0.62V
Eθ
= +0.62V
+ve (spontaneous)
Pt(s) | I-
, I2 || Cu2+
(aq) | Cu (s)
Anode Cathode
(Oxidation) (Reduction)
Find Eθ
cell (use formula)
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +0.34 – (+0.54) = -0.20V
Determine spontaneity rxn. Will it HAPPEN ?
Eθ
= -0.82V
-ve (NON spontaneous)
Reaction to happen
↓
1 Oxidizing + 1 Reducing agent
(Strong) (Strong)
from both side
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
Zn2+
+ 2e- Zn↔ -0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
Pb2+
+ 2e- Pb↔ -0.13
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 +0.17
Cu2+
+ 2e- ↔ Cu +0.34
I2 + 2e- ↔ I-
+0.54
Fe3+
+ e- Fe↔ 2+
+0.77
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- Br↔ -
+1.07
1/2O2 + 2H+
+2e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+7H2O +1.33
1/2CI2 + e- ↔ CI-
+1.36
1/2F2 + e- ↔ F -
+2.87
Uses of Standard Electrode Potential (SEP) Data3
WEAK
Oxidizing
Agent
STRONG
Oxidizing
Agent
STRONG
Reducing
Agent
WEAK
Reducing
Agent
О
Z
Zn Zn↔ 2+
+ 2e Eθ
= +0.76
Cu2+
+ 2e Cu E↔ θ
= +0.34
Zn + Cu2+
Zn→ 2+
+Cu Eθ
= +1.10V
Rxn bet Zn + Cu2+
Will it happen ?
Eθ
= +1.10V
+ve (spontaneous)
Reaction NEVER happen
↓
1 Oxidizing + 1 Reducing agent
(WEAK) (WEAK)
from both side
Rxn bet I2 +CI-
Will it happen ?
О
Rxn feasible
О
О
2CI-
CI↔ 2 + 2e Eθ
= -1.36
I2 + 2e 2I↔ -
Eθ
= +0.54
I2 + 2CI-
2I-→ + CI2 Eθ
= -0.82V
Eθ
= -0.82V
-ve (NON spontaneous)
Rxn not feasible
Zn(s) | Zn2+
(aq) || Cu2+
(aq) | Cu (s)
(Oxidation) (Reduction)
Anode Cathode
Find Eθ
cell (use formula)
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = 0.34 – (-0.76) = +1.10V
Eθ
= +1.10V
+ve (spontaneous)
Pt(s) | CI-
, CI2 || I2 I-
| Pt (s)
Anode Cathode
(Oxidation) (Reduction)
Find Eθ
cell (use formula)
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +0.54 – (+1.36) = -0.82V
Determine spontaneity rxn. Will it HAPPEN ?
Eθ
= -0.59V
-ve (NON spontaneous)
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
H2O + e- H↔ 2 + OH-
-0.83
Zn2+
+ 2e- Zn↔ -0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2S +0.17
Cu2+
+ 2e- ↔ Cu +0.34
Cu+
+ e- Cu↔ +0.52
Fe3+
+ e- Fe↔ 2+
+0.77
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- Br↔ -
+1.07
1/2O2 + 2H+
+2e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+1.33
1/2CI2 + e- ↔ CI-
+1.36
1/2F2 + e- ↔ F -
+2.87
Uses of Standard Electrode Potential (SEP) Data3
WEAK
Oxidizing
Agent
STRONG
Oxidizing
Agent
STRONG
Reducing
Agent
WEAK
Reducing
Agent
Cu Cu↔ 2+
+ 2e Eθ
= -0.34
2H+
+ 2e H↔ 2 Eθ
= +0.00
Cu + 2H+
Cu→ 2+
+H2 Eθ
= -0.34V
Rxn bet Cu + H+
Will it happen ?
Eθ
= -0.34V
-ve (NON spontaneous)
Reaction NEVER happen
↓
1 Oxidizing + 1 Reducing agent
(WEAK) (WEAK)
from both side
Rxn bet Fe3+
+CI-
Will it happen ?
О
О
О
2CI-
CI↔ 2 + 2e Eθ
= -1.36
2Fe3+
+ 2e 2Fe↔ 2+
Eθ
= +0.77
2Fe3+
+ 2CI-
2Fe→ 2+
+CI2 Eθ
= -0.59V
Eθ
= -0.59V
-ve (NON spontaneous)
Rxn not feasible
Cu(s) | Cu2+
(aq) || H+
H2 | Pt (s)
(Oxidation) (Reduction)
Anode Cathode
Find Eθ
cell (use formula)
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = 0.00 – (+0.34) = -0.34V
Eθ
= -0.34V
-ve (spontaneous)
Pt(s) | CI-
, CI2 || Fe3+
,Fe2+
|Pt (s)
Anode Cathode
(Oxidation) (Reduction)
Find Eθ
cell (use formula)
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +0.77 – (+1.36) = -0.59V
О
Rxn not feasible
Reaction NEVER happen
↓
1 Oxidizing + 1 Reducing agent
(WEAK) (WEAK)
from both side
Determine spontaneity rxn. Will it HAPPEN ?
Eθ
value DO NOT depend surface area of metal electrode.
EMF = Energy per unit charge. (Joule)/C
EMF 10v = 10J energy released by 1C of charge flowing
= 100J energy released by 10C of charge flowing
Eθ
– intensive property– independent of amt – ratio energy/charge
Increasing surface area metal will NOT increase EMF
Eθ
Zn/Cu = 1.10V
Surface area exposed 10 cm2
Total charges 100C leave electrode
EMF = 1.10V = 1.1 J energy for 1 C (charges leaving)
1C release 1.1J energy
100 C release 110 J energy
Voltmeter measure energy for 1C – 110J/100C – 1.1V
EMF no change
Current – measured in Amperes or Coulombs per second
1A = 1 Coulomb charge pass through a point in 1 second = 1C/s
1 Coulomb charge (electron) = 6.28 x 10 18
electrons passing in 1 second
1 electron/proton carry charge of – 1.6 x 10 -19 C ( very small)
6.28 x 10 18
electron carry charge of - 1 C
ond
electron
ond
Coulomb
A
sec.1
.1028.6
sec1
1
1
18
×
==
Surface area increase ↑
Total Energy increase ↑
Total Charge increase ↑Current increase ↑
BUT EMF remain SAME
EMF = (Energy/charge)
t
Q
I
tIQ
=
×=
Q up ↑ – I up ↑
100C flow
110J released
VEMF
EMF
eCh
Energy
EMF
10.1
100
110
arg
=
=
=
Surface area exposed 10 cm2
Surface area exposed 100cm2
Surface area exposed 100 cm2
Total charges 1000C leave electrode
EMF = 1.10V = 1.1 J energy for 1 C (charges leaving)
1C release 1.1J energy
1000 C release 1100 J energy
Voltmeter measure energy for 1C – 1100J/1000C – 1.1V
EMF no change
VEMF
EMF
eCh
Energy
EMF
10.1
1000
1100
arg
=
=
=
Eθ
Zn/Cu = 1.10V
1000C flow
1100J released
t
Q
I =
t
Q
I =
Iron rust in presence of water + oxygen
Iron galvanized/coated with zinc.
Oxidized sp ↔ Reduced sp Eθ
/V
Zn2+
+ 2e- Zn↔ - 0.76
Fe2+
+ 2e- ↔ Fe -0.44
O2 + 2H2O + 4e ↔ 4OH-
+0.40
Iron rusting
Rusting Process happen
Eθ
/V
Fe2+
+ 2e- ↔ Fe -0.44
O2 + 2H2O + 4e ↔ 4OH-
+0.40
O2 + 4H+
+ 4e ↔ 2H2O + 1.23
H2O + O2 less reactive (cathode region) – reduction – gain e
Fe more reactive (anode region) – oxidation - lose e
OxidationReduction
Fe2+
+ 2e- Fe -0.44↔
O2 +2H2O+4e ↔ 4OH-
+0.40
Fe Fe↔ 2+
+ 2e Eθ
= +0.44
O2+2H2O+4e ↔ 4OH-
Eθ
= +0.40
2Fe+O2 +2H2O→2Fe2+
+4OH-
Eθ
= +0.84V
Eθ
= +0.84V +ve (spontaneous)
О
О
Dissolve O2
in water
Dissolve O2
in acid
How galvanizing reduces rusting
Iron Galvanized
with Zn
Iron/Steel Galvanized
with tin
Zn more reactive – lose e instead of Fe
Zn as Sacrificial metal/ Cathodic Protection
Electron flow to O2/H2O region
Prevent Fe rusting/lose e
O2 gain e
Fe
O2 + 2H2O + 4e ↔ 4OH-
flow e-
Zn oxidation/lose e
Zn2+
+ 2e- ↔ Zn -0.76
O2 +2H2O+4e ↔ 4OH-
+0.40
Zn lose e- (Stronger RA)
Zn ↔ Zn2+
+ 2e Eθ
= +0.76
O2+2H2O+4e ↔ 4OH-
Eθ
= +0.40
2Zn+O2 +2H2O→2Zn2+
+4OH-
Eθ
= +1.16V
Eθ
= +1.16 +ve (spontaneous)
water
О
О
Anodic region
Cathodic region
Zn Zn
FeFeFe
Eθ
= +0.84V +ve (spontaneous)
Iron rust in presence of water + oxygen
Iron can coated with tin widely used in canning
Tin corrodes less readily than iron (protect iron)
Oxidized sp ↔ Reduced sp Eθ
/V
Fe2+
+ 2e- ↔ Fe -0.44
Sn2+
+ 2e- Sn -0.14↔
O2 + 2H2O + 4e ↔ 4OH-
+0.40
Iron rusting
If tin coat broken, iron rust faster as it will displace tin ions from its solution
Will iron rust spontaneously, if Sn2+
(tin ions) are formed.
Rusting Process happen
Eθ
/V
Fe2+
+ e- ↔ Fe -0.44
O2 + 2H2O + 4e ↔ 4OH-
+0.40
O2 + 4H+
+ 4e ↔ 2H2O + 1.23
H2O + O2 less reactive (cathode region) – reduction – gain e
Fe more reactive (anode region) – oxidation - lose e
OxidationReduction
Fe2+
+ 2e- Fe -0.44↔
O2 +2H2O+4e ↔ 4OH-
+0.40
Fe Fe↔ 2+
+ 2e Eθ
= +0.44
O2+2H2O+4e ↔ 4OH-
Eθ
= +0.40
2Fe+O2 +2H2O 4Fe→ 2+
+4OH-
Eθ
= +0.84V
Eθ
= +0.84V +ve (spontaneous)
О
О
Dissolve O2
in water
How coating reduces rusting
Iron/Steel coated with tin/Sn
BUT if it is exposed - Fe will rust
Fe more reactive Sn
Tin/Sn protect Fe metal
Electron flow Fe to O2/H2O region
water
Fe oxidation/lose e
flow e-
O2 + 2H2O + 4e ↔ 4OH-
Iron metal
water
O2 gain e
Sn Sn2+
Oxidized sp ↔ Reduced sp Eθ
/V
Fe2+
+ 2e- ↔ Fe -0.44
Sn2+
+ 2e- Sn -0.14↔
O2 + 2H2O + 4e ↔ 4OH-
+0.40
Fe Fe↔ 2+ + 2e Eθ = +0.44
O2+2H2O+4e ↔ 4OH-
Eθ
= +0.40
2Fe+O2 +2H2O 4Fe→ 2+
+4OH-
Eθ
= +0.84V
Fe Fe↔ 2+ + 2e Eθ = +0.44
Sn2+
+ 2e ↔ Sn Eθ
= -0.14
Fe + Sn2+
→ Fe2+
+ Sn Eθ
= +0.30V
Eθ
= +0.30V +ve (spontaneous)
О
О
О
О
Sn SnSn
FeFeFe Fe
State which is able to convert Fe2+
to Fe3+
Oxidized sp ↔ Reduced sp Eθ
/V
AI3+
+ 3e- AI -1.66↔
I2 + 2e- ↔ 2I-
+0.54
Fe3+
+ e- ↔ Fe2+
+0.77
H2O2 + 2H+
+ 2e ↔ 2H2O +1.07
Co3+
+ e ↔ Co2+
+1.51
2Fe2+
2Fe↔ 3+
+ 2e Eθ
= -0.77
H2O2 + 2H+
+ 2e 2H↔ 2O Eθ
=+1.07
2Fe2+
+ H2O2 + 2H+
2Fe→ 3+
+ 2H2O Eθ
= +0.30V
Eθ
= +0.30 +ve (spontaneous)
Fe2+
Fe↔ 3+
+ e Eθ
= -0.77
Co3+
+ e ↔ Co 2+
Eθ
=+1.51
Fe2+
+ Co3+
Fe→ 3+
+ Co2+
Eθ
= +0.74V
Eθ
= +0.74 +ve (spontaneous)
Eθ
cell = EMF in V (std condition)
Eθ
= Show ease/tendency of species to accept/lose electron
Eθ
= +ve std electrode potential = stronger oxidizing agent – weaker reducing agent – accept e
Eθ
= - ve std electrode potential = stronger reducing agent - weaker oxidizing agent – lose e
EMF when half cell connect to SHE std condition
Std potential written as std reduction potential
Eθ value DO NOT depend on stoichiometric coefficient. EMF = Energy per unit charge. (Joule)/C
EMF 10v = 10J energy released by 1C of charge flowing
= 100J energy released by 10C of charge flowing
Eθ
, Std electrode potential – intensive property – not dependent on amt – ratio energy/charge
Eθ
= +ve suggest rxn feasible, does not tell rate, feasible but may be slow, give no indication rate
Eθ
= +ve = Energetically feasible but kinetically non feasible
E = ↑ +ve ↑ (OA)
Oxidized sp ↔ Reduced sp Eθ
/V
Fe3+
+ e- ↔ Fe2+
+0.77
H2O2 +2H+
+2e ↔ 2H2O +1.07
Oxidized sp ↔ Reduced sp Eθ
/V
Fe3+
+ e- ↔ Fe2+
+0.77
Co3+
+ e ↔ Co2+
+1.51
Stronger OA
Strongest OA
Redox Question
Aluminium air battery
Excellent Zn/Cu gravity cell for IA
Zinc air battery
Videos on battery making
Arrange the species in order of
increasing oxidizing/reducing strength
Oxidized sp ↔ Reduced sp Eθ
/V
Zn2+
+ 2e- Zn -0.76↔
Br2 + 2e- ↔ 2Br-
+1.07
I2 + 2e- ↔ 2I-
+0.54
Fe3+
+ e- ↔ Fe2+
+0.77
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
Oxidizing agent (OA)
MnO4
_
> Br2 > Fe3+
> I2 > Zn2+
Reducing agent (RA)
Zn > I-
> Fe 2+
> Br-
> Mn2+
Arrange in order of increasing reducing strength.
(Strongest reducing agent)
Redox Questions
1 2
E = most +ve ↑
strongest OA
E = most -ve ↑
strongest RA
Oxidized sp ↔ Reduced sp Eθ
/V
Zn2+
+ 2e- Zn -0.76↔
I2 + 2e- ↔ 2I-
+0.54
Fe3+
+ e- ↔ Fe2+
+0.77
Br2 + 2e- ↔ 2Br-
+1.07
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
arrange increasing ↑ E value
E = ↑ +ve ↑ (OA)
Eθ
/V
X 3+
+ 3e- X -1.56↔
Y 2+
+ 2e- Y -2.70↔
Z 2+
+ 2e- Z +0.90↔
E = ↑ -ve ↑(RA)
E = most -ve ↑
strongest RA
Reducing agent
Y > X > Z
arrange increasing ↑ E value
Eθ
/V
Y 2+
+ 2e- Y -2.70↔
X 3+
+ 3e- X -1.56↔
Z 2+
+ 2e- Z +0.90↔
E = ↑ -ve ↑ (RA)
4433
Oxidized sp ↔ Reduced sp Eθ
/V
Ti2+
+ 2e- Ti -1.63↔
2H+
+ 2e- H↔ 2 0.00
Rxn bet Ti + H+
Will it happen ?
Ti Ti↔ 2+
+ 2e Eθ
= +1.63
2H+
+ 2e H↔ 2 Eθ
= 0.00
Ti + 2H+
Ti→ 2+
+ H2 Eθ
= +1.63V
Eθ
= +1.63V
+ve (spontaneous)
What happen when gold added to acid
Oxidized sp ↔ Reduced sp Eθ
/V
2H+
+ 2e- H↔ 2 0.00
Au3+
+ 3e ↔ Au +1.58
Rxn bet Au + H+
Will it happen ?
What happen when titanium added to acid
2Au 2↔ Au3+
+ 6e Eθ
= -1.58
6H+
+ 6e 3H↔ 2 Eθ
= 0.00
2Au + 6H+
2Au→ 3+
+ 3H2 Eθ
= -1.58V
Eθ
= -1.58V
-ve ( NON spontaneous)
acid acid
Redox Question
6Predict if manganate will oxidize chloride ion?
MnO2 + 4H+
+ 2CI-
Mn→ 2+
+ 2H2O + CI2 Eθ
= ?
55
MnO2 +4H+
+ 2e- Mn↔ 2+
+ 2H2O +1.23
1/2CI2 + e- ↔ CI-
+1.36
2CI-
CI↔ 2 + 2e Eθ
= -1.36
MnO2 + 4H+
+ 2e Mn↔ 2+
+ 2H2O Eθ
= +1.23
MnO2 + 4H+
+2CI-
Mn→ 2+
+2H2O+CI2 Eθ
= -0.13V
Eθ
= -0.13V -ve (NON spontaneous)
Oxidized sp ↔ Reduced sp Eθ
/V
Cr2O7
2-
+ 14H+
+ 6e- ↔ 2Cr3+
+ 7H2O +1.33
MnO2 +4H+
+ 2e- Mn↔ 2+
+ 2H2O +1.23
1/2CI2 + e- ↔ CI-
+1.36
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
Predict if MnO4
-
able to oxidize aq CI-
to CI2
2MnO4 + 16H+
+ 10CI-
2Mn→ 2+
+ 8H2O + 5CI2
E = ↑ +ve ↑ (OA)О
О
Oxidized sp ↔ Reduced sp Eθ
/V
Cr2O7
2-
+ 14H+
+ 6e- ↔ 2Cr3+
+ 7H2O +1.33
MnO2 +4H+
+ 2e- Mn↔ 2+
+ 2H2O +1.23
1/2CI2 + e- ↔ CI-
+1.36
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
О
О
2CI-
CI↔ 2 + 2e Eθ
= -1.36
MnO4
-
+ 8H+
+ 5e Mn↔ 2+
+ 4H2O Eθ
= +1.51
2MnO4 + 16H+
+10CI-
2Mn→ 2+
+8H2O+5CI2 Eθ
= +0.15V
1/2CI2 + e- ↔ CI-
+1.36
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
Eθ
= +0.15V +ve (spontaneous)
Predict if iron react with HCI a) absence air
Which is stronger OA ?
Fe Fe↔ 2+
+ 2e Eθ
= +0.44
2H+
+ 2e H↔ 2 Eθ
= 0.00V
Fe + 2H+
Fe→ 2+
+ H2 Eθ
= +0.44V
Eθ
= +0.44V +ve (spontaneous)
Oxidized sp ↔ Reduced sp Eθ
/V
Fe2+
+ 2e- Fe -0.44↔
2H+
+ 2e- H↔ 2 0.00
O2 +2H2O+4e ↔ 4OH-
+0.40
Fe Fe↔ 2+
+ 2e Eθ
= +0.44
O2+2H2O+4e ↔ 4OH-
Eθ
= +0.40
2Fe+O2 +2H2O→2Fe2+
+4OH-
Eθ
= +0.84V
Predict if iron react with HCI b) presence of air
Fe2+
+ 2e- Fe -0.44↔
2H+
+ 2e- H↔ 2 0.00
О
О
Fe2+
+ 2e- Fe -0.44↔
O2 +2H2O+4e ↔ 4OH-
+0.40
О
О
Oxidized sp ↔ Reduced sp Eθ
/V
Fe2+
+ 2e- Fe -0.44↔
2H+
+ 2e- H↔ 2 0.00
O2 +2H2O+4e ↔ 4OH-
+0.40
Eθ
= +0.84V +ve (spontaneous)
Iron rusting
E = ↑ +ve
↑ (OA)
Acknowledgements
Thanks to source of pictures and video used in this presentation
Thanks to Creative Commons for excellent contribution on licenses
http://creativecommons.org/licenses/
http://spmchemistry.onlinetuition.com.my/2013/10/electrolytic-cell.html
http://www.chemguide.co.uk/physical/redoxeqia/introduction.html
http://educationia.tk/reduction-potential-table
http://2012books.lardbucket.org/books/principles-of-general-chemistry-v1.0/s23-
electrochemistry.html
http://wps.prenhall.com/wps/media/objects/4680/4792445/ch18_10.htm
Prepared by Lawrence Kok
Check out more video tutorials from my site and hope you enjoy this tutorial
http://lawrencekok.blogspot.com

More Related Content

What's hot

IB Chemistry on Lewis structure, ionic and covalent bonding
IB Chemistry on Lewis structure, ionic and covalent bondingIB Chemistry on Lewis structure, ionic and covalent bonding
IB Chemistry on Lewis structure, ionic and covalent bondingLawrence kok
 
IB Chemistry on Redox Design and Nernst Equation
IB Chemistry on Redox Design and Nernst EquationIB Chemistry on Redox Design and Nernst Equation
IB Chemistry on Redox Design and Nernst EquationLawrence kok
 
IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...
IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...
IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...Lawrence kok
 
IB Chemistry on Lewis Structure, Ionic and Covalent Bonding
IB Chemistry on Lewis Structure, Ionic and Covalent BondingIB Chemistry on Lewis Structure, Ionic and Covalent Bonding
IB Chemistry on Lewis Structure, Ionic and Covalent BondingLawrence kok
 
IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...
IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...
IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...Lawrence kok
 
IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...
IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...
IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...Lawrence kok
 
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...Lawrence kok
 
IB Chemistry on Redox, Reactivity Series and Displacement reaction
IB Chemistry on Redox, Reactivity Series and Displacement reactionIB Chemistry on Redox, Reactivity Series and Displacement reaction
IB Chemistry on Redox, Reactivity Series and Displacement reactionLawrence kok
 
IB Chemistry on Quantum Numbers and Electronic Configuration
IB Chemistry on Quantum Numbers and Electronic ConfigurationIB Chemistry on Quantum Numbers and Electronic Configuration
IB Chemistry on Quantum Numbers and Electronic ConfigurationLawrence kok
 
IB Chemistry on Resonance, Delocalization and Formal Charges
IB Chemistry on Resonance, Delocalization and Formal ChargesIB Chemistry on Resonance, Delocalization and Formal Charges
IB Chemistry on Resonance, Delocalization and Formal ChargesLawrence kok
 
Electrochemistry by rawat
Electrochemistry by rawatElectrochemistry by rawat
Electrochemistry by rawatRawat DA Greatt
 
Electrochemistry
ElectrochemistryElectrochemistry
ElectrochemistryCelz
 
Electrochemistry – electrochemical cells
Electrochemistry – electrochemical cellsElectrochemistry – electrochemical cells
Electrochemistry – electrochemical cellsKavya Liyanage
 
Electro chemical cells
Electro chemical cellsElectro chemical cells
Electro chemical cellsNauman Khan
 
application electrolytic cells
application electrolytic cellsapplication electrolytic cells
application electrolytic cellsMoon Bulan
 
Ch21 electrochem 6e_final
Ch21 electrochem 6e_finalCh21 electrochem 6e_final
Ch21 electrochem 6e_finalPeterEdward21
 
ELECTROCHEMSTRY POWER POINT
ELECTROCHEMSTRY POWER POINTELECTROCHEMSTRY POWER POINT
ELECTROCHEMSTRY POWER POINTwanafifah
 
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbitalIB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbitalLawrence kok
 

What's hot (20)

IB Chemistry on Lewis structure, ionic and covalent bonding
IB Chemistry on Lewis structure, ionic and covalent bondingIB Chemistry on Lewis structure, ionic and covalent bonding
IB Chemistry on Lewis structure, ionic and covalent bonding
 
IB Chemistry on Redox Design and Nernst Equation
IB Chemistry on Redox Design and Nernst EquationIB Chemistry on Redox Design and Nernst Equation
IB Chemistry on Redox Design and Nernst Equation
 
IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...
IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...
IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...
 
IB Chemistry on Lewis Structure, Ionic and Covalent Bonding
IB Chemistry on Lewis Structure, Ionic and Covalent BondingIB Chemistry on Lewis Structure, Ionic and Covalent Bonding
IB Chemistry on Lewis Structure, Ionic and Covalent Bonding
 
IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...
IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...
IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...
 
IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...
IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...
IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...
 
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
 
IB Chemistry on Redox, Reactivity Series and Displacement reaction
IB Chemistry on Redox, Reactivity Series and Displacement reactionIB Chemistry on Redox, Reactivity Series and Displacement reaction
IB Chemistry on Redox, Reactivity Series and Displacement reaction
 
IB Chemistry on Quantum Numbers and Electronic Configuration
IB Chemistry on Quantum Numbers and Electronic ConfigurationIB Chemistry on Quantum Numbers and Electronic Configuration
IB Chemistry on Quantum Numbers and Electronic Configuration
 
IB Chemistry on Resonance, Delocalization and Formal Charges
IB Chemistry on Resonance, Delocalization and Formal ChargesIB Chemistry on Resonance, Delocalization and Formal Charges
IB Chemistry on Resonance, Delocalization and Formal Charges
 
Electrochemistry by rawat
Electrochemistry by rawatElectrochemistry by rawat
Electrochemistry by rawat
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
 
Electrochemistry 12
Electrochemistry 12Electrochemistry 12
Electrochemistry 12
 
Electrochemistry – electrochemical cells
Electrochemistry – electrochemical cellsElectrochemistry – electrochemical cells
Electrochemistry – electrochemical cells
 
Electrode potential
Electrode potentialElectrode potential
Electrode potential
 
Electro chemical cells
Electro chemical cellsElectro chemical cells
Electro chemical cells
 
application electrolytic cells
application electrolytic cellsapplication electrolytic cells
application electrolytic cells
 
Ch21 electrochem 6e_final
Ch21 electrochem 6e_finalCh21 electrochem 6e_final
Ch21 electrochem 6e_final
 
ELECTROCHEMSTRY POWER POINT
ELECTROCHEMSTRY POWER POINTELECTROCHEMSTRY POWER POINT
ELECTROCHEMSTRY POWER POINT
 
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbitalIB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
 

Similar to IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and Electrochemical Series

Lecture 21- Electrochemical cells
Lecture 21- Electrochemical cellsLecture 21- Electrochemical cells
Lecture 21- Electrochemical cellsMary Beth Smith
 
intro to electrochemistry
intro to  electrochemistryintro to  electrochemistry
intro to electrochemistrySundar Singh
 
New chm-152-unit-8-power-points-sp13-140227172047-phpapp01
New chm-152-unit-8-power-points-sp13-140227172047-phpapp01New chm-152-unit-8-power-points-sp13-140227172047-phpapp01
New chm-152-unit-8-power-points-sp13-140227172047-phpapp01Cleophas Rwemera
 
ELECTROCHEMITRY
ELECTROCHEMITRYELECTROCHEMITRY
ELECTROCHEMITRYzlem
 
Electrochemistry Introduction electrochemical cells
Electrochemistry Introduction electrochemical cellsElectrochemistry Introduction electrochemical cells
Electrochemistry Introduction electrochemical cellsHhelenaa1
 
electrochemistry12.pdf
electrochemistry12.pdfelectrochemistry12.pdf
electrochemistry12.pdfLUXMIKANTGIRI
 
electrochemistry12.pdf
electrochemistry12.pdfelectrochemistry12.pdf
electrochemistry12.pdfLUXMIKANTGIRI
 
Lect w13 152_electrochemistry_abbrev
Lect w13 152_electrochemistry_abbrevLect w13 152_electrochemistry_abbrev
Lect w13 152_electrochemistry_abbrevchelss
 
IA on effect of zinc concentration on voltage using nernst equation
IA on effect of zinc concentration on voltage using nernst equationIA on effect of zinc concentration on voltage using nernst equation
IA on effect of zinc concentration on voltage using nernst equationLawrence kok
 
Electrochemistry apps of redox
Electrochemistry apps of redoxElectrochemistry apps of redox
Electrochemistry apps of redoxRawat DA Greatt
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistrysmitamalik
 
Option C Nernst Equation, Voltaic Cell and Concentration Cell
Option C Nernst Equation, Voltaic Cell and Concentration CellOption C Nernst Equation, Voltaic Cell and Concentration Cell
Option C Nernst Equation, Voltaic Cell and Concentration CellLawrence kok
 

Similar to IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and Electrochemical Series (20)

Lecture 21- Electrochemical cells
Lecture 21- Electrochemical cellsLecture 21- Electrochemical cells
Lecture 21- Electrochemical cells
 
intro to electrochemistry
intro to  electrochemistryintro to  electrochemistry
intro to electrochemistry
 
New chm-152-unit-8-power-points-sp13-140227172047-phpapp01
New chm-152-unit-8-power-points-sp13-140227172047-phpapp01New chm-152-unit-8-power-points-sp13-140227172047-phpapp01
New chm-152-unit-8-power-points-sp13-140227172047-phpapp01
 
Electrolytic cells
Electrolytic cellsElectrolytic cells
Electrolytic cells
 
Electrochemical cells
Electrochemical cellsElectrochemical cells
Electrochemical cells
 
ELECTROCHEMITRY
ELECTROCHEMITRYELECTROCHEMITRY
ELECTROCHEMITRY
 
Electrochemistry Introduction electrochemical cells
Electrochemistry Introduction electrochemical cellsElectrochemistry Introduction electrochemical cells
Electrochemistry Introduction electrochemical cells
 
electrochemistry12.pdf
electrochemistry12.pdfelectrochemistry12.pdf
electrochemistry12.pdf
 
electrochemistry12.pdf
electrochemistry12.pdfelectrochemistry12.pdf
electrochemistry12.pdf
 
Lect w13 152_electrochemistry_abbrev
Lect w13 152_electrochemistry_abbrevLect w13 152_electrochemistry_abbrev
Lect w13 152_electrochemistry_abbrev
 
Ch 23sec1
Ch 23sec1Ch 23sec1
Ch 23sec1
 
Ch 23sec1
Ch 23sec1Ch 23sec1
Ch 23sec1
 
IA on effect of zinc concentration on voltage using nernst equation
IA on effect of zinc concentration on voltage using nernst equationIA on effect of zinc concentration on voltage using nernst equation
IA on effect of zinc concentration on voltage using nernst equation
 
Electrochemistry apps of redox
Electrochemistry apps of redoxElectrochemistry apps of redox
Electrochemistry apps of redox
 
Corrosion
CorrosionCorrosion
Corrosion
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
 
Electrochemistry 1
Electrochemistry 1Electrochemistry 1
Electrochemistry 1
 
lecture37.pdf
lecture37.pdflecture37.pdf
lecture37.pdf
 
Option C Nernst Equation, Voltaic Cell and Concentration Cell
Option C Nernst Equation, Voltaic Cell and Concentration CellOption C Nernst Equation, Voltaic Cell and Concentration Cell
Option C Nernst Equation, Voltaic Cell and Concentration Cell
 
Electrolysis
Electrolysis Electrolysis
Electrolysis
 

More from Lawrence kok

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...Lawrence kok
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...Lawrence kok
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...Lawrence kok
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...Lawrence kok
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...Lawrence kok
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...Lawrence kok
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...Lawrence kok
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...Lawrence kok
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...Lawrence kok
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...Lawrence kok
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...Lawrence kok
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...Lawrence kok
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...Lawrence kok
 

More from Lawrence kok (20)

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
 

Recently uploaded

ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701bronxfugly43
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docxPoojaSen20
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin ClassesCeline George
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfSherif Taha
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Association for Project Management
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxnegromaestrong
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 

Recently uploaded (20)

ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 

IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and Electrochemical Series

  • 1. http://lawrencekok.blogspot.com Prepared by Lawrence Kok Tutorial on Standard Electrode Potential, Standard Reduction Potential and Electrochemical Series.
  • 2. Potential Diff bet Zn/Zn2+ Electrode potential Zn/Zn2+ = -ve - Electrode Potential Redox Equilibrium Zn2+ Zn → Zn 2+ + 2e (Oxidation) Zn 2+ + 2e → Zn (Reduction) Zn 2+ + 2e ↔ Zn (At equilibrium) Metal Zn placed in its sol Zn2+ ion Equilibrium bet Zn/Zn2+ Zn metal reactive lose e form Zn2+ Equilibrium shift to right ← Potential Diff form bet Zn/Zn2+ Potential Diff Electrode potential = -ve Zn2+ Zn2+ Zn Zn2+ Zn Zn2+ Zn2+ Zn2+ Zn 2+ + 2e ↔ Zn Equi shift to ← - -- Zn - - - - + + + + + + + + + Voltage of Zn/Zn2+ can’t be measured. Abs electrode potential can’t measured. Only Diff in electrode potential can be measured. Cannot measure Abs Potential Metal Cu placed in its sol Cu2+ ion Equilibrium bet Cu/Cu2+ Cu2+ ion gain -2e form Cu Equilibrium shift to left ← Potential Diff form bet Cu/Cu2+ Potential Diff Electrode potential = +ve Cu Cu2+ Cu2+ Cu2+ Cu2+ Cu → Cu2+ + 2e (Oxidation) Cu2+ + 2e → Cu (Reduction) Cu2+ + 2e ↔ Cu (At equilibrium) Cu -e -e -e Cu2+ Cu2+ Cu2+ Cu2+ + 2e ↔ Cu Equi shift to → Zn Half Cell + + + Cu + + + - -- - --- ---- -- Potential Diff bet Cu/Cu2+ Electrode potential Cu/Cu2+ = +ve Cannot measure Abs Potential Voltage of Cu/Cu2+ can’t be measured. Abs electrode potential can’t measured. Only Diff in electrode potential can be measured. PDF version Online version Click here chem database (std electrode potential) Click here chem database (std electrode potential) Click here interactive ECS Click here pdf version ECS Cu Half Cell
  • 3. Potential Diff Cu/Cu2+ Electrode potential Cu/Cu2+ = +ve Potential Diff Zn/Zn2+ Electrode potential Zn/Zn2+ = -ve Zn2+ Zn → Zn 2+ + 2e (Oxidation) Zn 2+ + 2e → Zn (Reduction) Zn 2+ + 2e ↔ Zn (At equilibrium) Zn2+ Zn2+ Zn Zn2+ Zn Zn2+ Zn2+ Zn2+ Zn 2+ + 2e ↔ Zn Equi shift to ← - - - Zn - -- - + ++ + + + + + + Can’t measure Abs Potential Cu Cu2+ Cu2+ Cu2+ Cu2+ Cu → Cu2+ + 2e (Oxidation) Cu2+ + 2e → Cu (Reduction) Cu2+ + 2e ↔ Cu (At equilibrium) Cu -e -e -e Cu2+ Cu2+ Cu2+ Cu2+ + 2e ↔ Cu Equi shift to → Zn Half Cell + + + Cu + + + - Cu Half Cell Zn/Cu Voltaic Cell External circuit – flow of electrons Complete circuit - -- -- - - ---- -- - Connect 2 Half Cell with wire/ salt bridge Zn half cell (-ve) Oxidation Cu half cell (+ve) Reduction Salt Bridge – flow of ions Complete the circuit Cu2+ + 2e → CuZn → Zn 2+ + 2e Zn + Cu2+ → Zn2+ + Cu Anode Cathode Maintain electrical neutrality Salt bridge – saturated KNO3 Zn2+ increase ↑ NO3 - flow in to balance excess Zn2+ Cu2+ decrease ↓, excess –ve ion ↑ K+ flow in to balance loss of Cu2+ Zn Cu -- - - Zn2+ Zn2+ Zn2+ Excess of Zn2+ ion + + ++ - - - - --- - - - - - Excess of –ve ion + + + + ++ + Without Salt Bridge -+ + + + With Salt Bridge (electron unable to flow due to ESF) NO3 - NO3 - NO3 - NO3 - + + + K + K + K + - - - K+ flow in to balance excess of – ion NO3 - flow in to balance excess of + ion 2 Half Cell to make a Voltaic Cell -e -e - - - - + + + +
  • 4. Potential Diff Cu/Cu2+ Electrode potential Cu/Cu2+ = +ve Potential Diff Zn/Zn2+ Electrode potential Zn/Zn2+ = -ve Zn2+ Zn → Zn 2+ + 2e (Oxidation) Zn 2+ + 2e → Zn (Reduction) Zn 2+ + 2e ↔ Zn (At equilibrium) Zn2+ Zn2+ Zn Zn2+ Zn Zn2+ Zn2+ Zn2+ Zn 2+ + 2e ↔ Zn Equi shift to ← - - - Zn - -- - + ++ + + + + + + Can’t measure Abs Potential Cu Cu2+ Cu2+ Cu2+ Cu2+ Cu → Cu2+ + 2e (Oxidation) Cu2+ + 2e → Cu (Reduction) Cu2+ + 2e ↔ Cu (At equilibrium) Cu -e -e -e Cu2+ Cu2+ Cu2+ Cu2+ + 2e ↔ Cu Equi shift to → + + + Cu + + + - External circuit – flow of electrons Complete circuit - -- -- - - ---- -- - Connect 2 Half Cell with wire/ salt bridge Zn half cell (-ve) Oxidation Cu half cell (+ve) Reduction Voltmeter – High resistance (No current flow) Salt Bridge – flow of ions Complete the circuit Cu2+ + 2e → CuZn → Zn 2+ + 2e 1.10Volt Potential diff can be measured. Voltmeter across – EMF 1.10 Volt Zn + Cu2+ → Zn2+ + Cu Anode Cathode Zn(s) | Zn2+ (aq) || Cu2+ (aq)| Cu (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Phase boundarySalt Bridge Flow electrons Maintain electrical neutrality Salt bridge – saturated KNO3 Zn2+ increase ↑ NO3 - flow in to balance excess Zn2+ Cu2+ decrease ↓ K+ flow in to balance loss of Cu2+ Zn/Cu Voltaic Cell 2 Half Cell to make a Voltaic Cell Zn Half Cell Cu Half Cell -e -e - - - - + + + +
  • 5. Potential Diff Ag/Ag2+ Electrode potential Ag/Ag2+ = +ve Potential Diff Zn/Zn2+ Electrode potential Zn/Zn2+ = -ve Zn2+ Zn → Zn 2+ + 2e (Oxidation) Zn 2+ + 2e → Zn (Reduction) Zn 2+ + 2e ↔ Zn (At equilibrium) Zn2+ Zn2+ Zn Zn2+ Zn Zn2+ Zn2+ Zn2+ Zn 2+ + 2e ↔ Zn Equi shift to ← - - - Zn - -- - + ++ + + + + + + Can’t measure Abs Potential Ag Ag+ Ag+ Ag+ Ag+ Ag → Ag+ + e (Oxidation) Ag+ + e → Ag (Reduction) Ag+ + e ↔ Ag (At equilibrium) Ag -e -e -e Ag+ Ag+ Ag+ Ag+ + e ↔ Ag Equi shift to → + + + Ag + + + - External circuit – flow of electrons Complete circuit - -- -- - - ---- -- - Connect 2 Half Cell with wire/ salt bridge Zn half cell (-ve) Oxidation Ag half cell (+ve) Reduction Voltmeter – High resistance (No current flow) Salt Bridge – flow of ions Complete the circuit Ag+ + e → AgZn → Zn 2+ + 2e 1.56Volt Potential diff can be measured. Voltmeter across – EMF 1.56 Volt Zn + 2Ag+ → Zn2+ + 2Ag Anode Cathode Zn(s) | Zn2+ (aq) || Ag+ (aq)| Ag (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Phase boundarySalt Bridge Flow electrons Maintain electrical neutrality Salt bridge – saturated KNO3 Zn2+ increase ↑ NO3 - flow in to balance excess Zn2+ Ag+ decrease ↓ K+ flow in to balance loss of Ag+ Zn/Ag Voltaic Cell 2 Half Cell to make a Voltaic Cell Zn Half Cell Ag Half Cell Ag Ag+ -e -e - - - - + + + +
  • 6. Potential Diff Ag/Ag2+ Electrode potential Ag/Ag2+ = +ve Potential Diff Cu/Cu2+ Electrode potential Cu/Cu2+ = -ve Cu2+ Cu → Cu 2+ + 2e (Oxidation) Cu 2+ + 2e → Cu (Reduction) Cu 2+ + 2e ↔ Cu (At equilibrium) Cu2+ Cu2+ Cu Cu2+ Cu Cu2+ Cu2+ Cu2+ Cu 2+ + 2e ↔ Cu Equi shift to ← - - - Cu - -- - + ++ + + + + + + Can’t measure Abs Potential Ag Ag+ Ag+ Ag+ Ag+ Ag → Ag+ + e (Oxidation) Ag+ + e → Ag (Reduction) Ag+ + e ↔ Ag (At equilibrium) Ag -e -e -e Ag+ Ag+ Ag+ Ag+ + e ↔ Ag Equi shift to → + + + Ag + + + - External circuit – flow of electrons Complete circuit - -- -- - - ---- -- - Connect 2 Half Cell with wire/ salt bridge Cu half cell (-ve) Oxidation Ag half cell (+ve) Reduction Voltmeter – High resistance (No current flow) Salt Bridge – flow of ions Complete the circuit Ag+ + e Ag→Cu → Cu 2+ + 2e 0.46Volt Potential diff can be measured. Voltmeter across – EMF 0.46 Volt Cu + 2Ag+ → Cu2+ + 2Ag Anode Cathode Cu(s) | Cu2+ (aq) || Ag+ (aq)| Ag (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Phase boundarySalt Bridge Flow electrons Maintain electrical neutrality Salt bridge – saturated KNO3 Cu2+ increase ↑ NO3 - flow in to balance excess Cu2+ Ag+ decrease ↓ K+ flow in to balance loss of Ag+ Cu/Ag Voltaic Cell 2 Half Cell to make a Voltaic Cell Cu Half Cell Ag Half Cell Ag Ag+ Cu Cu2+ -e -e - - - - + + + +
  • 7. Standard Electrode Potential Standard Hydrogen Electrode (SHE) Platinum coat with Platinum oxide/black – increase surface area for adsorption H2 - catalyze equilibrium bet H2 /H+ - H2 ↔ 2H+ + 2e- Eθ Standard Reference electrode All Cell Potential are measured against • Conc ( 1M) • Pressure (1 atm) • Temp (298K) • Platinum- inert electrode (sys without metal) Standard condition H2 at 1 atm Platinum H2 gas Pt wire Platinum 2H+ + 2e ↔ H2 Eθ = 0V Types of Half Cells Metal/ Ion (M/M+ ) Gas/ Ion (M/M- ) Ion/ Ion (Fe3+ /Fe2+ ) • Pure Zn metal • Conc (1M Zn2+ ) • Pressure (1 atm) • Temp (298K) Condition Std Zn/Zn2+ Condition Std CI2/CI- • CI2 gas • Platinum electrode • Conc (1M CI- ) • Pressure (1 atm) • Temp (298K) • Platinum electrode • Conc (1M Fe3+ /Fe2+ ) • Pressure (1 atm) • Temp (298K) Condition Std Fe3+ / Fe2+ Zn2+ Zn Fe3+ /Fe2+ CI- Condition for Standard C A N T M E A S U R E A B S P O T E N T I A L 1 2 3 How to measure electrode potential ? Pt 1M H+ Measure Difference?
  • 8. Standard Electrode Potential Std Hydrogen Electrode (SHE) Eθ = 0V Types of Half Cells Metal/ Ion (M/M+) Gas/ Ion (M/M+ ) Ion/ Ion (Fe3+ /Fe2+ ) • Pure Zn metal • Conc (1M Zn2+ ) • Pressure (1 atm) • Temp (298K) Condition Std Zn/Zn2+ Condition Std CI2/CI- • CI2 gas • Platinum electrode • Conc (1M CI- ) • Pressure (1 atm) • Temp (298K) • Platinum electrode • Conc (1M Fe3+ /Fe2+ ) • Pressure (1 atm) • Temp (298K) Condition Std Fe3+ / Fe2+ Zn2+ Zn Fe3+ /Fe2+ 1 2 3 Connect to SHE Connect to SHE Connect to SHE Eθ = 0V Eθ = 0V Eθ = -0.76V Standard electrode potential Zn/Zn2+ = -0.76V Eθ cell = -0.76V Eθ = +0.77V Eθ = +1.35V Standard electrode potential Fe3+ /Fe2+ = +0.77V Eθ cell = +0.77V Standard electrode potential CI2 /CI- = +1.35V Eθ cell = +1.35V Eθ = -0.76V Eθ = +0.77V Eθ = +1.35V 2 Half Cell with SHE as reference electrode CI- Pt + + + Pt
  • 9. Standard Electrode Potential Std Electrode Potential diff systems Eθ = 0V Eθ = 0V Eθ = 0V Eθ = -0.76V Standard electrode potential Zn/Zn2+ = -0.76V Eθ cell = -0.76V Eθ = +0.77V Eθ = +1.35V Standard electrode potential Fe3+ /Fe2+ = +0.77V Eθ cell = +0.77V Standard electrode potential CI2 /CI- = +1.35V Eθ cell = +1.35V Eθ = -0.76V Eθ = +0.77V Eθ = +1.35V STANDARD Reduction potential – Hydrogen as std Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 H2O + e- 1/2H↔ 2 -0.83 Zn2+ + 2e- Zn↔ -0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 Pb2+ + 2e- Pb↔ -0.13 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.35 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 -ve reduction potential +ve reduction potential Click here std analogy video Click here std analogy PDF version Click here chem database (std electrode potential) Compared to H2 as std Eθ cell/Cell Potential = EMF in volt EMF prod when half cell connect to SHE at std condition Std electrode potential written as std reduction potential
  • 10. Zn half cell (-ve) Oxidation H2 half cell (+ve) Reduction Anode Cathode Zn(s) | Zn2+ (aq) || H+ (aq) , H2(g) | Pt (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = 0.00 – ( Eθ Zn ) 0.76 = 0.00 - Eθ Zn Eθ Zn = -0.76V Zn2+ + 2e Zn E↔ θ = ? 2H+ + 2e ↔ H2 Eθ = 0.00V Std electrode potential as std reduction potential Find Eθ cell (use formula) Eθ cell = Eθ (cathode) – Eθ (anode) Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 H2O + e- 1/2H↔ 2 + OH- -0.83 Zn2+ + 2e- Zn↔ ???? Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 Pb2+ + 2e- Pb↔ -0.13 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ + 0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 -0.76V +ve/high electrode potential is cathode (+) -ve/ low electrode potential is anode (-) Electrons flow from anode (- ) to cathode (+ ) Eθ Zn/H2 = 0.76V Zn/H2 Zn Zn2+ H+ Pt H2 - - - + -e Zn/H2 Cell Determine Eθ cell Zn/Zn2+ Eθ value DO NOT depend on stoichiometric coefficient (Independent of stoichiometric eqn)
  • 11. H2 half cell (-ve) Oxidation Fe3+/2+ half cell (+ve) Reduction Anode Cathode Pt(s) | H2, H+ (aq) || Fe3+ Fe2+ | Pt (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Std electrode potential as std reduction potential Find Eθ cell (use formula) Eθ cell = Eθ (cathode) – Eθ (anode) Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 H2O + e- 1/2H↔ 2 + OH- -0.83 Zn2+ + 2e- Zn↔ -0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 Pb2+ + 2e- Pb↔ -0.13 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ ????? Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 +0.77V +ve/high electrode potential is cathode (+) -ve/ low electrode potential is anode (-) Electrons flow from anode (- ) to cathode (+ ) Eθ H2 /Fe3+ = 0.77V Pt Fe3+ H+ Pt H2 + + +-- -e H2 /Fe3+ ,Fe2+ Cell H2 /Fe3+ ,Fe2+ 2H+ + 2e ↔ H2 Eθ = 0.00V Fe3+ + e Fe↔ 2+ Eθ = ???? Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = Eθ Fe3+ – (-0.00) 0.77 = Eθ Fe3+ Determine Eθ cell Fe 3+ /Fe2+ Eθ value DO NOT depend on stoichiometric coefficient (Independent of stoichiometric eqn)
  • 12. H2 half cell (-ve) Oxidation CI2 half cell (+ve) Reduction Anode Pt(s) | H2, H+ (aq) || CI2 ,CI- | Pt (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Std electrode potential as std reduction potential Find Eθ cell (use formula) Eθ cell = Eθ (cathode) – Eθ (anode) Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 H2O + e- 1/2H↔ 2 + OH- -0.83 Zn2+ + 2e- Zn↔ -0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 Pb2+ + 2e- Pb↔ -0.13 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ + 0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- ????? MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 +1.35V +ve/high electrode potential is cathode (+) -ve/ low electrode potential is anode (-) Electrons flow from anode (- ) to cathode (+ ) Eθ H2 /CI2 = 1.35V H+ Pt H2 -- -e H2 /CI2 Cell 2H+ + 2e ↔ H2 Eθ = 0.00V CI + e CI↔ - Eθ = ????? Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = Eθ CI2 – (-0.00) 1.35 = Eθ CI2 H2 /CI2 Cell + Pt CI - CI2 Determine Eθ cell H2 /CI2 Eθ value DO NOT depend on stoichiometric coefficient (Independent of stoichiometric eqn)
  • 13. Zn half cell (-ve) Oxidation Cu half cell (+ve) Reduction Anode Cathode Zn(s) | Zn2+ (aq) || Cu2+ (aq) | Cu (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Zn/Cu Voltaic Cell -e -e Zn/Cu half cells Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +0.34 – (-0.76) = +1.10V Zn 2+ + 2e Zn (anode) E↔ θ = -0.76V Cu2+ + 2e Cu (cathode) E↔ θ = +0.34V Std electrode potential as std reduction potential Find Eθ cell (use reduction potential)Find Eθ cell (use formula) Zn + Cu2+ Zn→ 2+ + Cu Eθ = ????? Eθ cell = Eθ (cathode) – Eθ (anode) Zn 2+ + 2e Zn E↔ θ = -0.76V Cu2+ + 2e Cu E↔ θ = +0.34V Zn Zn↔ 2+ + 2e Eθ = +0.76 Cu2+ + 2e Cu E↔ θ = +0.34 Zn + Cu2+ Zn→ 2+ + Cu Eθ = +1.10V Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 H2O + e- 1/2H↔ 2 + OH- -0.83 Zn2+ + 2e- Zn↔ - 0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 Pb2+ + 2e- Pb↔ -0.13 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu + 0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.35 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 + +1.10 V Eθ Zn/Cu = 1.10V Cu2+ +ve/high electrode potential is cathode (+) -ve/ low electrode potential is anode (-) Electrons flow from anode (- ) to cathode (+ ) - - - - Zn Cu + + + + Eθ value DO NOT depend on stoichiometric coefficient (Independent of stoichiometric eqn)
  • 14. Zn half cell (-ve) Oxidation Ag half cell (+ve) Reduction Anode Cathode Zn(s) | Zn2+ (aq) || Ag+ (aq) | Ag (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Zn/Ag Voltaic Cell -e -e Zn/Ag half cells Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +0.80 – (-0.76) = +1.56V Zn 2+ + 2e Zn (anode) E↔ θ = -0.76V Ag+ + e Ag(cathode) E↔ θ = +0.80V Std electrode potential as std reduction potential Find Eθ cell (use reduction potential)Find Eθ cell (use formula) Zn + Ag+ Zn→ 2+ + Ag Eθ = ????? Eθ cell = Eθ (cathode) – Eθ (anode) Zn 2+ + 2e Zn E↔ θ = -0.76V Ag+ + e Ag E↔ θ = +0.80V Zn Zn↔ 2+ + 2e Eθ = +0.76 2Ag+ +2e 2Ag E↔ θ = +0.80 Zn + Ag+ Zn→ 2+ + Ag Eθ = +1.56V Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 H2O + e- 1/2H↔ 2 + OH- -0.83 Zn2+ + 2e- Zn↔ - 0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 Pb2+ + 2e- Pb↔ -0.13 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag + 0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 + +1.56 V Ag Eθ Zn/Ag = 1.56V Ag+ +ve/high electrode potential is cathode (+) -ve/ low electrode potential is anode (-) Electrons flow from anode (- ) to cathode (+ ) - - - - + + + + Zn Eθ value DO NOT depend on stoichiometric coefficient (Independent of stoichiometric eqn)
  • 15. Cu half cell (-ve) Oxidation Ag half cell (+ve) Reduction Anode Cathode Cu(s) | Cu2+ (aq) || Ag+ (aq) | Ag (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Cu/Ag Voltaic Cell -e -e Cu/Ag half cells Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +0.80 – (+0.34) = +0.46V Cu 2+ + 2e Cu (anode) E↔ θ = +0.34V Ag+ + e Ag(cathode) E↔ θ = +0.80V Std electrode potential as std reduction potential Find Eθ cell (use reduction potential)Find Eθ cell (use formula) Cu + 2Ag+ Cu→ 2+ + 2Ag Eθ = ????? Eθ cell = Eθ (cathode) – Eθ (anode) Cu 2+ + 2e Cu E↔ θ = +0.34V Ag+ + e Ag E↔ θ = +0.80V Cu Cu↔ 2+ + 2e Eθ = -0.34 2Ag+ + 2e 2Ag E↔ θ = +0.80 Cu + 2Ag+ Cu→ 2+ + 2Ag Eθ = +0.46V Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 H2O + e- 1/2H↔ 2 + OH- -0.83 Zn2+ + 2e- Zn↔ -0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 Pb2+ + 2e- Pb↔ -0.13 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 + +0.46V AgCu Cu2+ Half cell- high electrode potential is cathode (+) Half cell - low electrode potential is anode (-) Electrons flow from anode (- ) to cathode (+ ) Eθ Cu/Ag = 0.46V Ag+ - - - - + + + + Eθ value DO NOT depend on stoichiometric coefficient (Independent of stoichiometric eqn)
  • 16. Mn half cell (-ve) Oxidation Ni half cell (+ve) Reduction Anode Cathode Mn(s) | Mn2+ (aq) || Ni2+ (aq) | Ni (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Mn/Ni Voltaic Cell -e -e Mn/Ni half cells Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = -0.26 – (-1.19) = +0.93V Mn 2+ + 2e Mn (anode) E↔ θ = -1.19V Ni2+ + 2e Ni (cathode) E↔ θ = -0.26V Std electrode potential as std reduction potential Find Eθ cell (use reduction potential)Find Eθ cell (use formula) Mn + Ni2+ Mn→ 2+ + Ni Eθ = ????? Eθ cell = Eθ (cathode) – Eθ (anode) Mn 2+ + 2e Mn E↔ θ = -1.19V Ni2+ + 2e Ni E↔ θ = -0.26V Mn Mn↔ 2+ + 2e Eθ = +1.19 Ni2+ + 2e Ni E↔ θ = -0.26 Mn + Ni2+ Mn→ 2+ + Ni Eθ = +0.93V Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 H2O + e- 1/2H↔ 2 + OH- -0.83 Zn2+ + 2e- Zn↔ -0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ - 0.26 Sn2+ + 2e- Sn↔ -0.14 Pb2+ + 2e- Pb↔ -0.13 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 + +0.93 V Eθ Mn/Ni = 0.93V Ni2+ +ve/high electrode potential is cathode (+) -ve/ low electrode potential is anode (-) Electrons flow from anode (- ) to cathode (+ ) - - - - NiMn + + + +Mn2+ Eθ value DO NOT depend on stoichiometric coefficient (Independent of stoichiometric eqn)
  • 17. Fe half cell (-ve) Oxidation MnO4- half cell (+ve) Reduction Anode Cathode Fe(s) | Fe2+ (aq) || MnO4 - ,H+ , Mn2+ | Pt (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Fe/MnO4 - Voltaic Cell -e -e Fe/MnO4 - half cells Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +1.51 – (-0.45) = +1.96V Fe2+ + 2e Fe E↔ θ = -0.45V MnO4 - + 5e ↔ Mn2+ + 4H2O Eθ = +1.51V Std electrode potential as std reduction potential Find Eθ cell (use reduction potential)Find Eθ cell (use formula) 5Fe + 2MnO4 - + 16H+ 5Fe→ 2+ +2Mn2+ + 8H2O Eθ = ? Eθ cell = Eθ (cathode) – Eθ (anode) Fe 2+ + 2e Fe E↔ θ = -0.45V MnO4 - + 5e ↔ Mn2+ + 4H2O Eθ = +1.51V Fe Fe↔ 2+ + 2e Eθ = +0.45 MnO4 - +5e Mn↔ 2+ + 4H2O Eθ = +1.51 Fe + MnO4 - Mn→ 2+ + Fe2+ Eθ = +1.96V Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 H2O + e- 1/2H↔ 2 + OH- -0.83 Zn2+ + 2e- Zn↔ -0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 Pb2+ + 2e- Pb↔ -0.13 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 + +1.96V PtFe Fe2+ Eθ Fe/MnO4 - = 1.96V MnO4 - Mn2+ Using platinum electrode +ve/high electrode potential is cathode (+) -ve/ low electrode potential is anode (-) Electrons flow from anode (- ) to cathode (+ ) - - - - + + + + Eθ value DO NOT depend on stoichiometric coefficient (Independent of stoichiometric eqn)
  • 18. Zn half cell (-ve) Oxidation Fe3+/2+ half cell (+ve) Reduction Anode Cathode Zn(s) | Zn2+ (aq) || Fe3+ , Fe2+ (aq) | Pt (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Zn/Fe3+ ,Fe2+ Cell -e -e Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +0.77 – (-0.76) = +1.53V Zn2+ + 2e Zn E↔ θ = -0.76V Fe3+ + e ↔ Fe2+ Eθ = +0.77V Std electrode potential as std reduction potential Find Eθ cell (use reduction potential)Find Eθ cell (use formula) Zn + 2Fe3+ Zn→ 2+ +2Fe2+ Eθ = ? Eθ cell = Eθ (cathode) – Eθ (anode) Zn 2+ + 2e Zn E↔ θ = -0.76V Fe3+ + e ↔ Fe2+ Eθ = +0.77V Zn Zn↔ 2+ + 2e Eθ = +0.76 2Fe3 +2e 2Fe↔ 2+ Eθ = +0.77 Zn + 2Fe3+ Zn→ 2+ + 2Fe2+ Eθ = +1.53V Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 H2O + e- 1/2H↔ 2 + OH- -0.83 Zn2+ + 2e- Zn↔ -0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 Pb2+ + 2e- Pb↔ -0.13 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ + 0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 + +1.53V PtZn Zn2+ +ve/high electrode potential is cathode (+) -ve/ low electrode potential is anode (-) Electrons flow from anode (- ) to cathode (+ ) Eθ Zn/Fe3+ = 1.53V Fe3+- Fe2+ Using platinum electrode Zn/Fe3+ ,Fe2+ - - - - + + + + Eθ value DO NOT depend on stoichiometric coefficient (Independent of stoichiometric eqn)
  • 19. Zn half cell (-ve) Oxidation I2 half cell (+ve) Reduction Anode Cathode Zn(s) | Zn2+ (aq) || I2 , I- (aq) | Pt (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Zn/I2 , I- Cell -e -e Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +0.54 – (-0.76) = +1.30V Zn2+ + 2e Zn E↔ θ = -0.76V I2 + 2e ↔ 2I- Eθ = +0.54V Std electrode potential as std reduction potential Find Eθ cell (use reduction potential)Find Eθ cell (use formula) Zn + I2 Zn→ 2+ +2I- Eθ = ? Eθ cell = Eθ (cathode) – Eθ (anode) Zn Zn↔ 2+ + 2e Eθ = +0.76 I2 + 2e 2I↔ - Eθ = +0.54 Zn + I2 Zn→ 2+ + 2I- Eθ = +1.30V Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 H2O + e- 1/2H↔ 2 + OH- -0.83 Zn2+ + 2e- Zn↔ -0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 Pb2+ + 2e- Pb↔ -0.13 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ + 0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 + +1.30V PtZn Zn2+ +ve/high electrode potential is cathode (+) -ve/ low electrode potential is anode (-) Electrons flow from anode (- ) to cathode (+ ) Eθ Zn/I2 = 1.30V I-- I2 Using platinum electrode - - - - + + + + Zn/I2 , I- Zn2+ + 2e Zn E↔ θ = -0.76V I2 + 2e ↔ 2I- Eθ = +0.54V Eθ value DO NOT depend on stoichiometric coefficient (Independent of stoichiometric eqn)
  • 20. Zn half cell (-ve) Oxidation H2 half cell (+ve) Reduction Anode Cathode Zn(s) | Zn2+ (aq) || H+ (aq) , H2(g) | Pt (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = 0.00 – (-0.76) = +0.76V Zn2+ + 2e Zn E↔ θ = -0.76V 2H+ + 2e ↔ H2 Eθ = 0.00V Std electrode potential as std reduction potential Find Eθ cell (use reduction potential)Find Eθ cell (use formula) Zn + 2H+ Zn→ 2+ + H2 Eθ = ? Eθ cell = Eθ (cathode) – Eθ (anode) Zn 2+ + 2e Zn E↔ θ = -0.76V 2H+ + 2e ↔ H2 Eθ = 0.00V Zn Zn↔ 2+ + 2e Eθ = +0.76 2H+ +2e H↔ 2 Eθ = 0.00 Zn + 2H+ Zn→ 2+ + H2 Eθ = +0.76V Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 H2O + e- 1/2H↔ 2 + OH- -0.83 Zn2+ + 2e- Zn↔ -0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 Pb2+ + 2e- Pb↔ -0.13 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ + 0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 + +0.76V +ve/high electrode potential is cathode (+) -ve/ low electrode potential is anode (-) Electrons flow from anode (- ) to cathode (+ ) Eθ Zn/H2 = 0.76V Using platinum electrode/H2 Zn/H2 Zn Zn2+ H+ Pt H2 - - - + -e Zn/H2 Cell Eθ value DO NOT depend on stoichiometric coefficient (Independent of stoichiometric eqn)
  • 21. H2 half cell (-ve) Oxidation Ag half cell (+ve) Reduction Anode Cathode Pt(s) | H2, H+ (aq) || Ag+ (aq) | Ag (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons H2/Ag Cell Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +0.80 – (-0.00) = +0.80V 2H+ + 2e ↔ H2 Eθ = 0.00V Ag+ + e Ag E↔ θ = +0.80V Std electrode potential as std reduction potential Find Eθ cell (use reduction potential)Find Eθ cell (use formula) H2 + 2Ag+ 2H→ + + 2Ag Eθ = ? Eθ cell = Eθ (cathode) – Eθ (anode) H2 2H↔ + + 2e Eθ = +0.00 2Ag+ +2e 2Ag E↔ θ = +0.80 H2 + 2Ag+ 2H→ + + 2Ag Eθ = +0.80V Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 H2O + e- 1/2H↔ 2 + OH- -0.83 Zn2+ + 2e- Zn↔ -0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 Pb2+ + 2e- Pb↔ -0.13 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ + 0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 + +0.80V +ve/high electrode potential is cathode (+) -ve/ low electrode potential is anode (-) Electrons flow from anode (- ) to cathode (+ ) Eθ H2 /Ag = 0.80V Using platinum electrode/H2 H2/Ag Ag Ag+ H+ Pt H2 2H+ + 2e ↔ H2 Eθ = 0.00V Ag+ + e Ag E↔ θ = +0.80V + + +-- -e Eθ value DO NOT depend on stoichiometric coefficient (Independent of stoichiometric eqn)
  • 22. H2 half cell (-ve) Oxidation Fe3+/2+ half cell (+ve) Reduction Anode Cathode Pt(s) | H2, H+ (aq) || Fe3+ Fe2+ | Pt (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Std electrode potential as std reduction potential Find Eθ cell (use reduction potential)Find Eθ cell (use formula) H2 + 2Fe3+ 2H→ + + 2Fe 2+ Eθ = ? Eθ cell = Eθ (cathode) – Eθ (anode) H2 2H↔ + + 2e Eθ = +0.00 2Fe3+ +2e 2Fe↔ 2+ Eθ = +0.77 H2 + 2Fe3+ 2H→ + + 2Fe2+ Eθ = +0.77V Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 H2O + e- 1/2H↔ 2 + OH- -0.83 Zn2+ + 2e- Zn↔ -0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 Pb2+ + 2e- Pb↔ -0.13 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ + 0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 + +0.77V +ve/high electrode potential is cathode (+) -ve/ low electrode potential is anode (-) Electrons flow from anode (- ) to cathode (+ ) Eθ H2 /Fe3+ = 0.77V Using platinum electrode/H2 Pt Fe3+ H+ Pt H2 + + +-- -e H2 /Fe3+ ,Fe2+ Cell H2 /Fe3+ ,Fe2+ 2H+ + 2e ↔ H2 Eθ = 0.00V Fe3+ + e Fe↔ 2+ Eθ = +0.77V 2H+ + 2e ↔ H2 Eθ = 0.00V Fe3+ + e Fe↔ 2+ Eθ = +0.77V Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +0.77– (-0.00) = +0.77V Eθ value DO NOT depend on stoichiometric coefficient (Independent of stoichiometric eqn)
  • 23. H2 half cell (-ve) Oxidation CI2 half cell (+ve) Reduction Anode Cathode Pt(s) | H2, H+ (aq) || CI2 ,CI- | Pt (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Std electrode potential as std reduction potential Find Eθ cell (use reduction potential)Find Eθ cell (use formula) CI2 + H2 2CI→ - + 2H+ Eθ = ? Eθ cell = Eθ (cathode) – Eθ (anode) H2 2H↔ + + 2e Eθ = +0.00 CI2 +2e 2CI↔ - Eθ = +1.35 H2 + CI2 2H→ + + 2CI- Eθ = +1.35V Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 H2O + e- 1/2H↔ 2 + OH- -0.83 Zn2+ + 2e- Zn↔ -0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 Pb2+ + 2e- Pb↔ -0.13 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ + 0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.35 MnO4 - + 8H+ + 5e- ↔ Mn2+ +1.51 1/2F2 + e- ↔ F +2.87 + +1.35V +ve/high electrode potential is cathode (+) -ve/ low electrode potential is anode (-) Electrons flow from anode (- ) to cathode (+ ) Eθ H2 /CI2 = 1.35V Using platinum electrode/H2 Eθ value DO NOT depend on stoichiometric coefficient (Independent of stoichiometric eqn) H+ Pt H2 -- -e H2 /CI2 Cell 2H+ + 2e ↔ H2 Eθ = 0.00V CI + e CI↔ - Eθ = +1.35V Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +1.35 – (-0.00) = +1.35V H2 /CI2 Cell 2H+ + 2e ↔ H2 Eθ = 0.00V CI + e CI↔ - Eθ = +1.35V + Pt CI - CI2
  • 24. Standard Electrode Potential STANDARD Reduction potential – H2 as std Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 H2O + e- H↔ 2+OH- -0.83 Zn2+ + 2e- Zn↔ -0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 Pb2+ + 2e- Pb↔ -0.13 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ +7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F- +2.87 -ve reduction potential +ve reduction potential Compared to H2 as std Eθ cell/Cell Potential = EMF in volt EMF when half cell connect to SHE std condition Std potential written as std reduction potential TOP right • High ↑ tendency lose e • Li Li→ + + e • Eθ Li = +3.04V • STRONG reducing Agent •Oxi favourable (Eθ =+ve) TOP right • High ↑ tendency lose e • Li Li→ + + e • Eθ Li = +3.04V • STRONG reducing Agent •Oxi favourable (Eθ =+ve) STRONG Reducing Agent WEAK Reducing Agent BOTTOM right • Low ↓ tendency lose e • F - 1/2F→ 2 + e • Eθ F2 = - 2.87V • WEAK reducing Agent •Oxi NOT favourable (Eθ =-ve) BOTTOM right • Low ↓ tendency lose e • F - 1/2F→ 2 + e • Eθ F2 = - 2.87V • WEAK reducing Agent •Oxi NOT favourable (Eθ =-ve) WEAK Oxidizing Agent STRONG Oxidizing Agent TOP left • Low ↓ tendency gain e • Li+ + e Li→ • Eθ Li= - 3.04V • WEAK oxidizing Agent • Red NOT favourable (Eθ =-ve) TOP left • Low ↓ tendency gain e • Li+ + e Li→ • Eθ Li= - 3.04V • WEAK oxidizing Agent • Red NOT favourable (Eθ =-ve) BOTTOM left • High ↑ tendency gain e • F2 + 2e 2F→ - • Eθ F2= +2.87V • STRONG oxidizing Agent •Red favourable (Eθ =+ve) BOTTOM left • High ↑ tendency gain e • F2 + 2e 2F→ - • Eθ F2= +2.87V • STRONG oxidizing Agent •Red favourable (Eθ =+ve) О О О О
  • 25. Standard Electrode Potential STANDARD Reduction potential – H2 as std Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 H2O + e- H↔ 2+OH- -0.83 Zn2+ + 2e- Zn↔ -0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 Pb2+ + 2e- Pb↔ -0.13 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ +7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F - +2.87 Eθ cell/Cell Potential = EMF in volt EMF when half cell connect to SHE std condition Std potential written as std reduction potential TOP right • High ↑ tendency lose e • Li Li→ + + e • Eθ Li = +3.04V • STRONG reducing Agent •Oxi favourable (Eθ =+ve) TOP right • High ↑ tendency lose e • Li Li→ + + e • Eθ Li = +3.04V • STRONG reducing Agent •Oxi favourable (Eθ =+ve) STRONG Reducing Agent STRONG Oxidizing Agent BOTTOM left • High ↑ tendency gain e • F2 + 2e 2F→ - • Eθ F2= +2.87V • STRONG oxidizing Agent •Red favourable (Eθ =+ve) BOTTOM left • High ↑ tendency gain e • F2 + 2e 2F→ - • Eθ F2= +2.87V • STRONG oxidizing Agent •Red favourable (Eθ =+ve) Li Li→ + + e Eθ Li = +3.04VLi Li→ + + e Eθ Li = +3.04V 1/2F2 + e F→ - Eθ F2 = + 2.87V1/2F2 + e F→ - Eθ F2 = + 2.87V Click here ebook notes Click here interactive ECS Click here chem database (std electrode potential)
  • 26. Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 H2O + e- H↔ 2+OH- -0.83 Zn2+ + 2e- Zn↔ -0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 Pb2+ + 2e- Pb↔ -0.13 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ +7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F - +2.87 -ve potential +ve potential Uses of Standard Electrode Potential (SEP) Data1 TOP left • Low ↓ tendency gain e • Li+ + e Li→ • Eθ Li= - 3.04V • Red NOT favourable (Eθ =-ve) TOP left • Low ↓ tendency gain e • Li+ + e Li→ • Eθ Li= - 3.04V • Red NOT favourable (Eθ =-ve) WEAK Oxidizing Agent STRONG Oxidizing Agent О TOP right • High ↑ tendency lose e • Li Li→ + + e • Eθ Li = +3.04V •Oxi favourable (Eθ =+ve) TOP right • High ↑ tendency lose e • Li Li→ + + e • Eθ Li = +3.04V •Oxi favourable (Eθ =+ve) STRONG Reducing Agent О WEAK Reducing Agent BOTTOM left • High ↑ tendency gain e • F2 + 2e 2F→ - • Eθ F2= +2.87V •Red favourable (Eθ =+ve) BOTTOM left • High ↑ tendency gain e • F2 + 2e 2F→ - • Eθ F2= +2.87V •Red favourable (Eθ =+ve) О BOTTOM right • Low ↓ tendency lose e • F - 1/2F→ 2 + e • Eθ F2 = - 2.87V •Oxi NOT favour (Eθ =-ve) BOTTOM right • Low ↓ tendency lose e • F - 1/2F→ 2 + e • Eθ F2 = - 2.87V •Oxi NOT favour (Eθ =-ve) О Relative strength of Oxidizing/Reducing Agent Eθ = +ve SEP ↓ Strong oxidizing ↓ Weak reducing agent ↓ F2 strongest oxidizing agent ↓ F- ion weakest reducing agent Eθ = -ve SEP ↓ Weak oxidizing ↓ Strong reducing agent ↓ Li+ ion weakest oxidizing agent ↓ Li metal strongest reducing agent Reaction to happen ↓ 1 Oxidizing + 1 Reducing agent (Strong) (Strong) from both side Reaction NEVER happen ↓ TWO Oxidizing agent from same sides or TWO Reducing agent from same sides
  • 27. Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 H2O + e- H↔ 2+OH- -0.83 Zn2+ + 2e- Zn↔ -0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 Pb2+ + 2e- Pb↔ -0.13 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- Fe↔ 2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ +7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 1/2F2 + e- ↔ F - +2.87 Uses of Standard Electrode Potential (SEP) Data1 TOP left • Low ↓ tendency gain e • Na+ + e Na→ • Eθ Na = - 2.71V • Red NOT favourable (Eθ =-ve) TOP left • Low ↓ tendency gain e • Na+ + e Na→ • Eθ Na = - 2.71V • Red NOT favourable (Eθ =-ve) WEAK Oxidizing Agent STRONG Oxidizing Agent TOP right • High ↑ tendency lose e • Li Li→ + + e • Eθ Li = +3.04V •Oxi favourable (Eθ =+ve) TOP right • High ↑ tendency lose e • Li Li→ + + e • Eθ Li = +3.04V •Oxi favourable (Eθ =+ve) STRONG Reducing Agent WEAK Reducing Agent BOTTOM left • High ↑ tendency gain e • F2 + 2e 2F→ - • Eθ F2= +2.87V •Red favourable (Eθ =+ve) BOTTOM left • High ↑ tendency gain e • F2 + 2e 2F→ - • Eθ F2= +2.87V •Red favourable (Eθ =+ve) BOTTOM right • Low ↓ tendency lose e • Ag Ag→ + + e • Eθ Ag = - 0.80V •Oxi NOT favour (Eθ =-ve) BOTTOM right • Low ↓ tendency lose e • Ag Ag→ + + e • Eθ Ag = - 0.80V •Oxi NOT favour (Eθ =-ve) О Relative strength of Oxidizing/Reducing Agent ОО Rxn feasible Rxn not feasible Rxn not feasible Rxn feasible О
  • 28. Reaction to happen ↓ 1 Oxidizing + 1 Reducing agent (Strong) (Strong) from both side Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 Zn2+ + 2e- Zn↔ -0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- Fe↔ 2+ +0.77 Ag+ + e- ↔ Ag +0.80 Pb2+ + 2e- Pb↔ -0.13 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ +1.33 1/2CI2 + e- ↔ CI- +1.36 1/2F2 + e- ↔ F - +2.87 Uses of Standard Electrode Potential (SEP) Data1 WEAK Oxidizing Agent STRONG Reducing Agent Relative strength of Oxidizing/Reducing Agent О Zsign Zn Zn↔ 2+ + 2e Eθ = +0.76V Sn2+ + 2e Sn E↔ θ = -0.14V Zn + Sn2+ Zn→ 2+ + Sn Eθ = +0.62V Rxn bet Zn + Sn2+ Will it happen ? Eθ = +0.62V +ve (spontaneous) О О О Zsign Reaction to happen ↓ 1 Oxidizing + 1 Reducing agent (Strong) (Strong) from both side Rxn bet CI2 + I- Will it happen ? 2I- I↔ 2 + 2e Eθ = -0.54V CI2 + 2e 2CI↔ - Eθ = +1.36V CI2 + 2I- 2CI→ - + I2 Eθ = +0.82V Eθ = +0.82V +ve (spontaneous) Zn CI2
  • 29. Both gaining electron NON spontaneous Oxidized sp ↔ Reduced sp Eθ /V K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Mn2+ + 2e- Mn↔ -1.19 Zn2+ + 2e- Zn↔ -0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 I2 + e- ↔ I- +0.54 Fe3+ + e- Fe↔ 2+ +0.77 Ag+ + e- ↔ Ag +0.80 Pb2+ + 2e- Pb↔ -0.13 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ +7H2O +1.33 CI2 + e- ↔ CI- +1.36 1/2F2 + e- ↔ F - +2.87 Uses of Standard Electrode Potential (SEP) Data1 WEAK Oxidizing Agent STRONG Oxidizing Agent STRONG Reducing Agent WEAK Reducing Agent Relative strength of Oxidizing/Reducing Agent О О Rxn bet CI2 + I2 Will it happen ? ОRxn NEVER happen ↓ TWO Oxidizing agent from same sides Rxn NEVER happen ↓ TWO Reducing agent from same sides Rxn bet Zn + Sn Will it happen ? Both losing electron NON spontaneous О Rxn NEVER happen ↓ 1 Oxidizing + 1 Reducing agent (WEAK) (WEAK) from both side Rxn bet Mg + K + Will it happen ? О ОEθ = -ve -ve (Non spontaneous)
  • 30. Zn half cell (-ve) Oxidation Cu half cell (+ve) Reduction Anode Cathode Zn(s) | Zn2+ (aq) || Cu2+ (aq) | Cu (s) Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons -e -e Zn/Cu half cells Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +0.34 – (-0.76) = +1.10V Zn 2+ + 2e Zn (anode) E↔ θ = -0.76V Cu2+ + 2e Cu (cathode) E↔ θ = +0.34V Std electrode potential as std reduction potential Find Eθ cell (use reduction potential)Find Eθ cell (use formula) Zn + Cu2+ Zn→ 2+ + Cu Eθ = ????? Eθ cell = Eθ (cathode) – Eθ (anode) Zn 2+ + 2e Zn E↔ θ = -0.76V Cu2+ + 2e Cu E↔ θ = +0.34V Zn Zn↔ 2+ + 2e Eθ = +0.76 Cu2+ + 2e Cu E↔ θ = +0.34 Zn + Cu2+ Zn→ 2+ + Cu Eθ = +1.10V Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 H2O + e- 1/2H↔ 2 + OH- -0.83 Zn2+ + 2e- Zn↔ - 0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 Pb2+ + 2e- Pb↔ -0.13 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu + 0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.35 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 + +1.10 V Eθ Zn/Cu = 1.10V Cu2+ - - - - Zn Cu + + + + Uses of Standard Electrode Potential (SEP) Data2 Find Eθ using std electrode potential data for Zn/Cu half cell
  • 31. Cu half cell (-ve) Oxidation Ag half cell (+ve) Reduction Anode Cathode Cu(s) | Cu2+ (aq) || Ag+ (aq) | Ag (s) Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons -e -e Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +0.80 – (+0.34) = +0.46V Cu 2+ + 2e Cu (anode) E↔ θ = +0.34V Ag+ + e Ag(cathode) E↔ θ = +0.80V Std electrode potential as std reduction potential Find Eθ cell (use reduction potential)Find Eθ cell (use formula) Cu + 2Ag+ Cu→ 2+ + 2Ag Eθ = ????? Eθ cell = Eθ (cathode) – Eθ (anode) Cu 2+ + 2e Cu E↔ θ = +0.34V Ag+ + e Ag E↔ θ = +0.80V Cu Cu↔ 2+ + 2e Eθ = -0.34 2Ag+ + 2e 2Ag E↔ θ = +0.80 Cu + 2Ag+ Cu→ 2+ + 2Ag Eθ = +0.46V Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 H2O + e- 1/2H↔ 2 -0.83 Zn2+ + 2e- Zn↔ -0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 Pb2+ + 2e- Pb↔ -0.13 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 + +0.46V AgCu Cu2+ Eθ Cu/Ag = 0.46V Ag+ - - - - + + + + Uses of Standard Electrode Potential (SEP) Data2 Find Eθ using std electrode potential data for Cu/Ag half cell
  • 32. Mn half cell (-ve) Oxidation Ni half cell (+ve) Reduction Anode Cathode Mn(s) | Mn2+ (aq) || Ni2+ (aq) | Ni (s) Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons -e -e Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = -0.26 – (-1.19) = +0.93V Mn 2+ + 2e Mn (anode) E↔ θ = -1.19V Ni2+ + 2e Ni (cathode) E↔ θ = -0.26V Std electrode potential as std reduction potential Find Eθ cell (use reduction potential)Find Eθ cell (use formula) Mn + Ni2+ Mn→ 2+ + Ni Eθ = ????? Eθ cell = Eθ (cathode) – Eθ (anode) Mn 2+ + 2e Mn E↔ θ = -1.19V Ni2+ + 2e Ni E↔ θ = -0.26V Mn Mn↔ 2+ + 2e Eθ = +1.19 Ni2+ + 2e Ni E↔ θ = -0.26 Mn + Ni2+ Mn→ 2+ + Ni Eθ = +0.93V Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 H2O + e- 1/2H↔ 2 + OH- -0.83 Zn2+ + 2e- Zn↔ -0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ - 0.26 Sn2+ + 2e- Sn↔ -0.14 Pb2+ + 2e- Pb↔ -0.13 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 + +0.93 V Eθ Mn/Ni = 0.93V Ni2+ - - - - NiMn + + + +Mn2+ 2 Uses of Standard Electrode Potential (SEP) Data Find Eθ using std electrode potential data for Mn/Ni half cell
  • 33. Eθ = -0.20V -ve (NON spontaneous) Reaction to happen ↓ 1 Oxidizing + 1 Reducing agent (Strong) (Strong) from both side Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 Zn2+ + 2e- Zn↔ -0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 I2 + 2e- ↔ I- +0.54 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- Br↔ - +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ +7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- Mn↔ 2+ + 4H2O +1.51 1/2F2 + e- ↔ F - +2.87 Uses of Standard Electrode Potential (SEP) Data3 WEAK Oxidizing Agent STRONG Oxidizing Agent STRONG Reducing Agent WEAK Reducing Agent О Z Zn Zn↔ 2+ + 2e Eθ = +0.76 Sn2+ + 2e Sn E↔ θ = -0.14 Zn + Sn2+ Zn→ 2+ + Sn Eθ = +0.62V Rxn bet Zn + Sn2+ Will it happen ? Eθ = +0.62V +ve (spontaneous) Reaction NEVER happen ↓ 1 Oxidizing + 1 Reducing agent (WEAK) (WEAK) from both side Rxn bet Cu2+ +I- Will it happen ? О Rxn feasible О О 2I- I↔ 2 + 2e Eθ = -0.54 Cu2+ + 2e Cu E↔ θ = +0.34 2I- + Cu2+ Cu→ + I2 Eθ = -0.20V Eθ = -0.20V -ve (NON spontaneous) Rxn not feasible Zn(s) | Zn2+ (aq) || Sn2+ (aq) | Sn (s) (Oxidation) (Reduction) Anode Cathode Find Eθ cell (use formula) Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = -0.14 – (-0.76) = +0.62V Eθ = +0.62V +ve (spontaneous) Pt(s) | I- , I2 || Cu2+ (aq) | Cu (s) Anode Cathode (Oxidation) (Reduction) Find Eθ cell (use formula) Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +0.34 – (+0.54) = -0.20V Determine spontaneity rxn. Will it HAPPEN ?
  • 34. Eθ = -0.82V -ve (NON spontaneous) Reaction to happen ↓ 1 Oxidizing + 1 Reducing agent (Strong) (Strong) from both side Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 Zn2+ + 2e- Zn↔ -0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 Pb2+ + 2e- Pb↔ -0.13 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 +0.17 Cu2+ + 2e- ↔ Cu +0.34 I2 + 2e- ↔ I- +0.54 Fe3+ + e- Fe↔ 2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- Br↔ - +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ +7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 1/2F2 + e- ↔ F - +2.87 Uses of Standard Electrode Potential (SEP) Data3 WEAK Oxidizing Agent STRONG Oxidizing Agent STRONG Reducing Agent WEAK Reducing Agent О Z Zn Zn↔ 2+ + 2e Eθ = +0.76 Cu2+ + 2e Cu E↔ θ = +0.34 Zn + Cu2+ Zn→ 2+ +Cu Eθ = +1.10V Rxn bet Zn + Cu2+ Will it happen ? Eθ = +1.10V +ve (spontaneous) Reaction NEVER happen ↓ 1 Oxidizing + 1 Reducing agent (WEAK) (WEAK) from both side Rxn bet I2 +CI- Will it happen ? О Rxn feasible О О 2CI- CI↔ 2 + 2e Eθ = -1.36 I2 + 2e 2I↔ - Eθ = +0.54 I2 + 2CI- 2I-→ + CI2 Eθ = -0.82V Eθ = -0.82V -ve (NON spontaneous) Rxn not feasible Zn(s) | Zn2+ (aq) || Cu2+ (aq) | Cu (s) (Oxidation) (Reduction) Anode Cathode Find Eθ cell (use formula) Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = 0.34 – (-0.76) = +1.10V Eθ = +1.10V +ve (spontaneous) Pt(s) | CI- , CI2 || I2 I- | Pt (s) Anode Cathode (Oxidation) (Reduction) Find Eθ cell (use formula) Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +0.54 – (+1.36) = -0.82V Determine spontaneity rxn. Will it HAPPEN ?
  • 35. Eθ = -0.59V -ve (NON spontaneous) Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 H2O + e- H↔ 2 + OH- -0.83 Zn2+ + 2e- Zn↔ -0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2S +0.17 Cu2+ + 2e- ↔ Cu +0.34 Cu+ + e- Cu↔ +0.52 Fe3+ + e- Fe↔ 2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- Br↔ - +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ +1.33 1/2CI2 + e- ↔ CI- +1.36 1/2F2 + e- ↔ F - +2.87 Uses of Standard Electrode Potential (SEP) Data3 WEAK Oxidizing Agent STRONG Oxidizing Agent STRONG Reducing Agent WEAK Reducing Agent Cu Cu↔ 2+ + 2e Eθ = -0.34 2H+ + 2e H↔ 2 Eθ = +0.00 Cu + 2H+ Cu→ 2+ +H2 Eθ = -0.34V Rxn bet Cu + H+ Will it happen ? Eθ = -0.34V -ve (NON spontaneous) Reaction NEVER happen ↓ 1 Oxidizing + 1 Reducing agent (WEAK) (WEAK) from both side Rxn bet Fe3+ +CI- Will it happen ? О О О 2CI- CI↔ 2 + 2e Eθ = -1.36 2Fe3+ + 2e 2Fe↔ 2+ Eθ = +0.77 2Fe3+ + 2CI- 2Fe→ 2+ +CI2 Eθ = -0.59V Eθ = -0.59V -ve (NON spontaneous) Rxn not feasible Cu(s) | Cu2+ (aq) || H+ H2 | Pt (s) (Oxidation) (Reduction) Anode Cathode Find Eθ cell (use formula) Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = 0.00 – (+0.34) = -0.34V Eθ = -0.34V -ve (spontaneous) Pt(s) | CI- , CI2 || Fe3+ ,Fe2+ |Pt (s) Anode Cathode (Oxidation) (Reduction) Find Eθ cell (use formula) Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +0.77 – (+1.36) = -0.59V О Rxn not feasible Reaction NEVER happen ↓ 1 Oxidizing + 1 Reducing agent (WEAK) (WEAK) from both side Determine spontaneity rxn. Will it HAPPEN ?
  • 36. Eθ value DO NOT depend surface area of metal electrode. EMF = Energy per unit charge. (Joule)/C EMF 10v = 10J energy released by 1C of charge flowing = 100J energy released by 10C of charge flowing Eθ – intensive property– independent of amt – ratio energy/charge Increasing surface area metal will NOT increase EMF Eθ Zn/Cu = 1.10V Surface area exposed 10 cm2 Total charges 100C leave electrode EMF = 1.10V = 1.1 J energy for 1 C (charges leaving) 1C release 1.1J energy 100 C release 110 J energy Voltmeter measure energy for 1C – 110J/100C – 1.1V EMF no change Current – measured in Amperes or Coulombs per second 1A = 1 Coulomb charge pass through a point in 1 second = 1C/s 1 Coulomb charge (electron) = 6.28 x 10 18 electrons passing in 1 second 1 electron/proton carry charge of – 1.6 x 10 -19 C ( very small) 6.28 x 10 18 electron carry charge of - 1 C ond electron ond Coulomb A sec.1 .1028.6 sec1 1 1 18 × == Surface area increase ↑ Total Energy increase ↑ Total Charge increase ↑Current increase ↑ BUT EMF remain SAME EMF = (Energy/charge) t Q I tIQ = ×= Q up ↑ – I up ↑ 100C flow 110J released VEMF EMF eCh Energy EMF 10.1 100 110 arg = = = Surface area exposed 10 cm2 Surface area exposed 100cm2 Surface area exposed 100 cm2 Total charges 1000C leave electrode EMF = 1.10V = 1.1 J energy for 1 C (charges leaving) 1C release 1.1J energy 1000 C release 1100 J energy Voltmeter measure energy for 1C – 1100J/1000C – 1.1V EMF no change VEMF EMF eCh Energy EMF 10.1 1000 1100 arg = = = Eθ Zn/Cu = 1.10V 1000C flow 1100J released t Q I = t Q I =
  • 37. Iron rust in presence of water + oxygen Iron galvanized/coated with zinc. Oxidized sp ↔ Reduced sp Eθ /V Zn2+ + 2e- Zn↔ - 0.76 Fe2+ + 2e- ↔ Fe -0.44 O2 + 2H2O + 4e ↔ 4OH- +0.40 Iron rusting Rusting Process happen Eθ /V Fe2+ + 2e- ↔ Fe -0.44 O2 + 2H2O + 4e ↔ 4OH- +0.40 O2 + 4H+ + 4e ↔ 2H2O + 1.23 H2O + O2 less reactive (cathode region) – reduction – gain e Fe more reactive (anode region) – oxidation - lose e OxidationReduction Fe2+ + 2e- Fe -0.44↔ O2 +2H2O+4e ↔ 4OH- +0.40 Fe Fe↔ 2+ + 2e Eθ = +0.44 O2+2H2O+4e ↔ 4OH- Eθ = +0.40 2Fe+O2 +2H2O→2Fe2+ +4OH- Eθ = +0.84V Eθ = +0.84V +ve (spontaneous) О О Dissolve O2 in water Dissolve O2 in acid How galvanizing reduces rusting Iron Galvanized with Zn Iron/Steel Galvanized with tin Zn more reactive – lose e instead of Fe Zn as Sacrificial metal/ Cathodic Protection Electron flow to O2/H2O region Prevent Fe rusting/lose e O2 gain e Fe O2 + 2H2O + 4e ↔ 4OH- flow e- Zn oxidation/lose e Zn2+ + 2e- ↔ Zn -0.76 O2 +2H2O+4e ↔ 4OH- +0.40 Zn lose e- (Stronger RA) Zn ↔ Zn2+ + 2e Eθ = +0.76 O2+2H2O+4e ↔ 4OH- Eθ = +0.40 2Zn+O2 +2H2O→2Zn2+ +4OH- Eθ = +1.16V Eθ = +1.16 +ve (spontaneous) water О О Anodic region Cathodic region Zn Zn FeFeFe
  • 38. Eθ = +0.84V +ve (spontaneous) Iron rust in presence of water + oxygen Iron can coated with tin widely used in canning Tin corrodes less readily than iron (protect iron) Oxidized sp ↔ Reduced sp Eθ /V Fe2+ + 2e- ↔ Fe -0.44 Sn2+ + 2e- Sn -0.14↔ O2 + 2H2O + 4e ↔ 4OH- +0.40 Iron rusting If tin coat broken, iron rust faster as it will displace tin ions from its solution Will iron rust spontaneously, if Sn2+ (tin ions) are formed. Rusting Process happen Eθ /V Fe2+ + e- ↔ Fe -0.44 O2 + 2H2O + 4e ↔ 4OH- +0.40 O2 + 4H+ + 4e ↔ 2H2O + 1.23 H2O + O2 less reactive (cathode region) – reduction – gain e Fe more reactive (anode region) – oxidation - lose e OxidationReduction Fe2+ + 2e- Fe -0.44↔ O2 +2H2O+4e ↔ 4OH- +0.40 Fe Fe↔ 2+ + 2e Eθ = +0.44 O2+2H2O+4e ↔ 4OH- Eθ = +0.40 2Fe+O2 +2H2O 4Fe→ 2+ +4OH- Eθ = +0.84V Eθ = +0.84V +ve (spontaneous) О О Dissolve O2 in water How coating reduces rusting Iron/Steel coated with tin/Sn BUT if it is exposed - Fe will rust Fe more reactive Sn Tin/Sn protect Fe metal Electron flow Fe to O2/H2O region water Fe oxidation/lose e flow e- O2 + 2H2O + 4e ↔ 4OH- Iron metal water O2 gain e Sn Sn2+ Oxidized sp ↔ Reduced sp Eθ /V Fe2+ + 2e- ↔ Fe -0.44 Sn2+ + 2e- Sn -0.14↔ O2 + 2H2O + 4e ↔ 4OH- +0.40 Fe Fe↔ 2+ + 2e Eθ = +0.44 O2+2H2O+4e ↔ 4OH- Eθ = +0.40 2Fe+O2 +2H2O 4Fe→ 2+ +4OH- Eθ = +0.84V Fe Fe↔ 2+ + 2e Eθ = +0.44 Sn2+ + 2e ↔ Sn Eθ = -0.14 Fe + Sn2+ → Fe2+ + Sn Eθ = +0.30V Eθ = +0.30V +ve (spontaneous) О О О О Sn SnSn FeFeFe Fe
  • 39. State which is able to convert Fe2+ to Fe3+ Oxidized sp ↔ Reduced sp Eθ /V AI3+ + 3e- AI -1.66↔ I2 + 2e- ↔ 2I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 H2O2 + 2H+ + 2e ↔ 2H2O +1.07 Co3+ + e ↔ Co2+ +1.51 2Fe2+ 2Fe↔ 3+ + 2e Eθ = -0.77 H2O2 + 2H+ + 2e 2H↔ 2O Eθ =+1.07 2Fe2+ + H2O2 + 2H+ 2Fe→ 3+ + 2H2O Eθ = +0.30V Eθ = +0.30 +ve (spontaneous) Fe2+ Fe↔ 3+ + e Eθ = -0.77 Co3+ + e ↔ Co 2+ Eθ =+1.51 Fe2+ + Co3+ Fe→ 3+ + Co2+ Eθ = +0.74V Eθ = +0.74 +ve (spontaneous) Eθ cell = EMF in V (std condition) Eθ = Show ease/tendency of species to accept/lose electron Eθ = +ve std electrode potential = stronger oxidizing agent – weaker reducing agent – accept e Eθ = - ve std electrode potential = stronger reducing agent - weaker oxidizing agent – lose e EMF when half cell connect to SHE std condition Std potential written as std reduction potential Eθ value DO NOT depend on stoichiometric coefficient. EMF = Energy per unit charge. (Joule)/C EMF 10v = 10J energy released by 1C of charge flowing = 100J energy released by 10C of charge flowing Eθ , Std electrode potential – intensive property – not dependent on amt – ratio energy/charge Eθ = +ve suggest rxn feasible, does not tell rate, feasible but may be slow, give no indication rate Eθ = +ve = Energetically feasible but kinetically non feasible E = ↑ +ve ↑ (OA) Oxidized sp ↔ Reduced sp Eθ /V Fe3+ + e- ↔ Fe2+ +0.77 H2O2 +2H+ +2e ↔ 2H2O +1.07 Oxidized sp ↔ Reduced sp Eθ /V Fe3+ + e- ↔ Fe2+ +0.77 Co3+ + e ↔ Co2+ +1.51 Stronger OA Strongest OA Redox Question Aluminium air battery Excellent Zn/Cu gravity cell for IA Zinc air battery Videos on battery making
  • 40. Arrange the species in order of increasing oxidizing/reducing strength Oxidized sp ↔ Reduced sp Eθ /V Zn2+ + 2e- Zn -0.76↔ Br2 + 2e- ↔ 2Br- +1.07 I2 + 2e- ↔ 2I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 Oxidizing agent (OA) MnO4 _ > Br2 > Fe3+ > I2 > Zn2+ Reducing agent (RA) Zn > I- > Fe 2+ > Br- > Mn2+ Arrange in order of increasing reducing strength. (Strongest reducing agent) Redox Questions 1 2 E = most +ve ↑ strongest OA E = most -ve ↑ strongest RA Oxidized sp ↔ Reduced sp Eθ /V Zn2+ + 2e- Zn -0.76↔ I2 + 2e- ↔ 2I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Br2 + 2e- ↔ 2Br- +1.07 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 arrange increasing ↑ E value E = ↑ +ve ↑ (OA) Eθ /V X 3+ + 3e- X -1.56↔ Y 2+ + 2e- Y -2.70↔ Z 2+ + 2e- Z +0.90↔ E = ↑ -ve ↑(RA) E = most -ve ↑ strongest RA Reducing agent Y > X > Z arrange increasing ↑ E value Eθ /V Y 2+ + 2e- Y -2.70↔ X 3+ + 3e- X -1.56↔ Z 2+ + 2e- Z +0.90↔ E = ↑ -ve ↑ (RA) 4433 Oxidized sp ↔ Reduced sp Eθ /V Ti2+ + 2e- Ti -1.63↔ 2H+ + 2e- H↔ 2 0.00 Rxn bet Ti + H+ Will it happen ? Ti Ti↔ 2+ + 2e Eθ = +1.63 2H+ + 2e H↔ 2 Eθ = 0.00 Ti + 2H+ Ti→ 2+ + H2 Eθ = +1.63V Eθ = +1.63V +ve (spontaneous) What happen when gold added to acid Oxidized sp ↔ Reduced sp Eθ /V 2H+ + 2e- H↔ 2 0.00 Au3+ + 3e ↔ Au +1.58 Rxn bet Au + H+ Will it happen ? What happen when titanium added to acid 2Au 2↔ Au3+ + 6e Eθ = -1.58 6H+ + 6e 3H↔ 2 Eθ = 0.00 2Au + 6H+ 2Au→ 3+ + 3H2 Eθ = -1.58V Eθ = -1.58V -ve ( NON spontaneous) acid acid
  • 41. Redox Question 6Predict if manganate will oxidize chloride ion? MnO2 + 4H+ + 2CI- Mn→ 2+ + 2H2O + CI2 Eθ = ? 55 MnO2 +4H+ + 2e- Mn↔ 2+ + 2H2O +1.23 1/2CI2 + e- ↔ CI- +1.36 2CI- CI↔ 2 + 2e Eθ = -1.36 MnO2 + 4H+ + 2e Mn↔ 2+ + 2H2O Eθ = +1.23 MnO2 + 4H+ +2CI- Mn→ 2+ +2H2O+CI2 Eθ = -0.13V Eθ = -0.13V -ve (NON spontaneous) Oxidized sp ↔ Reduced sp Eθ /V Cr2O7 2- + 14H+ + 6e- ↔ 2Cr3+ + 7H2O +1.33 MnO2 +4H+ + 2e- Mn↔ 2+ + 2H2O +1.23 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 Predict if MnO4 - able to oxidize aq CI- to CI2 2MnO4 + 16H+ + 10CI- 2Mn→ 2+ + 8H2O + 5CI2 E = ↑ +ve ↑ (OA)О О Oxidized sp ↔ Reduced sp Eθ /V Cr2O7 2- + 14H+ + 6e- ↔ 2Cr3+ + 7H2O +1.33 MnO2 +4H+ + 2e- Mn↔ 2+ + 2H2O +1.23 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 О О 2CI- CI↔ 2 + 2e Eθ = -1.36 MnO4 - + 8H+ + 5e Mn↔ 2+ + 4H2O Eθ = +1.51 2MnO4 + 16H+ +10CI- 2Mn→ 2+ +8H2O+5CI2 Eθ = +0.15V 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 Eθ = +0.15V +ve (spontaneous) Predict if iron react with HCI a) absence air Which is stronger OA ? Fe Fe↔ 2+ + 2e Eθ = +0.44 2H+ + 2e H↔ 2 Eθ = 0.00V Fe + 2H+ Fe→ 2+ + H2 Eθ = +0.44V Eθ = +0.44V +ve (spontaneous) Oxidized sp ↔ Reduced sp Eθ /V Fe2+ + 2e- Fe -0.44↔ 2H+ + 2e- H↔ 2 0.00 O2 +2H2O+4e ↔ 4OH- +0.40 Fe Fe↔ 2+ + 2e Eθ = +0.44 O2+2H2O+4e ↔ 4OH- Eθ = +0.40 2Fe+O2 +2H2O→2Fe2+ +4OH- Eθ = +0.84V Predict if iron react with HCI b) presence of air Fe2+ + 2e- Fe -0.44↔ 2H+ + 2e- H↔ 2 0.00 О О Fe2+ + 2e- Fe -0.44↔ O2 +2H2O+4e ↔ 4OH- +0.40 О О Oxidized sp ↔ Reduced sp Eθ /V Fe2+ + 2e- Fe -0.44↔ 2H+ + 2e- H↔ 2 0.00 O2 +2H2O+4e ↔ 4OH- +0.40 Eθ = +0.84V +ve (spontaneous) Iron rusting E = ↑ +ve ↑ (OA)
  • 42. Acknowledgements Thanks to source of pictures and video used in this presentation Thanks to Creative Commons for excellent contribution on licenses http://creativecommons.org/licenses/ http://spmchemistry.onlinetuition.com.my/2013/10/electrolytic-cell.html http://www.chemguide.co.uk/physical/redoxeqia/introduction.html http://educationia.tk/reduction-potential-table http://2012books.lardbucket.org/books/principles-of-general-chemistry-v1.0/s23- electrochemistry.html http://wps.prenhall.com/wps/media/objects/4680/4792445/ch18_10.htm Prepared by Lawrence Kok Check out more video tutorials from my site and hope you enjoy this tutorial http://lawrencekok.blogspot.com