• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Climate change and  agriculture
 

Climate change and agriculture

on

  • 706 views

المؤتمر الاول لإدارة الازمات و الكوارث و الحد م اخطارها نحو فعالية افضل للحد من اخطار الكوارث ...

المؤتمر الاول لإدارة الازمات و الكوارث و الحد م اخطارها نحو فعالية افضل للحد من اخطار الكوارث
Thursday, April 23, 2009
http://www.eip.gov.eg/crisisCD/Main.htm

Statistics

Views

Total Views
706
Views on SlideShare
648
Embed Views
58

Actions

Likes
1
Downloads
1
Comments
0

1 Embed 58

http://www.mahmoudmedany.com 58

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Climate change and  agriculture Climate change and agriculture Presentation Transcript

    • Climate change and agriculture Mahmoud Medany Central Laboratory for Agricultural Climate rumedany@yahoo.com
    • Bulgaria, 2005 www.bnt.bg
    • Tschierva
    • Extreme events
    • Coastal defences, Giao Thuy District
    • Collective action for water management
    • Claims of insured farmers, Austria 2006
    • Sidi-salim 2100 Damitta 2100 Mtobas Hamul Kafrsaad Alex. Portsaid Kafr addawar Impact of climate change on SLR in relation to land loss in the Nile Delta on 2100 using A1 scenario (low aerosol level ). 2100 2100 Impact of climate change and land subsidence on SLR in relation to land loss in the Nile Delta on 2100 using A1 scenario More than 200 m. (low aerosol level ). 200 – 100 Land LossElevations 100 – 50 50 – 20 20-10 10-0 300 150 0 300 Km. Less than 0
    • ‫ﺣﺴﺎﺑﺎت دﻗﻴﻘﺔ ﺳﺎﻋﻴﺔ ﻟﻠﻤﻨﺎخ اﻟﻌﺎﻟﻤﻲ‬‫ﻣﺜﺎل: ﺷﻬﺮ ﻳﻨﺎﻳﺮ ﺑﻨﻤﻮذج 3‪ CCM‬اﻟﻴﺎﺑﺎﻧﻲ‬
    • Al Gore Understanding Earth system
    • Al Gore What might seen
    • Insects
    • • TAR• AR4• SRES• SPM• TP water• Impacts• Vulnerability• Adaptation• Mitigation• GHG• GHG inventories• SLR• UNFCCC• IPCC• WMO• NC• NIR• COP13
    • Global Environment Facility (GEF)• Established 1991 to forge international cooperation and finance actions to address critical threats to global environment• Projects and addresses global environment within the frame work of country priorities• GEF provided approximately US$ 1.8 billion in grants from GEF grants to climate change activities.• An additional US$ 9 billion from bi-lateral and national resources
    • Cooperation Mechanisms• Special Climate Change Fund• Least Developed Countries Fund• Global Environment Facility (GEF) Trust Fund• Clean Development Mechanism
    • GEF Implementing Agencies UNDP UNDP UNEP UNEP World Bank World Bank UNDP UNEP World technical global/ Bank assistance / regional investment capacity and trans- projects building boundary projects projects, support STAP
    • GEF Thematic Areas• Biodiversity• Climate Change• International Waters• Ozone Depletion• Land Degradation• Persistent Organic Pollutants – POPs
    • A Short History of the Framework Convention on Climate Change• 1979 First World Climate Conference• 1987 Montreal Protocol signed in Montreal• 1988 The Intergovernmental Panel on Climate Change (IPCC) established• 1990 Second World Climate Conference• 1992 Framework Convention on Climate Change (FCCC) signed at the UN Conference on Environment and Development in Rio• 1995 The First Session of the Conference of the Parties to the FCCC (ratifying States) in Berlin [Berlin Mandate established [• 1996 The Second Session of the Conference of Parties (COP2) in Geneva• 1997 Meetings of the Ad hoc Group on the Berlin Mandate (AGBM )• 1997 The Third Session of the Conference of Parties (COP3) in Kyoto.
    • About IPCCEstablished by WMO and UNEP 1988:• Assess scientific, technical and socio- economic information on climate change, impacts and options for adaptation and mitigation• Publication of reports• No research, no monitoring, no recommendations• Policy relevant but not policy prescriptive• Extensive review processes of its reports• Support to UNFCCC
    • About IPCC: organisation WMO/UNEP IPCC IPCC Chair IPCC Bureau Working group I Working Group II Working Group III Task Force on Science Impact and Adaptation Mitigation National GHG inventoriesTechnical Support Unit Technical Support Unit Technical Support Unit Technical Support Unit UK USA Netherlands Japan
    • OUTLINE FOR WORKING GROUP II : IPCC FOURTH ASSESSMENT REPORTCLIMATE CHANGE: IMPACTS, ADAPTATION AND VULNERABILITYSummary for Policymakers + Technical Summary IntroductionI. ASSESSMENT OF OBSERVED CHANGES1. Assessment of Observed Changes in Natural and Managed SystemsII. ASSESSMENT OF FUTURE IMPACTS AND ADAPTATION: SECTORS AND SYSTEMS2. New Methods and Scenarios of the Future3. Fresh Water Resources and their Management4. Ecosystems and their Services5. Food, Fibre, Forestry, and Fisheries6. Coasts and Low-lying Areas7. Industry, Settlement, and Society8. Human HealthIII. ASSESSMENT OF FUTURE IMPACTS AND ADAPTATION:REGIONS 9: Africa, 10: Asia, 11: Australia and New Zealand, 12: Europe, 13: Latin America14: North America, 15: Polar Regions (Arctic and Antarctic), 16: Small IslandsIV. ASSESSMENT OF RESPONSES TO IMPACTS17. Assessment of Adaptation Options, Capacity and Practice18. Assessment of Inter-relationships between Adaptation and Mitigation19. Assessing key vulnerabilities20. Perspectives on Climate Change and Sustainability
    • Main greenhouse gasesCO2 Carbon dioxideCH4 MethaneN2O Nitrous oxidePFCs PerfluorocarbonsHFCs HydrofluorocarbonsSF6 Sulphur hexafluorideIndirect greenhouse gasesCO Carbon monoxideNOX Nitrogen oxidesNMVOCs Non-methane volatile organic compoundsSOX Sulphur oxides
    • Contributions to radiative forcing in the late 1990s (TAR)
    • Although the GWPs have been updated by the IPCC, estimates of emissions and removals reported under the UNFCC should continue to use the GWPs from the Second Assessment Report (SAR .( The guidelines under which inventories are developed, the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC/UNEP/OECD/IEA 1997) and the UNFCCC Reporting Guidelines for national inventories were developed prior to the publication of the TAR . Therefore, to comply with international reporting standards under the UNFCCC, official emission estimates are to be reported by Parties using Figure .. Importance of GWP SAR GWP values.
    • Sectorial Emissions in Egypt (1990/1991) % Total Emissions% CH4 Emissions % N2O Emissions
    • Sources of GHG from Agriculture Enteric Fermentation Manure Management Agricultural Soils Rice Cultivation Field burning of Agricultural Residues
    • Emissions from Agriculture (1990/1991 GWPs) Sector Gas Emissio GWPs CO2 Egu. ns (Gg) (Gg) Agriculture CO2 1 CH4 543 21 11403 N2O 21 310 6510 Total 17913 Grand Total 116608 (of all sectors)
    • Alternative Scenario Formulations Quantitative Models Scenarios Story lines Qualitative Source: IPCC SRES, 2000
    • Figure 1: Scenario developed by the US Pentagon for the period2010-2020 following a hypothetical thermohaline circulationshutdown in 2010 (Schwartz and Randall, 2003).
    • The scenario dimensions
    • Anomalies of temperature in the Northern hemisphere during the last 2000 years
    • Anomalies of air temperature in the Northern hemisphere during the instrumental measurements
    • Annual temperature trends during different periods in the 20th century
    • Annual precipitation trends 1901-1995
    • Previous developed and used scenarios by IPCC 1992 1995 1996 2000 2001 2004 ????SixIS92scenarios EvaluationScenarios TAR StartwritingAR5 Paneldecision StartwritingAR4 newscenarios Special Report EmissionScenarios(SRES) INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC)
    • Possible directconsequences of climate change
    • Agriculture sensitivity to climate• Effect on crops Incoming solar radiation regulates photosynthesis processes Air temperature controls the duration of General Constraints the growing period and other Incoming solar radiation processes linked with the accumulation Temperature of dry matter (i.e. leaf area expansion, Water and nutrient availability respiration) Rainfall and soil water availability Local Constraints affects the duration of growth (i.e leaf Late spring and early autumn area duration and photosynthetic frosts efficiency) Heat stresses• Effect on animals Hails and storms metabolic processes (direct effect) forage quality and quantity (indirect effect) ACACIA, 1999
    • Direct consequences of CC on agro-ecosystemsYields of grains and other crops could decreasesubstantially across the Mediterranean regiondue to increased frequency of drought, even ifpotential production should raise thanks toincreased CO2 concentrations. Some crops(e.g. maize) could be forced out of production.Livestock production would suffer due to adeterioration in the quality of rangelandassociated with higher concentrations ofatmospheric carbon dioxide and to changes inareas of rangeland (increase of unproductiveshrubland and desert).
    • Influence on crop productionMain evidences Current differences in crop productivity between northern and southern countries will increase under climate change Inter-annual variability of crop yields will increase, especially in regions, such southern Europe, where crop production is affected by water shortages Adaptive strategies (changing variety and altering sowing date) may alleviate yield losses by reducing the risk of low yields in most situations Future research will have to quantify the uncertainties within climate change impacts assessments to produce confidence intervals for each result
    • Influence on livestock systemsMain evidences Changes in availability and prices of grains for feeding (cereals, pulses and other feed grains) Changes in productivity of pastures and forage crops Change in distribution of livestock diseases Changes in animal health, growth, and reproduction (direct effects of weather and extreme events) Change in the turn-over and losses of nutrients from animal manure, both in houses, storages and in the field manure influencing the availability of manure in organic farms
    • Possible indirectconsequences of climate change
    • Indirect consequences• Crop production would be further threatened by increases in competition for water from other sectors.• World prices for many key commodities such as wheat, maize, soybean meal and poultry could rise significantly as a result of global climate changes and macroeconomic factors.• Not only might Mediterranean countries loose in economic terms, but the combination of population growth, higher prices and yield losses would lead to a deterioration in levels of food security in particularly in southern countries.
    • Competition for water resources • In relatively water-abundant and developed communities, competition is between consumptive and non-consumptive uses, in water-scarce ones uses competition still primarily results from the difficulty of satisfying the increasing demands for ‘traditional’ consumptive water uses. • In the Mediterranean basin both forms of competition can be observed, but countries on the southern shores are experiencing a continuous decrease in their ability to satisfy ‘basic needs’
    • A first conclusion• Climate change tends to exacerbate existing environmental and socioeconomic problems (desertification, food security, etc.), rather than creating new ones, but the concurrent macroeconomic trends could lead to amplified negative interactions between environmental and economic variable and amplified social impacts. Water resources are the main source of concern.
    • Drought in Egypt – 1979 -1987
    • Wind Khamaseen in Egyptdesert road in Egypt
    • Effects of rising temperature of the water Cycle More extreme weather High Increase the Droughttemperature speed of the Storms water cycle Floods Increase intensity of drought Increase the flood
    • Causes of desertificationHuman activities:• Global climate change• Extinction of biodiversity• Contamination and pollution of air ,water, and land• Enrichment of the resources with persistent organic pollutants• Removal of biomass for fuel• Over cultivation• Overgrazing• Mismanagement of water resources• Land miningClimate variations
    • SalinityAbout 2 million fed. suffer from Stalinization problems.60% of the cultivated lands of NorthernDelta region are salt affected.Due to:• The misuse of irrigation water .• Improper field drainage systems . ( 4 million acres of 7.4 million have been provided with field drainage systems).
    • Urbanization•Urban encroachment and soil scarping.•Losses was estimated by about 20,000Fed. / year). Urbanization is expected to rise in a “business-as –usual “ scenario
    • Loss OfProductive land
    • Seawater IntrusionEfforts topreventSalinizationof theproductiveagriculturalsoils andto conservethe seashore-linefrom seawaterintrusion
    • Water loggingMed. Sea Marsa matroh Water Erosion
    • Soil Erosion Sand Dune encroachment
    • Conservation of land Resources from pollutionCause :The extensive use of chemical fertilizers, pesticidesand agrochemicals amendments .led to :Excessive leaching of nitrates to the water table and further to thegroundwater resources causing health and environmental hazards .Approached by : Research and extension activities. Public awareness efforts. Introduction of Integrated Pest Management practices. Restrictive rules for importing and using pesticides. Rational use of chemical fertilizers and pesticides.
    • FrostHigh temperature will affect the thermal requirements and coolingrequirements of the Securities fallen fruit, which may affect the spread ofthe cultivation of some crops such as apples, peaches, pears.
    • Potato
    • Assessment of the impact of climate change and adaptation on potato production Single effect of different planting dates (Second cultivation), irrigation requirements level on simulated potato production with climate change Scenarios (A1, A2, B1, and B2) for the years 2025s, 2050s, 2075s and 2100s. Tuber fresh yield (kg/ha) 2005 2025s 2050s 2075s 2100s Difference difference difference DifferenceTreatments Current Estimated % Estimated % Estimated % Estimated % 80% 24730 23591 -4.7 24157 -2.4 24715 -1.2 24943 1.4 100% 25980 25033 -3.7 25863 -0.5 26137 1.5 26313 0.5Irrigation 120% 25397 24458 -3.6 25060 -1.3 25428 0.1 25487 0.4 January 1st 25703 27102 5.6 28223 9.9 29068 13.2 29531 15 January 15th 25750 23048 -10.5 23887 -7.2 24234 -5.9 24467 -4.9 Planting dates January 30th 24653 22931 -7.1 22970 -6.9 22977 -6.9 22744 -7.8 A1 25369 24402 -3.8 25147 -0.9 25547 0.6 25486 0.4 A2 25369 24423 -3.8 25147 -0.9 25697 1.2 25941 2.1 Climate B1 25369 24308 -4.2 24782 -2.4 25171 -0.8 25416 0.1 change scenarios B2 25369 24308 -4.2 25031 -1.4 25291 -0.4 25480 0.4Mean 25369 24360 -3.98 25027 -1.41 25426 0.16 25581 0.75
    • Single effect of different planting dates (first cultivation ), irrigationrequirements level on simulated potato production with climate changeScenarios (A1, A2, B1, and B2) for the years 2025s, 2050s, 2075s and 2100s. Tuber fresh yield (kg/ha) 2005 2025s 2050s 2075s 2100s Treatments Current Estimated difference % Estimated difference % Estimated difference % Estimated difference % 80% 24587 30834 25.4 32843 40.8 35772 48.4 33418 51.8 100% 26110 31143 19.3 34591 28 35762 37.9 36642 31.8 Irrigation 120% 21957 27098 23.4 30043 38.8 31848 47.3 33063 52.9 30-Sep 32133 38078 18.5 40924 27.4 42528 32.4 40698 27.3 15-Oct 21777 27923 28.2 30454 40.8 32890 51.9 33554 55.0 Planting dates 30-Oct 18743 23075 23.1 26098 39.4 27964 49.3 28870 54.2 A1 25369 30087 18.6 33078 30.4 35236 38.9 35200 47.5 A2 25369 29696 17.1 33078 30.4 35828 41.2 37928 42.8 B1 25369 29318 15.6 31449 24 33131 30.6 33908 46.9 Climate change scenario B2 25369 29667 16.9 32364 27.6 33648 32.6 30461 44.6 Mean 25369 29692 17 32492 35.9 34461 44.6 34374 45.5
    • Faba bean
    • Single effect of different planting dates and cultivars on simulated faba bean production with climate change Scenarios. 2001 2025s 2050s 2075s 2100sTreatments Current Estimated difference % Estimated difference % Estimated difference % Estimated difference % Oct. 15th 3870 2925 -32.3 3236 -19.6 3505 -10.4 3763 -2.9 Nov. 1st 4041 3660 -10.4 4509 10.4 4983 18.9 5097 20.7Plantingdates Nov. 15 th 3416 2484 -37.5 2974 -14.9 3317 -3.0 3578 4.5 Giza 717 3568 2793 -27.8 3303 -8.0 3633 1.8 3876 7.9 Giza 461 3809 3082 -23.6 3652 -4.3 4088 6.8 4416 13.7 Giza 643 4113 3381 -21.7 3903 -5.4 4211 2.3 4414 6.8Cultivars Giza 3 3612 2836 -27.3 3434 -5.2 3807 5.1 3878 6.9 A1 3776 3095 -22.0 3593 -5.1 3963 4.7 4185 9.8 A2 3776 3007 -25.6 3609 -4.6 3957 4.6 4177 9.6Climate B1 3776 2923 -29.2 3525 -7.1 3903 3.3 4022 6.1changescenario B2 3776 3067 -23.1 3564 -5.9 3916 3.6 4200 10.1Mean 3776 3023 -25 3573 -6 3935 3 4146 8 Co2 330 413 495 578 660 ppm Oct. 15th 3870 2572 -50.5 2523 -53.4 2531 -52.9 2565 -50.9 Nov. 1st 4041 3319 -21.7 3450 -17.1 3577 -13.0 3599 -12.3Plantingdates Nov. 15th 3416 2103 -62.4 2148 -59.0 2168 -57.6 2166 -57.7 Giza 717 3568 2463 -44.8 2494 -43.1 2517 -41.7 2536 -40.7 Giza 461 3809 2652 -43.6 2730 -39.5 2833 -34.4 2903 -31.2 Giza 643 4113 3011 -36.6 3046 -35.0 3063 -34.3 3037 -35.5Cultivars Giza 3 3612 2531 -42.7 2559 -41.2 2621 -37.8 2631 -37.3 A1 3776 2627 -43.7 2714 -39.1 2790 -35.3 2782 -35.7 A2 3776 2686 -40.6 2735 -38.0 2787 -35.5 2783 -35.6Climate B1 3776 2736 -38.0 2675 -41.1 2722 -38.7 2755 -37.1changescenario B2 3776 2609 -44.7 2704 -39.6 2736 -38.0 2786 -35.5Mean 3776 2664 -43 2707 -41 2759 -38 2777 -37 Co2 = 330 ppm
    • ‫اﻟﺘﺮﺑﺔ ‪Soil‬‬ ‫اﻟﺘﺮﺑﺔ ﻓﻰ آﺜﻴﺮ ﻣﻦ ﻣﻨﺎﻃﻖ اﻟﻌﺎﻟﻢ ﺳﺘﻜﻮن اآﺜﺮ ﺟﻔﺎﻓﺎ‬ ‫ً‬‫درﺟﺎت اﻟﺤﺮارة اﻻﻋﻠﻰ ، وﻓﻲ ﺑﻌﺾ اﻟﺤﺎﻻت اﻟﻤﻄﺮ اﻻﻋﻠﻰ ﺳﻴﺴﺮع ﻣﻦ اﻧﺨﻔﺎض اﻟﻤﺎدة‬ ‫اﻟﻌﻀﻮﻳﺔ ﺑﺎﻟﺘﺮﺑﺔ .‬ ‫اﻧﺨﻔﺎض اﻟﻤﺎدة اﻟﻌﻀﻮﻳﺔ ﺑﺎﻟﺘﺮﺑﺔ ﺳﻴﺰﻳﺪ ﻣﻦ ﻗﺪرة اﻟﺮﻳﺎح ﻋﻠﻰ ﺗﺎآﻞ اﻟﺘﺮﺑﺔ‬ ‫اﻧﺨﻔﺎض ﺧﺼﻮﺑﺔ اﻟﺘﺮﺑﺔ ﻧﺘﻴﺠﺔ اﻧﺨﻔﺎض رﻃﻮﺑﺘﻬﺎ‬ ‫زﻳﺎدة ﻣﺴﺘﻮﻳﺎت ﺛﺎﻧﻲ اآﺴﻴﺪ اﻟﻜﺮﺑﻮن ﺳﻮف ﺗﺰﻳﺪ اﻟﺘﻤﺜﻴﻞ اﻟﻀﻮﺋﻲ ﺑﺪاﺧﻞ اﻟﻨﺒﺎت‬ ‫ﻟﻠﻨﻴﺘﺮوﺟﻴﻦ اﻟﺬي ﻳﺘﻢ ﺗﺜﺒﻴﺘﺔ ﻣﻤﺎ ﻳﺰﻳﺪ اﻧﺘﺎﺟﻴﺔ اﻟﻨﺒﺎﺗﺎت‬
    • ‫ﺟﻮدة اﻟﻤﻨﺘﺞ ﻣﻦ اﻟﺤﺎﺻﻼت‬ ‫‪Changes in Crop Quality‬‬‫اﻟﻤﺴﺘﻮﻳﺎت اﻟﻤﺮﺗﻔﻌﺔ ﻣﻦ 2‪ CO‬ﺳﻮف ﺗﺆدي اﻟﻰ ارﺗﻔﺎع ﻧﺴﺒﺔ اﻟﻜﺮﺑﻮن ﻓﻰ‬ ‫اﻟﺒﺬور وﺟﺬوع واﻻوراق ﻋﻠﻰ ﺣﺴﺎب اﻟﺒﺮوﺗﻴﻦ.‬ ‫ارﺗﻔﺎع ﻧﺴﺒﺔ اﻟﺴﻜﺮ ﻓﻰ اﻟﻤﻨﺘﺠﺎت اﻟﻐﺬاﺋﻴﺔ ﺗﺤﺖ ﻇﺮوف ﺗﻐﻴﺮ اﻟﻤﻨﺎخ‬
    • ‫اﻻﻓﺎت واﻻﻣﺮاض واﻟﺤﺸﺮات‬ ‫اﻟﺤﺸﺎﺋﺶ واﻻﻣﺮاض واﻟﺤﺸﺮات ﺳﻮف ﺗﻨﺘﺸﺮ ﻣﻦ اﻟﻤﻨﺎﻃﻖ اﻻدﻓﺄ اﻟﻰ اﻟﻤﻨﺎﻃﻖ اﻻﺑﺮد‬ ‫اﻟﺸﺘﺎء اﻻدﻓﺄ ﺳﻮف ﻳﺴﻤﺢ ﻟﻠﻴﺮﻗﺎت ﻟﻠﺘﺤﺮك اﻟﻰ ﻣﻨﺎﻃﻖ ﺟﺪﻳﺪة ﻟﻢ ﺗﻜﻦ ﻓﻴﻬﺎ ﻣﻦ ﻗﺒﻞ‬ ‫زﻳﺎدة ﻋﺪد اﺟﻴﺎل اﻟﺤﺸﺮات وﺑﺎﻟﺘﺎﻟﻲ زﻳﺎدة ﺗﻌﺪداهﺎ ﻣﻤﺎ ﻳﺤﻮﻟﻬﺎ ااﻟﻲ ﺷﻜﻞ وﺑﺎﺋﻲ‬ ‫زﻳﺎدة ﺳﺮﻋﺔ اﻟﺮﻳﺎح ﺳﻮف ﺗﺴﺎﻋﺪ ﻋﻠﻰ اﻧﺘﺸﺎر اﻟﺤﺸﺮات واﻟﺠﺮاﺋﻴﻢ‬ ‫هﻨﺎك ﺗﺄﺛﻴﺮات ﻣﻤﺎﺛﻠﺔ ﻋﻠﻰ ﺣﺸﺮات اﻟﻤﺎﺷﻴﺔ‬ ‫اﻟﻨﺒﺎﺗﺎت ﺳﻮف ﺗﻜﻮن اآﺜﺮ ﻗﺎﺑﻠﻴﺔ ﻟﻺﺻﺎﺑﺔ واﻟﺘﻰ ﺳﻮف ﺗﻜﻮن ﻓﻰ اﻟﻐﺎﻟﺐ ﻓﻰ ﻣﺼﻠﺤﺔ اﻟﻤﺴﺒﺒﺎت‬ ‫اﻟﻤﺮﺿﻴﺔ واﻟﺘﻰ ﺗﺘﺄﺛﺮ ﻧﺘﻴﺠﺔ اﻟﺘﻐﻴﺮ ﻓﻰ اﻟﺤﺮارة واﻟﺮﻃﻮﺑﺔ.‬ ‫ﺗﻐﻴﺮ اﻟﻤﻨﺎخ ﺳﻮف ﻳﻜﻮن ﻟﻪ ﺗﺄﺛﻴﺮات ﺳﻠﺒﻴﻪ واﻳﺠﺎﺑﻴﻪ ﻋﻠﻰ ﻣﻌﺪل واﻧﺘﺸﺎر اﻷﻣﺮاض.‬‫زﻳﺎدة اﻟﺤﺎﺟﺔ اﻟﻰ‬‫اﺳﺘﺨﺪام اﻟﻤﺒﻴﺪات‬
    • Forecasting of severity of leaf and stripe rust diseases of wheat, underclimate change in Egypt, during growing season 2050 using estimateddiseases severity in 2006 season , at different governorates Leaf rust % Stripe rust % Governorate 2006 2050 2006 2050 Ismailia 62.3 64.6 44.5 41.8 Sharkia 60.2 64.6 38.3 41.8 Bohaira 61.4 63.8 49.9 39.6 Gharbia 58.6 59.2 36.9 35.2 Kaf El-Sheikh 61.5 62.3 44.5 40.03 Dakahlia 61.8 63.8 41.6 38.5 Fayoum 11.2 12.03 11.3 8.27 Beni- Swief 9.27 10.27 5.7 4.5 -: ‫ﻣﻦ اﻟﻤﺘﻮﻗﻊ ان ﻣﺮض ﺻﺪأ اﻷوراق ﺳﻮف ﻳﺰداد ﻓﻰ اﻟﻤﺴﺘﻘﺒﻞ ﺑﺎﻟﻤﻘﺎرﻧﺔ ﺑﻤﺮض اﻟﺼﺪأ اﻷﺻﻔﺮ ﺣﻴﺚ‬ .( %80-70 ‫1- ﻣﺮض ﺻﺪأ اﻷوراق ﻳﺤﺘﺎج درﺟﺎت ﺣﺮارة ﻣﺮﺗﻔﻌﺔ )81-22 م5 ورﻃﻮﺑﺔ ﻧﺴﺒﻴﻪ‬ .(%70-60 ‫2- ﻣﺮض اﻟﺼﺪأ اﻷﺻﻔﺮ ﻳﺘﻄﻠﺐ درﺟﺎت ﺣﺮارة ﻣﻨﺨﻔﻀﺔ )01-81م5 ورﻃﻮﺑﺔ ﻧﺴﺒﻴﺔ‬ Abolmaaty,S. M., 2006. Assessment of the impact of climate change on some rust diseases for wheat crops under Egyptian environmental conditions. Ph.D. Thesis, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt. Al-
    • ‫اﻟﺘﻐﻴﺮ ﻓﻰ اﺳﺘﺨﺪام اﻟﺴﻤﺎد‬ Fertilizer Use Will Change ‫زﻳﺎدة اﻟﻤﻘﻨﻦ اﻟﻤﺎﺋﻲ اﻟﻴﻮﻣﻲ ﺳﻮف ﻳﻘﺎﺑﻠﻪ زﻳﺎدة ﻓﻰ ﻣﻌﺪل اﺳﺘﺨﺪام اﻟﺴﻤﺎد ﻧﺤﻮ‬ ‫اﻟﺰﻳﺎدة ﺧﺎﺻﺔ ﺑﺎﻟﻨﺴﺒﺔ ﻟﻠﻨﺘﺮوﺟﻴﻦ‬Table (4) Nitrogen, Phosphorus and potassium requirements for maizeunder current and future climate change (2050) conditions. Fertilization requirements (kg/fed.) Current Climate % Current Climate % Current Climate % Location condition change Difference condition change Difference condition change Difference Nitrogen Phosphorus Potassium Wadi El- Natron 108 114 5.6 % 36 38 5.6 % 54 57 5.6 % Kafr Elshiekh 95 101 6.3 % 32 33 3.1 % 48 52 7.3 % Menia 114 121 6.1 % 39 42 7.7 5 57 61 7.0 % Nekhel 100 105 5.0 % 32 34 6.3 % 52 56 7.7 % Kharga 126 132 4.4 % 43 45 4.5 5 63 66 4.8 % Abo Elkizan 104 107 3.2 % 35 36 3.1 % 52 54 3.8 % Toshka 118 125 5.9 % 39 41 4.9 % 59 62 5.1 % Mean 109 115 5.2 % 37 38 5.0 % 55 58 5.8 %
    • ‫اﻟﺘﺎﺛﻴﺮات ﻋﻠﻲ اﻻﺳﻤﺎك‬‫‪Potential Impacts on Fish‬‬ ‫ﺗﻐﻴﺮ ﻓﻲ اﻟﺠﻮﻟﺔ اﻟﺴﻨﻮﻳﺔ ﻟﻼﺳﻤﺎك‬ ‫زﻳﺎدة ﻃﻮل ﻓﺘﺮة اﻟﺼﻴﻒ‬ ‫ﺗﻐﻴﺮ ﻓﻰ ﺗﻮزﻳﻊ اﻻﺳﻤﺎك واﻣﺎآﻦ اﻟﺘﻜﺎﺛﺮ‬ ‫اﻟﻈﺮوف اﻟﺒﻴﺌﻴﺔ اﻟﺠﺪﻳﺪ ﻗﺪ ﺗﺴﻤﺢ ﺑﺰﻳﺎدة‬ ‫ﻧﻮع ﻣﻦ اﻻﺳﻤﺎك ﻋﻠﻰ ﺣﺴﺎب اﻻﺧﺮ‬ ‫‪Livestock‬‬ ‫اﻟﻤﺎﺷﻴﺔ‬ ‫ارﺗﻔﺎع درﺟﺔ اﻟﺤﺮارة ﻳﻘﻠﻞ ﻣﻦ ﻣﺤﺼﻮل اﻟﻠﺒﻦ‬ ‫اﻧﺨﻔﺎض آﻔﺎءة اﻻﻧﺘﺎج اﻟﺤﻴﻮاﻧﻲ وارﺗﻔﺎع‬ ‫ﺗﻜﺎﻟﻴﻒ اﻧﺘﺎﺟﺔ ﻣﻊ ﻗﻠﺔ اﻻﻋﻼف اﻟﻤﺘﻮﻓﺮة‬
    • ‫اﻟﺘﻨﻮع اﻟﺒﻴﻮﻟﻮﺟﻲ واﻟﻨﻈﻢ اﻟﺒﻴﺌﻴﺔ‬ ‫‪Biological diversity and ecosystem‬‬ ‫اﻟﺘﺮآﻴﺐ واﻟﺘﻨﻮع اﻟﺠﻐﺮاﻓﻲ ﻟﻠﻨﻈﻢ اﻟﺒﻴﺌﻴﺔ ﺳﻮف ﻳﺘﻐﻴﺮ آﺄﻧﻮاع ﻓﺮدﻳﺔ ﺗﺴﺘﺠﻴﺐ ﻟﻈﺮوف ﺟﺪﻳﺪة ﻣﻨﺘﺠﺔ‬ ‫ﺑﻮاﺳﻄﺔ ﺗﻐﻴﺮ اﻟﻤﻨﺎخ.‬ ‫اﻟﻤﻮاﻃﻦ رﺑﻤﺎ ﺗﺘﺤﻄﻢ وﺗﺘﺠﺰأ ﺗﺒﻌﺎ ﻟﻠﻀﻐﻮط اﻟﺒﺸﺮﻳﺔ اﻷﺧﺮى.‬ ‫اﻷﻧﻮاع اﻟﺘﻲ ﻻ ﺗﺴﺘﻄﻴﻊ اﻟﺘﻜﻴﻒ ﺑﺴﺮﻋﺔ ﺑﺸﻜﻞ آﺎف رﺑﻤﺎ ﺗﺼﺒﺢ ﻣﻨﻘﺮﺿﺔ.‬‫اﻷﻧﻮاع واﻟﻨﻈﻢ اﻟﺒﻴﺌﻴﺔ ﺑﺎﻟﻔﻌﻞ ﺑﺪأت ﺗﺴﺘﺠﻴﺐ ﻟﻠﺪفء اﻟﻌﺎﻟﻤﻲ . وﻻﺣﻆ اﻟﻌﻠﻤﺎء ﺗﻐﻴﺮات ﻣﻨﺎﺧﻴﺔ ﻣﺴﺒﺒﺔ ﻓﻲ‬ ‫024 ﻋﻤﻠﻴﺔ ﻓﻴﺰﻳﺎﺋﻴﺔ وأﻧﻮاع ﺑﻴﻮﻟﻮﺟﻴﺔ وﻣﺠﺘﻤﻌﺎت . وﺗﺸﻤﻞ اﻟﺘﻐﻴﺮات هﺠﺮة اﻟﻄﻴﻮر اﻟﺘﻲ ﺗﺼﻞ ﻣﺒﻜﺮة‬ ‫ﻓﻲ اﻟﺮﺑﻴﻊ وﺗﻐﺎدر ﻣﺘﺄﺧﺮة ﻓﻲ اﻟﺨﺮﻳﻒ ،‬ ‫اﻟﺘﻄﻮﻳﻞ ﺣﻮاﻟﻲ 8.01 ﻳﻮم ﻓﻲ ﻣﻮﺳﻢ اﻟﻨﻤﻮ اﻷوروﺑﻲ ﻟﺤﺪاﺋﻖ اﻷﻧﻮاع اﻟﻤﺨﺘﻠﻄﺔ اﻟﻤﺘﺤﻜﻢ ﻓﻴﻬﺎ ﻣﻦ‬ ‫9591 إﻟﻰ 3991‬ ‫اﻟﺘﻜﺎﺛﺮ اﻟﺮﺑﻴﻌﻲ اﻟﻤﺒﻜﺮ ﻟﻄﻴﻮر ﻋﺪﻳﺪة وﺑﺮﻣﺎﺋﻴﺎت واﻟﺨﻨﺎﻓﺲ واﻟﻔﺮاﺷﺎت اﻟﺤﺴﺎﺳﺔ ﻟﻠﺒﺮودة .‬
    • ‫ﻣــﻮارد اﻟﻤـﻴـﺎﻩ‬ ‫‪Water resources‬‬‫ﺗﺰﻳﺪ ﻣﻌﺪﻻت اﻻﻣﻄﺎر اﻟﻌﺎﻟﻤﻴﺔ ﺗﺤﺖ ﻇﺮوف ﺗﻐﻴﺮ اﻟﻤﻨﺎخ ﺑﻤﻌﺪل 3-51 % اﻻ ان هﺬة اﻟﺰﻳﺎدة ﺳﺘﻜﻮن‬ ‫ﻣﻦ ﻧﺼﻴﺐ اﻟﻨﻄﺎﻗﺎت اﻟﻤﻨﺎﺧﻴﺔ اﻟﻌﻠﻴﺎ ﻓﻰ اﻻﺗﺠﺎة ﺷﻤﺎﻻ وﺟﻨﻮﺑﺎ ﻻﻗﻄﺎب اﻟﻜﺮة اﻻرﺿﻴﺔ ﺑﻴﻨﻤﺎ ﺗﺘﻨﺎﻗﺺ‬ ‫ﻣﻌﺪﻻت ﺳﻘﻮط اﻻﻣﻄﺎر ﺑﺎﺗﺠﺎة ﺧﻂ اﻻﺳﺘﻮاء.‬ ‫ﺗﻐﻴﺮ ﺗﻮزﻳﻊ اﻻﻣﻄﺎر زﻳﺎدة ﻓﻰ ﻣﻌﺪﻻت ﺣﺪوث ﻣﻮﺟﺎت اﻟﻔﻴﻀﺎﻧﺎت واﻟﺠﻔﺎف.‬ ‫ﻣﻦ اﻟﻤﺘﻮﻗﻊ اﻧﺨﻔﺎض آﻤﻴﺔ اﻟﻤﻴﺎة اﻟﻤﺘﺎﺣﺔ ﻓﻰ ﻣﻌﻈﻢ اﻟﻤﻨﺎﻃﻖ ﺑﺎﻓﺮﻳﻘﻴﺎ وﻓﻲ اﻟﻤﻨﺎﻃﻖ اﻟﺠﺎﻓﺔ اﻟﻤﺠﺎورة ﻟﻠﺒﺤﺮ‬ ‫اﻻﺑﻴﺾ اﻟﻤﺘﻮﺳﻂ.‬‫آﻞ ﻧﻤﺎذج ﺗﻐﻴﺮ اﻟﻤﻨﺎخ ﺗﻮﺿﺢ رﻃﻮﺑﺔ ﻣﺘﺰاﻳﺪة ﻟﻠﺘﺮﺑﺔ ﻓﻲ اﻟﺸﺘﺎء ﻓﻲ اﻟﻌﺮوض اﻟﺸﻤﺎﻟﻴﺔ اﻟﻌﻠﻴﺎ ، واﻟﺘﻲ‬ ‫ﺗﺸﻤﻞ ﺑﻌﺾ ﻣﻨﺎﻃﻖ إﻧﺘﺎج اﻟﺤﺒﻮب اﻟﻬﺎﻣﺔ.‬‫زﻳﺎدة درﺟﺔ اﻟﺤﺮارة ﺑﻨﺤﻮ 2 درﺟﺔ ﻣﺌﻮﻳﺔ ﺳﻮف ﻳﺆدي اﻟﻲ اﻧﺘﻘﺎل اﻟﻤﻨﺎﻃﻖ اﻟﻤﻨﺎﺧﻴﺔ ﻟﻤﺴﺎﻓﺔ ﺗﻘﺮب‬ ‫ﻣﻦ 002 آﻴﻠﻮﻣﺘﺮ ﺑﺎﺗﺠﺎﻩ اﻟﻘﻄﺒﻴﻦ، وهﻮ ﻣﺎ ﻳﻌﻨﻲ ﺗﻘﻠﺺ ﻣﺴﺎﺣﺔ اﻟﻤﻨﺎﻃﻖ اﻟﺠﻠﻴﺪﻳﺔ.‬‫ﺗﻜﺜﻴﻒ اﻟﺪورة ذات اﻟﺼﻠﺔ ﺑﺎﻟﻤﻴﺎﻩ )ﻣﻌﺪل دوران ﺳﺮﻳﻊ ﻟﻠﻤﻴﺎﻩ ﻓﻲ اﻟﺠﻮ: زﻳﺎدة ﻣﻌﺪﻻت اﻟﻨﺘﺢ واﻟﺒﺨﺮ‬ ‫ﻧﺘﻴﺠﺔ ارﺗﻔﺎع درﺟﺎت اﻟﺤﺮارة، وﺗﺮآﻴﺰ اﻷﻣﻄﺎر ﻓﻲ ﻋﺪد أﻗﻞ ﻣﻦ اﻟﻤﻨﺎﻃﻖ اﻟﻤﻄﻴﺮة(.‬
    • Increased water availability in some water-scarceregions, and decreased water availability in many water scarce regions
    • ‫اﻟﺮي ‪Irrigation‬‬‫آﻔﺎءة اﺳﺘﺨﺪام وﺣﺪة اﻟﻤﻴﺎة ﺳﻮف ﻳﻨﺨﻔﺾ ﺑﺴﺒﺐ اﻧﺨﻔﺎض اﻟﻤﺎدة اﻟﺠﺎﻓﺔ واﻟﻤﺤﺼﻮل ﻟﻜﻞ وﺣﺪة‬ ‫ﻣﻴﺎة‬ ‫اﻟﻨﺒﺎﺗﺎت رﺑﺎﻋﻴﺔ اﻟﻜﺮﺑﻮن 4‪ C‬اﻋﻠﻲ ﻓﻰ آﻔﺎءة اﺳﺘﺨﺪام اﻟﻤﻴﺎﻩ ﻋﻦ ال3‪C‬‬ ‫اﻟﻤﻨﺎﻓﺴﺔ ﻋﻠﻰ اﻟﻤﺎء ﺳﻮف ﺗﺰداد ﺑﻴﻦ ﺑﻴﻦ اﻻﺳﺘﻌﻤﺎﻻت اﻻدﻣﻴﺔ واﻟﺰراﻋﻴﺔ.‬‫اﻷﻣﺎآﻦ اﻟﺘﻲ ﻳﺴﺘﺨﺪم ﻓﻴﻬﺎ اﻟﺮي ﺑﺼﻮرة ﻣﻜﺜﻔﺔ، ﻣﺜﻞ ﻣﺼﺮ ﻓﺈن اﻟﻤﻠﻮﺣﺔ أﺻﺒﺤﺖ ﻣﺸﻜﻠﺔ آﺒﺮى. وﻓﻲ هﺬﻩ‬ ‫اﻟﺤﺎﻻت اﻟﺘﻲ ﻧﺸﺄ ﻓﻴﻬﺎ ﺗﺪهﻮر اﻷراﺿﻲ ﺑﺼﻮرة رﺋﻴﺴﻴﺔ ﻋﻦ اﻟﺮي اﻟﺰاﺋﺪ ﻋﻦ اﻟﺤﺪ‬ ‫زﻳﺎدة اﻻﺣﺘﻴﺎﺟﺎت اﻟﻤﺎﺋﻴﺔ اﻟﻼزﻣﺔ ﻟﺮي اﻟﻤﺤﺎﺻﻴﻞ اﻟﻤﺨﺘﻠﻔﺔ آﻨﺘﻴﺠﺔ ﻣﺒﺎﺷﺮة ﻻرﺗﻔﺎع درﺟﺔ‬ ‫اﻟﺤﺮارة‬ ‫ارﺗﻔﺎع اﻻﺣﺘﻴﺎﺟﺎت اﻟﻤﺎﺋﻴﺔ واﻻﺳﺘﻬﻼك اﻟﻤﺎﺋﻰ ﻟﻤﺨﺘﻠﻒ اﻟﻤﺤﺎﺻﻴﻞ ﺧﺎﺻﺎ اﻟﺼﻴﻔﻴﺔ ﻣﻨﻬﺎ ﺣﻴﺚ‬ ‫ً‬ ‫ﺗﺘﺮاوح ﻧﺴﺒﺔ اﻻرﺗﻔﺎع ﻣﺎ ﺑﻴﻦ 8% اﻟﻰ 61% )ﻣﺜﻞ اﻟﺬرة اﻟﺸﺎﻣﻴﺔ واﻻرز(‬
    • Impact of cc on evapotranspiration Change in evapotranspiration (ET m 3/ fad) of major crops due to climate change 14 % 5700Evapotranspiration (ET m3/ fad) 5000 4300 7% 3600 9% 9% 4% 2900 -2% 2200 -2% 1500 800 100 Wheat Maize Cotton Sorghum Barley Rice Soybean Base ET 1660 2615 2700 2140 1430 4540 2840 ET in 2050 1643 2824 2970 2311 1401 5266 3266 Crop Base ET ET in 2050
    • Table (3) Water requirement for maize under current and future conditions (2050) under drip and flood irrigation systems. Water requirements m3/Fed. Drip irrigation Flood irrigationLocation Current Climate % Current Climate condition change Difference condition change % DifferenceWadi El-Natron 3063 3227 5.4% 5105 5661 10.9%Kafr Elshiekh 2701 2844 5.3% 4502 4989 10.8%Menia 3708 3909 5.4% 6180 6858 11.0%Nekhel 2695 2838 5.3% 4492 4979 10.8%Kharga 3974 4165 4.8% 6623 7307 10.3%Abo Elkizan 2922 3007 2.9% 4870 5275 8.3%Toshka 4134 4361 5.5% 6890 7651 11.0%Mean 3313 3478 4.9% 5523 6103 10.5%
    • ‫ﺗﻐﻴﺮ ﻓﻲ اﻟﺨﺮﻳﻄﺔ اﻟﺰراﻋﻴﺔ‬ ‫اﻟﺘﻐﻴﺮ ﻓﻲ درﺟﺔ اﻟﺤﺮرة وارﺗﻔﺎع ﻣﺴﺘﻮي ﺳﻄﺢ اﻟﺒﺤﺮ ﺳﻮف ﻳﺆﺛﺮ ﻋﻠﻲ ﺗﻮزﻳﻊ اﻟﺤﺎﺻﻼت‬ ‫ﻗﺪ ﻳﺆدي إﻟﻰ ﺗﻌﺪﻳﻞ اﻟﺘﻮازن اﻟﺠﻐﺮاﻓﻲ ﻟﻠﻤﺤﺎﺻﻴﻞ‬‫ﺣﺪوث ﺗﺄﺛﻴﺮ إﻳﺠﺎﺑﻲ ﻣﺤﺘﻤﻞ ﻋﻠﻰ اﻹﻧﺘﺎج ﻓﻲ اﻟﺒﻠﺪان اﻟﻤﺘﻘﺪﻣﺔ ﻓﻲ اﻟﻤﻨﺎﻃﻖ اﻟﻤﻌﺘﺪﻟﺔ‬ ‫وﺗﺄﺛﻴﺮ ﺳﻠﺒﻲ ﻋﻠﻰ اﻟﺒﻠﺪان اﻟﻨﺎﻣﻴﺔ ﻓﻲ اﻟﻤﻨﺎﻃﻖ اﻟﻤﺪارﻳﺔ‬ ‫ﻓﻘﺪان اﻟﺘﻨﻮع اﻟﺒﻴﻮﻟﻮﺟﻲ‬‫هﺠﺮة اﻷﺻﻨﺎف واﻟﻨﻈﻢ اﻹﻳﻜﻮﻟﻮﺟﻴﺔ واﻟﻤﺤﺎﺻﻴﻞ واﻟﺤﻴﻮاﻧﺎت إﻟﻰ ﻣﻨﺎﻃﻖ ﺟﺪﻳﺪة؛‬‫إدﺧﺎل ﺗﻌﺪﻳﻼت ﻋﻠﻰ اﻟﺘﻔﺎﻋﻼت واﻟﺘﻮازن ﻓﻴﻤﺎ ﺑﻴﻦ اﻷﺻﻨﺎف، ﺑﻤﺎ ﻓﻲ ذﻟﻚ اﻵﻓﺎت‬ ‫واﻷﻣﺮاض.‬