SlideShare a Scribd company logo
1 of 27
Download to read offline
1 of 27
Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar
Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics
Web: pathologybasics.wix.com/notes
2 of 27
Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar
Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics
Web: pathologybasics.wix.com/notes
OVERVIEW
1. Introduction
2. Terms and Definitions
1. Statistical quality control
2. Errors and mistakes
3. Preanalytic, analytic and post analytic stage
4. Precision and accuracy
5. Types of analytic errors
1.Random error
2.Systematic error
3.Total analytical error
4.Allowable total analytical error
6. Internal and external SQC
7. Control materials
8. Calibrators
3. Internal Quality control
1. Normal distribution
2. Calculation of control limits
3. Levy Jennings chart
4. The Westgard rules
5. The average of Normals method
6. Bull’s algorithm
7. Delta check method
4. External Quality control
1. Basics
2. EQAS charts and statistics
3. Precision index and coefficient of variation ratio
4. EQC normal distribution charts
5. Youden plots
6. Yundt chart
5. Quality specifications
6. Criteria for acceptable performance
7. Appendix
3 of 27
Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar
Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics
Web: pathologybasics.wix.com/notes
 Introduction
1. The purpose of a clinical laboratory is to evaluate the patho-physiologic
condition of an individual patient to assist with the diagnosis and / or to monitor
therapy.
2. To have value for clinical decision making, an individual laboratory test result
must have total error small enough to reflect the biological condition being
evaluated.
3. Moreover nowadays, the overwhelming majority of laboratory results are being
generated by automated analysers.
4. These analysers are developed by integration of technologies; analytical
chemistry, computer science and robotics.
5. This has diminished the routine laboratory work significantly; the role of
technologists and pathologists has been shifted to ensuring that the results that
these machines give are accurate.
6. This is achieved by doing proper maintenance, quality control and calibration and
data management.
4 of 27
Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar
Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics
Web: pathologybasics.wix.com/notes
 Terms and definitions
1. Statistical quality control / Statistical process control
1. For centuries, manufacturers have checked the quality of their products to
find out defects. At that time, every product was checked one by one, without
exception.
2. But with large scale production, it became impossible to check each and every
product manufactured.
3. Modern quality control aims to check the quality of a minimum number of
samples from the total production. This procedure is called Statistical quality
control.
4. It would also be wiser to define SQC as the process that focuses on
revealing any deviation from well defined standards.
2. Errors and mistakes
Errors: All “wrong” laboratory measurements due to “non human” actions.
They have a statistical significance.
Mistakes: All “wrong laboratory measurements due to “human” actions.
They have no statistical significance.
3. Pre analytical / analytical and post analytical stage
1. Errors and mistakes can be classified according to the time and stage which
they occur in laboratory practice –
Pre analytical stage – encompasses all procedures that occur before the
analysis of patients samples on automated analyzers (e.g. Blood drawing,
sample transportation, centrifugation, dilution etc.
Analytical stage – Includes analytical methods
5 of 27
Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar
Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics
Web: pathologybasics.wix.com/notes
Post-analytical stage – refers to all procedures after the analysis of
patient’s samples (e.g. Transmission of data from analysers to LIS,
validation of results, printing of results, and communication of results to
clinicians/patients etc.)
MAJORITY OF PRE AND POST ANALYTICAL OUTLIERS ARE
‘MISTAKES’
MAJORITY OF ANALYTICAL STAGE OUTLIERS ARE ‘ERRORS’
2. Most of the laboratory QC processes are directed towards these analytical
stage errors – this is because
a. The analytical errors can be attributed to the laboratory staff
b. These errors can be detected by statistical methods
c. Statistical limits for analytical errors can be established
3. Examples
Preanalytical stage Analytical stage Post analytical stage
1. Inappropriate
specimen (wrong
anticoag, wrong tube,
insufficient specimen)
2. Improper preservation
3. Inappropriate patient
preparation
4. Mistake in patient
identification
1. Expired/denatured
reagents
2. Expired/denatured
control/calibrators
3. Calibration curve
time-out elapsed
4. Failure in sampling
5. Failure in reagent
aspiration
6. Change in analyser
photometric unit/flow cell
7. Analyser failure
1. Wrong matching
between lab result and
patient
2. Wrong copy from
anlyser to laboratory
report
3. Delay in delivering
result to patient/clinician
4. Loss of results
4. Precision and accuracy
1. Precision
1. Precision means repeatability or reproducibility of test results
2. In other words it is the closeness of agreement between repeated
measurements of the same sample (in a very short time, usually on the
same day)
3. PRECISION = xi - x̅
Where xi is a single measurement
x̅ Is average of successive measurements
6 of 27
Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar
Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics
Web: pathologybasics.wix.com/notes
2. Accuracy
a. Closeness of agreement between the value obtained by analyser and true
value of the sample
5. Types of analytical errors
1. Random error
a. Result of measurement minus the mean that would result from infinite
measurements of the same sample (see precision – infinite is random
error)
b. RE = xi - x̅ I , where x̅ i is mean of infinite number of measurements
c. Random error affects precision
d. RE is always greater than zero
e. RE can be decreased by increasing the number of measurements
f. It can be attributed to undetermined reasons (inherent error)
2. Systematic error
a. Result of mean that would result from infinite number of
measurements minus the true value of the sample
b. SE = x̅ I - µ , where µ is the true value of the sample
c. Systematic error cannot be decreased by increasing the number of
measurements.
d. It can be attributed to certain reasons and therefore can be eliminated
much easier than random error i.e. it can be zero.
7 of 27
Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar
Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics
Web: pathologybasics.wix.com/notes
3. Total analytical error
TE = RE + SE
a. As we have seen from definition of RE, it can never be zero, hence TE can
never be zero.
4. Total allowable analytical error (aTE)
a. Since TE>0 is unavoidable, TE of every single determination must be
lower than a specified limit. This limit is called aTE.
6. Internal and external SQC
a. Random and systematic errors should be detected at an early stage
b. Two statistical methods can help in detection of these errors
1. Internal SQC
a. Performed every day by the laboratory personel with control materials
b. It detects basically the precision
2. External SQC
a. Performed periodically, usually by a third party
b. It checks primarily the accuracy
7. Control materials
a. Control samples are pools of biological fluids
b. They contain analytes which are determined by the laboratory in
concentrations which are close to decision limits where medical action is
required
c. They are usually prepared by the equipment manufacturer / reagent
manufacturers
d. They are available in different levels (concentrations) – these check
performance of laboratory methods over their entire range
8 of 27
Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar
Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics
Web: pathologybasics.wix.com/notes
8. Calibrators
1. Calibration is the process of evaluating and adjusting the precision and
accuracy of measurement equipment.
2. For this purpose, reference standards with known values for selected
points covering the range of interest are measured with the instrument in
question. Then a functional relationship is established between the values
of the standards and the corresponding measurements.
3. Enlisting exact steps of calibration is beyond the scope of this document.
9 of 27
Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar
Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics
Web: pathologybasics.wix.com/notes
 Internal Quality control
1. Normal Distribution
1. Normal or Gaussian distribution (N) is the basis of SQC theory. Distribution chart is a
biaxial diagram (x/y).
2. X-axis represents the values of a variable’s observations and y-axis the frequency of
each value (the number of each value’s appearance).
3. It has a bell-shaped form with its two edges approaching asymptomatically the x-axis.
4. The highest point of normal distribution corresponds to the value with the higher
frequency (mode value). It is always on the top of every
distribution curve.
5. Median value (M) is the value which divides the variable’s observations in two equal
parts. It represents the “center” of the distribution.
6. Mean value or average value (μ or x is equal to the value which all the observations
should have if they were equal. The mean value (µ) or average can be calculated by
the next formula:
Where: xi = Single value, Σxi = Sum of values, N = Total number of values
7. In a normal distribution, mean, median and mode coincide.
10 of 27
Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar
Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics
Web: pathologybasics.wix.com/notes
8. Variance – The length of distribution curve defines the variance of the variable. The
most common measure of variance is Standard deviation (SD)(s).
Standard deviation can be calculated by the following formula –
The distance between the upper (UL) and lower limit (LL) of a normal distribution is
six standard deviations (6s). Since mean value is in the center of normal distribution, the
total range of a normal distribution is μ ± 3s (to be more exact, not all, but nearly all
(99.73%) of the values lie within 3 standard deviations (3SD) of the mean).
9. Z Score - Mean and SD allow for calculation of distance of each observation from the
centre (mean). The distance is called the Z score.
It can be calculated by the following formula:
For example we are looking at a distance of value xi = 80 from the mean of the normal
distribution N~(100,5)
Here Z score = 80-100 = -4
5
10. Every normal distribution can defined as N~(μ, s).
For instance N~(76, 2.3) means a normal distribution with mean value = 76 and
standard deviation = 2.3.
11. The distance between upper limit and lower limit of a normal distribution is six
standard deviations (6s). Since mean value is in the center of normal distribution, the total
range of normal distribution is (µ +/- 3s).
11 of 27
Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar
Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics
Web: pathologybasics.wix.com/notes
12. The empirical rule of normal distribution
µ+/- s Contains 68.26% of observations
µ+/- 2s Contains 95.46% of observations
µ+/- 3s Contains 99.73% of observations
13. Coefficient of variation (Cv)
Standard deviation depicts variation in the same units as the mean. Hence it
cannot be used to compare distributions with different mean.
In such cases Cv can be used. It is the ratio of standard deviation to mean
expressed as a percentage.
12 of 27
Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar
Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics
Web: pathologybasics.wix.com/notes
2. Calculation of normal limits
1. The automated analyzer is calibrated with reference material (calibrator) and
validation of calibration is done with External quality control / Inter Lab
comparison.
2. In internal SQC two or more control level samples are assayed every day at least
once per day before the patient’s samples. Then laboratory checks if all control
values lie within the control limits. If at least one of the two control limits is
outside of one of the two control limits, then further actions may be required until
random or systematic errors are under control.
3. The laboratory staff collects 20-30 successive measurements from any control
level.
4. Standard deviation (s) and mean value (µ) are calculated. Range (µ+/- 3s) is
considered as trial limits (any outlier is rejected).
5. This calculated mean value is then taken as true value of daily controls. Their
standard deviation is the inherent error of the system.
3. Levy Jennings Chart
1. Rotate the normal distribution curve clock wise
2. Draw seven lines from the points µ+ 3s, µ+ 2s, µ+ s, µ, µ - s, µ- 2s, µ- 3s.
3. Values obtained are plotted in the chart date wise.
4. For every different parameter and different level, different LJ chart is plotted.
Random and systematic error in LJ chart
1. If any of the daily control values exceeds 3SD limits, it is a random error.
2. Detection of systematic error is more complicated.
3. In systematic errors two or more successive control values exceed the control limits
which can respectively be 3SD, 2SD or 1SD.
13 of 27
Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar
Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics
Web: pathologybasics.wix.com/notes
14 of 27
Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar
Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics
Web: pathologybasics.wix.com/notes
4. The Westgard Rules
1. Westgard rules are a type of quality criteria used for error detection.
2. They are denoted as AL where A is the number of control values and L is the
control limit.
RULE GRAPH INTERPRETATION
13S One control value lies over
or under 3SD
- Random error
Patient results should be
blocked, and root cause
analysis should be done.
22S Two successive control
values lie between 2SD
and 3SD
- Systematic error
Patient results should be
blocked, and root cause
analysis should be done.
12S One control values lie
between 2SD and 3SD
- Random error
Patient results need not be
blocked, only caution is
warranted.
101S Ten consecutive control
values are on the same side
of the mean
- Systematic error
Patient results should be
blocked, and root cause
analysis should be done.
15 of 27
Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar
Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics
Web: pathologybasics.wix.com/notes
5. Average of normals method (AON)
1. LJ chart and Westgard methods are based on analysis of control samples, but
even control samples determination has some disadvantages like –
a. It is costly
b. It is time consuming
2. These disadvantages can be minimized by some other methods – like AON
method.
3. AON method is based on the principle that mean value of all normal results
fluctuate between well defined limits. LJ and Westgard detect random and
systematic errors. AON method detects only systematic error.
4. This method is mostly used for biochemistry analysers.
Method
1. The laboratory collects data for an anaylate from a fixed number of healthy
persons. Its mean value and standard deviation is calculated. This value will be
used as control value.
2. The standard error of these normal samples run daily is calculated with the
following formula.
s = standard deviation, N is number of samples
3. The confidence interval is calculated as follows
4. This confidence interval will be used for definition of control limits of the
method.
5. Every day laboratory calculates the mean value of N normal results, this mean
value is symbolized as AON and is calculated by the following formula –
6. If AON exceeds the control limits, the anaylate’s determination has a systematic
error.
16 of 27
Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar
Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics
Web: pathologybasics.wix.com/notes
7. In daily practice AON method has its own control chart which detects only
systematic errors. In AON chart each dot represents a daily mean value of the
same anylate.
6. Bull’s Algorithm
1. The statistical quality control carried out in hematology analyzers has many
important differences from the corresponding techniques in the clinical
chemistry analyzers.
2. These differences are due to reasons such as the high stability of cytometry
technology, the small biological variation of some hematology parameters, the
big reagent vials and the small time lasting of the hematology controls.
3. Because of the above reasons Levey-Jennings charts in hematology analyzers
are different from corresponding charts in clinical chemistry. For instance the
hematology Levey-Jennings charts have only three lines (upper and lower limits
and central line). The reason is that these Levey-Jennings charts are not created
statistically from a normal distribution of former quality control data, which is
not possible because of the very small variation of hematology quality control
values. In hematology analyzers the upper and lower control limits act as the
“specification’s limits” in industry quality control.
4. The small biology variation of many hematology parameters made many
researchers to established quality control methods based only on patients results.
Such suitable parameters are the erythrocyte indexes (MCV, MCHC, MCV)
with the smaller biological variation (due not only to biology but mostly to the
hematology analyzer’s technology).
5. These attributes of them inspired Brian Bull (an American Hematologist) to
establish a new quality control method widely known as “Bull’s algorithm”.
6. Bull’s algorithm (also known as method) detects systematic errors in MCV,
MCHC and MCV and consequently in HgB, Hct and RBC. His method is a kind
of moving average. Its main idea is to estimate the mean value of the last twenty
patients’ values, including in them the mean value of the batch of the previous
twenty values.
7. The algorithm itself is a quite complicated equation which eliminates the outliers
and estimates the moving average of the last twenty values. Bull’s algorithm has
17 of 27
Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar
Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics
Web: pathologybasics.wix.com/notes
been proved quite effective in detecting small systematic errors (almost 1%) not
only in erythrocyte indexes but also in almost all the hematology parameters. It
uses all patients’ data without exception. The last fact made Bull’s algorithm the
cheapest quality control method in laboratory medicine.
8. Hematology quality control samples last only 20 – 30 days and are very
expensive, when, on the other hand, whole blood samples are stable in the
refrigerator for 24 hours.
9. These facts led some researchers to find methods which are based on the
repetitive analysis of patient samples. These methods are known as “retained
patient specimens”.
10. In 1988 Cembrowski (Canadian clinical chemist) established the most effective
“retained patient specimens” method. It was based on the repetitive analysis of
the same patient samples between two successive days. His method is known as
“m/nlim”
- “Lim” stands for the quality control limit. It is equal to the double of the
standard deviation of the repetitive analysis (2 x SD).
- “n” stands for the number of patients’ samples which will be analyzed twice.
- “m” stands for the portion of “n” number of samples which is permitted to be
out of limits (“lim”).
Statistical simulations created by Cembrowski proved the effectiveness of his
method. According to him the best combination of “m”, “n” and “lim” is 2, 3, 2 or
2/32s.
Concluding, three different methods are in the disposal of the laboratory in order to
detect the analytical errors in hematology laboratory.
Levey-Jennings detects systematic and random errors. On the contrary, Bull’s
algorithm and “retained patient specimens” detect only systematic errors, but they
have the advantage of the low cost. Laboratory can choose the best combination of
the three
7. Delta check method
1. The AON and Bull’s algorithm detect systematic errors using a group of
patients.
2. Delta check method is used for detecting random errors using previous values of
individual patients.
Delta check = (current value) - ( previous value)
Delta check % = (Current value – Previous value) * 100
Current value
18 of 27
Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar
Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics
Web: pathologybasics.wix.com/notes
3. The delta check values should vary between two limits which are called ‘Delta
check limits’. In order to calculate them we must take into consideration the
reasons for delta differences –
a. Intra individual biological variation of the analyate CV1
b. The analytical variation (Smeas) can be easily estimated by the control
values
c. The pre-analytical variation (CVpre-analytical)
19 of 27
Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar
Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics
Web: pathologybasics.wix.com/notes
 External Quality Control
1. Basics
1. EQC refers to the process of controlling the accuracy of an analytical method
by interlaboratory comparisons.
2. The EQAS co-coordinator prepares a sample pool and sends to the
participants of the scheme one or two samples from the same pool.
3. The samples are assayed by the laboratories using the same equipment and
reagents as they do in routine for patient determinations.
4. The EQAs coordinator gathers all the results and they group them (peer
groupas) according to laboratory analytical methods, analyzers or any other
criteria.
5. Then the coordinator calculates the target value (consensus mean) and its
total variation (standard deviation) of the laboratories results.
6. If any of the laboratories have values outside of the control limits, then this
laboratory is considered ‘out of control’.
7. The out of control laboratories get an indication that there is some problem
with their analysis.
2. Understanding EQAS charts and statistics
a. Standard Deviation Index
1. Standard Deviation Index calculates the distance of laboratory
results from the consensus mean.
2. It quantifies the inaccuracy of the analytical method.
3. It is similar to Z score and calculated by the following formula –
SDI = laboratory result – Mean value of peer group
Standard deviation of peer group
4. The SDI value of each laboratory can be located on proper SDI chart
as follows:
20 of 27
Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar
Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics
Web: pathologybasics.wix.com/notes
5. Control limits of SDI are zero+/- 2SDI
6. Four rules are usually employed for SDI evaluation:
a. 2/51SDI – Two from five successive control limits exceed
1SDI, it is a warning rule
b. x̅ 1.5SDI – The mean value of five SDI values exceeds the limits
+/- 1.5SDI. It reveals a lasting systematic error.
c. 13SDI – One value exceeds 3SDI
d. R4SDI – The range between the lower and higher SDI values
exceeds +/- 4SDI
b. Precision index (PI) and coefficient of variation ratio (CVR)
Precision index = Standard deviation of laboratory
Standard deviation of peer group
CVR = CV of laboratory/month
CV of peer group / month
21 of 27
Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar
Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics
Web: pathologybasics.wix.com/notes
c. EQC normal distribution charts
1. More often than not, EQAS coordinators represent graphically the
total performance of all the laboratories in a normal distribution
chart.
2. This chart is usually a histogram.
3. The EQAS coordinators usually group the laboratories according to
their analytical methods and their automated analyzer. Histograms
containing two or more peer groups have bars with two or more
different colors respectively.
22 of 27
Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar
Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics
Web: pathologybasics.wix.com/notes
d. Youden plot
1. Many EQAS schemes use control samples of different levels in
order to check the performance of the analytical methods.
2. Youden plot is a rectangular chart of which the four angles
correspond to the control limits of the two control levels (-4SD and
+4SD).
3. The acceptable part is the gray zone and the rejected part has
different colors.
4. Each dot represents a different laboratory and therefore Youden plot
describes the whole EQAS scheme.
e. Yundt chart
1. Yundt chart helps to illustrate performance of an analytical method
across all its measuring range.
2. It needs atleast three control levels to be plotted.
3. If the line across the dots of three levels is a straight one, then
laboratory has very good linearity.
23 of 27
Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar
Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics
Web: pathologybasics.wix.com/notes
4. If the line across the dots is not straight, the linearity of the method
has several issues.
24 of 27
Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar
Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics
Web: pathologybasics.wix.com/notes
 Quality Specifications
1. SQCs goal is to detect random and systematic errors or better, to ensure that
total error is lower than total allowable error.
2. aTE depends on certain characteristics of analyate and analytical method like
imprecision, bias, biological variation etc.
3. According to these characteristics some analyates need more or less rigorous
SQC rules than others.
There are two common practices:
United states: depending of analytical performance of the method. This
practice is followed in US. The laboratories follow CLIA regulations.
Europe: aTE depends biological variation of the analyate.
25 of 27
Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar
Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics
Web: pathologybasics.wix.com/notes
 Criteria for acceptable performance
CV1 - intra individual variation
CV2 – inter individual variation
CVw-day – within day variation
CVb-day – between days variation
CV2
total = CV2
wday + CV2
bday
1st
Criterion of acceptable performance
CVtotal </= 0.5 CV1
2nd
Criteria for acceptable performance
CVwday </= 0.25TE%
3rd
criteria for acceptable performance
CV total </= 0.33 TE%
4th
criteria for acceptable performance
Bias% < 0.25 CV2
1 + CV2
w
5th
criteria for acceptable performance
TE% </= k 0.5 CVw + 0.25 CV2
1 + CV2
w
For k =1.65
TE% </= 1.65 *RE* SE
26 of 27
Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar
Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics
Web: pathologybasics.wix.com/notes
 APPENDICIES
27 of 27
Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar
Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics
Web: pathologybasics.wix.com/notes

More Related Content

What's hot

Understanding statistics in laboratory quality control
Understanding statistics in laboratory quality controlUnderstanding statistics in laboratory quality control
Understanding statistics in laboratory quality control
Randox
 
Quality control in the medical laboratory
Quality control in the medical laboratoryQuality control in the medical laboratory
Quality control in the medical laboratory
Adnan Jaran
 
Laboratory errors in medical practice
Laboratory  errors in medical practiceLaboratory  errors in medical practice
Laboratory errors in medical practice
MedicineBSMMU
 

What's hot (20)

Quality Control in Clinical Chemistry
Quality Control in Clinical ChemistryQuality Control in Clinical Chemistry
Quality Control in Clinical Chemistry
 
Laboratory Quality Control .ppt
Laboratory Quality Control .pptLaboratory Quality Control .ppt
Laboratory Quality Control .ppt
 
Quality Control in Laboratory
Quality Control in LaboratoryQuality Control in Laboratory
Quality Control in Laboratory
 
WESTGARD RULES
WESTGARD RULESWESTGARD RULES
WESTGARD RULES
 
quality control in clinical pathology
quality control in clinical pathologyquality control in clinical pathology
quality control in clinical pathology
 
Total Quality Management in Medical Laboratories
Total Quality Management in Medical LaboratoriesTotal Quality Management in Medical Laboratories
Total Quality Management in Medical Laboratories
 
causes of laboratory errors
causes of laboratory errorscauses of laboratory errors
causes of laboratory errors
 
Laboratory Method Verification, March 2017
Laboratory Method Verification, March 2017Laboratory Method Verification, March 2017
Laboratory Method Verification, March 2017
 
Validation of lab instruments and quantitative test methods
Validation of lab instruments and quantitative test methods Validation of lab instruments and quantitative test methods
Validation of lab instruments and quantitative test methods
 
Understanding statistics in laboratory quality control
Understanding statistics in laboratory quality controlUnderstanding statistics in laboratory quality control
Understanding statistics in laboratory quality control
 
Quality control
Quality controlQuality control
Quality control
 
Quality control in the medical laboratory
Quality control in the medical laboratoryQuality control in the medical laboratory
Quality control in the medical laboratory
 
Quality control lecture CPath master 2014 Ain Shams
Quality control lecture CPath master 2014 Ain ShamsQuality control lecture CPath master 2014 Ain Shams
Quality control lecture CPath master 2014 Ain Shams
 
Quality Control In Clinical Laboratory
Quality Control In Clinical LaboratoryQuality Control In Clinical Laboratory
Quality Control In Clinical Laboratory
 
Haemoglobin quality control by maintaining levey jennings chart
Haemoglobin quality control by maintaining levey jennings chartHaemoglobin quality control by maintaining levey jennings chart
Haemoglobin quality control by maintaining levey jennings chart
 
Clinical lab-method validation.ppt
Clinical lab-method validation.pptClinical lab-method validation.ppt
Clinical lab-method validation.ppt
 
Quality control
Quality controlQuality control
Quality control
 
Internal quality control
Internal quality controlInternal quality control
Internal quality control
 
Quality Control
Quality ControlQuality Control
Quality Control
 
Laboratory errors in medical practice
Laboratory  errors in medical practiceLaboratory  errors in medical practice
Laboratory errors in medical practice
 

Viewers also liked

Viewers also liked (13)

Quality control in clinical biochemistry
Quality control in clinical biochemistryQuality control in clinical biochemistry
Quality control in clinical biochemistry
 
Quality control in clinical laboratory
Quality control in clinical laboratoryQuality control in clinical laboratory
Quality control in clinical laboratory
 
Troubleshooting QC Problems: Your QC has failed, what do you do next?
Troubleshooting QC Problems: Your QC has failed, what do you do next?Troubleshooting QC Problems: Your QC has failed, what do you do next?
Troubleshooting QC Problems: Your QC has failed, what do you do next?
 
Basic Troubleshooting Pwr Pt
Basic Troubleshooting Pwr PtBasic Troubleshooting Pwr Pt
Basic Troubleshooting Pwr Pt
 
Cellular adaptations, injury and death.. Lecture 1
Cellular adaptations, injury and death.. Lecture 1Cellular adaptations, injury and death.. Lecture 1
Cellular adaptations, injury and death.. Lecture 1
 
Lab management
Lab managementLab management
Lab management
 
Troubleshooting
TroubleshootingTroubleshooting
Troubleshooting
 
Basic Computer Troubleshooting
Basic Computer TroubleshootingBasic Computer Troubleshooting
Basic Computer Troubleshooting
 
Quality control laboratory.
Quality control laboratory.Quality control laboratory.
Quality control laboratory.
 
Laboratory Management
Laboratory ManagementLaboratory Management
Laboratory Management
 
2015 Upload Campaigns Calendar - SlideShare
2015 Upload Campaigns Calendar - SlideShare2015 Upload Campaigns Calendar - SlideShare
2015 Upload Campaigns Calendar - SlideShare
 
What to Upload to SlideShare
What to Upload to SlideShareWhat to Upload to SlideShare
What to Upload to SlideShare
 
Getting Started With SlideShare
Getting Started With SlideShareGetting Started With SlideShare
Getting Started With SlideShare
 

Similar to Quality control in clinical laboratories

Quality control in a virology laboratory.pdf
Quality control in a virology laboratory.pdfQuality control in a virology laboratory.pdf
Quality control in a virology laboratory.pdf
samwel18
 

Similar to Quality control in clinical laboratories (20)

In tech quality-control_in_clinical_laboratories
In tech quality-control_in_clinical_laboratoriesIn tech quality-control_in_clinical_laboratories
In tech quality-control_in_clinical_laboratories
 
Quality control clia
Quality control cliaQuality control clia
Quality control clia
 
Post analytical variables in Laboratory
Post analytical variables in LaboratoryPost analytical variables in Laboratory
Post analytical variables in Laboratory
 
Post analytical variables dr kamlesh patel
Post analytical variables dr kamlesh patelPost analytical variables dr kamlesh patel
Post analytical variables dr kamlesh patel
 
Quality Assurance and Quality Control
Quality Assurance and Quality ControlQuality Assurance and Quality Control
Quality Assurance and Quality Control
 
Quality assurance and quality control
Quality assurance and quality controlQuality assurance and quality control
Quality assurance and quality control
 
Chapter 12
Chapter 12Chapter 12
Chapter 12
 
Quality management
Quality managementQuality management
Quality management
 
Quality control in a virology laboratory.pdf
Quality control in a virology laboratory.pdfQuality control in a virology laboratory.pdf
Quality control in a virology laboratory.pdf
 
Perez.pptx
Perez.pptxPerez.pptx
Perez.pptx
 
chem II 2019.ppt
chem II 2019.pptchem II 2019.ppt
chem II 2019.ppt
 
qc histo ss final - Copy.pptx
qc histo ss final - Copy.pptxqc histo ss final - Copy.pptx
qc histo ss final - Copy.pptx
 
Qc and qa
Qc and qaQc and qa
Qc and qa
 
Errors PPt.pptx
Errors PPt.pptxErrors PPt.pptx
Errors PPt.pptx
 
Basics of Quality Assurance-Medical Laboratory Services
Basics of Quality Assurance-Medical Laboratory ServicesBasics of Quality Assurance-Medical Laboratory Services
Basics of Quality Assurance-Medical Laboratory Services
 
Errors in pharmaceutical analysis
Errors  in  pharmaceutical  analysis Errors  in  pharmaceutical  analysis
Errors in pharmaceutical analysis
 
SHE, Quality, and Ethics in Medical Laboratories - PCLP
SHE, Quality, and Ethics in Medical Laboratories - PCLPSHE, Quality, and Ethics in Medical Laboratories - PCLP
SHE, Quality, and Ethics in Medical Laboratories - PCLP
 
Overview of Quality Control and its implementation in the laboratory.pptx
Overview of Quality Control and its implementation in the laboratory.pptxOverview of Quality Control and its implementation in the laboratory.pptx
Overview of Quality Control and its implementation in the laboratory.pptx
 
Basics of quality assurance laboratory services
Basics of quality assurance laboratory servicesBasics of quality assurance laboratory services
Basics of quality assurance laboratory services
 
Quality control.pptx
Quality control.pptxQuality control.pptx
Quality control.pptx
 

More from Ashish Jawarkar

More from Ashish Jawarkar (20)

Ch 6 diseases of the immune system part 1
Ch 6 diseases of the immune system part 1Ch 6 diseases of the immune system part 1
Ch 6 diseases of the immune system part 1
 
MALE AND FEMALE GENITAL TRACT
MALE AND FEMALE GENITAL TRACTMALE AND FEMALE GENITAL TRACT
MALE AND FEMALE GENITAL TRACT
 
Ch 2 adaptations, cell injury, cell death
Ch 2 adaptations, cell injury, cell deathCh 2 adaptations, cell injury, cell death
Ch 2 adaptations, cell injury, cell death
 
Ch 4 hemorragic disorders,thromboembolic diseases, shock
Ch 4 hemorragic disorders,thromboembolic diseases, shockCh 4 hemorragic disorders,thromboembolic diseases, shock
Ch 4 hemorragic disorders,thromboembolic diseases, shock
 
Ch 3 inflammation and repair
Ch 3 inflammation and repairCh 3 inflammation and repair
Ch 3 inflammation and repair
 
CYTOLOGY OF BREAST LESIONS??!
CYTOLOGY OF BREAST LESIONS??! CYTOLOGY OF BREAST LESIONS??!
CYTOLOGY OF BREAST LESIONS??!
 
Histotechniques
HistotechniquesHistotechniques
Histotechniques
 
Immunohistochemistry in breast lesions
Immunohistochemistry in breast lesionsImmunohistochemistry in breast lesions
Immunohistochemistry in breast lesions
 
Immunohistochemistry of Prostatic lesions
Immunohistochemistry of Prostatic lesionsImmunohistochemistry of Prostatic lesions
Immunohistochemistry of Prostatic lesions
 
Cardiovascular system
Cardiovascular systemCardiovascular system
Cardiovascular system
 
Ch7 Neoplasia
Ch7 NeoplasiaCh7 Neoplasia
Ch7 Neoplasia
 
Amyloidosis
AmyloidosisAmyloidosis
Amyloidosis
 
Ch12 Heart Part 1
Ch12 Heart Part 1Ch12 Heart Part 1
Ch12 Heart Part 1
 
Robbins Chapter 1.. Cell as a unit of health and disease
Robbins Chapter 1.. Cell as a unit of health and diseaseRobbins Chapter 1.. Cell as a unit of health and disease
Robbins Chapter 1.. Cell as a unit of health and disease
 
Pathology of the digestive system
Pathology of the digestive systemPathology of the digestive system
Pathology of the digestive system
 
CSF - Cerebrospinal fluid examination - from tapping to pathological diagnosis
CSF - Cerebrospinal fluid examination - from tapping to pathological diagnosisCSF - Cerebrospinal fluid examination - from tapping to pathological diagnosis
CSF - Cerebrospinal fluid examination - from tapping to pathological diagnosis
 
LABORATORY DIAGNOSIS OF HIV - AIDS
LABORATORY DIAGNOSIS OF HIV - AIDSLABORATORY DIAGNOSIS OF HIV - AIDS
LABORATORY DIAGNOSIS OF HIV - AIDS
 
Intracellular accumulations
Intracellular accumulationsIntracellular accumulations
Intracellular accumulations
 
Cancer and its types - an introduction to cancer
Cancer and its types - an introduction to cancerCancer and its types - an introduction to cancer
Cancer and its types - an introduction to cancer
 
Gastrointestinal infections - bacteriology
Gastrointestinal infections - bacteriologyGastrointestinal infections - bacteriology
Gastrointestinal infections - bacteriology
 

Recently uploaded

Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...
Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...
Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...
adilkhan87451
 
🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...
🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...
🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...
Call Girls In Delhi Whatsup 9873940964 Enjoy Unlimited Pleasure
 

Recently uploaded (20)

Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...
Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...
Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...
 
Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...
Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...
Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...
 
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
 
Top Rated Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...
Top Rated  Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...Top Rated  Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...
Top Rated Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...
 
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...
 
Coimbatore Call Girls in Thudiyalur : 7427069034 High Profile Model Escorts |...
Coimbatore Call Girls in Thudiyalur : 7427069034 High Profile Model Escorts |...Coimbatore Call Girls in Thudiyalur : 7427069034 High Profile Model Escorts |...
Coimbatore Call Girls in Thudiyalur : 7427069034 High Profile Model Escorts |...
 
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
 
Call Girls Service Jaipur {9521753030} ❤️VVIP RIDDHI Call Girl in Jaipur Raja...
Call Girls Service Jaipur {9521753030} ❤️VVIP RIDDHI Call Girl in Jaipur Raja...Call Girls Service Jaipur {9521753030} ❤️VVIP RIDDHI Call Girl in Jaipur Raja...
Call Girls Service Jaipur {9521753030} ❤️VVIP RIDDHI Call Girl in Jaipur Raja...
 
Premium Call Girls In Jaipur {8445551418} ❤️VVIP SEEMA Call Girl in Jaipur Ra...
Premium Call Girls In Jaipur {8445551418} ❤️VVIP SEEMA Call Girl in Jaipur Ra...Premium Call Girls In Jaipur {8445551418} ❤️VVIP SEEMA Call Girl in Jaipur Ra...
Premium Call Girls In Jaipur {8445551418} ❤️VVIP SEEMA Call Girl in Jaipur Ra...
 
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
 
Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...
Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...
Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...
 
Jogeshwari ! Call Girls Service Mumbai - 450+ Call Girl Cash Payment 90042684...
Jogeshwari ! Call Girls Service Mumbai - 450+ Call Girl Cash Payment 90042684...Jogeshwari ! Call Girls Service Mumbai - 450+ Call Girl Cash Payment 90042684...
Jogeshwari ! Call Girls Service Mumbai - 450+ Call Girl Cash Payment 90042684...
 
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
 
Independent Call Girls In Jaipur { 8445551418 } ✔ ANIKA MEHTA ✔ Get High Prof...
Independent Call Girls In Jaipur { 8445551418 } ✔ ANIKA MEHTA ✔ Get High Prof...Independent Call Girls In Jaipur { 8445551418 } ✔ ANIKA MEHTA ✔ Get High Prof...
Independent Call Girls In Jaipur { 8445551418 } ✔ ANIKA MEHTA ✔ Get High Prof...
 
Trichy Call Girls Book Now 9630942363 Top Class Trichy Escort Service Available
Trichy Call Girls Book Now 9630942363 Top Class Trichy Escort Service AvailableTrichy Call Girls Book Now 9630942363 Top Class Trichy Escort Service Available
Trichy Call Girls Book Now 9630942363 Top Class Trichy Escort Service Available
 
🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...
🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...
🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...
 
Call Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service Available
Call Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service AvailableCall Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service Available
Call Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service Available
 
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any TimeTop Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
 
Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426
Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426
Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426
 
Call Girls Jaipur Just Call 9521753030 Top Class Call Girl Service Available
Call Girls Jaipur Just Call 9521753030 Top Class Call Girl Service AvailableCall Girls Jaipur Just Call 9521753030 Top Class Call Girl Service Available
Call Girls Jaipur Just Call 9521753030 Top Class Call Girl Service Available
 

Quality control in clinical laboratories

  • 1. 1 of 27 Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics Web: pathologybasics.wix.com/notes
  • 2. 2 of 27 Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics Web: pathologybasics.wix.com/notes OVERVIEW 1. Introduction 2. Terms and Definitions 1. Statistical quality control 2. Errors and mistakes 3. Preanalytic, analytic and post analytic stage 4. Precision and accuracy 5. Types of analytic errors 1.Random error 2.Systematic error 3.Total analytical error 4.Allowable total analytical error 6. Internal and external SQC 7. Control materials 8. Calibrators 3. Internal Quality control 1. Normal distribution 2. Calculation of control limits 3. Levy Jennings chart 4. The Westgard rules 5. The average of Normals method 6. Bull’s algorithm 7. Delta check method 4. External Quality control 1. Basics 2. EQAS charts and statistics 3. Precision index and coefficient of variation ratio 4. EQC normal distribution charts 5. Youden plots 6. Yundt chart 5. Quality specifications 6. Criteria for acceptable performance 7. Appendix
  • 3. 3 of 27 Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics Web: pathologybasics.wix.com/notes  Introduction 1. The purpose of a clinical laboratory is to evaluate the patho-physiologic condition of an individual patient to assist with the diagnosis and / or to monitor therapy. 2. To have value for clinical decision making, an individual laboratory test result must have total error small enough to reflect the biological condition being evaluated. 3. Moreover nowadays, the overwhelming majority of laboratory results are being generated by automated analysers. 4. These analysers are developed by integration of technologies; analytical chemistry, computer science and robotics. 5. This has diminished the routine laboratory work significantly; the role of technologists and pathologists has been shifted to ensuring that the results that these machines give are accurate. 6. This is achieved by doing proper maintenance, quality control and calibration and data management.
  • 4. 4 of 27 Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics Web: pathologybasics.wix.com/notes  Terms and definitions 1. Statistical quality control / Statistical process control 1. For centuries, manufacturers have checked the quality of their products to find out defects. At that time, every product was checked one by one, without exception. 2. But with large scale production, it became impossible to check each and every product manufactured. 3. Modern quality control aims to check the quality of a minimum number of samples from the total production. This procedure is called Statistical quality control. 4. It would also be wiser to define SQC as the process that focuses on revealing any deviation from well defined standards. 2. Errors and mistakes Errors: All “wrong” laboratory measurements due to “non human” actions. They have a statistical significance. Mistakes: All “wrong laboratory measurements due to “human” actions. They have no statistical significance. 3. Pre analytical / analytical and post analytical stage 1. Errors and mistakes can be classified according to the time and stage which they occur in laboratory practice – Pre analytical stage – encompasses all procedures that occur before the analysis of patients samples on automated analyzers (e.g. Blood drawing, sample transportation, centrifugation, dilution etc. Analytical stage – Includes analytical methods
  • 5. 5 of 27 Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics Web: pathologybasics.wix.com/notes Post-analytical stage – refers to all procedures after the analysis of patient’s samples (e.g. Transmission of data from analysers to LIS, validation of results, printing of results, and communication of results to clinicians/patients etc.) MAJORITY OF PRE AND POST ANALYTICAL OUTLIERS ARE ‘MISTAKES’ MAJORITY OF ANALYTICAL STAGE OUTLIERS ARE ‘ERRORS’ 2. Most of the laboratory QC processes are directed towards these analytical stage errors – this is because a. The analytical errors can be attributed to the laboratory staff b. These errors can be detected by statistical methods c. Statistical limits for analytical errors can be established 3. Examples Preanalytical stage Analytical stage Post analytical stage 1. Inappropriate specimen (wrong anticoag, wrong tube, insufficient specimen) 2. Improper preservation 3. Inappropriate patient preparation 4. Mistake in patient identification 1. Expired/denatured reagents 2. Expired/denatured control/calibrators 3. Calibration curve time-out elapsed 4. Failure in sampling 5. Failure in reagent aspiration 6. Change in analyser photometric unit/flow cell 7. Analyser failure 1. Wrong matching between lab result and patient 2. Wrong copy from anlyser to laboratory report 3. Delay in delivering result to patient/clinician 4. Loss of results 4. Precision and accuracy 1. Precision 1. Precision means repeatability or reproducibility of test results 2. In other words it is the closeness of agreement between repeated measurements of the same sample (in a very short time, usually on the same day) 3. PRECISION = xi - x̅ Where xi is a single measurement x̅ Is average of successive measurements
  • 6. 6 of 27 Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics Web: pathologybasics.wix.com/notes 2. Accuracy a. Closeness of agreement between the value obtained by analyser and true value of the sample 5. Types of analytical errors 1. Random error a. Result of measurement minus the mean that would result from infinite measurements of the same sample (see precision – infinite is random error) b. RE = xi - x̅ I , where x̅ i is mean of infinite number of measurements c. Random error affects precision d. RE is always greater than zero e. RE can be decreased by increasing the number of measurements f. It can be attributed to undetermined reasons (inherent error) 2. Systematic error a. Result of mean that would result from infinite number of measurements minus the true value of the sample b. SE = x̅ I - µ , where µ is the true value of the sample c. Systematic error cannot be decreased by increasing the number of measurements. d. It can be attributed to certain reasons and therefore can be eliminated much easier than random error i.e. it can be zero.
  • 7. 7 of 27 Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics Web: pathologybasics.wix.com/notes 3. Total analytical error TE = RE + SE a. As we have seen from definition of RE, it can never be zero, hence TE can never be zero. 4. Total allowable analytical error (aTE) a. Since TE>0 is unavoidable, TE of every single determination must be lower than a specified limit. This limit is called aTE. 6. Internal and external SQC a. Random and systematic errors should be detected at an early stage b. Two statistical methods can help in detection of these errors 1. Internal SQC a. Performed every day by the laboratory personel with control materials b. It detects basically the precision 2. External SQC a. Performed periodically, usually by a third party b. It checks primarily the accuracy 7. Control materials a. Control samples are pools of biological fluids b. They contain analytes which are determined by the laboratory in concentrations which are close to decision limits where medical action is required c. They are usually prepared by the equipment manufacturer / reagent manufacturers d. They are available in different levels (concentrations) – these check performance of laboratory methods over their entire range
  • 8. 8 of 27 Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics Web: pathologybasics.wix.com/notes 8. Calibrators 1. Calibration is the process of evaluating and adjusting the precision and accuracy of measurement equipment. 2. For this purpose, reference standards with known values for selected points covering the range of interest are measured with the instrument in question. Then a functional relationship is established between the values of the standards and the corresponding measurements. 3. Enlisting exact steps of calibration is beyond the scope of this document.
  • 9. 9 of 27 Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics Web: pathologybasics.wix.com/notes  Internal Quality control 1. Normal Distribution 1. Normal or Gaussian distribution (N) is the basis of SQC theory. Distribution chart is a biaxial diagram (x/y). 2. X-axis represents the values of a variable’s observations and y-axis the frequency of each value (the number of each value’s appearance). 3. It has a bell-shaped form with its two edges approaching asymptomatically the x-axis. 4. The highest point of normal distribution corresponds to the value with the higher frequency (mode value). It is always on the top of every distribution curve. 5. Median value (M) is the value which divides the variable’s observations in two equal parts. It represents the “center” of the distribution. 6. Mean value or average value (μ or x is equal to the value which all the observations should have if they were equal. The mean value (µ) or average can be calculated by the next formula: Where: xi = Single value, Σxi = Sum of values, N = Total number of values 7. In a normal distribution, mean, median and mode coincide.
  • 10. 10 of 27 Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics Web: pathologybasics.wix.com/notes 8. Variance – The length of distribution curve defines the variance of the variable. The most common measure of variance is Standard deviation (SD)(s). Standard deviation can be calculated by the following formula – The distance between the upper (UL) and lower limit (LL) of a normal distribution is six standard deviations (6s). Since mean value is in the center of normal distribution, the total range of a normal distribution is μ ± 3s (to be more exact, not all, but nearly all (99.73%) of the values lie within 3 standard deviations (3SD) of the mean). 9. Z Score - Mean and SD allow for calculation of distance of each observation from the centre (mean). The distance is called the Z score. It can be calculated by the following formula: For example we are looking at a distance of value xi = 80 from the mean of the normal distribution N~(100,5) Here Z score = 80-100 = -4 5 10. Every normal distribution can defined as N~(μ, s). For instance N~(76, 2.3) means a normal distribution with mean value = 76 and standard deviation = 2.3. 11. The distance between upper limit and lower limit of a normal distribution is six standard deviations (6s). Since mean value is in the center of normal distribution, the total range of normal distribution is (µ +/- 3s).
  • 11. 11 of 27 Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics Web: pathologybasics.wix.com/notes 12. The empirical rule of normal distribution µ+/- s Contains 68.26% of observations µ+/- 2s Contains 95.46% of observations µ+/- 3s Contains 99.73% of observations 13. Coefficient of variation (Cv) Standard deviation depicts variation in the same units as the mean. Hence it cannot be used to compare distributions with different mean. In such cases Cv can be used. It is the ratio of standard deviation to mean expressed as a percentage.
  • 12. 12 of 27 Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics Web: pathologybasics.wix.com/notes 2. Calculation of normal limits 1. The automated analyzer is calibrated with reference material (calibrator) and validation of calibration is done with External quality control / Inter Lab comparison. 2. In internal SQC two or more control level samples are assayed every day at least once per day before the patient’s samples. Then laboratory checks if all control values lie within the control limits. If at least one of the two control limits is outside of one of the two control limits, then further actions may be required until random or systematic errors are under control. 3. The laboratory staff collects 20-30 successive measurements from any control level. 4. Standard deviation (s) and mean value (µ) are calculated. Range (µ+/- 3s) is considered as trial limits (any outlier is rejected). 5. This calculated mean value is then taken as true value of daily controls. Their standard deviation is the inherent error of the system. 3. Levy Jennings Chart 1. Rotate the normal distribution curve clock wise 2. Draw seven lines from the points µ+ 3s, µ+ 2s, µ+ s, µ, µ - s, µ- 2s, µ- 3s. 3. Values obtained are plotted in the chart date wise. 4. For every different parameter and different level, different LJ chart is plotted. Random and systematic error in LJ chart 1. If any of the daily control values exceeds 3SD limits, it is a random error. 2. Detection of systematic error is more complicated. 3. In systematic errors two or more successive control values exceed the control limits which can respectively be 3SD, 2SD or 1SD.
  • 13. 13 of 27 Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics Web: pathologybasics.wix.com/notes
  • 14. 14 of 27 Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics Web: pathologybasics.wix.com/notes 4. The Westgard Rules 1. Westgard rules are a type of quality criteria used for error detection. 2. They are denoted as AL where A is the number of control values and L is the control limit. RULE GRAPH INTERPRETATION 13S One control value lies over or under 3SD - Random error Patient results should be blocked, and root cause analysis should be done. 22S Two successive control values lie between 2SD and 3SD - Systematic error Patient results should be blocked, and root cause analysis should be done. 12S One control values lie between 2SD and 3SD - Random error Patient results need not be blocked, only caution is warranted. 101S Ten consecutive control values are on the same side of the mean - Systematic error Patient results should be blocked, and root cause analysis should be done.
  • 15. 15 of 27 Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics Web: pathologybasics.wix.com/notes 5. Average of normals method (AON) 1. LJ chart and Westgard methods are based on analysis of control samples, but even control samples determination has some disadvantages like – a. It is costly b. It is time consuming 2. These disadvantages can be minimized by some other methods – like AON method. 3. AON method is based on the principle that mean value of all normal results fluctuate between well defined limits. LJ and Westgard detect random and systematic errors. AON method detects only systematic error. 4. This method is mostly used for biochemistry analysers. Method 1. The laboratory collects data for an anaylate from a fixed number of healthy persons. Its mean value and standard deviation is calculated. This value will be used as control value. 2. The standard error of these normal samples run daily is calculated with the following formula. s = standard deviation, N is number of samples 3. The confidence interval is calculated as follows 4. This confidence interval will be used for definition of control limits of the method. 5. Every day laboratory calculates the mean value of N normal results, this mean value is symbolized as AON and is calculated by the following formula – 6. If AON exceeds the control limits, the anaylate’s determination has a systematic error.
  • 16. 16 of 27 Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics Web: pathologybasics.wix.com/notes 7. In daily practice AON method has its own control chart which detects only systematic errors. In AON chart each dot represents a daily mean value of the same anylate. 6. Bull’s Algorithm 1. The statistical quality control carried out in hematology analyzers has many important differences from the corresponding techniques in the clinical chemistry analyzers. 2. These differences are due to reasons such as the high stability of cytometry technology, the small biological variation of some hematology parameters, the big reagent vials and the small time lasting of the hematology controls. 3. Because of the above reasons Levey-Jennings charts in hematology analyzers are different from corresponding charts in clinical chemistry. For instance the hematology Levey-Jennings charts have only three lines (upper and lower limits and central line). The reason is that these Levey-Jennings charts are not created statistically from a normal distribution of former quality control data, which is not possible because of the very small variation of hematology quality control values. In hematology analyzers the upper and lower control limits act as the “specification’s limits” in industry quality control. 4. The small biology variation of many hematology parameters made many researchers to established quality control methods based only on patients results. Such suitable parameters are the erythrocyte indexes (MCV, MCHC, MCV) with the smaller biological variation (due not only to biology but mostly to the hematology analyzer’s technology). 5. These attributes of them inspired Brian Bull (an American Hematologist) to establish a new quality control method widely known as “Bull’s algorithm”. 6. Bull’s algorithm (also known as method) detects systematic errors in MCV, MCHC and MCV and consequently in HgB, Hct and RBC. His method is a kind of moving average. Its main idea is to estimate the mean value of the last twenty patients’ values, including in them the mean value of the batch of the previous twenty values. 7. The algorithm itself is a quite complicated equation which eliminates the outliers and estimates the moving average of the last twenty values. Bull’s algorithm has
  • 17. 17 of 27 Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics Web: pathologybasics.wix.com/notes been proved quite effective in detecting small systematic errors (almost 1%) not only in erythrocyte indexes but also in almost all the hematology parameters. It uses all patients’ data without exception. The last fact made Bull’s algorithm the cheapest quality control method in laboratory medicine. 8. Hematology quality control samples last only 20 – 30 days and are very expensive, when, on the other hand, whole blood samples are stable in the refrigerator for 24 hours. 9. These facts led some researchers to find methods which are based on the repetitive analysis of patient samples. These methods are known as “retained patient specimens”. 10. In 1988 Cembrowski (Canadian clinical chemist) established the most effective “retained patient specimens” method. It was based on the repetitive analysis of the same patient samples between two successive days. His method is known as “m/nlim” - “Lim” stands for the quality control limit. It is equal to the double of the standard deviation of the repetitive analysis (2 x SD). - “n” stands for the number of patients’ samples which will be analyzed twice. - “m” stands for the portion of “n” number of samples which is permitted to be out of limits (“lim”). Statistical simulations created by Cembrowski proved the effectiveness of his method. According to him the best combination of “m”, “n” and “lim” is 2, 3, 2 or 2/32s. Concluding, three different methods are in the disposal of the laboratory in order to detect the analytical errors in hematology laboratory. Levey-Jennings detects systematic and random errors. On the contrary, Bull’s algorithm and “retained patient specimens” detect only systematic errors, but they have the advantage of the low cost. Laboratory can choose the best combination of the three 7. Delta check method 1. The AON and Bull’s algorithm detect systematic errors using a group of patients. 2. Delta check method is used for detecting random errors using previous values of individual patients. Delta check = (current value) - ( previous value) Delta check % = (Current value – Previous value) * 100 Current value
  • 18. 18 of 27 Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics Web: pathologybasics.wix.com/notes 3. The delta check values should vary between two limits which are called ‘Delta check limits’. In order to calculate them we must take into consideration the reasons for delta differences – a. Intra individual biological variation of the analyate CV1 b. The analytical variation (Smeas) can be easily estimated by the control values c. The pre-analytical variation (CVpre-analytical)
  • 19. 19 of 27 Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics Web: pathologybasics.wix.com/notes  External Quality Control 1. Basics 1. EQC refers to the process of controlling the accuracy of an analytical method by interlaboratory comparisons. 2. The EQAS co-coordinator prepares a sample pool and sends to the participants of the scheme one or two samples from the same pool. 3. The samples are assayed by the laboratories using the same equipment and reagents as they do in routine for patient determinations. 4. The EQAs coordinator gathers all the results and they group them (peer groupas) according to laboratory analytical methods, analyzers or any other criteria. 5. Then the coordinator calculates the target value (consensus mean) and its total variation (standard deviation) of the laboratories results. 6. If any of the laboratories have values outside of the control limits, then this laboratory is considered ‘out of control’. 7. The out of control laboratories get an indication that there is some problem with their analysis. 2. Understanding EQAS charts and statistics a. Standard Deviation Index 1. Standard Deviation Index calculates the distance of laboratory results from the consensus mean. 2. It quantifies the inaccuracy of the analytical method. 3. It is similar to Z score and calculated by the following formula – SDI = laboratory result – Mean value of peer group Standard deviation of peer group 4. The SDI value of each laboratory can be located on proper SDI chart as follows:
  • 20. 20 of 27 Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics Web: pathologybasics.wix.com/notes 5. Control limits of SDI are zero+/- 2SDI 6. Four rules are usually employed for SDI evaluation: a. 2/51SDI – Two from five successive control limits exceed 1SDI, it is a warning rule b. x̅ 1.5SDI – The mean value of five SDI values exceeds the limits +/- 1.5SDI. It reveals a lasting systematic error. c. 13SDI – One value exceeds 3SDI d. R4SDI – The range between the lower and higher SDI values exceeds +/- 4SDI b. Precision index (PI) and coefficient of variation ratio (CVR) Precision index = Standard deviation of laboratory Standard deviation of peer group CVR = CV of laboratory/month CV of peer group / month
  • 21. 21 of 27 Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics Web: pathologybasics.wix.com/notes c. EQC normal distribution charts 1. More often than not, EQAS coordinators represent graphically the total performance of all the laboratories in a normal distribution chart. 2. This chart is usually a histogram. 3. The EQAS coordinators usually group the laboratories according to their analytical methods and their automated analyzer. Histograms containing two or more peer groups have bars with two or more different colors respectively.
  • 22. 22 of 27 Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics Web: pathologybasics.wix.com/notes d. Youden plot 1. Many EQAS schemes use control samples of different levels in order to check the performance of the analytical methods. 2. Youden plot is a rectangular chart of which the four angles correspond to the control limits of the two control levels (-4SD and +4SD). 3. The acceptable part is the gray zone and the rejected part has different colors. 4. Each dot represents a different laboratory and therefore Youden plot describes the whole EQAS scheme. e. Yundt chart 1. Yundt chart helps to illustrate performance of an analytical method across all its measuring range. 2. It needs atleast three control levels to be plotted. 3. If the line across the dots of three levels is a straight one, then laboratory has very good linearity.
  • 23. 23 of 27 Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics Web: pathologybasics.wix.com/notes 4. If the line across the dots is not straight, the linearity of the method has several issues.
  • 24. 24 of 27 Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics Web: pathologybasics.wix.com/notes  Quality Specifications 1. SQCs goal is to detect random and systematic errors or better, to ensure that total error is lower than total allowable error. 2. aTE depends on certain characteristics of analyate and analytical method like imprecision, bias, biological variation etc. 3. According to these characteristics some analyates need more or less rigorous SQC rules than others. There are two common practices: United states: depending of analytical performance of the method. This practice is followed in US. The laboratories follow CLIA regulations. Europe: aTE depends biological variation of the analyate.
  • 25. 25 of 27 Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics Web: pathologybasics.wix.com/notes  Criteria for acceptable performance CV1 - intra individual variation CV2 – inter individual variation CVw-day – within day variation CVb-day – between days variation CV2 total = CV2 wday + CV2 bday 1st Criterion of acceptable performance CVtotal </= 0.5 CV1 2nd Criteria for acceptable performance CVwday </= 0.25TE% 3rd criteria for acceptable performance CV total </= 0.33 TE% 4th criteria for acceptable performance Bias% < 0.25 CV2 1 + CV2 w 5th criteria for acceptable performance TE% </= k 0.5 CVw + 0.25 CV2 1 + CV2 w For k =1.65 TE% </= 1.65 *RE* SE
  • 26. 26 of 27 Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics Web: pathologybasics.wix.com/notes  APPENDICIES
  • 27. 27 of 27 Notes on Quality control in Clinical laboratories.. By Dr. Ashish V. Jawarkar Contact: pathologybasics@gmail.com... Facebook: www.facebook.com/pathologybasics Web: pathologybasics.wix.com/notes