SlideShare a Scribd company logo
1 of 5
 Image Characteristics Projection GeometryThe following slides describe ImageCharacteristics
and Projection Geometry.Both of these areas influence how diagnostica radiograph will be.In
navigating through the slides, you should clickon the left mouse button when you see themouse
holding an x-ray tubehead or you aredone reading a slide. Hitting “Enter” or “PageDown” will also
work. To go back to the previousslide, hit “backspace” or “page up”.
 2. Image CharacteristicsImage characteristics includedensity, contrast, speed, andlatitude.
 3. Film DensityFilm density represents the degree of darkeningof an exposed x-ray film. White
areas (e.g.,metallic restorations) have no density and blackareas (air spaces) have maximum
density. Theareas in between these two extremes (toothstructure, bone) are represented by
variousshades of gray.
 4. Film DensityRadiolucent: refers to high film density, whichappears in a range from dark gray to
black. Softtissue, air spaces, and pulp tissue, all of whichhave low object density, appear as
radiolucentareas on a film (see next slide).Radiopaque: refers to area with low film density,which
appear in a range from light gray to whiteon the film. (The “white” areas of the film areactually
clear, but appear white when the lightfrom a viewbox passes through the film).Structures with
high object density, such asenamel, bone and metallic restorations willappear radiopaque (see
next slide).
 5. Radiolucent RadiopaqueSoft tissue Cement baseAir space EnamelPulp tissue
AmalgamMental foramen Bone
 6. The overall density of the film affects thediagnostic value of the film. Only the centerfilm below
has the proper density. The one onthe left is too light (low density) and the filmon the right is too
dark (high density); both ofthese films are non-diagnostic.
 7. Film Density influenced by:Patient size: the larger the patient’s head, themore x-rays that are
needed to produce anideal film densityExposure factors (mA, kVp, exposure time).Some patients
require a change in exposurefactors (increase for large adult, decrease forchild) to maintain
proper film density. Anunnecessary increase in any of these factorsresults in an increase in film
density.
 8. Film Density influenced by:Object density: determined by type ofmaterial (metal, tooth
structure,composite, etc.) and by amount ofmaterial. Metallic restorations havehigher object
density than toothstructure. Film density decreases (filmgets lighter) when object
densityincreases, assuming no changes aremade in the exposure factors.In the film at right, the
post and corein each tooth has a high objectdensity, resulting in low film density.
 9. Film Density influenced by:Film fog: This is an increased film densityresulting from causes
other than exposure to theprimary x-ray beam. This includes scatterradiation, improper
safelighting, improper filmstorage, and using expired film. All of thesethings will cause extra silver
halide crystals onthe film to be converted to black metallic silver,resulting in an overall increase in
the film densityand making the film less diagnostic. fog
 10. ContrastContrast refers to the difference in filmdensities between various regions on
aradiograph. Structures with different objectdensities produce images with different filmdensities.
 11. High ContrastHigh contrast implies that there is a pronouncedchange from the light to the
dark areas of thefilm. There are fewer shades of gray, thepredominant densities being either very
light orvery dark. High contrast is also known as shortscale contrast.Theoretically, high contrast
is best for cariesdetection, the radiolucent carious lesionshowing up distinctly against the
surroundingradiopaque enamel.
 12. Low ContrastWith low contrast, there are many shades ofgray seen on the film, with less
pronouncedchanges from light to dark. This is also knownas long scale contrast.Low contrast is
best for periapical orperiodontal evaluation. Slight changes causedby bone loss will be more
evident, showing upas a darker gray than the surrounding area.
 13. Contrast influenced by:Subject Contrast: In order tosee an image on the film, theobjects
being radiographedmust have different objectdensities. If everything had thesame object density,
the filmwould be blank. In the film atright, the teeth, restorations,bone, air spaces, etc., all
havedifferent object densities,allowing us to see them on thefilm.
 14. Contrast influenced by:kVp: kVp controls the energy(penetrating ability) of the x-rays. The
higher the kVp, themore easily the x-rays passthrough objects in their path,resulting in many
shades ofgray (low contrast). At lowerkVp settings, it is harder forx-rays to pass throughobjects
with higher object 40 50 60 70 80 90 100densities, resulting in a kVp settingshigher contrast
(short scale).
 15. 0 Contrast influenced by:Film contrast: this is incorporated into the film bythe manufacturer.
In general, high film contrast(green curve below) requires very preciseexposure of the film; if it is
too high or too low, thefilm will be too dark or too light, resulting in a non-diagnostic film. With low
film contrast (purplecurve) the film will be diagnostic over a broaderrange of film exposure.
Density Exposure of film
 16. 0 Contrast influenced by:Film fog: as discussed under density, film fogmakes the whole film
darker. This makes itharder to see the density differences (contrast),making the film less
diagnostic. fog Fogged film
 17. LatitudeThe latitude of a film represents the range ofexposures that will produce
diagnosticallyacceptable densities on a film. A wide latitudefilm will more readily image both hard
and softtissues on a film.As the latitude of a film increases, the contrast ofthe film decreases.
High Contrast Density Wide Latitude Log Relative Exposure
 18. SpeedThe speed of a film represents the amount ofradiation required to produce a
radiograph ofacceptable density. The higher the speed, theless radiation needed to properly
expose the film.Higher speed films have larger silver halidecrystals; the larger crystals cover
more area andare more likely to interact with the x-rays.F-speed film (Insight) has the highest
speed ofintraoral films. An F-speed film requires 60% lessradiation than a D-speed film.
 19. Projection GeometryProjection geometry pertains to the source of thex-ray beam and the
relationship between the x-raybeam, the structures being radiographed and theposition of the x-
ray film. In order to achieve theoptimal radiograph, the following situations needto be
considered:1. The radiation source should be as small as possible2. The source-tooth distance
should be large3. The tooth-film distance should be small4. The tooth and film should be
parallel5. The x-ray beam should be perpendicular to tooth/film
 20. Radiation source as small as possible 0The sharpness (detail) of images seen on
aradiograph is influenced by the size of the focalspot (area in the target where x-rays are
produced).The smaller the focal spot (target, source), thesharper the image of the teeth will
be.During x-ray production, a lot of heat is generated.If the target is too small, it will overheat and
burnup. In order to get a small focal spot, whilemaintaining an adequately large target to
withstandheat buildup , the line focus principle is used.
 21. Line Focus Principle 0 Target (Anode) Cathode Apparent (effective) focal spot size Actual
focal spot size PIDThe target is at an angle (not perpendicular) to the electronbeam from the
filament (see above). Because of this angle,the x-rays that exit through the PID “appear” to come
froma smaller focal spot (see next slide). Even though theactual focal spot (target) size is larger
(to withstand heatbuildup), the smaller size of the apparent focal spotprovides the sharper image
needed for a proper diagnosis.
 22. Line Focus Principle 0Actual focal spot size The target is at an angle to(looking perpendicular
the electron beam. If youto the target surface; see looked up through the PID atprevious slide);
the this angled target, it wouldlength is indicated by “appear” to be smaller, asthe white dotted
lines seen above. Click to rotatebelow. target and see altered size (indicated by yellow dotted
lines below left). Looking up at target PID through open end of PID
 23. Source-tooth distance large 0The “source” refers to where the x-rays are produced,which is
the target of the x-ray tube. This source, ortarget, is also referred to as the focal spot. Moving
thesource farther away from the teeth results in a sharperimage that is less magnified.
(Sharpness andmagnification will be discussed later). Source (target)
 24. The most common way to increase the source-toothdistance is to increase the length of the
PID. However, bydoing this, the exposure time is increased dramatically, asseen below. This
increase in exposure time increases thechances of patient movement and this needs to
beconsidered in deciding how long a PID you will use. 8” Exposure time = 4 impulses 12”
Exposure time = 9 impulses 16” Exposure time = 16 impulses
 25. 0 Tooth-film distance small paralleling bisectingTo achieve the sharpest image with the
leastmagnification, the film should be as close to the teeth aspossible. In general, the film can be
placed closer to theteeth using the bisecting angle technique (with fingerretention) than with the
paralleling technique. However,there will be more distortion of the image with thebisecting
technique.
 26. Teeth and film parallel X-ray beam perpendicular to teeth/filmHaving the teeth and film
parallel to each other isaccomplished using the paralleling technique. If the filmand teeth are
parallel, then the x-ray beam can bedirected perpendicular to both the long axis of the teethand
the long axis of the film. This relationship will keepdistortion of the image to a minimum.
 27. SharpnessThe sharpness of an image is a measure ofhow well the details
(boundaries/edges) ofan object are reproduced on a radiograph.The sharper the image, the
easier it is tomake a diagnosis concerning subtlechanges in bone or tooth structure.
Thesharpness of an image is dependent on thesize of the penumbra.
 28. PenumbraThe area on the film that representsthe image of a tooth is called theumbra, or
complete shadow. Thearea around the umbra is called thepenumbra or partial shadow.
Thepenumbra is the zone ofunsharpness along the edge of theimage; the larger it is, the
lesssharp the image will be. Thediagram at right shows how the Umbrapenumbra is formed. X-
rays fromeither extreme of the target, andfrom many points in between, pass Penumbrathrough
the edge of the object andcontribute to the penumbra.
 29. Sharpness is determined by:1. Focal spot size2. Source–object (teeth) distance3. Object
(teeth)-film distance4. Intensifying screens5. Patient motion
 30. Decrease focal spot size, increase sharpnessThe larger the target, the wider the area
available fromwhich x-rays can be generated. As seen in the diagrambelow, x-rays from opposite
ends of the larger target (atright) pass through the edge of the tooth and create alarger
penumbra around the image of the tooth on thefilm. Target (source) Tooth Umbra Penumbra
 31. Increase source-tooth distance, increase sharpnessCompare the penumbras Ain the
diagrams at right.When the target is closer Bto the tooth, as in B, thepenumbra is larger. If
thetarget is moved fartherfrom the tooth (A), thepenumbra surroundingthe tooth image issmaller,
creating asharper image. The filmdistance from the tooth tothe film is unchanged. Target
(source) Umbra Tooth Penumbra
 32. 0Decrease tooth-film distance, increase sharpnessAs x-rays coming fromopposite ends of
the targetpass through the edge of thetooth they continue in astraight line, diverging fromeach
other. The farther the filmis from the tooth, the more thex-rays diverge, creating a
widerpenumbra. This decreases thesharpness of the image. Whenthe film is moved closer to the
filmtooth ( ), the penumbra issmaller, creating a sharperimage. Target (source) Umbra Teeth
Penumbra
 33. Intensifying screens decrease sharpness 0Extraoral films use intensifying screens which
containspecial phosphor crystals that produce light whenstruck by x-rays ( ). This light in turn
exposes thefilm. Notice how the light spreads out as it leaves thephosphor crystal. This results in
a less sharp image.Compare the periapical film and the same area on apanoramic film. The
periapical image is much sharper.film panoramic periapical
 34. Patient motion decreases sharpnessIf the patient moves during the exposure of a film,
theimages will be blurred, or unsharp, as seen below.
 35. 0 MagnificationMagnification is an increase in the size of an object. In radiology, it is caused
by the divergence (spreading out) of the x-ray beam as it moves away from the target (in the x-
ray tube) where the x-rays are produced.The amount of magnification can be reduced by: 1.
Increasing the distance from the target to the teeth (source-object distance). 2. Decrease the
distance from the teeth to the film (object-film distance).(See next two slides)
 36. Magnification 0Increase source-object distance, decrease magnification The closertarget is
moved the teeth, the more the x- When the the target is to farther from the teeth (from rays
spread the diagram pass by the x-ray beam does 8” to 16” in out as they below), the teeth,
resulting in increased magnification and the magnification is not spread out as much (see
diagram below). decreased. Target 16” Target 8”
 37. Magnification 0Decrease object-film distance, decrease magnification When the film is placed
farther to thethe tooth, as closer from tooth as seen diagram below, the x-ray beam spreads out
in thebelow, the x-ray beam does not spread out as much increases magnification. more andand
magnification is decreased. Target 16”
 38. Distortion 0Distortion is a change in the shape of an object or the relationship of that object
with surrounding objects. It is affected by:1. The film-teeth relationship (angle between the film
and teeth). Are they parallel with each other or is the long axis of the film at an angle to the long
axis of the teeth.2. The alignment of the x-ray beam (the angle the x- ray beam forms with both
the film and the teeth). Is the beam perpendicular to both the teeth and the film (paralleling) or is
it at an angle to both the teeth and film (bisecting angle and occlusal techniques).
 39. Distortion 0In the paralleling technique, the long axis of the filmand the long axis of the tooth
are parallel. The x-raybeam is directed perpendicular to both the long axisof the tooth and the
long axis of the x-ray film. As aresult, distortion is minimized or eliminated. In theradiograph of
the maxillary first molar, below, theshape and relationship of the buccal and palatalroots are
accurately imaged.
 40. Distortion 0In the bisecting angle and occlusal techniques there isan angle between the teeth
and film, dependent on thepatient’s oral anatomy, which influences filmplacement, and the
technique used. (Occlusaltechnique requires a larger angle between the film andteeth,
approaching 90 degrees). The bisecting angleradiograph of the maxillary molar, below, shows
thedistortion of the relationship between the buccal andpalatal roots.
 41. 0 This slide compares the distortion resulting from paralleling, bisecting angle, and occlusal
techniques. The variation in tooth-film relationship in the different techniques requires a change
in the angle of the x-ray beam. In the diagram below, the ring around the cervical portion of the
tooth is distorted in its relationship to the tooth in the bisecting angle technique; in the occlusal
technique, the distortion is even more severe.paralleling bisecting occlusal angle paralleling
bisecting occlusal angle
 42. 0 Ideal RadiographIn the ideal radiograph, the image is the samesize as the object, has the
same shape and hasa sharp outline with good density and contrast.Because the film must
always be at somedistance from the object, with bone and softtissue in between, the object will
always bemagnified to some degree. Though magnified,the image of the object will usually have
thesame shape as the object when using theparalleling technique. The sharpness, densityand
contrast are maximized by using a longerPID and proper exposure factors.
 43. 0The mandibular molar periapical film comesclosest to satisfying the properties of an
idealradiograph (either paralleling or bisecting). Thefilm is closer to the teeth in this location than
inany other part of the mouth and the film isusually parallel with the teeth.

More Related Content

What's hot

Radiographic film
Radiographic filmRadiographic film
Radiographic filmRad Tech
 
Intensifying screens & films
Intensifying screens & filmsIntensifying screens & films
Intensifying screens & filmsVishwanath R S
 
Radiographic cassettes
Radiographic cassettesRadiographic cassettes
Radiographic cassettesSudil Paudyal
 
factor affecting quality of radiograph
factor affecting quality of radiographfactor affecting quality of radiograph
factor affecting quality of radiographIslamfaiq9
 
Intensifying screens
Intensifying screensIntensifying screens
Intensifying screensEddy Rumhadi
 
Radiographic image4
Radiographic image4Radiographic image4
Radiographic image4mr_koky
 
Revision lecture 1
Revision lecture 1Revision lecture 1
Revision lecture 1mr_koky
 
radiology-x-ray film & screens
 radiology-x-ray film & screens radiology-x-ray film & screens
radiology-x-ray film & screensParth Thakkar
 
Image quality, digital technology and radiation protection
Image quality, digital technology and radiation protectionImage quality, digital technology and radiation protection
Image quality, digital technology and radiation protectionRad Tech
 
Intensifying Screen (x-ray)
Intensifying Screen (x-ray)Intensifying Screen (x-ray)
Intensifying Screen (x-ray)Celjhon Ariño
 
Geometric Properties Distortion
Geometric Properties DistortionGeometric Properties Distortion
Geometric Properties Distortionlambertrad2014
 
x-ray films by Dr Sanjana Ravindra
 x-ray films by Dr Sanjana Ravindra x-ray films by Dr Sanjana Ravindra
x-ray films by Dr Sanjana RavindraDr. Sanjana Ravindra
 
Dmi 50 b_intensifying_screens
Dmi 50 b_intensifying_screensDmi 50 b_intensifying_screens
Dmi 50 b_intensifying_screensEddy Rumhadi
 
X ray films and their development by amit kumar
X ray films and their development by amit kumarX ray films and their development by amit kumar
X ray films and their development by amit kumaramithoodamit
 

What's hot (20)

Radiographic film
Radiographic filmRadiographic film
Radiographic film
 
Ideal radiography
Ideal radiographyIdeal radiography
Ideal radiography
 
Intensifying screens & films
Intensifying screens & filmsIntensifying screens & films
Intensifying screens & films
 
Radiographic cassettes
Radiographic cassettesRadiographic cassettes
Radiographic cassettes
 
factor affecting quality of radiograph
factor affecting quality of radiographfactor affecting quality of radiograph
factor affecting quality of radiograph
 
Intensifying screens
Intensifying screensIntensifying screens
Intensifying screens
 
Radiographic image4
Radiographic image4Radiographic image4
Radiographic image4
 
Revision lecture 1
Revision lecture 1Revision lecture 1
Revision lecture 1
 
radiology-x-ray film & screens
 radiology-x-ray film & screens radiology-x-ray film & screens
radiology-x-ray film & screens
 
Image quality, digital technology and radiation protection
Image quality, digital technology and radiation protectionImage quality, digital technology and radiation protection
Image quality, digital technology and radiation protection
 
Density
DensityDensity
Density
 
X ray films - mamita
X ray films - mamitaX ray films - mamita
X ray films - mamita
 
Intensifying Screen (x-ray)
Intensifying Screen (x-ray)Intensifying Screen (x-ray)
Intensifying Screen (x-ray)
 
Geometric Properties Distortion
Geometric Properties DistortionGeometric Properties Distortion
Geometric Properties Distortion
 
X ray films
X ray filmsX ray films
X ray films
 
x-ray films by Dr Sanjana Ravindra
 x-ray films by Dr Sanjana Ravindra x-ray films by Dr Sanjana Ravindra
x-ray films by Dr Sanjana Ravindra
 
Dmi 50 b_intensifying_screens
Dmi 50 b_intensifying_screensDmi 50 b_intensifying_screens
Dmi 50 b_intensifying_screens
 
Viewing and storage of x ray film
Viewing and storage of x ray filmViewing and storage of x ray film
Viewing and storage of x ray film
 
X ray films and their development by amit kumar
X ray films and their development by amit kumarX ray films and their development by amit kumar
X ray films and their development by amit kumar
 
Image receptors 2014.ppt
Image receptors 2014.pptImage receptors 2014.ppt
Image receptors 2014.ppt
 

Similar to Ppt

Image characteristics,latent image,film processing.
Image characteristics,latent image,film processing.Image characteristics,latent image,film processing.
Image characteristics,latent image,film processing.DENTALBLOG
 
Image characteristics
Image characteristicsImage characteristics
Image characteristicsBhargavi Sood
 
Image Characteristic & Interpretation
Image Characteristic & InterpretationImage Characteristic & Interpretation
Image Characteristic & InterpretationWAlid Salem
 
Radiographic Image contrast & image resolution
Radiographic Image contrast & image resolutionRadiographic Image contrast & image resolution
Radiographic Image contrast & image resolutionNitish Virmani
 
Medical Equipment lec 7 Radiography detectors
Medical Equipment lec 7 Radiography detectorsMedical Equipment lec 7 Radiography detectors
Medical Equipment lec 7 Radiography detectorscairo university
 
Photographic Characteristic of X ray Film.pptx
Photographic Characteristic of X ray Film.pptxPhotographic Characteristic of X ray Film.pptx
Photographic Characteristic of X ray Film.pptxPrashantVerma227710
 
Image quality
Image qualityImage quality
Image qualityairwave12
 
PROJECTION GEOMETRY/ dental implant courses
PROJECTION GEOMETRY/ dental implant coursesPROJECTION GEOMETRY/ dental implant courses
PROJECTION GEOMETRY/ dental implant coursesIndian dental academy
 
Radiographic Quality, Density, Contrast, Detail, Radiographic Accessories.pptx
Radiographic Quality, Density, Contrast, Detail, Radiographic Accessories.pptxRadiographic Quality, Density, Contrast, Detail, Radiographic Accessories.pptx
Radiographic Quality, Density, Contrast, Detail, Radiographic Accessories.pptxDrKanteshkumarMJ
 
characteristics of films - graininess, density, speed, contrast
characteristics of films - graininess, density, speed, contrastcharacteristics of films - graininess, density, speed, contrast
characteristics of films - graininess, density, speed, contrastkarthi keyan
 
Contrast
ContrastContrast
Contrastmr_koky
 
Recent advances in imaging techniques/ /certified fixed orthodontic courses b...
Recent advances in imaging techniques/ /certified fixed orthodontic courses b...Recent advances in imaging techniques/ /certified fixed orthodontic courses b...
Recent advances in imaging techniques/ /certified fixed orthodontic courses b...Indian dental academy
 
Dental X-Ray Film types and indications.
Dental X-Ray Film types and indications.Dental X-Ray Film types and indications.
Dental X-Ray Film types and indications.Mohammed kareem
 
Quality of radiograph by dr ashok
Quality of radiograph by dr  ashokQuality of radiograph by dr  ashok
Quality of radiograph by dr ashokAshok Sharma
 
European project PROMET - Deep Real-Time Optoacoustic Imaging of Breast Tumors
European project PROMET - Deep Real-Time Optoacoustic Imaging of Breast TumorsEuropean project PROMET - Deep Real-Time Optoacoustic Imaging of Breast Tumors
European project PROMET - Deep Real-Time Optoacoustic Imaging of Breast TumorsSébastien Sénégas
 
intensifying screens and grids.pptx
intensifying screens and grids.pptxintensifying screens and grids.pptx
intensifying screens and grids.pptxChandiniDabbiru1
 
CBCT IN ORTHODONTICS
CBCT IN ORTHODONTICSCBCT IN ORTHODONTICS
CBCT IN ORTHODONTICSSonu Pandit
 
Refractive index measurement using Spectroscopic reflectance (MProbe)
Refractive index measurement using Spectroscopic reflectance (MProbe)Refractive index measurement using Spectroscopic reflectance (MProbe)
Refractive index measurement using Spectroscopic reflectance (MProbe)Semiconsoft, Inc
 

Similar to Ppt (20)

Image characteristics,latent image,film processing.
Image characteristics,latent image,film processing.Image characteristics,latent image,film processing.
Image characteristics,latent image,film processing.
 
Image characteristics
Image characteristicsImage characteristics
Image characteristics
 
Image Characteristic & Interpretation
Image Characteristic & InterpretationImage Characteristic & Interpretation
Image Characteristic & Interpretation
 
Radiographic Image contrast & image resolution
Radiographic Image contrast & image resolutionRadiographic Image contrast & image resolution
Radiographic Image contrast & image resolution
 
Medical Equipment lec 7 Radiography detectors
Medical Equipment lec 7 Radiography detectorsMedical Equipment lec 7 Radiography detectors
Medical Equipment lec 7 Radiography detectors
 
Photographic Characteristic of X ray Film.pptx
Photographic Characteristic of X ray Film.pptxPhotographic Characteristic of X ray Film.pptx
Photographic Characteristic of X ray Film.pptx
 
xray
xray xray
xray
 
Image quality
Image qualityImage quality
Image quality
 
PROJECTION GEOMETRY/ dental implant courses
PROJECTION GEOMETRY/ dental implant coursesPROJECTION GEOMETRY/ dental implant courses
PROJECTION GEOMETRY/ dental implant courses
 
Radiographic Quality, Density, Contrast, Detail, Radiographic Accessories.pptx
Radiographic Quality, Density, Contrast, Detail, Radiographic Accessories.pptxRadiographic Quality, Density, Contrast, Detail, Radiographic Accessories.pptx
Radiographic Quality, Density, Contrast, Detail, Radiographic Accessories.pptx
 
characteristics of films - graininess, density, speed, contrast
characteristics of films - graininess, density, speed, contrastcharacteristics of films - graininess, density, speed, contrast
characteristics of films - graininess, density, speed, contrast
 
Contrast
ContrastContrast
Contrast
 
Recent advances in imaging techniques/ /certified fixed orthodontic courses b...
Recent advances in imaging techniques/ /certified fixed orthodontic courses b...Recent advances in imaging techniques/ /certified fixed orthodontic courses b...
Recent advances in imaging techniques/ /certified fixed orthodontic courses b...
 
Dental X-Ray Film types and indications.
Dental X-Ray Film types and indications.Dental X-Ray Film types and indications.
Dental X-Ray Film types and indications.
 
Quality of radiograph by dr ashok
Quality of radiograph by dr  ashokQuality of radiograph by dr  ashok
Quality of radiograph by dr ashok
 
European project PROMET - Deep Real-Time Optoacoustic Imaging of Breast Tumors
European project PROMET - Deep Real-Time Optoacoustic Imaging of Breast TumorsEuropean project PROMET - Deep Real-Time Optoacoustic Imaging of Breast Tumors
European project PROMET - Deep Real-Time Optoacoustic Imaging of Breast Tumors
 
intensifying screens and grids.pptx
intensifying screens and grids.pptxintensifying screens and grids.pptx
intensifying screens and grids.pptx
 
CBCT IN ORTHODONTICS
CBCT IN ORTHODONTICSCBCT IN ORTHODONTICS
CBCT IN ORTHODONTICS
 
Imaging in periodontics
Imaging in periodonticsImaging in periodontics
Imaging in periodontics
 
Refractive index measurement using Spectroscopic reflectance (MProbe)
Refractive index measurement using Spectroscopic reflectance (MProbe)Refractive index measurement using Spectroscopic reflectance (MProbe)
Refractive index measurement using Spectroscopic reflectance (MProbe)
 

Ppt

  • 1.  Image Characteristics Projection GeometryThe following slides describe ImageCharacteristics and Projection Geometry.Both of these areas influence how diagnostica radiograph will be.In navigating through the slides, you should clickon the left mouse button when you see themouse holding an x-ray tubehead or you aredone reading a slide. Hitting “Enter” or “PageDown” will also work. To go back to the previousslide, hit “backspace” or “page up”.  2. Image CharacteristicsImage characteristics includedensity, contrast, speed, andlatitude.  3. Film DensityFilm density represents the degree of darkeningof an exposed x-ray film. White areas (e.g.,metallic restorations) have no density and blackareas (air spaces) have maximum density. Theareas in between these two extremes (toothstructure, bone) are represented by variousshades of gray.  4. Film DensityRadiolucent: refers to high film density, whichappears in a range from dark gray to black. Softtissue, air spaces, and pulp tissue, all of whichhave low object density, appear as radiolucentareas on a film (see next slide).Radiopaque: refers to area with low film density,which appear in a range from light gray to whiteon the film. (The “white” areas of the film areactually clear, but appear white when the lightfrom a viewbox passes through the film).Structures with high object density, such asenamel, bone and metallic restorations willappear radiopaque (see next slide).  5. Radiolucent RadiopaqueSoft tissue Cement baseAir space EnamelPulp tissue AmalgamMental foramen Bone  6. The overall density of the film affects thediagnostic value of the film. Only the centerfilm below has the proper density. The one onthe left is too light (low density) and the filmon the right is too dark (high density); both ofthese films are non-diagnostic.  7. Film Density influenced by:Patient size: the larger the patient’s head, themore x-rays that are needed to produce anideal film densityExposure factors (mA, kVp, exposure time).Some patients require a change in exposurefactors (increase for large adult, decrease forchild) to maintain proper film density. Anunnecessary increase in any of these factorsresults in an increase in film density.  8. Film Density influenced by:Object density: determined by type ofmaterial (metal, tooth structure,composite, etc.) and by amount ofmaterial. Metallic restorations havehigher object density than toothstructure. Film density decreases (filmgets lighter) when object densityincreases, assuming no changes aremade in the exposure factors.In the film at right, the post and corein each tooth has a high objectdensity, resulting in low film density.  9. Film Density influenced by:Film fog: This is an increased film densityresulting from causes other than exposure to theprimary x-ray beam. This includes scatterradiation, improper safelighting, improper filmstorage, and using expired film. All of thesethings will cause extra silver halide crystals onthe film to be converted to black metallic silver,resulting in an overall increase in the film densityand making the film less diagnostic. fog  10. ContrastContrast refers to the difference in filmdensities between various regions on aradiograph. Structures with different objectdensities produce images with different filmdensities.  11. High ContrastHigh contrast implies that there is a pronouncedchange from the light to the dark areas of thefilm. There are fewer shades of gray, thepredominant densities being either very light orvery dark. High contrast is also known as shortscale contrast.Theoretically, high contrast is best for cariesdetection, the radiolucent carious lesionshowing up distinctly against the surroundingradiopaque enamel.  12. Low ContrastWith low contrast, there are many shades ofgray seen on the film, with less pronouncedchanges from light to dark. This is also knownas long scale contrast.Low contrast is
  • 2. best for periapical orperiodontal evaluation. Slight changes causedby bone loss will be more evident, showing upas a darker gray than the surrounding area.  13. Contrast influenced by:Subject Contrast: In order tosee an image on the film, theobjects being radiographedmust have different objectdensities. If everything had thesame object density, the filmwould be blank. In the film atright, the teeth, restorations,bone, air spaces, etc., all havedifferent object densities,allowing us to see them on thefilm.  14. Contrast influenced by:kVp: kVp controls the energy(penetrating ability) of the x-rays. The higher the kVp, themore easily the x-rays passthrough objects in their path,resulting in many shades ofgray (low contrast). At lowerkVp settings, it is harder forx-rays to pass throughobjects with higher object 40 50 60 70 80 90 100densities, resulting in a kVp settingshigher contrast (short scale).  15. 0 Contrast influenced by:Film contrast: this is incorporated into the film bythe manufacturer. In general, high film contrast(green curve below) requires very preciseexposure of the film; if it is too high or too low, thefilm will be too dark or too light, resulting in a non-diagnostic film. With low film contrast (purplecurve) the film will be diagnostic over a broaderrange of film exposure. Density Exposure of film  16. 0 Contrast influenced by:Film fog: as discussed under density, film fogmakes the whole film darker. This makes itharder to see the density differences (contrast),making the film less diagnostic. fog Fogged film  17. LatitudeThe latitude of a film represents the range ofexposures that will produce diagnosticallyacceptable densities on a film. A wide latitudefilm will more readily image both hard and softtissues on a film.As the latitude of a film increases, the contrast ofthe film decreases. High Contrast Density Wide Latitude Log Relative Exposure  18. SpeedThe speed of a film represents the amount ofradiation required to produce a radiograph ofacceptable density. The higher the speed, theless radiation needed to properly expose the film.Higher speed films have larger silver halidecrystals; the larger crystals cover more area andare more likely to interact with the x-rays.F-speed film (Insight) has the highest speed ofintraoral films. An F-speed film requires 60% lessradiation than a D-speed film.  19. Projection GeometryProjection geometry pertains to the source of thex-ray beam and the relationship between the x-raybeam, the structures being radiographed and theposition of the x- ray film. In order to achieve theoptimal radiograph, the following situations needto be considered:1. The radiation source should be as small as possible2. The source-tooth distance should be large3. The tooth-film distance should be small4. The tooth and film should be parallel5. The x-ray beam should be perpendicular to tooth/film  20. Radiation source as small as possible 0The sharpness (detail) of images seen on aradiograph is influenced by the size of the focalspot (area in the target where x-rays are produced).The smaller the focal spot (target, source), thesharper the image of the teeth will be.During x-ray production, a lot of heat is generated.If the target is too small, it will overheat and burnup. In order to get a small focal spot, whilemaintaining an adequately large target to withstandheat buildup , the line focus principle is used.  21. Line Focus Principle 0 Target (Anode) Cathode Apparent (effective) focal spot size Actual focal spot size PIDThe target is at an angle (not perpendicular) to the electronbeam from the filament (see above). Because of this angle,the x-rays that exit through the PID “appear” to come froma smaller focal spot (see next slide). Even though theactual focal spot (target) size is larger (to withstand heatbuildup), the smaller size of the apparent focal spotprovides the sharper image needed for a proper diagnosis.  22. Line Focus Principle 0Actual focal spot size The target is at an angle to(looking perpendicular the electron beam. If youto the target surface; see looked up through the PID atprevious slide);
  • 3. the this angled target, it wouldlength is indicated by “appear” to be smaller, asthe white dotted lines seen above. Click to rotatebelow. target and see altered size (indicated by yellow dotted lines below left). Looking up at target PID through open end of PID  23. Source-tooth distance large 0The “source” refers to where the x-rays are produced,which is the target of the x-ray tube. This source, ortarget, is also referred to as the focal spot. Moving thesource farther away from the teeth results in a sharperimage that is less magnified. (Sharpness andmagnification will be discussed later). Source (target)  24. The most common way to increase the source-toothdistance is to increase the length of the PID. However, bydoing this, the exposure time is increased dramatically, asseen below. This increase in exposure time increases thechances of patient movement and this needs to beconsidered in deciding how long a PID you will use. 8” Exposure time = 4 impulses 12” Exposure time = 9 impulses 16” Exposure time = 16 impulses  25. 0 Tooth-film distance small paralleling bisectingTo achieve the sharpest image with the leastmagnification, the film should be as close to the teeth aspossible. In general, the film can be placed closer to theteeth using the bisecting angle technique (with fingerretention) than with the paralleling technique. However,there will be more distortion of the image with thebisecting technique.  26. Teeth and film parallel X-ray beam perpendicular to teeth/filmHaving the teeth and film parallel to each other isaccomplished using the paralleling technique. If the filmand teeth are parallel, then the x-ray beam can bedirected perpendicular to both the long axis of the teethand the long axis of the film. This relationship will keepdistortion of the image to a minimum.  27. SharpnessThe sharpness of an image is a measure ofhow well the details (boundaries/edges) ofan object are reproduced on a radiograph.The sharper the image, the easier it is tomake a diagnosis concerning subtlechanges in bone or tooth structure. Thesharpness of an image is dependent on thesize of the penumbra.  28. PenumbraThe area on the film that representsthe image of a tooth is called theumbra, or complete shadow. Thearea around the umbra is called thepenumbra or partial shadow. Thepenumbra is the zone ofunsharpness along the edge of theimage; the larger it is, the lesssharp the image will be. Thediagram at right shows how the Umbrapenumbra is formed. X- rays fromeither extreme of the target, andfrom many points in between, pass Penumbrathrough the edge of the object andcontribute to the penumbra.  29. Sharpness is determined by:1. Focal spot size2. Source–object (teeth) distance3. Object (teeth)-film distance4. Intensifying screens5. Patient motion  30. Decrease focal spot size, increase sharpnessThe larger the target, the wider the area available fromwhich x-rays can be generated. As seen in the diagrambelow, x-rays from opposite ends of the larger target (atright) pass through the edge of the tooth and create alarger penumbra around the image of the tooth on thefilm. Target (source) Tooth Umbra Penumbra  31. Increase source-tooth distance, increase sharpnessCompare the penumbras Ain the diagrams at right.When the target is closer Bto the tooth, as in B, thepenumbra is larger. If thetarget is moved fartherfrom the tooth (A), thepenumbra surroundingthe tooth image issmaller, creating asharper image. The filmdistance from the tooth tothe film is unchanged. Target (source) Umbra Tooth Penumbra  32. 0Decrease tooth-film distance, increase sharpnessAs x-rays coming fromopposite ends of the targetpass through the edge of thetooth they continue in astraight line, diverging fromeach other. The farther the filmis from the tooth, the more thex-rays diverge, creating a widerpenumbra. This decreases thesharpness of the image. Whenthe film is moved closer to the filmtooth ( ), the penumbra issmaller, creating a sharperimage. Target (source) Umbra Teeth Penumbra
  • 4.  33. Intensifying screens decrease sharpness 0Extraoral films use intensifying screens which containspecial phosphor crystals that produce light whenstruck by x-rays ( ). This light in turn exposes thefilm. Notice how the light spreads out as it leaves thephosphor crystal. This results in a less sharp image.Compare the periapical film and the same area on apanoramic film. The periapical image is much sharper.film panoramic periapical  34. Patient motion decreases sharpnessIf the patient moves during the exposure of a film, theimages will be blurred, or unsharp, as seen below.  35. 0 MagnificationMagnification is an increase in the size of an object. In radiology, it is caused by the divergence (spreading out) of the x-ray beam as it moves away from the target (in the x- ray tube) where the x-rays are produced.The amount of magnification can be reduced by: 1. Increasing the distance from the target to the teeth (source-object distance). 2. Decrease the distance from the teeth to the film (object-film distance).(See next two slides)  36. Magnification 0Increase source-object distance, decrease magnification The closertarget is moved the teeth, the more the x- When the the target is to farther from the teeth (from rays spread the diagram pass by the x-ray beam does 8” to 16” in out as they below), the teeth, resulting in increased magnification and the magnification is not spread out as much (see diagram below). decreased. Target 16” Target 8”  37. Magnification 0Decrease object-film distance, decrease magnification When the film is placed farther to thethe tooth, as closer from tooth as seen diagram below, the x-ray beam spreads out in thebelow, the x-ray beam does not spread out as much increases magnification. more andand magnification is decreased. Target 16”  38. Distortion 0Distortion is a change in the shape of an object or the relationship of that object with surrounding objects. It is affected by:1. The film-teeth relationship (angle between the film and teeth). Are they parallel with each other or is the long axis of the film at an angle to the long axis of the teeth.2. The alignment of the x-ray beam (the angle the x- ray beam forms with both the film and the teeth). Is the beam perpendicular to both the teeth and the film (paralleling) or is it at an angle to both the teeth and film (bisecting angle and occlusal techniques).  39. Distortion 0In the paralleling technique, the long axis of the filmand the long axis of the tooth are parallel. The x-raybeam is directed perpendicular to both the long axisof the tooth and the long axis of the x-ray film. As aresult, distortion is minimized or eliminated. In theradiograph of the maxillary first molar, below, theshape and relationship of the buccal and palatalroots are accurately imaged.  40. Distortion 0In the bisecting angle and occlusal techniques there isan angle between the teeth and film, dependent on thepatient’s oral anatomy, which influences filmplacement, and the technique used. (Occlusaltechnique requires a larger angle between the film andteeth, approaching 90 degrees). The bisecting angleradiograph of the maxillary molar, below, shows thedistortion of the relationship between the buccal andpalatal roots.  41. 0 This slide compares the distortion resulting from paralleling, bisecting angle, and occlusal techniques. The variation in tooth-film relationship in the different techniques requires a change in the angle of the x-ray beam. In the diagram below, the ring around the cervical portion of the tooth is distorted in its relationship to the tooth in the bisecting angle technique; in the occlusal technique, the distortion is even more severe.paralleling bisecting occlusal angle paralleling bisecting occlusal angle  42. 0 Ideal RadiographIn the ideal radiograph, the image is the samesize as the object, has the same shape and hasa sharp outline with good density and contrast.Because the film must always be at somedistance from the object, with bone and softtissue in between, the object will always bemagnified to some degree. Though magnified,the image of the object will usually have thesame shape as the object when using theparalleling technique. The sharpness, densityand contrast are maximized by using a longerPID and proper exposure factors.
  • 5.  43. 0The mandibular molar periapical film comesclosest to satisfying the properties of an idealradiograph (either paralleling or bisecting). Thefilm is closer to the teeth in this location than inany other part of the mouth and the film isusually parallel with the teeth.