SlideShare a Scribd company logo
1 of 11
APPENDIX
TABLES AND FIGURES
Table A : Summary Statistics
Table B : Skewness/ Kurtosis Normality Test:
joint
Variable Obs Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2
log(CO2) 188 0.0033 0.2213 9.1 0.0106
joint
Variable Obs Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2
Log(gdp) 180 0.4903 0.0000 21.90 0.0000
joint
Variable Obs Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2
Log(upop.) 206 0.0000 0.7922 17.27 0.0002
joint
Variable Obs Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2
Log(vden.) 57 0.6559 0.5616 0.55 0.7603
joint
Variable Obs Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2
[Log(vden.)]2
57 0.0193 0.9348 5.31 0.0703
Variable Observations Mean Std. Dev. Min Max
CO2 188 5.423822 8.050425 0.0126951 69.15906
Log(CO2) 188 0.6543592 1.712385 -4.366537 4.236409
GDP 180 6678.001 9977.794 86.45013 49996.1
Log(GDP) 180 7.680186 1.60252 4.459568 10.8197
Urban Population 206 55.96155 24.5921 9.72 100
Log(Urban Population) 206 3.90114 0.5396325 2.274186 4.60517
Vehicle Density 57 50.21053 56.43287 3 254
Log(Vehicle Density) 57 3.407637 1.021376 1.098612 5.537334
[Log(Vehicle Density)]2
57 12.6369 7.210388 1.206949 30.66207
Regression Results:
Answer 1
Table 1.1: Regression of logCO2 on logupopulation & logvehicledensity
Source SS Df MS Number of obs = 56
Model 39.2060945 2 19.6030473 F( 2, 53) = 30.73
Residual 33.8075327 53 0.637877975 Prob > F = 0
Total 73.0136272 55 1.32752049 R-squared = 0.537
Adj R-squared = 0.5195
Root MSE = 0.79867
logCO2 Coeff. Std.Err. t P>|t| [95% conf. Interval]
Logupop. 1.69305 0.3757207 4.51 0 .93945 2.44665
Logvden. 0.3391488 0.1278357 2.65 0.011 .0827429 .5955547
_cons -6.763162 1.366831 -4.95 0 -9.504678 -4.021647
Table 1.2: Mean of error terms
Mean Std.Err. [95% Conf. Interval]
e -3.04e-09 0.1047687 -.2099611 .2099611
Table 1.3(a): Correlation matrix of error terms & explanatory variables
e Logupop. Logvden.
e 1
Logupop. 0 1
Logvden. 0 0.5755 1
Table 1.3(b): VIF
Variable VIF 1/VIF
Logupop. 1.5 0.668764
Logvden. 1.5 0.668764
Mean 1.5
Table 1.4: Heteroskedascity Test
Breusch-Pagan / cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of logCO2
chi2(1) = 0.4
Prob > chi2 = 0.4923
*Logupop. = log(urbanpopulation) , logvden. = logvehicledensity
Table 1.5: Misspecification Test
Table 1.6: Normality of error terms
Jarque-Bera normality test: 0.7748 Chi(2) .6788
Jarque-Bera test for Ho: normality
Answer 2
Table 2.1: Regression of logCO2 on log(urbanpopulation), log(vehicledensity) & rich
Source SS df MS Number of obs = 56
Model 49.3314345 4 12.3328586 F( 3, 52) = 26.56
Residual 23.6821927 51 0.464356719 Prob > F = 0
Total 73.0136272 55 1.32752049 R-squared = 0.6756
Adj R-squared = 0.6502
Root MSE = 0.68144
logCO2 coeff. Std.Err. t P>|t| [95% Conf. Interval]
Logupop. 1.120989 0.3562969 3.15 0.003 .4056934 1.836285
Logvden. 2.4028 0.5250698 4.58 0.000 1.348679 3.456922
Rich 0.6663922 0.2399022 2.78 0.008 .1847685 1.148016
(Logvden.)2
-0.3036461 0.0733061 -4.14 0.000 -0.4508142 -.156478
_Cons -7.8182 1.426956 -5.48 0.000 -10.68294 -4.953466
Table 2.2: Mean of error terms
Mean Std.Err. [95% Conf. Interval]
e 1.31e-10 0.876871 -0.1757288 0.1757288
Table 2.3(a): correlation matrix of error terms & explanatory variables
e Logupop. Logvden. Rich (Logvden.)2
e 1
Logupop. -0.0000 1
Logvden. -0.0000 0.5755 1
Rich -0.0000 0.5726 0.4970 1
(Logvden.)2
-0.0000 0.5481 0.9844 0.5030 1
Ramsey RESET test using powers of the fitted values of logCO2
Ho: model has no omitted variables
F(3, 50) = 2.13
Prob > F = 0.1084
Table 2.3(b): VIF
Variable VIF 1/VIF
Logupop. 1.85 0.541369
Logvden. 34.65 0.028857
Rich 1.63 0.614730
(Logvden.)2
33.62 0.029747
Mean 17.94
Table 2.4: Heteroskedascity Test
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
H0: Constant variance
Variables: fitted values of logCO2
chi2(1) = 1.50
Prob > chi2 = 0.2209
Table 2.5: Misspecification Test
Ramsey RESET test using powers of the fitted values of logCO2
Ho: model has no omitted variables
F (3, 48) = 1.88
Prob > F = 0.1460
Table 2.6: Normality of errors
Jarque-Bera normality test: 2.485 Chi(2) 0.2886
Jarque-Bera test for Ho: normality
Answer 3
Table 3.1: Regression of logCO2 on log (urbanpopulation), log (vehicle density), dummies for Asia,
North America, South America, Oceania and Europe
Source SS df MS Number of obs = 56
Model 49.859338 7 7.12276257 F(7, 48) = 14.77
Residual 23.1542892 48 0.482381025 Prob > F = 0
Total 73.0136272 55 1.32752049 R-squared = 0.6829
Adj R-squared = 0.6366
Root MSE = 0.69454
logCO2 Coeff. Std.Err. t P>|t| [95% Conf. Interval]
Logupop. 1.366379 0.3838719 3.56 0.001 0.594553 2.138206
Logvden 0.2830142 0.1232192 2.3 0.026 0.0352654 0.530763
As 0.6984331 0.3815024 1.83 0.073 -0.0686288 1.465495
Na 0.4135816 0.4331655 0.95 0.344 -0.4573561 1.284519
Sa -0.3027211 0.4843232 -0.63 0.535 -1.276518 0.671076
Eu 1.048195 0.3373656 3.11 0.003 0.3698761 1.726514
Oc 1.349596 0.6169087 2.19 0.034 0.1092183 2.589975
_Cons -5.916017 1.290214 -4.59 0 -8.510166 -3.321868
Table 3.2: Mean of error terms
Mean Std. Err. [95% Conf. Interval]
e -2.18e-09 0.0867042 -0.1737592 0.1737592
Table 3.3(a): Correlation matrix of error terms & explanatory variables
e logupop logvden As Na Sa Oc Eu
e 1
Logupop 0 1
Logvden 0 0.5755 1
As 0 0.1218 0.288 1
Na 0 0.0021 0.0548 -0.1548 1
Sa 0 0.0641 -0.2177 -0.1371 -0.0868 1
Oc 0 0.1651 -0.0581 -0.0951 -0.0603 -0.0534 1
Eu 0 0.1452 0.0646 -0.4771 -0.3021 -0.2676 -0.1857 1
As = Asia, Na = North America, Sa = South America, Oc = Oceania, Eu = Europe
Table 3.3(b): VIF
Variable VIF 1/VIF
Eu 3.3 0.30312
As 2.67 0.374955
Logupop 2.06 0.484488
Logvden 1.84 0.544344
Sa 1.81 0.553662
Na 1.77 0.564586
Oc 1.52 0.657223
Mean 2.14
Table 3.4: Heteroskedascity
Table 3.5: Misspecification Test
Table 3.6: Normality of errors
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of logCO2
chi2(1) = 0.50
Prob > chi2 = 0.4801
Ramsey RESET test using powers of the fitted values of logCO2
Ho: model has no omitted variables
F (3, 45) = 2.40
Prob > F = 0.0803
Jarque-Bera normality test: .4714 Chi (2) .79
Jarque-Bera test for Ho: normality
Answer 4
Table 4.1: Regression logCO2, GDP, log(urbanpopulation), log(vehicledensity), Asia, South America,
North America, Europe, Oceania, North America1, South America1, Europeu1, Oceania1, Asia1
Source SS df MS Number of obs = 55
Model 57.6125472 13 4.4317344 F( 13, 41) = 11.8
Residual 15.4006539 41 0.375625705 Prob > F = 0
Total 73.0132011 54 1.35209632 R-squared = 0.7891
Adj R-squared = 0.7222
Root MSE = 0.61288
loglogCO2 Coeff. Std.Err. t P>|t| [95% Conf. Interval]
Logupop. 0.9552699 0.4046581 2.36 0.023 .1380463 1.772494
Logvden. 0.2605639 0.1275214 2.04 0.047 .0030292 .5180985
Asia 1.843853 0.5034198 3.66 0.001 .8271758 2.860529
Europe 1.954247 0.502562 3.89 0 .9393023 2.969191
NA 0.5495919 0.6296615 0.87 0.388 -.7220354 1.821219
Oceania 0.3393984 2.241271 0.15 0.88 -4.186941 4.865737
SA 0.760279 0.8204543 0.93 0.36 -.8966621 2.41722
As1 -0.0004321 0.0001546 -2.8 0.008 -.0007442 -.00012
Eu1 -0.0004167 0.0001592 -2.62 0.012 -.0007383 -.0000952
Na1 -0.0003575 0.0001609 -2.22 0.032 -.0006825 -.0000325
Oc1 -0.0003127 0.0001983 -1.58 0.122 -.0007131 .0000877
Sa1 -0.000426 0.0003179 -1.34 0.188 -.0010681 .000216
Gdp 0.0004284 0.0001609 2.66 0.011 .0001036 .0007533
_Cons -5.178985 1.368565 -3.78 0 -7.942857 -2.415112
Table 4.2: Mean of error terms
Mean Std.Err. [95% Conf. Interval]
e 9.57e-10 0.0720098 -.1443709 .1443709
As1 = Asia*Gdp, Na1 = North America*Gdp, Sa1 = South America*Gdp, Oc1 = Oceania*Gdp, Eu1 = Europe*Gdp
Table 4.3(a): Correlation matrix of error terms & explanatory variables
E Logco
2
Gdp Log-
upop
Log-
vden
As Sa Na Eu Oc Na1 Sa1 Eu1 Oc1 As
1
e 1.0
0
logco2 0.4
6
1
gdp 0.0
0
0.61 1
logupo
p
0.0
0
0.69 0.57 1
logvde
n
0.0
0
0.60 0.46 0.59 1
As 0.0
0
0.12 0.02 0.12 0.30 1
Sa 0.0
0
-0.27 -0.21 0.06 -0.22 -0.14 1
Na 0.0
0
-0.07 0.01 0.04 0.01 -0.14 -0.08 1
Eu 0.0
0
0.37 0.25 0.14 0.08 -0.49 -0.28 -0.28 1
Oc 0.0
0
0.16 0.12 0.16 -0.06 -0.10 -0.05 -0.05 -0.19 1
Na1 0.0
0
0.16 0.25 0.09 0.04 -0.09 -0.05 0.63 -0.17 -0.03 1
Sa1 0.0
0
-0.22 -0.18 0.09 -0.16 -0.12 0.89 -0.07 -0.24 -0.05 -0.04 1
Eu1 0.0
0
0.39 0.75 0.30 0.16 -0.30 -0.17 -0.17 0.62 -0.12 -0.11 -0.15 1
Oc1 0.0
0
0.17 0.13 0.16 -0.07 -0.10 -0.05 -0.05 -0.19 0.98 -0.03 -0.05 -0.11 1
As1 0.0
0
0.25 0.28 0.38 0.59 0.71 -0.10 -0.10 -0.35 -0.07 -0.06 -0.09 -0.22 -0.07 1
Table 4.3(b): VIF
Variable VIF 1/VIF
Gdp 564.93 0.00177
Eu1 520.21 0.001922
As1 156.21 0.006402
Na1 91.75 0.010899
Oc1 74.67 0.013392
Oc 25.77 0.038799
Eu 9.24 0.108197
Sa 6.65 0.150445
Sa1 6.01 0.166453
As 5.94 0.168427
Na 3.91 0.255431
Logupop. 2.93 0.341874
Logvden. 2.5 0.399485
Mean 113.13
Table 4.4: Heteroskedascity
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of logCO2
chi2(1) = 0.01
Prob > chi2 = 0.9078
Table 4.5: Misspecification Test
Ramsey RESET test using powers of the fitted values of logCO2
Ho: model has no omitted variables
F(3, 38) = 2.08
Prob > F = 0.1185
Table 4.6: Normality of errors
Jarque-Bera normality test: 2.886 Chi(2) .2362
Jarque-Bera test for Ho: normality
FIGURES
Figure 1: Plot of predicted errors from the regression of log(CO2) on log(urban population) and
log(vehicle density)
Figure 2: Plot of predicted errors from the regression of log(CO2) on rich dummy, log(urban
population), log(vehicle density) and [log(vehicle density)]2
0
.2.4.6
Density
-2 -1 0 1 2
Residuals
0
.2.4.6
Density
-1 0 1 2
Residuals
Figure 3: Plot of predicted errors from the regression of log(CO2) on continent dummies, log(urban
population) and log(vehicle density)
Figure 4: Plot of predicted errors from the regression of log(CO2) on GDP per capita, continent
dummies, interaction dummies, log(urban population) and log(vehicle density)
0
.2.4.6
Density
-2 -1 0 1 2
Residuals
0
.2.4.6.8
1
Density
-1 -.5 0 .5 1 1.5
Residuals

More Related Content

Viewers also liked

Analisis regresi dan korelasi sederhana
Analisis regresi dan korelasi sederhanaAnalisis regresi dan korelasi sederhana
Analisis regresi dan korelasi sederhanaGandi Wibowo
 
11 nilai-ssr-untuk-uji-duncan
11 nilai-ssr-untuk-uji-duncan11 nilai-ssr-untuk-uji-duncan
11 nilai-ssr-untuk-uji-duncanfywicaksono
 
Contoh soal spss independent dan one way anova
Contoh soal spss independent dan one way anovaContoh soal spss independent dan one way anova
Contoh soal spss independent dan one way anovapika setiawan
 
12 kul dan-responsi-uji-lanjut-multiple-comparison-tests
12 kul dan-responsi-uji-lanjut-multiple-comparison-tests12 kul dan-responsi-uji-lanjut-multiple-comparison-tests
12 kul dan-responsi-uji-lanjut-multiple-comparison-testsardillah15
 
Anova satu jalur (Statistika Matematika)
Anova satu jalur (Statistika Matematika)Anova satu jalur (Statistika Matematika)
Anova satu jalur (Statistika Matematika)Yusrina Fitriani Ns
 
Pengujian one way anova dengan manual dan spss 19
Pengujian one way anova dengan manual dan spss 19Pengujian one way anova dengan manual dan spss 19
Pengujian one way anova dengan manual dan spss 19Sowanto Sanusi
 
METODE PENELITIAN KORELASIONAL
METODE PENELITIAN KORELASIONALMETODE PENELITIAN KORELASIONAL
METODE PENELITIAN KORELASIONALAfrizen Pasaman
 
Power Point Korelasi
Power Point KorelasiPower Point Korelasi
Power Point Korelasiguest027789
 
Panduan Analisis Korelasi Berganda Dengan SPSS
Panduan Analisis Korelasi Berganda Dengan SPSSPanduan Analisis Korelasi Berganda Dengan SPSS
Panduan Analisis Korelasi Berganda Dengan SPSSMuliadin Forester
 
Modul belajar-spss-1
Modul belajar-spss-1Modul belajar-spss-1
Modul belajar-spss-1in_ndah
 
ANALISIS KORELASI DAN REGRESI LINEAR SEDERHANA
ANALISIS KORELASI DAN REGRESI LINEAR SEDERHANAANALISIS KORELASI DAN REGRESI LINEAR SEDERHANA
ANALISIS KORELASI DAN REGRESI LINEAR SEDERHANALucky Maharani Safitri
 
SPSS _ Uji Normalitas Data, Korelasi & Regresi, Validitas & Reabilitas
SPSS _ Uji Normalitas Data, Korelasi & Regresi, Validitas & ReabilitasSPSS _ Uji Normalitas Data, Korelasi & Regresi, Validitas & Reabilitas
SPSS _ Uji Normalitas Data, Korelasi & Regresi, Validitas & ReabilitasSuya Yahya
 
Contoh Soal, Hasil Olahan dan Interpretasi Hasil Olahan SPSS
Contoh Soal, Hasil Olahan dan Interpretasi Hasil Olahan SPSSContoh Soal, Hasil Olahan dan Interpretasi Hasil Olahan SPSS
Contoh Soal, Hasil Olahan dan Interpretasi Hasil Olahan SPSSPropaningtyas Windardini
 
Perhitungan Manual korelasi dan regresi
Perhitungan Manual korelasi dan regresiPerhitungan Manual korelasi dan regresi
Perhitungan Manual korelasi dan regresisaiful ghozi
 
Buku SPSS (Statistika)
Buku SPSS (Statistika)Buku SPSS (Statistika)
Buku SPSS (Statistika)Ester Melinda
 
Panduan Lengkap Analisis Statistika dengan Aplikasi SPSS
Panduan Lengkap Analisis Statistika dengan Aplikasi SPSSPanduan Lengkap Analisis Statistika dengan Aplikasi SPSS
Panduan Lengkap Analisis Statistika dengan Aplikasi SPSSMuliadin Forester
 
STATISTIKA-Regresi dan korelasi
STATISTIKA-Regresi dan korelasiSTATISTIKA-Regresi dan korelasi
STATISTIKA-Regresi dan korelasiYousuf Kurniawan
 

Viewers also liked (20)

Analisis regresi dan korelasi sederhana
Analisis regresi dan korelasi sederhanaAnalisis regresi dan korelasi sederhana
Analisis regresi dan korelasi sederhana
 
11 nilai-ssr-untuk-uji-duncan
11 nilai-ssr-untuk-uji-duncan11 nilai-ssr-untuk-uji-duncan
11 nilai-ssr-untuk-uji-duncan
 
Uji BNT
Uji BNTUji BNT
Uji BNT
 
Contoh soal spss independent dan one way anova
Contoh soal spss independent dan one way anovaContoh soal spss independent dan one way anova
Contoh soal spss independent dan one way anova
 
12 kul dan-responsi-uji-lanjut-multiple-comparison-tests
12 kul dan-responsi-uji-lanjut-multiple-comparison-tests12 kul dan-responsi-uji-lanjut-multiple-comparison-tests
12 kul dan-responsi-uji-lanjut-multiple-comparison-tests
 
Anova satu jalur (Statistika Matematika)
Anova satu jalur (Statistika Matematika)Anova satu jalur (Statistika Matematika)
Anova satu jalur (Statistika Matematika)
 
Pengujian one way anova dengan manual dan spss 19
Pengujian one way anova dengan manual dan spss 19Pengujian one way anova dengan manual dan spss 19
Pengujian one way anova dengan manual dan spss 19
 
METODE PENELITIAN KORELASIONAL
METODE PENELITIAN KORELASIONALMETODE PENELITIAN KORELASIONAL
METODE PENELITIAN KORELASIONAL
 
Power Point Korelasi
Power Point KorelasiPower Point Korelasi
Power Point Korelasi
 
Panduan Analisis Korelasi Berganda Dengan SPSS
Panduan Analisis Korelasi Berganda Dengan SPSSPanduan Analisis Korelasi Berganda Dengan SPSS
Panduan Analisis Korelasi Berganda Dengan SPSS
 
Uji tukey & Uji scheffe
Uji tukey & Uji scheffeUji tukey & Uji scheffe
Uji tukey & Uji scheffe
 
Modul belajar-spss-1
Modul belajar-spss-1Modul belajar-spss-1
Modul belajar-spss-1
 
Panduan aplikasi spss
Panduan aplikasi spssPanduan aplikasi spss
Panduan aplikasi spss
 
ANALISIS KORELASI DAN REGRESI LINEAR SEDERHANA
ANALISIS KORELASI DAN REGRESI LINEAR SEDERHANAANALISIS KORELASI DAN REGRESI LINEAR SEDERHANA
ANALISIS KORELASI DAN REGRESI LINEAR SEDERHANA
 
SPSS _ Uji Normalitas Data, Korelasi & Regresi, Validitas & Reabilitas
SPSS _ Uji Normalitas Data, Korelasi & Regresi, Validitas & ReabilitasSPSS _ Uji Normalitas Data, Korelasi & Regresi, Validitas & Reabilitas
SPSS _ Uji Normalitas Data, Korelasi & Regresi, Validitas & Reabilitas
 
Contoh Soal, Hasil Olahan dan Interpretasi Hasil Olahan SPSS
Contoh Soal, Hasil Olahan dan Interpretasi Hasil Olahan SPSSContoh Soal, Hasil Olahan dan Interpretasi Hasil Olahan SPSS
Contoh Soal, Hasil Olahan dan Interpretasi Hasil Olahan SPSS
 
Perhitungan Manual korelasi dan regresi
Perhitungan Manual korelasi dan regresiPerhitungan Manual korelasi dan regresi
Perhitungan Manual korelasi dan regresi
 
Buku SPSS (Statistika)
Buku SPSS (Statistika)Buku SPSS (Statistika)
Buku SPSS (Statistika)
 
Panduan Lengkap Analisis Statistika dengan Aplikasi SPSS
Panduan Lengkap Analisis Statistika dengan Aplikasi SPSSPanduan Lengkap Analisis Statistika dengan Aplikasi SPSS
Panduan Lengkap Analisis Statistika dengan Aplikasi SPSS
 
STATISTIKA-Regresi dan korelasi
STATISTIKA-Regresi dan korelasiSTATISTIKA-Regresi dan korelasi
STATISTIKA-Regresi dan korelasi
 

Similar to working data(Group5)

Doe with response surface model
Doe with response surface modelDoe with response surface model
Doe with response surface modelMark Reich
 
T.I.M.E. JEE Advanced 2013 Solution Paper2
T.I.M.E. JEE Advanced 2013 Solution Paper2T.I.M.E. JEE Advanced 2013 Solution Paper2
T.I.M.E. JEE Advanced 2013 Solution Paper2askiitians
 
Capítulo 02 considerações estatísticas
Capítulo 02   considerações estatísticasCapítulo 02   considerações estatísticas
Capítulo 02 considerações estatísticasJhayson Carvalho
 
Design of experiment methodology
Design of experiment methodologyDesign of experiment methodology
Design of experiment methodologyCHUN-HAO KUNG
 
Determination of benzotriazoles in water samples by polyethersulfone solid-ph...
Determination of benzotriazoles in water samples by polyethersulfone solid-ph...Determination of benzotriazoles in water samples by polyethersulfone solid-ph...
Determination of benzotriazoles in water samples by polyethersulfone solid-ph...Jorge Casado Agrelo
 
Detector efficiency (1)
Detector efficiency (1)Detector efficiency (1)
Detector efficiency (1)Ash Ayesh
 
Balance de flotacion por el metodo computacional
Balance de flotacion por el metodo computacionalBalance de flotacion por el metodo computacional
Balance de flotacion por el metodo computacionalJavier Garcia Rodriguez
 
Sheet1stateviolentmurdermetrowhitehsgradpovertysnglparviofitviores.docx
Sheet1stateviolentmurdermetrowhitehsgradpovertysnglparviofitviores.docxSheet1stateviolentmurdermetrowhitehsgradpovertysnglparviofitviores.docx
Sheet1stateviolentmurdermetrowhitehsgradpovertysnglparviofitviores.docxlesleyryder69361
 
Further Discrete Random Variables
Further Discrete Random VariablesFurther Discrete Random Variables
Further Discrete Random VariablesJJkedst
 

Similar to working data(Group5) (20)

Ujian ekonometrika
Ujian ekonometrikaUjian ekonometrika
Ujian ekonometrika
 
Lab 5 Report harith edit 8.32pm
Lab 5 Report harith edit 8.32pmLab 5 Report harith edit 8.32pm
Lab 5 Report harith edit 8.32pm
 
Doe with response surface model
Doe with response surface modelDoe with response surface model
Doe with response surface model
 
T.I.M.E. JEE Advanced 2013 Solution Paper2
T.I.M.E. JEE Advanced 2013 Solution Paper2T.I.M.E. JEE Advanced 2013 Solution Paper2
T.I.M.E. JEE Advanced 2013 Solution Paper2
 
Capítulo 02 considerações estatísticas
Capítulo 02   considerações estatísticasCapítulo 02   considerações estatísticas
Capítulo 02 considerações estatísticas
 
Design of experiment methodology
Design of experiment methodologyDesign of experiment methodology
Design of experiment methodology
 
Determination of benzotriazoles in water samples by polyethersulfone solid-ph...
Determination of benzotriazoles in water samples by polyethersulfone solid-ph...Determination of benzotriazoles in water samples by polyethersulfone solid-ph...
Determination of benzotriazoles in water samples by polyethersulfone solid-ph...
 
Ch02
Ch02Ch02
Ch02
 
Detector efficiency (1)
Detector efficiency (1)Detector efficiency (1)
Detector efficiency (1)
 
Balance de flotacion por el metodo computacional
Balance de flotacion por el metodo computacionalBalance de flotacion por el metodo computacional
Balance de flotacion por el metodo computacional
 
om
omom
om
 
Shi20396 ch08
Shi20396 ch08Shi20396 ch08
Shi20396 ch08
 
Central tedancy & correlation project - 2
Central tedancy & correlation project - 2Central tedancy & correlation project - 2
Central tedancy & correlation project - 2
 
Sheet1stateviolentmurdermetrowhitehsgradpovertysnglparviofitviores.docx
Sheet1stateviolentmurdermetrowhitehsgradpovertysnglparviofitviores.docxSheet1stateviolentmurdermetrowhitehsgradpovertysnglparviofitviores.docx
Sheet1stateviolentmurdermetrowhitehsgradpovertysnglparviofitviores.docx
 
Shi20396 ch03
Shi20396 ch03Shi20396 ch03
Shi20396 ch03
 
Jhon
JhonJhon
Jhon
 
GARCH
GARCHGARCH
GARCH
 
Further Discrete Random Variables
Further Discrete Random VariablesFurther Discrete Random Variables
Further Discrete Random Variables
 
Capítulo 03 materiais
Capítulo 03   materiaisCapítulo 03   materiais
Capítulo 03 materiais
 
Lampiran error correction model
Lampiran error correction modelLampiran error correction model
Lampiran error correction model
 

working data(Group5)

  • 1. APPENDIX TABLES AND FIGURES Table A : Summary Statistics Table B : Skewness/ Kurtosis Normality Test: joint Variable Obs Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2 log(CO2) 188 0.0033 0.2213 9.1 0.0106 joint Variable Obs Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2 Log(gdp) 180 0.4903 0.0000 21.90 0.0000 joint Variable Obs Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2 Log(upop.) 206 0.0000 0.7922 17.27 0.0002 joint Variable Obs Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2 Log(vden.) 57 0.6559 0.5616 0.55 0.7603 joint Variable Obs Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2 [Log(vden.)]2 57 0.0193 0.9348 5.31 0.0703 Variable Observations Mean Std. Dev. Min Max CO2 188 5.423822 8.050425 0.0126951 69.15906 Log(CO2) 188 0.6543592 1.712385 -4.366537 4.236409 GDP 180 6678.001 9977.794 86.45013 49996.1 Log(GDP) 180 7.680186 1.60252 4.459568 10.8197 Urban Population 206 55.96155 24.5921 9.72 100 Log(Urban Population) 206 3.90114 0.5396325 2.274186 4.60517 Vehicle Density 57 50.21053 56.43287 3 254 Log(Vehicle Density) 57 3.407637 1.021376 1.098612 5.537334 [Log(Vehicle Density)]2 57 12.6369 7.210388 1.206949 30.66207
  • 2. Regression Results: Answer 1 Table 1.1: Regression of logCO2 on logupopulation & logvehicledensity Source SS Df MS Number of obs = 56 Model 39.2060945 2 19.6030473 F( 2, 53) = 30.73 Residual 33.8075327 53 0.637877975 Prob > F = 0 Total 73.0136272 55 1.32752049 R-squared = 0.537 Adj R-squared = 0.5195 Root MSE = 0.79867 logCO2 Coeff. Std.Err. t P>|t| [95% conf. Interval] Logupop. 1.69305 0.3757207 4.51 0 .93945 2.44665 Logvden. 0.3391488 0.1278357 2.65 0.011 .0827429 .5955547 _cons -6.763162 1.366831 -4.95 0 -9.504678 -4.021647 Table 1.2: Mean of error terms Mean Std.Err. [95% Conf. Interval] e -3.04e-09 0.1047687 -.2099611 .2099611 Table 1.3(a): Correlation matrix of error terms & explanatory variables e Logupop. Logvden. e 1 Logupop. 0 1 Logvden. 0 0.5755 1 Table 1.3(b): VIF Variable VIF 1/VIF Logupop. 1.5 0.668764 Logvden. 1.5 0.668764 Mean 1.5 Table 1.4: Heteroskedascity Test Breusch-Pagan / cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of logCO2 chi2(1) = 0.4 Prob > chi2 = 0.4923 *Logupop. = log(urbanpopulation) , logvden. = logvehicledensity
  • 3. Table 1.5: Misspecification Test Table 1.6: Normality of error terms Jarque-Bera normality test: 0.7748 Chi(2) .6788 Jarque-Bera test for Ho: normality Answer 2 Table 2.1: Regression of logCO2 on log(urbanpopulation), log(vehicledensity) & rich Source SS df MS Number of obs = 56 Model 49.3314345 4 12.3328586 F( 3, 52) = 26.56 Residual 23.6821927 51 0.464356719 Prob > F = 0 Total 73.0136272 55 1.32752049 R-squared = 0.6756 Adj R-squared = 0.6502 Root MSE = 0.68144 logCO2 coeff. Std.Err. t P>|t| [95% Conf. Interval] Logupop. 1.120989 0.3562969 3.15 0.003 .4056934 1.836285 Logvden. 2.4028 0.5250698 4.58 0.000 1.348679 3.456922 Rich 0.6663922 0.2399022 2.78 0.008 .1847685 1.148016 (Logvden.)2 -0.3036461 0.0733061 -4.14 0.000 -0.4508142 -.156478 _Cons -7.8182 1.426956 -5.48 0.000 -10.68294 -4.953466 Table 2.2: Mean of error terms Mean Std.Err. [95% Conf. Interval] e 1.31e-10 0.876871 -0.1757288 0.1757288 Table 2.3(a): correlation matrix of error terms & explanatory variables e Logupop. Logvden. Rich (Logvden.)2 e 1 Logupop. -0.0000 1 Logvden. -0.0000 0.5755 1 Rich -0.0000 0.5726 0.4970 1 (Logvden.)2 -0.0000 0.5481 0.9844 0.5030 1 Ramsey RESET test using powers of the fitted values of logCO2 Ho: model has no omitted variables F(3, 50) = 2.13 Prob > F = 0.1084
  • 4. Table 2.3(b): VIF Variable VIF 1/VIF Logupop. 1.85 0.541369 Logvden. 34.65 0.028857 Rich 1.63 0.614730 (Logvden.)2 33.62 0.029747 Mean 17.94 Table 2.4: Heteroskedascity Test Breusch-Pagan / Cook-Weisberg test for heteroskedasticity H0: Constant variance Variables: fitted values of logCO2 chi2(1) = 1.50 Prob > chi2 = 0.2209 Table 2.5: Misspecification Test Ramsey RESET test using powers of the fitted values of logCO2 Ho: model has no omitted variables F (3, 48) = 1.88 Prob > F = 0.1460 Table 2.6: Normality of errors Jarque-Bera normality test: 2.485 Chi(2) 0.2886 Jarque-Bera test for Ho: normality
  • 5. Answer 3 Table 3.1: Regression of logCO2 on log (urbanpopulation), log (vehicle density), dummies for Asia, North America, South America, Oceania and Europe Source SS df MS Number of obs = 56 Model 49.859338 7 7.12276257 F(7, 48) = 14.77 Residual 23.1542892 48 0.482381025 Prob > F = 0 Total 73.0136272 55 1.32752049 R-squared = 0.6829 Adj R-squared = 0.6366 Root MSE = 0.69454 logCO2 Coeff. Std.Err. t P>|t| [95% Conf. Interval] Logupop. 1.366379 0.3838719 3.56 0.001 0.594553 2.138206 Logvden 0.2830142 0.1232192 2.3 0.026 0.0352654 0.530763 As 0.6984331 0.3815024 1.83 0.073 -0.0686288 1.465495 Na 0.4135816 0.4331655 0.95 0.344 -0.4573561 1.284519 Sa -0.3027211 0.4843232 -0.63 0.535 -1.276518 0.671076 Eu 1.048195 0.3373656 3.11 0.003 0.3698761 1.726514 Oc 1.349596 0.6169087 2.19 0.034 0.1092183 2.589975 _Cons -5.916017 1.290214 -4.59 0 -8.510166 -3.321868 Table 3.2: Mean of error terms Mean Std. Err. [95% Conf. Interval] e -2.18e-09 0.0867042 -0.1737592 0.1737592 Table 3.3(a): Correlation matrix of error terms & explanatory variables e logupop logvden As Na Sa Oc Eu e 1 Logupop 0 1 Logvden 0 0.5755 1 As 0 0.1218 0.288 1 Na 0 0.0021 0.0548 -0.1548 1 Sa 0 0.0641 -0.2177 -0.1371 -0.0868 1 Oc 0 0.1651 -0.0581 -0.0951 -0.0603 -0.0534 1 Eu 0 0.1452 0.0646 -0.4771 -0.3021 -0.2676 -0.1857 1 As = Asia, Na = North America, Sa = South America, Oc = Oceania, Eu = Europe
  • 6. Table 3.3(b): VIF Variable VIF 1/VIF Eu 3.3 0.30312 As 2.67 0.374955 Logupop 2.06 0.484488 Logvden 1.84 0.544344 Sa 1.81 0.553662 Na 1.77 0.564586 Oc 1.52 0.657223 Mean 2.14 Table 3.4: Heteroskedascity Table 3.5: Misspecification Test Table 3.6: Normality of errors Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of logCO2 chi2(1) = 0.50 Prob > chi2 = 0.4801 Ramsey RESET test using powers of the fitted values of logCO2 Ho: model has no omitted variables F (3, 45) = 2.40 Prob > F = 0.0803 Jarque-Bera normality test: .4714 Chi (2) .79 Jarque-Bera test for Ho: normality
  • 7. Answer 4 Table 4.1: Regression logCO2, GDP, log(urbanpopulation), log(vehicledensity), Asia, South America, North America, Europe, Oceania, North America1, South America1, Europeu1, Oceania1, Asia1 Source SS df MS Number of obs = 55 Model 57.6125472 13 4.4317344 F( 13, 41) = 11.8 Residual 15.4006539 41 0.375625705 Prob > F = 0 Total 73.0132011 54 1.35209632 R-squared = 0.7891 Adj R-squared = 0.7222 Root MSE = 0.61288 loglogCO2 Coeff. Std.Err. t P>|t| [95% Conf. Interval] Logupop. 0.9552699 0.4046581 2.36 0.023 .1380463 1.772494 Logvden. 0.2605639 0.1275214 2.04 0.047 .0030292 .5180985 Asia 1.843853 0.5034198 3.66 0.001 .8271758 2.860529 Europe 1.954247 0.502562 3.89 0 .9393023 2.969191 NA 0.5495919 0.6296615 0.87 0.388 -.7220354 1.821219 Oceania 0.3393984 2.241271 0.15 0.88 -4.186941 4.865737 SA 0.760279 0.8204543 0.93 0.36 -.8966621 2.41722 As1 -0.0004321 0.0001546 -2.8 0.008 -.0007442 -.00012 Eu1 -0.0004167 0.0001592 -2.62 0.012 -.0007383 -.0000952 Na1 -0.0003575 0.0001609 -2.22 0.032 -.0006825 -.0000325 Oc1 -0.0003127 0.0001983 -1.58 0.122 -.0007131 .0000877 Sa1 -0.000426 0.0003179 -1.34 0.188 -.0010681 .000216 Gdp 0.0004284 0.0001609 2.66 0.011 .0001036 .0007533 _Cons -5.178985 1.368565 -3.78 0 -7.942857 -2.415112 Table 4.2: Mean of error terms Mean Std.Err. [95% Conf. Interval] e 9.57e-10 0.0720098 -.1443709 .1443709 As1 = Asia*Gdp, Na1 = North America*Gdp, Sa1 = South America*Gdp, Oc1 = Oceania*Gdp, Eu1 = Europe*Gdp
  • 8. Table 4.3(a): Correlation matrix of error terms & explanatory variables E Logco 2 Gdp Log- upop Log- vden As Sa Na Eu Oc Na1 Sa1 Eu1 Oc1 As 1 e 1.0 0 logco2 0.4 6 1 gdp 0.0 0 0.61 1 logupo p 0.0 0 0.69 0.57 1 logvde n 0.0 0 0.60 0.46 0.59 1 As 0.0 0 0.12 0.02 0.12 0.30 1 Sa 0.0 0 -0.27 -0.21 0.06 -0.22 -0.14 1 Na 0.0 0 -0.07 0.01 0.04 0.01 -0.14 -0.08 1 Eu 0.0 0 0.37 0.25 0.14 0.08 -0.49 -0.28 -0.28 1 Oc 0.0 0 0.16 0.12 0.16 -0.06 -0.10 -0.05 -0.05 -0.19 1 Na1 0.0 0 0.16 0.25 0.09 0.04 -0.09 -0.05 0.63 -0.17 -0.03 1 Sa1 0.0 0 -0.22 -0.18 0.09 -0.16 -0.12 0.89 -0.07 -0.24 -0.05 -0.04 1 Eu1 0.0 0 0.39 0.75 0.30 0.16 -0.30 -0.17 -0.17 0.62 -0.12 -0.11 -0.15 1 Oc1 0.0 0 0.17 0.13 0.16 -0.07 -0.10 -0.05 -0.05 -0.19 0.98 -0.03 -0.05 -0.11 1 As1 0.0 0 0.25 0.28 0.38 0.59 0.71 -0.10 -0.10 -0.35 -0.07 -0.06 -0.09 -0.22 -0.07 1
  • 9. Table 4.3(b): VIF Variable VIF 1/VIF Gdp 564.93 0.00177 Eu1 520.21 0.001922 As1 156.21 0.006402 Na1 91.75 0.010899 Oc1 74.67 0.013392 Oc 25.77 0.038799 Eu 9.24 0.108197 Sa 6.65 0.150445 Sa1 6.01 0.166453 As 5.94 0.168427 Na 3.91 0.255431 Logupop. 2.93 0.341874 Logvden. 2.5 0.399485 Mean 113.13 Table 4.4: Heteroskedascity Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of logCO2 chi2(1) = 0.01 Prob > chi2 = 0.9078 Table 4.5: Misspecification Test Ramsey RESET test using powers of the fitted values of logCO2 Ho: model has no omitted variables F(3, 38) = 2.08 Prob > F = 0.1185 Table 4.6: Normality of errors Jarque-Bera normality test: 2.886 Chi(2) .2362 Jarque-Bera test for Ho: normality
  • 10. FIGURES Figure 1: Plot of predicted errors from the regression of log(CO2) on log(urban population) and log(vehicle density) Figure 2: Plot of predicted errors from the regression of log(CO2) on rich dummy, log(urban population), log(vehicle density) and [log(vehicle density)]2 0 .2.4.6 Density -2 -1 0 1 2 Residuals 0 .2.4.6 Density -1 0 1 2 Residuals
  • 11. Figure 3: Plot of predicted errors from the regression of log(CO2) on continent dummies, log(urban population) and log(vehicle density) Figure 4: Plot of predicted errors from the regression of log(CO2) on GDP per capita, continent dummies, interaction dummies, log(urban population) and log(vehicle density) 0 .2.4.6 Density -2 -1 0 1 2 Residuals 0 .2.4.6.8 1 Density -1 -.5 0 .5 1 1.5 Residuals