SlideShare a Scribd company logo
1 of 39
Download to read offline
Graph Neural Network for Phenotype Prediction
Céline Brouard and Nathalie Vialaneix
celine.brouard@inrae.fr & nathalie.vialaneix@inrae.fr
https://miat.inrae.fr/brouard/ & http://www.nathalievialaneix.eu
DeepBioHealth
January 26th, 2022
Outline
Introduction
Graph Neural Network
Our experiments
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 2
Objectives of the work
I prediction: expression −→ phenotype
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 3
Objectives of the work
I prediction: expression −→ phenotype
I does the inclusion of network information can improve prediction?
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 3
Objectives of the work
I prediction: expression −→ phenotype
I does the inclusion of network information can improve prediction?
I which type of network (PPI, co-expression, ...)?
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 3
Objectives of the work
I prediction: expression −→ phenotype
I does the inclusion of network information can improve prediction?
I which type of network (PPI, co-expression, ...)?
I can the learning embed network inference? [not in this talk]
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 3
Earlier work in this field
Problem: predict Y (numerical) from X (multivariate, dimension p) with a linear
model:
y
|{z}
vector, length n
= X
|{z}
matrix, dimension n×p
× β
|{z}
vector to be estimated, length p
+
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 4
Earlier work in this field
Problem: predict Y (numerical) from X (multivariate, dimension p) with a linear
model:
y
|{z}
vector, length n
= X
|{z}
matrix, dimension n×p
× β
|{z}
vector to be estimated, length p
+
Examples:
I [Rapaport et al., 2007]: Y is “Radiated/Not radiated sample” and X is gene
expression. A network is given on the p genes based on KEGG metabolic pathways
I [Li and Li, 2008]: Y is time to death (Glioblastoma) and X is gene expression. A
network is given on the p genes based on KEGG metabolic pathways
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 4
Sketch of main directions
1. use a kernel based on the Laplacian and its associated dot product to compute a
distance
2. use a standard linear model but regularize/penalize it with the Laplacian norm
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 5
Background and notations
What we have: a network (graph), G, with p nodes, v1, . . . , vp and edges between
these nodes
Example: nodes are genes; edges are known regulatory information or co-expression
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 6
Background and notations
What we have: a network (graph), G, with p nodes, v1, . . . , vp and edges between
these nodes
Example: nodes are genes; edges are known regulatory information or co-expression
An important matrix: the Laplacian
LG
ij =



−1 if i 6= j and vi and vj are linked by an edge
0 if i 6= j and vi and vj are not linked by an edge
di if i = j
with di the degree (i.e., the number of edges) of node vi .
Minor note (however important for those who like linear algebra): rows and columns of this matrix
sum to 0. It is equivalent to notice that 0 is an eigenvalue (the smallest) with 1p its eigenvector.
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 6
Eigendecomposition of the Laplacian
L is symmetric and positive (not definite positive) so it can be decomposed into:
L =
p
X
i=1
λi ei e
i
with λi the eigenvalues (in increasing order) and ei the orthonormal eigenvectors in
Rp.
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 7
Eigendecomposition of the Laplacian
L is symmetric and positive (not definite positive) so it can be decomposed into:
L =
p
X
i=1
λi ei e
i
with λi the eigenvalues (in increasing order) and ei the orthonormal eigenvectors in
Rp.
If you want to extract the most relevant information from the network, use the
smallest eigenvalues with:
I low pass filter (similar to signal processing): FG =
Pr
i=1 λi ei e
i for r  p
I regularization FG =
Pp
i=1 φ(λi )ei e
i with φ(x) = e−βλi or 1
λi
for instance (is,
most of the time, a kernel)
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 7
Take home messages
I eigenvectors of the Laplacian that are associated to the smallest eigenvalues are
strongly related to the graph structure
I many kernels have been derived from the Laplacian [Smola and Kondor, 2003] that
perform regularization on graphs that can be used to measure similarities between
nodes of the graph
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 8
How to use L in prediction models?
arg min
β∈Rp
n
X
i=1

β
xi − yi
2
+ Cβ
Lβ +C0
kβk1
| {z }
to enforce sparsity
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 9
How to use L in prediction models?
arg min
β∈Rp
n
X
i=1

β
xi − yi
2
+ Cβ
Lβ +C0
kβk1
| {z }
to enforce sparsity
⇒ implemented in R package glmgraph (not maintained, archived on CRAN)
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 9
Outline
Introduction
Graph Neural Network
Our experiments
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 10
Overview of GNN
where last layer is fed to a standard MLP for prediction (if performed at the graph
level)
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 11
Message passing layers
I are the generalization of convolutional layers to graph data
I general concept introduced in [Gilmer et al., 2017]
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 12
Message passing layers
I are the generalization of convolutional layers to graph data
I general concept introduced in [Gilmer et al., 2017]
More formally, for node features xi (for node vi ), representation of node vi , hi ∈ RK is
learned iteratively (layers t = 1, . . . , T) with:
ht+1
i = F ht
i j∈N(vi )φt(ht
i , ht
j )

with : differential permutation invariant function (mean, sum...)
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 12
Message passing layers
I are the generalization of convolutional layers to graph data
I general concept introduced in [Gilmer et al., 2017]
More formally, for node features xi (for node vi ), representation of node vi , hi ∈ RK is
learned iteratively (layers t = 1, . . . , T) with:
ht+1
i = F ht
i j∈N(vi )φt(ht
i , ht
j )

with : differential permutation invariant function (mean, sum...)
Here: ChebNets [Defferrard et al., 2016] (based on Laplacian low band filtering)
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 12
GNN in practice
I Spektral [Grattarola and Alippi, 2020]
I based on tensorflow (at least 2.3.1) (easy to install on ubuntu with pip3 but
installation from source required for the last version)
I github repository https://github.com/danielegrattarola/spektral and
detailed documentation https://graphneural.network/ with tutorials
I many datasets included: https://graphneural.network/datasets/
I PyTorch Geometric [Fey and Lenssen, 2019]
I based on PyTorch (a bit harder to install on ubuntu due to dependencies)
I github repository https://github.com/rusty1s/pytorch_geometric and
detailed documentation
https://pytorch-geometric.readthedocs.io/en/latest/ with examples
I many datasets included: https:
//pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 13
Starting point
Two references: [Chereda et al., 2019, Chereda et al., 2021]
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 14
Starting point
Two references: [Chereda et al., 2019, Chereda et al., 2021]
Data and code provided.
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 14
Starting point
Two references: [Chereda et al., 2019, Chereda et al., 2021]
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 15
Starting point
Two references: [Chereda et al., 2019, Chereda et al., 2021] Our questions:
I are we able to reproduce that result...
I ... and to extend it to other datasets? [not in this talk]
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 16
Starting point
Two references: [Chereda et al., 2019, Chereda et al., 2021] Our questions:
I are we able to reproduce that result...
I ... and to extend it to other datasets? [not in this talk]
I what part does the network play?
I and which type of network is the most interesting?
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 16
Architecture of the GCN used in Chereda et al., 2019, 2021
Chebyshev convolutional layer
Chebyshev convolutional layer
Pooling layer
Pooling layer
Fully connected layer
Fully connected layer
Fully connected layer
batch_size X 10032 X 32
batch_size X 5016 X 32
batch_size X 512
batch_size X 128
batch_size X 2
batch_size X 5016 X 32
batch_size X 2508 X 32
Reshape batch_size X 80256
(2508*32)
input : batch_size X 10032 X 1
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 17
Graph coarsening [Defferrard et al., 2016]
I Graclus algorithm: computes successive coarser versions of the graph
I clustering objective: normalized cut Wij

1
di
+ 1
dj

I Creation of a balanced binary tree: fake (disconnected) nodes are added to pair
with singletons
I Vertices are then rearranged
→ pooling is analog to pooling a regular 1D signal
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 18
Implementation of the model of [Chereda et al., 2021] using
Keras and Spektral
I Layers:
I Convolutional layers: Spektral (ChebConv)
I Pooling layers: the coarsening from [Defferrard et al., 2016] is computed in the
preprocessing and then a max pooling of size 2 is used.
I Fully connected layers: Keras (dense) with `2 regularization
I For creating mini-batches data, we use the mixed data mode of Spektral (single
graph and different node attributes)
I The GNN model had to be adapted to take into account the different coarsened
graphs
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 19
Outline
Introduction
Graph Neural Network
Our experiments
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 20
Methodology
I tested methods: GNN, RF, SVC, perceptron (with or without regularization),
glmgraph (including a 5-fold CV to tune hyperparameters)
I with expression data scaled or not
I with different networks (for relevant methods): PPI network, correlation network
[partially in this talk], random network [partially in this talk], complete network
[partially in this talk]
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 21
Methodology
I tested methods: GNN, RF, SVC, perceptron (with or without regularization),
glmgraph (including a 5-fold CV to tune hyperparameters)
I with expression data scaled or not
I with different networks (for relevant methods): PPI network, correlation network
[partially in this talk], random network [partially in this talk], complete network
[partially in this talk]
I methodology: 10-fold CV (same folds for all methods)
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 21
Methodology
I tested methods: GNN, RF, SVC, perceptron (with or without regularization),
glmgraph (including a 5-fold CV to tune hyperparameters)
I with expression data scaled or not
I with different networks (for relevant methods): PPI network, correlation network
[partially in this talk], random network [partially in this talk], complete network
[partially in this talk]
I methodology: 10-fold CV (same folds for all methods)
I quality metrics: AUC, accuracy, balanced accuracy, training time, and prediction
time
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 21
Results: computation times
(not shown) glmgraph computation was extremely high compared to other method
(due to the need of hyperparameter tuning)
then RF and GNN are the slowest
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 22
Results: accuracy
glmgraph accuracy was very
bad (∼ 0.6), slightly better
with unscaled input data and
correlation network
(significant? second best is
random...) ⇒ tuning
improvement is required
GNN is not better than most
methods based on data with
no network
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 23
Results: accuracy
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 24
References
(unofficial) Beamer template made with the help of Thomas Schiex and Andreea Dreau:
https://forgemia.inra.fr/nathalie.villa-vialaneix/bainrae
Chereda, H., Bleckmann, A., Kramer, F., Leha, A., and Beissbarth, T. (2019).
Utilizing molecular network information via graph convolutional neural networks to predict metastatic event in breast cancer.
Studies in Health Technology and Informatics, 267:181–186.
Chereda, H., Bleckmann, A., Menck, K., Perera-Bel, J., Stegmaier, P., Auer, F., Kramer, F., Leha, A., and Beißbarth, T. (2021).
Explaining decisions of graph convolutional neural networks: patient-specific molecular subnetworks responsible for metastasis prediction in
breast cancer.
Genome Medicine, 13:42.
Defferrard, M., Bresson, X., and Vandergheynst, P. (2016).
Convolutional neural networks on graphs with fast localized spectral filtering.
In Lee, D. D., von Luxburg, U., Garnett, R., Sugiyama, M., and Guyon, I., editors, Advances in Neural Information Processing Systems (NIPS
2016), volume 29, pages 3844–3852, Red Hook, NY, USA. Curran Associates Inc.
Fey, M. and Lenssen, J. E. (2019).
Fast graph representation learning with pytorch geometric.
In Proceedings of RLGM Workshop at ICLR 2019.
Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017).
Neural message passing for quantum chemistry.
In Precup, D. and The, Y. W., editors, Proceedings of the 34 th International Conference on Machine Learning (ICML 2017), volume 70,
pages 1263–1272, Sydney, Australia.
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 24
Grattarola, D. and Alippi, C. (2020).
Graph neural networks in TensorFlow and Keras with Spektral.
In Proceedings of the Graph Representation Learning and Beyond – ICML 2020 Workshop.
Li, C. and Li, H. (2008).
Network-constrained regularization and variable selection for analysis of genomic data.
Bioinformatics, 24(9):1175–1182.
Rapaport, F., Zinovyev, A., Dutreix, M., Barillot, E., and Vert, J.-P. (2007).
Classification of microarray data using gene networks.
BMC Bioinformatics, 8:35.
Smola, A. and Kondor, R. (2003).
Kernels and regularization on graphs.
In Warmuth, M. and Schölkopf, B., editors, Proceedings of the Conference on Learning Theory (COLT) and Kernel Workshop, Lecture Notes
in Computer Science, pages 144–158, Washington, DC, USA. Springer-Verlag Berlin Heidelberg.
Graph Neural Network for Phenotype Prediction
Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix
p. 24

More Related Content

What's hot

Generating Diverse High-Fidelity Images with VQ-VAE-2
Generating Diverse High-Fidelity Images with VQ-VAE-2Generating Diverse High-Fidelity Images with VQ-VAE-2
Generating Diverse High-Fidelity Images with VQ-VAE-2harmonylab
 
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Yusuke Uchida
 
[Track2-2] 最新のNVIDIA AmpereアーキテクチャによるNVIDIA A100 TensorコアGPUの特長とその性能を引き出す方法
[Track2-2] 最新のNVIDIA AmpereアーキテクチャによるNVIDIA A100 TensorコアGPUの特長とその性能を引き出す方法[Track2-2] 最新のNVIDIA AmpereアーキテクチャによるNVIDIA A100 TensorコアGPUの特長とその性能を引き出す方法
[Track2-2] 最新のNVIDIA AmpereアーキテクチャによるNVIDIA A100 TensorコアGPUの特長とその性能を引き出す方法Deep Learning Lab(ディープラーニング・ラボ)
 
Graphic Notes on Linear Algebra and Data Science
Graphic Notes on Linear Algebra and Data ScienceGraphic Notes on Linear Algebra and Data Science
Graphic Notes on Linear Algebra and Data ScienceKenji Hiranabe
 
レコード計算の多相型システムと型推論
レコード計算の多相型システムと型推論レコード計算の多相型システムと型推論
レコード計算の多相型システムと型推論T. Suwa
 
自然言語処理 BERTに関する論文紹介とまとめ
自然言語処理 BERTに関する論文紹介とまとめ自然言語処理 BERTに関する論文紹介とまとめ
自然言語処理 BERTに関する論文紹介とまとめKeisukeNakazono
 
NumPyが物足りない人へのCython入門
NumPyが物足りない人へのCython入門NumPyが物足りない人へのCython入門
NumPyが物足りない人へのCython入門Shiqiao Du
 
深層学習時代の自然言語処理
深層学習時代の自然言語処理深層学習時代の自然言語処理
深層学習時代の自然言語処理Yuya Unno
 
SSII2019TS: Shall We GANs?​ ~GANの基礎から最近の研究まで~
SSII2019TS: Shall We GANs?​ ~GANの基礎から最近の研究まで~SSII2019TS: Shall We GANs?​ ~GANの基礎から最近の研究まで~
SSII2019TS: Shall We GANs?​ ~GANの基礎から最近の研究まで~SSII
 
機械学習で泣かないためのコード設計 2018
機械学習で泣かないためのコード設計 2018機械学習で泣かないためのコード設計 2018
機械学習で泣かないためのコード設計 2018Takahiro Kubo
 
U-Net: Convolutional Networks for Biomedical Image Segmentationの紹介
U-Net: Convolutional Networks for Biomedical Image Segmentationの紹介U-Net: Convolutional Networks for Biomedical Image Segmentationの紹介
U-Net: Convolutional Networks for Biomedical Image Segmentationの紹介KCS Keio Computer Society
 
フリーソフトではじめるNGS融合遺伝子解析入門
フリーソフトではじめるNGS融合遺伝子解析入門フリーソフトではじめるNGS融合遺伝子解析入門
フリーソフトではじめるNGS融合遺伝子解析入門Amelieff
 
物体検出の歴史まとめ(1) 20180417
物体検出の歴史まとめ(1) 20180417物体検出の歴史まとめ(1) 20180417
物体検出の歴史まとめ(1) 20180417Masakazu Shinoda
 
【DL輪読会】Patches Are All You Need? (ConvMixer)
【DL輪読会】Patches Are All You Need? (ConvMixer)【DL輪読会】Patches Are All You Need? (ConvMixer)
【DL輪読会】Patches Are All You Need? (ConvMixer)Deep Learning JP
 
"Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio...
"Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio..."Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio...
"Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio...Edge AI and Vision Alliance
 
論文紹介 Semi-supervised Learning with Deep Generative Models
論文紹介 Semi-supervised Learning with Deep Generative Models論文紹介 Semi-supervised Learning with Deep Generative Models
論文紹介 Semi-supervised Learning with Deep Generative ModelsSeiya Tokui
 
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)Preferred Networks
 
Intro to SVE 富岳のA64FXを触ってみた
Intro to SVE 富岳のA64FXを触ってみたIntro to SVE 富岳のA64FXを触ってみた
Intro to SVE 富岳のA64FXを触ってみたMITSUNARI Shigeo
 
10分でわかる主成分分析(PCA)
10分でわかる主成分分析(PCA)10分でわかる主成分分析(PCA)
10分でわかる主成分分析(PCA)Takanori Ogata
 

What's hot (20)

Generating Diverse High-Fidelity Images with VQ-VAE-2
Generating Diverse High-Fidelity Images with VQ-VAE-2Generating Diverse High-Fidelity Images with VQ-VAE-2
Generating Diverse High-Fidelity Images with VQ-VAE-2
 
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
 
[Track2-2] 最新のNVIDIA AmpereアーキテクチャによるNVIDIA A100 TensorコアGPUの特長とその性能を引き出す方法
[Track2-2] 最新のNVIDIA AmpereアーキテクチャによるNVIDIA A100 TensorコアGPUの特長とその性能を引き出す方法[Track2-2] 最新のNVIDIA AmpereアーキテクチャによるNVIDIA A100 TensorコアGPUの特長とその性能を引き出す方法
[Track2-2] 最新のNVIDIA AmpereアーキテクチャによるNVIDIA A100 TensorコアGPUの特長とその性能を引き出す方法
 
Graphic Notes on Linear Algebra and Data Science
Graphic Notes on Linear Algebra and Data ScienceGraphic Notes on Linear Algebra and Data Science
Graphic Notes on Linear Algebra and Data Science
 
レコード計算の多相型システムと型推論
レコード計算の多相型システムと型推論レコード計算の多相型システムと型推論
レコード計算の多相型システムと型推論
 
自然言語処理 BERTに関する論文紹介とまとめ
自然言語処理 BERTに関する論文紹介とまとめ自然言語処理 BERTに関する論文紹介とまとめ
自然言語処理 BERTに関する論文紹介とまとめ
 
NumPyが物足りない人へのCython入門
NumPyが物足りない人へのCython入門NumPyが物足りない人へのCython入門
NumPyが物足りない人へのCython入門
 
深層学習時代の自然言語処理
深層学習時代の自然言語処理深層学習時代の自然言語処理
深層学習時代の自然言語処理
 
SSII2019TS: Shall We GANs?​ ~GANの基礎から最近の研究まで~
SSII2019TS: Shall We GANs?​ ~GANの基礎から最近の研究まで~SSII2019TS: Shall We GANs?​ ~GANの基礎から最近の研究まで~
SSII2019TS: Shall We GANs?​ ~GANの基礎から最近の研究まで~
 
機械学習で泣かないためのコード設計 2018
機械学習で泣かないためのコード設計 2018機械学習で泣かないためのコード設計 2018
機械学習で泣かないためのコード設計 2018
 
U-Net: Convolutional Networks for Biomedical Image Segmentationの紹介
U-Net: Convolutional Networks for Biomedical Image Segmentationの紹介U-Net: Convolutional Networks for Biomedical Image Segmentationの紹介
U-Net: Convolutional Networks for Biomedical Image Segmentationの紹介
 
フリーソフトではじめるNGS融合遺伝子解析入門
フリーソフトではじめるNGS融合遺伝子解析入門フリーソフトではじめるNGS融合遺伝子解析入門
フリーソフトではじめるNGS融合遺伝子解析入門
 
物体検出の歴史まとめ(1) 20180417
物体検出の歴史まとめ(1) 20180417物体検出の歴史まとめ(1) 20180417
物体検出の歴史まとめ(1) 20180417
 
【DL輪読会】Patches Are All You Need? (ConvMixer)
【DL輪読会】Patches Are All You Need? (ConvMixer)【DL輪読会】Patches Are All You Need? (ConvMixer)
【DL輪読会】Patches Are All You Need? (ConvMixer)
 
"Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio...
"Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio..."Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio...
"Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio...
 
論文紹介 Semi-supervised Learning with Deep Generative Models
論文紹介 Semi-supervised Learning with Deep Generative Models論文紹介 Semi-supervised Learning with Deep Generative Models
論文紹介 Semi-supervised Learning with Deep Generative Models
 
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
 
Graph Convolutional Network 概説
Graph Convolutional Network 概説Graph Convolutional Network 概説
Graph Convolutional Network 概説
 
Intro to SVE 富岳のA64FXを触ってみた
Intro to SVE 富岳のA64FXを触ってみたIntro to SVE 富岳のA64FXを触ってみた
Intro to SVE 富岳のA64FXを触ってみた
 
10分でわかる主成分分析(PCA)
10分でわかる主成分分析(PCA)10分でわかる主成分分析(PCA)
10分でわかる主成分分析(PCA)
 

Similar to Graph Neural Network for Phenotype Prediction

A short and naive introduction to using network in prediction models
A short and naive introduction to using network in prediction modelsA short and naive introduction to using network in prediction models
A short and naive introduction to using network in prediction modelstuxette
 
Reading revue of "Inferring Multiple Graphical Structures"
Reading revue of "Inferring Multiple Graphical Structures"Reading revue of "Inferring Multiple Graphical Structures"
Reading revue of "Inferring Multiple Graphical Structures"tuxette
 
Quantitative Propagation of Chaos for SGD in Wide Neural Networks
Quantitative Propagation of Chaos for SGD in Wide Neural NetworksQuantitative Propagation of Chaos for SGD in Wide Neural Networks
Quantitative Propagation of Chaos for SGD in Wide Neural NetworksValentin De Bortoli
 
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...tuxette
 
Adversarial Variational Autoencoders to extend and improve generative model
Adversarial Variational Autoencoders to extend and improve generative modelAdversarial Variational Autoencoders to extend and improve generative model
Adversarial Variational Autoencoders to extend and improve generative modelLoc Nguyen
 
Tutorial on Polynomial Networks at CVPR'22
Tutorial on Polynomial Networks at CVPR'22Tutorial on Polynomial Networks at CVPR'22
Tutorial on Polynomial Networks at CVPR'22Grigoris C
 
Criminal and Civil Identification with DNA Databases Using Bayesian Networks
Criminal and Civil Identification with DNA Databases Using Bayesian NetworksCriminal and Civil Identification with DNA Databases Using Bayesian Networks
Criminal and Civil Identification with DNA Databases Using Bayesian NetworksCSCJournals
 
Dagstuhl seminar talk on querying big graphs
Dagstuhl seminar talk on querying big graphsDagstuhl seminar talk on querying big graphs
Dagstuhl seminar talk on querying big graphsArijit Khan
 
Neural Nets Deconstructed
Neural Nets DeconstructedNeural Nets Deconstructed
Neural Nets DeconstructedPaul Sterk
 
Remote Patient & Elderly Care Monitoring
Remote Patient & Elderly Care MonitoringRemote Patient & Elderly Care Monitoring
Remote Patient & Elderly Care MonitoringVeselin Pizurica
 
最近の研究情勢についていくために - Deep Learningを中心に -
最近の研究情勢についていくために - Deep Learningを中心に - 最近の研究情勢についていくために - Deep Learningを中心に -
最近の研究情勢についていくために - Deep Learningを中心に - Hiroshi Fukui
 
Rigorous Pack Edge Detection Fuzzy System
Rigorous Pack Edge Detection Fuzzy SystemRigorous Pack Edge Detection Fuzzy System
Rigorous Pack Edge Detection Fuzzy Systeminventy
 
Bridging knowledge graphs_to_generate_scene_graphs
Bridging knowledge graphs_to_generate_scene_graphsBridging knowledge graphs_to_generate_scene_graphs
Bridging knowledge graphs_to_generate_scene_graphsWoen Yon Lai
 
USE OF BARNES-HUT ALGORITHM TO ATTACK COVID-19 VIRUS
USE OF BARNES-HUT ALGORITHM TO ATTACK COVID-19 VIRUSUSE OF BARNES-HUT ALGORITHM TO ATTACK COVID-19 VIRUS
USE OF BARNES-HUT ALGORITHM TO ATTACK COVID-19 VIRUSIJCI JOURNAL
 
Introduction to Graph neural networks @ Vienna Deep Learning meetup
Introduction to Graph neural networks @  Vienna Deep Learning meetupIntroduction to Graph neural networks @  Vienna Deep Learning meetup
Introduction to Graph neural networks @ Vienna Deep Learning meetupLiad Magen
 
Knowledge Graphs and Milestone
Knowledge Graphs and MilestoneKnowledge Graphs and Milestone
Knowledge Graphs and MilestoneBarry Norton
 
Lucas Theis - Compressing Images with Neural Networks - Creative AI meetup
Lucas Theis - Compressing Images with Neural Networks - Creative AI meetupLucas Theis - Compressing Images with Neural Networks - Creative AI meetup
Lucas Theis - Compressing Images with Neural Networks - Creative AI meetupLuba Elliott
 

Similar to Graph Neural Network for Phenotype Prediction (20)

A short and naive introduction to using network in prediction models
A short and naive introduction to using network in prediction modelsA short and naive introduction to using network in prediction models
A short and naive introduction to using network in prediction models
 
Reading revue of "Inferring Multiple Graphical Structures"
Reading revue of "Inferring Multiple Graphical Structures"Reading revue of "Inferring Multiple Graphical Structures"
Reading revue of "Inferring Multiple Graphical Structures"
 
Quantitative Propagation of Chaos for SGD in Wide Neural Networks
Quantitative Propagation of Chaos for SGD in Wide Neural NetworksQuantitative Propagation of Chaos for SGD in Wide Neural Networks
Quantitative Propagation of Chaos for SGD in Wide Neural Networks
 
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
 
Adversarial Variational Autoencoders to extend and improve generative model
Adversarial Variational Autoencoders to extend and improve generative modelAdversarial Variational Autoencoders to extend and improve generative model
Adversarial Variational Autoencoders to extend and improve generative model
 
Tutorial on Polynomial Networks at CVPR'22
Tutorial on Polynomial Networks at CVPR'22Tutorial on Polynomial Networks at CVPR'22
Tutorial on Polynomial Networks at CVPR'22
 
Criminal and Civil Identification with DNA Databases Using Bayesian Networks
Criminal and Civil Identification with DNA Databases Using Bayesian NetworksCriminal and Civil Identification with DNA Databases Using Bayesian Networks
Criminal and Civil Identification with DNA Databases Using Bayesian Networks
 
Dagstuhl seminar talk on querying big graphs
Dagstuhl seminar talk on querying big graphsDagstuhl seminar talk on querying big graphs
Dagstuhl seminar talk on querying big graphs
 
Neural Nets Deconstructed
Neural Nets DeconstructedNeural Nets Deconstructed
Neural Nets Deconstructed
 
Remote Patient & Elderly Care Monitoring
Remote Patient & Elderly Care MonitoringRemote Patient & Elderly Care Monitoring
Remote Patient & Elderly Care Monitoring
 
最近の研究情勢についていくために - Deep Learningを中心に -
最近の研究情勢についていくために - Deep Learningを中心に - 最近の研究情勢についていくために - Deep Learningを中心に -
最近の研究情勢についていくために - Deep Learningを中心に -
 
Gtti 10032021
Gtti 10032021Gtti 10032021
Gtti 10032021
 
Rigorous Pack Edge Detection Fuzzy System
Rigorous Pack Edge Detection Fuzzy SystemRigorous Pack Edge Detection Fuzzy System
Rigorous Pack Edge Detection Fuzzy System
 
Bridging knowledge graphs_to_generate_scene_graphs
Bridging knowledge graphs_to_generate_scene_graphsBridging knowledge graphs_to_generate_scene_graphs
Bridging knowledge graphs_to_generate_scene_graphs
 
USE OF BARNES-HUT ALGORITHM TO ATTACK COVID-19 VIRUS
USE OF BARNES-HUT ALGORITHM TO ATTACK COVID-19 VIRUSUSE OF BARNES-HUT ALGORITHM TO ATTACK COVID-19 VIRUS
USE OF BARNES-HUT ALGORITHM TO ATTACK COVID-19 VIRUS
 
Colloquium.pptx
Colloquium.pptxColloquium.pptx
Colloquium.pptx
 
Introduction to Graph neural networks @ Vienna Deep Learning meetup
Introduction to Graph neural networks @  Vienna Deep Learning meetupIntroduction to Graph neural networks @  Vienna Deep Learning meetup
Introduction to Graph neural networks @ Vienna Deep Learning meetup
 
Knowledge Graphs and Milestone
Knowledge Graphs and MilestoneKnowledge Graphs and Milestone
Knowledge Graphs and Milestone
 
QMC: Transition Workshop - Selected Highlights from the Probabilistic Numeric...
QMC: Transition Workshop - Selected Highlights from the Probabilistic Numeric...QMC: Transition Workshop - Selected Highlights from the Probabilistic Numeric...
QMC: Transition Workshop - Selected Highlights from the Probabilistic Numeric...
 
Lucas Theis - Compressing Images with Neural Networks - Creative AI meetup
Lucas Theis - Compressing Images with Neural Networks - Creative AI meetupLucas Theis - Compressing Images with Neural Networks - Creative AI meetup
Lucas Theis - Compressing Images with Neural Networks - Creative AI meetup
 

More from tuxette

Racines en haut et feuilles en bas : les arbres en maths
Racines en haut et feuilles en bas : les arbres en mathsRacines en haut et feuilles en bas : les arbres en maths
Racines en haut et feuilles en bas : les arbres en mathstuxette
 
Méthodes à noyaux pour l’intégration de données hétérogènes
Méthodes à noyaux pour l’intégration de données hétérogènesMéthodes à noyaux pour l’intégration de données hétérogènes
Méthodes à noyaux pour l’intégration de données hétérogènestuxette
 
Méthodologies d'intégration de données omiques
Méthodologies d'intégration de données omiquesMéthodologies d'intégration de données omiques
Méthodologies d'intégration de données omiquestuxette
 
Projets autour de l'Hi-C
Projets autour de l'Hi-CProjets autour de l'Hi-C
Projets autour de l'Hi-Ctuxette
 
Can deep learning learn chromatin structure from sequence?
Can deep learning learn chromatin structure from sequence?Can deep learning learn chromatin structure from sequence?
Can deep learning learn chromatin structure from sequence?tuxette
 
Multi-omics data integration methods: kernel and other machine learning appro...
Multi-omics data integration methods: kernel and other machine learning appro...Multi-omics data integration methods: kernel and other machine learning appro...
Multi-omics data integration methods: kernel and other machine learning appro...tuxette
 
ASTERICS : une application pour intégrer des données omiques
ASTERICS : une application pour intégrer des données omiquesASTERICS : une application pour intégrer des données omiques
ASTERICS : une application pour intégrer des données omiquestuxette
 
Autour des projets Idefics et MetaboWean
Autour des projets Idefics et MetaboWeanAutour des projets Idefics et MetaboWean
Autour des projets Idefics et MetaboWeantuxette
 
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...tuxette
 
Apprentissage pour la biologie moléculaire et l’analyse de données omiques
Apprentissage pour la biologie moléculaire et l’analyse de données omiquesApprentissage pour la biologie moléculaire et l’analyse de données omiques
Apprentissage pour la biologie moléculaire et l’analyse de données omiquestuxette
 
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...tuxette
 
Journal club: Validation of cluster analysis results on validation data
Journal club: Validation of cluster analysis results on validation dataJournal club: Validation of cluster analysis results on validation data
Journal club: Validation of cluster analysis results on validation datatuxette
 
Overfitting or overparametrization?
Overfitting or overparametrization?Overfitting or overparametrization?
Overfitting or overparametrization?tuxette
 
Selective inference and single-cell differential analysis
Selective inference and single-cell differential analysisSelective inference and single-cell differential analysis
Selective inference and single-cell differential analysistuxette
 
SOMbrero : un package R pour les cartes auto-organisatrices
SOMbrero : un package R pour les cartes auto-organisatricesSOMbrero : un package R pour les cartes auto-organisatrices
SOMbrero : un package R pour les cartes auto-organisatricestuxette
 
Explanable models for time series with random forest
Explanable models for time series with random forestExplanable models for time series with random forest
Explanable models for time series with random foresttuxette
 
Présentation du projet ASTERICS
Présentation du projet ASTERICSPrésentation du projet ASTERICS
Présentation du projet ASTERICStuxette
 
Présentation du projet ASTERICS
Présentation du projet ASTERICSPrésentation du projet ASTERICS
Présentation du projet ASTERICStuxette
 
Kernel methods and variable selection for exploratory analysis and multi-omic...
Kernel methods and variable selection for exploratory analysis and multi-omic...Kernel methods and variable selection for exploratory analysis and multi-omic...
Kernel methods and variable selection for exploratory analysis and multi-omic...tuxette
 
A review on structure learning in GNN
A review on structure learning in GNNA review on structure learning in GNN
A review on structure learning in GNNtuxette
 

More from tuxette (20)

Racines en haut et feuilles en bas : les arbres en maths
Racines en haut et feuilles en bas : les arbres en mathsRacines en haut et feuilles en bas : les arbres en maths
Racines en haut et feuilles en bas : les arbres en maths
 
Méthodes à noyaux pour l’intégration de données hétérogènes
Méthodes à noyaux pour l’intégration de données hétérogènesMéthodes à noyaux pour l’intégration de données hétérogènes
Méthodes à noyaux pour l’intégration de données hétérogènes
 
Méthodologies d'intégration de données omiques
Méthodologies d'intégration de données omiquesMéthodologies d'intégration de données omiques
Méthodologies d'intégration de données omiques
 
Projets autour de l'Hi-C
Projets autour de l'Hi-CProjets autour de l'Hi-C
Projets autour de l'Hi-C
 
Can deep learning learn chromatin structure from sequence?
Can deep learning learn chromatin structure from sequence?Can deep learning learn chromatin structure from sequence?
Can deep learning learn chromatin structure from sequence?
 
Multi-omics data integration methods: kernel and other machine learning appro...
Multi-omics data integration methods: kernel and other machine learning appro...Multi-omics data integration methods: kernel and other machine learning appro...
Multi-omics data integration methods: kernel and other machine learning appro...
 
ASTERICS : une application pour intégrer des données omiques
ASTERICS : une application pour intégrer des données omiquesASTERICS : une application pour intégrer des données omiques
ASTERICS : une application pour intégrer des données omiques
 
Autour des projets Idefics et MetaboWean
Autour des projets Idefics et MetaboWeanAutour des projets Idefics et MetaboWean
Autour des projets Idefics et MetaboWean
 
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
 
Apprentissage pour la biologie moléculaire et l’analyse de données omiques
Apprentissage pour la biologie moléculaire et l’analyse de données omiquesApprentissage pour la biologie moléculaire et l’analyse de données omiques
Apprentissage pour la biologie moléculaire et l’analyse de données omiques
 
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
 
Journal club: Validation of cluster analysis results on validation data
Journal club: Validation of cluster analysis results on validation dataJournal club: Validation of cluster analysis results on validation data
Journal club: Validation of cluster analysis results on validation data
 
Overfitting or overparametrization?
Overfitting or overparametrization?Overfitting or overparametrization?
Overfitting or overparametrization?
 
Selective inference and single-cell differential analysis
Selective inference and single-cell differential analysisSelective inference and single-cell differential analysis
Selective inference and single-cell differential analysis
 
SOMbrero : un package R pour les cartes auto-organisatrices
SOMbrero : un package R pour les cartes auto-organisatricesSOMbrero : un package R pour les cartes auto-organisatrices
SOMbrero : un package R pour les cartes auto-organisatrices
 
Explanable models for time series with random forest
Explanable models for time series with random forestExplanable models for time series with random forest
Explanable models for time series with random forest
 
Présentation du projet ASTERICS
Présentation du projet ASTERICSPrésentation du projet ASTERICS
Présentation du projet ASTERICS
 
Présentation du projet ASTERICS
Présentation du projet ASTERICSPrésentation du projet ASTERICS
Présentation du projet ASTERICS
 
Kernel methods and variable selection for exploratory analysis and multi-omic...
Kernel methods and variable selection for exploratory analysis and multi-omic...Kernel methods and variable selection for exploratory analysis and multi-omic...
Kernel methods and variable selection for exploratory analysis and multi-omic...
 
A review on structure learning in GNN
A review on structure learning in GNNA review on structure learning in GNN
A review on structure learning in GNN
 

Recently uploaded

pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flypumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flyPRADYUMMAURYA1
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)Areesha Ahmad
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLkantirani197
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxseri bangash
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticssakshisoni2385
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPirithiRaju
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceAlex Henderson
 
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Servicenishacall1
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Silpa
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .Poonam Aher Patil
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxMohamedFarag457087
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)Areesha Ahmad
 
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Silpa
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learninglevieagacer
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfSumit Kumar yadav
 
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Monika Rani
 
Sector 62, Noida Call girls :8448380779 Model Escorts | 100% verified
Sector 62, Noida Call girls :8448380779 Model Escorts | 100% verifiedSector 62, Noida Call girls :8448380779 Model Escorts | 100% verified
Sector 62, Noida Call girls :8448380779 Model Escorts | 100% verifiedDelhi Call girls
 

Recently uploaded (20)

pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flypumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical Science
 
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)
 
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdf
 
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
Sector 62, Noida Call girls :8448380779 Model Escorts | 100% verified
Sector 62, Noida Call girls :8448380779 Model Escorts | 100% verifiedSector 62, Noida Call girls :8448380779 Model Escorts | 100% verified
Sector 62, Noida Call girls :8448380779 Model Escorts | 100% verified
 

Graph Neural Network for Phenotype Prediction

  • 1. Graph Neural Network for Phenotype Prediction Céline Brouard and Nathalie Vialaneix celine.brouard@inrae.fr & nathalie.vialaneix@inrae.fr https://miat.inrae.fr/brouard/ & http://www.nathalievialaneix.eu DeepBioHealth January 26th, 2022
  • 2. Outline Introduction Graph Neural Network Our experiments Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 2
  • 3. Objectives of the work I prediction: expression −→ phenotype Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 3
  • 4. Objectives of the work I prediction: expression −→ phenotype I does the inclusion of network information can improve prediction? Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 3
  • 5. Objectives of the work I prediction: expression −→ phenotype I does the inclusion of network information can improve prediction? I which type of network (PPI, co-expression, ...)? Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 3
  • 6. Objectives of the work I prediction: expression −→ phenotype I does the inclusion of network information can improve prediction? I which type of network (PPI, co-expression, ...)? I can the learning embed network inference? [not in this talk] Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 3
  • 7. Earlier work in this field Problem: predict Y (numerical) from X (multivariate, dimension p) with a linear model: y |{z} vector, length n = X |{z} matrix, dimension n×p × β |{z} vector to be estimated, length p + Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 4
  • 8. Earlier work in this field Problem: predict Y (numerical) from X (multivariate, dimension p) with a linear model: y |{z} vector, length n = X |{z} matrix, dimension n×p × β |{z} vector to be estimated, length p + Examples: I [Rapaport et al., 2007]: Y is “Radiated/Not radiated sample” and X is gene expression. A network is given on the p genes based on KEGG metabolic pathways I [Li and Li, 2008]: Y is time to death (Glioblastoma) and X is gene expression. A network is given on the p genes based on KEGG metabolic pathways Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 4
  • 9. Sketch of main directions 1. use a kernel based on the Laplacian and its associated dot product to compute a distance 2. use a standard linear model but regularize/penalize it with the Laplacian norm Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 5
  • 10. Background and notations What we have: a network (graph), G, with p nodes, v1, . . . , vp and edges between these nodes Example: nodes are genes; edges are known regulatory information or co-expression Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 6
  • 11. Background and notations What we have: a network (graph), G, with p nodes, v1, . . . , vp and edges between these nodes Example: nodes are genes; edges are known regulatory information or co-expression An important matrix: the Laplacian LG ij =    −1 if i 6= j and vi and vj are linked by an edge 0 if i 6= j and vi and vj are not linked by an edge di if i = j with di the degree (i.e., the number of edges) of node vi . Minor note (however important for those who like linear algebra): rows and columns of this matrix sum to 0. It is equivalent to notice that 0 is an eigenvalue (the smallest) with 1p its eigenvector. Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 6
  • 12. Eigendecomposition of the Laplacian L is symmetric and positive (not definite positive) so it can be decomposed into: L = p X i=1 λi ei e i with λi the eigenvalues (in increasing order) and ei the orthonormal eigenvectors in Rp. Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 7
  • 13. Eigendecomposition of the Laplacian L is symmetric and positive (not definite positive) so it can be decomposed into: L = p X i=1 λi ei e i with λi the eigenvalues (in increasing order) and ei the orthonormal eigenvectors in Rp. If you want to extract the most relevant information from the network, use the smallest eigenvalues with: I low pass filter (similar to signal processing): FG = Pr i=1 λi ei e i for r p I regularization FG = Pp i=1 φ(λi )ei e i with φ(x) = e−βλi or 1 λi for instance (is, most of the time, a kernel) Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 7
  • 14. Take home messages I eigenvectors of the Laplacian that are associated to the smallest eigenvalues are strongly related to the graph structure I many kernels have been derived from the Laplacian [Smola and Kondor, 2003] that perform regularization on graphs that can be used to measure similarities between nodes of the graph Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 8
  • 15. How to use L in prediction models? arg min β∈Rp n X i=1 β xi − yi 2 + Cβ Lβ +C0 kβk1 | {z } to enforce sparsity Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 9
  • 16. How to use L in prediction models? arg min β∈Rp n X i=1 β xi − yi 2 + Cβ Lβ +C0 kβk1 | {z } to enforce sparsity ⇒ implemented in R package glmgraph (not maintained, archived on CRAN) Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 9
  • 17. Outline Introduction Graph Neural Network Our experiments Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 10
  • 18. Overview of GNN where last layer is fed to a standard MLP for prediction (if performed at the graph level) Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 11
  • 19. Message passing layers I are the generalization of convolutional layers to graph data I general concept introduced in [Gilmer et al., 2017] Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 12
  • 20. Message passing layers I are the generalization of convolutional layers to graph data I general concept introduced in [Gilmer et al., 2017] More formally, for node features xi (for node vi ), representation of node vi , hi ∈ RK is learned iteratively (layers t = 1, . . . , T) with: ht+1 i = F ht i j∈N(vi )φt(ht i , ht j ) with : differential permutation invariant function (mean, sum...) Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 12
  • 21. Message passing layers I are the generalization of convolutional layers to graph data I general concept introduced in [Gilmer et al., 2017] More formally, for node features xi (for node vi ), representation of node vi , hi ∈ RK is learned iteratively (layers t = 1, . . . , T) with: ht+1 i = F ht i j∈N(vi )φt(ht i , ht j ) with : differential permutation invariant function (mean, sum...) Here: ChebNets [Defferrard et al., 2016] (based on Laplacian low band filtering) Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 12
  • 22. GNN in practice I Spektral [Grattarola and Alippi, 2020] I based on tensorflow (at least 2.3.1) (easy to install on ubuntu with pip3 but installation from source required for the last version) I github repository https://github.com/danielegrattarola/spektral and detailed documentation https://graphneural.network/ with tutorials I many datasets included: https://graphneural.network/datasets/ I PyTorch Geometric [Fey and Lenssen, 2019] I based on PyTorch (a bit harder to install on ubuntu due to dependencies) I github repository https://github.com/rusty1s/pytorch_geometric and detailed documentation https://pytorch-geometric.readthedocs.io/en/latest/ with examples I many datasets included: https: //pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 13
  • 23. Starting point Two references: [Chereda et al., 2019, Chereda et al., 2021] Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 14
  • 24. Starting point Two references: [Chereda et al., 2019, Chereda et al., 2021] Data and code provided. Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 14
  • 25. Starting point Two references: [Chereda et al., 2019, Chereda et al., 2021] Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 15
  • 26. Starting point Two references: [Chereda et al., 2019, Chereda et al., 2021] Our questions: I are we able to reproduce that result... I ... and to extend it to other datasets? [not in this talk] Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 16
  • 27. Starting point Two references: [Chereda et al., 2019, Chereda et al., 2021] Our questions: I are we able to reproduce that result... I ... and to extend it to other datasets? [not in this talk] I what part does the network play? I and which type of network is the most interesting? Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 16
  • 28. Architecture of the GCN used in Chereda et al., 2019, 2021 Chebyshev convolutional layer Chebyshev convolutional layer Pooling layer Pooling layer Fully connected layer Fully connected layer Fully connected layer batch_size X 10032 X 32 batch_size X 5016 X 32 batch_size X 512 batch_size X 128 batch_size X 2 batch_size X 5016 X 32 batch_size X 2508 X 32 Reshape batch_size X 80256 (2508*32) input : batch_size X 10032 X 1 Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 17
  • 29. Graph coarsening [Defferrard et al., 2016] I Graclus algorithm: computes successive coarser versions of the graph I clustering objective: normalized cut Wij 1 di + 1 dj I Creation of a balanced binary tree: fake (disconnected) nodes are added to pair with singletons I Vertices are then rearranged → pooling is analog to pooling a regular 1D signal Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 18
  • 30. Implementation of the model of [Chereda et al., 2021] using Keras and Spektral I Layers: I Convolutional layers: Spektral (ChebConv) I Pooling layers: the coarsening from [Defferrard et al., 2016] is computed in the preprocessing and then a max pooling of size 2 is used. I Fully connected layers: Keras (dense) with `2 regularization I For creating mini-batches data, we use the mixed data mode of Spektral (single graph and different node attributes) I The GNN model had to be adapted to take into account the different coarsened graphs Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 19
  • 31. Outline Introduction Graph Neural Network Our experiments Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 20
  • 32. Methodology I tested methods: GNN, RF, SVC, perceptron (with or without regularization), glmgraph (including a 5-fold CV to tune hyperparameters) I with expression data scaled or not I with different networks (for relevant methods): PPI network, correlation network [partially in this talk], random network [partially in this talk], complete network [partially in this talk] Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 21
  • 33. Methodology I tested methods: GNN, RF, SVC, perceptron (with or without regularization), glmgraph (including a 5-fold CV to tune hyperparameters) I with expression data scaled or not I with different networks (for relevant methods): PPI network, correlation network [partially in this talk], random network [partially in this talk], complete network [partially in this talk] I methodology: 10-fold CV (same folds for all methods) Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 21
  • 34. Methodology I tested methods: GNN, RF, SVC, perceptron (with or without regularization), glmgraph (including a 5-fold CV to tune hyperparameters) I with expression data scaled or not I with different networks (for relevant methods): PPI network, correlation network [partially in this talk], random network [partially in this talk], complete network [partially in this talk] I methodology: 10-fold CV (same folds for all methods) I quality metrics: AUC, accuracy, balanced accuracy, training time, and prediction time Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 21
  • 35. Results: computation times (not shown) glmgraph computation was extremely high compared to other method (due to the need of hyperparameter tuning) then RF and GNN are the slowest Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 22
  • 36. Results: accuracy glmgraph accuracy was very bad (∼ 0.6), slightly better with unscaled input data and correlation network (significant? second best is random...) ⇒ tuning improvement is required GNN is not better than most methods based on data with no network Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 23
  • 37. Results: accuracy Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 24
  • 38. References (unofficial) Beamer template made with the help of Thomas Schiex and Andreea Dreau: https://forgemia.inra.fr/nathalie.villa-vialaneix/bainrae Chereda, H., Bleckmann, A., Kramer, F., Leha, A., and Beissbarth, T. (2019). Utilizing molecular network information via graph convolutional neural networks to predict metastatic event in breast cancer. Studies in Health Technology and Informatics, 267:181–186. Chereda, H., Bleckmann, A., Menck, K., Perera-Bel, J., Stegmaier, P., Auer, F., Kramer, F., Leha, A., and Beißbarth, T. (2021). Explaining decisions of graph convolutional neural networks: patient-specific molecular subnetworks responsible for metastasis prediction in breast cancer. Genome Medicine, 13:42. Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. In Lee, D. D., von Luxburg, U., Garnett, R., Sugiyama, M., and Guyon, I., editors, Advances in Neural Information Processing Systems (NIPS 2016), volume 29, pages 3844–3852, Red Hook, NY, USA. Curran Associates Inc. Fey, M. and Lenssen, J. E. (2019). Fast graph representation learning with pytorch geometric. In Proceedings of RLGM Workshop at ICLR 2019. Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017). Neural message passing for quantum chemistry. In Precup, D. and The, Y. W., editors, Proceedings of the 34 th International Conference on Machine Learning (ICML 2017), volume 70, pages 1263–1272, Sydney, Australia. Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 24
  • 39. Grattarola, D. and Alippi, C. (2020). Graph neural networks in TensorFlow and Keras with Spektral. In Proceedings of the Graph Representation Learning and Beyond – ICML 2020 Workshop. Li, C. and Li, H. (2008). Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics, 24(9):1175–1182. Rapaport, F., Zinovyev, A., Dutreix, M., Barillot, E., and Vert, J.-P. (2007). Classification of microarray data using gene networks. BMC Bioinformatics, 8:35. Smola, A. and Kondor, R. (2003). Kernels and regularization on graphs. In Warmuth, M. and Schölkopf, B., editors, Proceedings of the Conference on Learning Theory (COLT) and Kernel Workshop, Lecture Notes in Computer Science, pages 144–158, Washington, DC, USA. Springer-Verlag Berlin Heidelberg. Graph Neural Network for Phenotype Prediction Jan. 17th, 2022 / Céline Brouard and Nathalie Vialaneix p. 24