SlideShare a Scribd company logo
1 of 19
THE UNIVERSITY OF BRITISH COLUMBIA
DEPARTMENT OF MATERIALS ENGINEERING
MTRL 359
LABORATORY 5: LEACHING
MUHAMMAD HARITH MOHD FAUZI
18204115
Introduction
Leaching is one of the core processes in hydrometallurgy. The purpose is to dissolve
minerals of interest from an ore or concentrate in a suitable “lixiviant”. Once a solution of the
metal(s) of interest is obtained it may be purified and treated to recover pure metal.
Results and Data
PbS screen size: 200 -230micron mesh size
Particle size: 63-75 micrometers
 Experimental Conditions
Experiment
Weight of
FeCl3.6H2O (g)
Leach solution
volume (ml)
[Fe+3]
(mg/L)
Temperature
PbS (oC)
Weight PbS
used (g)
1 21.9 1000 0.187 21 1.01
2 21.9 1000 0.187 30 0.98
3 21.9 1000 0.187 40 1.05
4 24.5 1000 0.130 21 1.02
Table 1
 AA Calibration Data
[Pb] ppm Vol. flask mL
Vol. 100 ppm
Pb standard mL
Required HCl
g/L
Vol. 200 g/L
HCl mL
Blank 100.0 0 10 5
5 100.0 5 10 5
10 100.0 10 10 5
20 100.0 20 10 5
25 100.0 25 10 5
Table 2
Standard (mg/L) Absorbance
0 0.0004
5 0.0849
10 0.1687
20 0.3203
25 0.3941
Table 3
Graph 1
 PbS Analysis Data
Weight PbS used 0.1003g
Digested PbS solution volume 100ml
Volumetric flask 250ml
Dilution factor 50
Pb AA result 17.266 mg/L
[Pb] 0.8633 mg/L
Weight% of Pb 86.1
Theoretical weight% Pb 86.6
Table 4
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0 5 10 15 20 25 30
Absorbance
[Pb]
Absorbancevs [Pb]
 Leaching Samples Analytical Data
Sample ID
[exp. #-time min)]
Diluction
factor
AA result [Pb]
(mg/L)
Undiluted [Pb]
(mg/L)
Corrected [Pb]
in samples (g/L)
1-0
25
0.033 0.825 0.000
1-5 3.637 90.925 0.090
1-15 5.486 137.15 0.136
1-25 8.399 209.975 0.209
1-35
50
6.54 327 0.326
1-45 8.477 423.85 0.423
1-60 10.717 535.85 0.535
1-80 13.278 663.9 0.663
Table 5
Sample ID
[exp. #-time min)]
Diluction
factor
AA result [Pb]
(mg/L)
Undiluted [Pb]
(mg/L)
Corrected [Pb]
in samples (g/L)
2-0
25
0.399 9.975 0.000
2-5 8.559 213.975 0.204
2-11 13.257 331.425 0.321
2-20
50
11.97 598.5 0.589
2-30 13.836 691.8 0.682
2-45 16.208 810.4 0.800
2-60 17.351 867.55 0.858
2-80 17.535 876.75 0.867
Table 6
Sample ID
[exp. #-time min)]
Diluction
factor
AA result [Pb]
(mg/L)
Undiluted [Pb]
(mg/L)
Corrected [Pb]
in samples (g/L)
3-0
25
0.805 20.125 0.000
3-3 24.269 606.725 0.587
3-6.5 19.84 496 0.476
3-10
50
15.413 770.65 0.751
3-15 17.266 863.3 0.843
3-25 17.721 886.05 0.866
3-35 17.817 890.85 0.871
3-45 17.758 887.9 0.868
Table 7
Sample ID
[exp. #-time min)]
Diluction
factor
AA result [Pb]
(mg/L)
Undiluted [Pb]
(mg/L)
Corrected [Pb]
in samples (g/L)
4-0
25
0 0 0.000
4-5.5 4.535 113.375 0.113
4-15 8.142 203.55 0.204
4-25 11.596 289.9 0.290
4-35
50
7.506 375.3 0.375
4-45 9.2 460 0.460
4-60 11.193 559.65 0.560
4-80 13.063 653.15 0.653
Table 8
 Mass of Pb Leached and α Values
Experiment 1
Time
(min)
Sample vol. (mL)
Undiluted [Pb]
(g/L)
Corrected
[Pb] (g/L)
Cumulative mass
Pb in samples (g)
0
7
3.30E-05 0.000 0.000000
5 3.64E-03 0.090 0.000631
15 5.49E-03 0.136 0.001585
25 8.40E-03 0.209 0.002418
35 6.54E-03 0.326 0.003747
45 8.48E-03 0.423 0.005244
60 1.07E-02 0.535 0.006706
80 1.33E-02 0.663 0.008387
Table 9
Experiment 2
Time
(min)
Sample vol. (mL)
Undiluted [Pb]
(g/L)
Corrected
[Pb] (g/L)
Cumulative mass
Pb in samples (g)
0
7
3.99E-04 0.000 0.000000
5 8.56E-03 0.204 0.001428
11 1.33E-02 0.321 0.003678
20 1.20E-02 0.589 0.006370
30 1.38E-02 0.682 0.008892
45 1.62E-02 0.800 0.010376
60 1.74E-02 0.858 0.011606
80 1.75E-02 0.867 0.012070
Table 10
Experiment 3
Time
(min)
Sample vol. (mL)
Undiluted [Pb]
(g/L)
Corrected [Pb]
(g/L)
Cumulative
mass Pb in
samples (g)
0
7
8.05E-04 0.000 0.000000
3 2.43E-02 0.587 0.004106
6.5 1.98E-02 0.476 0.007437
10 1.54E-02 0.751 0.008585
15 1.73E-02 0.843 0.011156
25 1.77E-02 0.866 0.011964
35 1.78E-02 0.871 0.012157
45 1.78E-02 0.868 0.012170
Table 11
Experiment 4
Time
(min)
Sample vol. (mL)
Undiluted [Pb]
(g/L)
Corrected [Pb]
(g/L)
Cumulative
mass Pb in
samples (g)
0
7
0.00E+00 0.000 0.000000
5.5 4.54E-03 0.113 0.000794
15 8.14E-03 0.204 0.002218
25 1.16E-02 0.290 0.003454
35 7.51E-03 0.375 0.004656
45 9.20E-03 0.460 0.005847
60 1.12E-02 0.560 0.007138
80 1.31E-02 0.653 0.008490
Table 12
Experiment 1
Time
(min)
Sample vol. (ml)
Cumulative mass
Pb in samples (g)
Leach vol.
remaining (ml)
Mass Pb in the
leach solution (g)
0
7
0.000000 993 0.0000
5 0.000631 986 0.0895
15 0.001585 979 0.1350
25 0.002418 972 0.2057
35 0.003747 965 0.3185
45 0.005244 958 0.4105
60 0.006706 951 0.5155
80 0.008387 944 0.6343
Table 13
Experiment 2
Time
(min)
Sample vol. (mL)
Cumulative mass
Pb in samples (g)
Leach vol.
remaining (ml)
Mass Pb in the
leach solution (g)
0
7
0.000000 993 0.0000
5 0.001428 986 0.2026
11 0.003678 979 0.3184
20 0.006370 972 0.5784
30 0.008892 965 0.6669
45 0.010376 958 0.7772
60 0.011606 951 0.8272
80 0.012070 944 0.8303
Table 14
Experiment 3
Time
(min)
Sample vol. (mL)
Cumulative mass
Pb in samples (g)
Leach vol.
remaining (ml)
Mass Pb in the
leach solution (g)
0
7
0.000000 993 0.0000
3 0.004106 986 0.5825
6.5 0.007437 979 0.4733
10 0.008585 972 0.7381
15 0.011156 965 0.8248
25 0.011964 958 0.8415
35 0.012157 951 0.8402
45 0.012170 944 0.8313
Table 15
Experiment 4
Time
(min)
Sample vol. (mL)
Cumulative mass
Pb in samples (g)
Leach vol.
remaining (ml)
Mass Pb in the
leach solution (g)
0
7
0.000000 993 0.0000
5.5 0.000794 986 0.1126
15 0.002218 979 0.2015
25 0.003454 972 0.2852
35 0.004656 965 0.3668
45 0.005847 958 0.4465
60 0.007138 951 0.5394
80 0.008490 944 0.6251
Table16
Experiment 1
Time
(min)
Total mass Pb
leached (g)
α 1-(1-α)1/3 1-2/3 α – (1-α)2/3
0 0.0000 0.0000 0 0.0000
5 0.0895 0.1092 0.037826113 0.0054
15 0.2245 0.1649 0.058295516 0.0144
25 0.4302 0.2512 0.091912365 0.0573
35 0.7487 0.3889 0.151392776 0.0828
45 1.1592 0.5012 0.206942471 0.1281
60 1.6748 0.6294 0.281727687 0.1565
80 2.3091 0.7745 0.39133154 0.1585
Mass PbS used (g) 1.01
Mass Pb added (g) 0.81902
Table 17
Experiment 2
Time
(min)
Total mass Pb
leached (g)
α 1-(1-α)1/3 1-2/3 α – (1-α)2/3
0 0.0000 0.0000 0 0.0000
5 0.2026 0.2104 0.07571907 0.0726
11 0.5209 0.3307 0.125256438 0.0433
20 1.0994 0.6007 0.263650047 0.1427
30 1.7662 0.6926 0.325102985 0.2135
45 2.5434 0.8072 0.422281921 0.2337
60 3.3706 0.8591 0.479625371 0.2320
80 4.2009 0.8624 0.483679262 0.2210
Mass PbS used (g) 0.98
Mass Pb added (g) 0.96283
Table 18
Experiment 3
Time
(min)
Total mass Pb
leached (g)
α 1-(1-α)1/3 1-2/3 α – (1-α)2/3
0 0.0000 0.0000 0 0.0000
3 0.5825 0.6592 0.301514377 0.0021
6.5 1.0558 0.5357 0.225638787 0.0070
10 1.7939 0.8353 0.451872826 0.0148
15 2.6187 0.9335 0.594791191 0.0259
25 3.4602 0.9524 0.637504283 0.0410
35 4.3005 0.9509 0.633799175 0.0653
45 5.1318 0.9409 0.610384899 0.0968
Mass PbS used (g) 1.05
Mass Pb added (g) 0.88361
Table 19
Experiment 4
Time
(min)
Total mass Pb
leached (g)
α 1-(1-α)1/3 1-2/3 α – (1-α)2/3
0 0.0000 0.0000 0 0
5.5 0.1126 0.1321 0.046117414 0.001741873
15 0.3141 0.2364 0.085970339 0.006278368
25 0.5993 0.3346 0.126978907 0.016484711
35 0.9661 0.4303 0.171020643 0.034844932
45 1.4127 0.5238 0.219111021 0.053493991
60 1.9520 0.6327 0.283865835 0.086688913
80 2.5771 0.7333 0.35628571 0.130044604
Mass PbS used (g) 1.02
Mass Pb added (g) 0.883176
Table 20
Discussion
1. (i) Plot the following
 Leach solution [Pb] vs Time
Graph 2 Test 1, 2, and 3
0
200
400
600
800
1000
1200
0 10 20 30 40 50 60 70 80 90
[Pb](mg/L)
Time (min)
Leach solution [Pb] versus Time
Test 1
Test 2
Test 3
Graph 3 Test 1 and 4
o 1-(1-α)1/3 versus Time
0
100
200
300
400
500
600
700
800
0 10 20 30 40 50 60 70 80 90
[Pb](mg/L)
Time (min)
Leach solution [Pb] versus Time
Test 1
Test 4
Graph 4
 1-(2/3)α – (1-α)2/3 versus Time
Graph 5 Test
y = 0.0048x - 0.0073
y = 0.0077x
y = 0.0193x
y = 0.0044x + 0.0157
-0.1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0 10 20 30 40 50 60 70 80 90
1-(1-α)1/3
Time (min)
1-(1-α)1/3 versus time
Test 1
Test 2
Test 3
Test 4
Linear (Test 1)
Linear (Test 2)
Linear (Test 3)
Linear (Test 4)
y = 9E-09x4 - 2E-06x3 + 0.0002x2 - 0.0009x +
0.0019
0
0.05
0.1
0.15
0.2
0 20 40 60 80 100
1-(2/3)α-(1-α)2/3
Time (min)
1-(2/3)α - (1-α)2/3 versus
Time
Series1
Poly. (Series1)
Graph 6 Test 2
Graph 7 Test 3
Graph 8 Test 4
y = 5E-08x4 - 7E-06x3 + 0.0002x2 + 0.0038x +
0.0121
0
0.05
0.1
0.15
0.2
0.25
0.3
0 20 40 60 80 100
1-(2/3)α-(1-α)2/3
Time (min)
1-(2/3)α - (1-α)2/3 versus Time
Series1
Poly. (Series1)
y = 3E-08x4 - 3E-06x3 + 7E-05x2 + 0.001x -
0.0008
-0.05
0
0.05
0.1
0.15
0 10 20 30 40 50
1-(2/3)α-(1-α)2/3
Time (min)
1-(2/3)α - (1-α)2/3 versus Time
Series1
Poly. (Series1)
y = 1E-05x2 + 0.0005x - 0.0013
-0.02
0
0.02
0.04
0.06
0.08
0.1
0.12
0 20 40 60 80 100
1-(2/3)α-(1-α)2/3
Time (min)
1-(2/3)α - (1-α)2/3 versus Time
Series1
Poly. (Series1)
The alpha function should not be constrained to the origin.
(ii) Leaching completion
From the Pb analysis data, we can predict that the leaching of PbS did go to completion in
experiment 2 and 3. This is because the last 2-3 samples have the roughly the same [Pb] which
indicates that all the PbS has reacted before the end of the test.
However, the condition of monosized particles is quite false and the simple leaching model thus
fails. This affects the curve of the concentration versus time plot. This can lead to the wrong
extraction of information from the graph. A good model should produce a smooth curve that
close to the line of best fit for any types of equation of line.
Samples that should be omitted from the alpha function plots.
 Experiment 2
Time (min) Undiluted [Pb] (mg/L)
45 810.4
60 867.55
80 876.75
Table 21
 Experiment 3
Time (min) Undiluted [Pb] (mg/L)
25 886.05
35 890.85
45 887.9
Table 22
These are some of the points that should be omitted since the undiluted concentration are roughly
the same the same towards the end reaction. This indicates that all the PbS has fully reacted at
the end of the experiment.
Based on the leaching results, the function 1-(1-α)1/3 best fit the leaching results. This is because
the values from the function produce curves that are closer to linear line of best fit compares to
another function. Thus, the function 1-(1-α)1/3 is more reliable in showing the experimental data
obtained from the experiments.
2. (i) Calculate rate constants.
The rate constant is equal to the slope of the linear best fit of the chosen function.
Graph 9
Summary of rate constant for each experiment.
Experiment Rate constant (slope), k
1 0.0044
2 0.0077
3 0.0193
4 0.0048
Table 23
y = 0.0048x - 0.0073
y = 0.0077x
y = 0.0193x
y = 0.0044x + 0.0157
-0.1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0 10 20 30 40 50 60 70 80 90
1-(1-α)1/3
Time (min)
1-(1-α)1/3 versus time
Test 1
Test 2
Test 3
Test 4
Linear (Test 1)
Linear (Test 2)
Linear (Test 3)
Linear (Test 4)
(ii) Plot the natural logarithm of the rate constants versus 1/T.
Graph 10
Calculation of pre-exponential factor A
ln 𝑘 = ln 𝐴 −
𝐸𝑎
𝑅
(
1
𝑇
)
 From this formula, ln A is the y-intercept. Thus to find the value for A, equate it with the
y- intercept from the line equation.
ln 𝐴 = 18.952
𝐴 = 𝑒18.952
𝐴 = 1.701 ∗ 108
min^(−1 )
Calculation of activation energy in kJ/mol.
 In this case, the activation energy is equal to the slope of the line equation.
𝐸𝑎
𝑅
= 7195.8
𝐸𝑎 = 7195.8 ∗ 8.314
y = -7195.8x + 18.952
-6
-5
-4
-3
-2
-1
0
0.00315 0.0032 0.00325 0.0033 0.00335 0.0034 0.00345
lnk
1/T
Plot of natural logarithm of K vs (1/T)
ln (k)
Linear (ln (k))
= 59825.88
𝐽
𝑚𝑜𝑙
= 59.826
𝑘𝐽
𝑚𝑜𝑙
(iii) The activation energy is consistent with the chosen leaching model. The activation
energy of chemical reaction is between the range of 42 -105 kJ/mole. Our activation
energy falls within this range.
3. (i) Proving.
𝑘 𝑠 =
𝑉𝑚 𝑘′ 𝑓(𝐶 𝐵)
𝑟𝑜
Since we are assuming that Vm and CB are constants, we eliminate these from the equation and
get:
𝑘 𝑠 =
𝑘′
𝑟𝑜
Rate constant for a PbS particle of initial size ro1:
𝑘 𝑠1 =
𝑘′
𝑟𝑜1
𝑘′
= 𝑘 𝑠1 ∗ 𝑟𝑜1
Rate constant for a PbS particle of initial size ro2:
𝑘 𝑠2 =
𝑘′
𝑟𝑜2
Therefore, substitute for k’ and get
𝑘 𝑠2 =
𝑘 𝑠1 ∗ 𝑟𝑜1
𝑟𝑜2
( 𝑠ℎ𝑜𝑤𝑛)
(ii) Value of ks at 32 degree Celcius.
(ii) Value of ks at 32 degree Celsius.
Using the equation [27] and our own data values,
𝑘 𝑠 = 𝐴𝑒−𝐸𝑎/𝑅𝑇
𝑘 𝑠 = (1.701 ∗ 108
)𝑒
(
−59825.884
8.314∗(32+273)
)
𝑘 𝑠 = 0.009649
(iii) Time taken
From equation 21:
𝑡 =
[1 − (1 − 𝛼)1 3⁄
] ∗ 𝑟𝑜
𝑉𝑚 𝑘′ 𝑓(𝐶 𝐵
𝑜)
=
[1 − (1 − 𝛼)1 3⁄
]
𝑘 𝑠2
Substituting equation from part i),
𝑘 𝑠2 =
𝑘 𝑠1 ∗ 𝑟𝑜1
𝑟𝑜2
𝑘 𝑠1 = 𝐴𝑒−𝐸𝑎/𝑅𝑇
𝑘 𝑠1 = (1.701 ∗ 108) 𝑒−(59825 .884 )/(8.314∗(28+273))
𝑘 𝑠1 = 0.0070522
To find ro1
𝑟𝑜1 =
0.00004
2
= 0.00002𝑚
And ro2,
𝑟𝑜2 =
0.000063 + 0.000075
4
= 0.0000345𝑚
Coming back to the other equation,
𝑘 𝑠2 =
𝑘 𝑠1 ∗ 𝑟𝑜1
𝑟𝑜2
𝑘 𝑠2 =
0.0070522∗ 0.00002
0.0000345
= 0.00408
Based on equation:
𝑡 =
[1 − (1 − 𝛼)1 3⁄
]
𝑘 𝑠2
For α = 0.95,
𝑡 =
[1 − (1 − 0.95)1 3⁄
]
0.00408
= 154.8 𝑚𝑖𝑛
For α = 0.99,
𝑡 =
[1 − (1 − 0.99)1 3⁄
]
0.00408
= 192.29 𝑚𝑖𝑛

More Related Content

What's hot

Material & Energy Balance for Distillation
Material & Energy Balance for DistillationMaterial & Energy Balance for Distillation
Material & Energy Balance for DistillationPankaj Khandelwal
 
Single Phase Gas Flow Correlations
Single Phase Gas Flow CorrelationsSingle Phase Gas Flow Correlations
Single Phase Gas Flow CorrelationsVijay Sarathy
 
Line Sizing presentation on Types and governing Equations.
Line Sizing presentation on Types and governing Equations.Line Sizing presentation on Types and governing Equations.
Line Sizing presentation on Types and governing Equations.Hassan ElBanhawi
 
PSV Calculation and Philosophy.pdf
PSV Calculation and Philosophy.pdfPSV Calculation and Philosophy.pdf
PSV Calculation and Philosophy.pdfmitesh979351
 
Affinity Laws for Variable Speed Centrifugal Pumps
Affinity Laws for Variable Speed Centrifugal PumpsAffinity Laws for Variable Speed Centrifugal Pumps
Affinity Laws for Variable Speed Centrifugal PumpsVijay Sarathy
 
Large scale energy recovery ppt HRSG
Large scale energy recovery ppt HRSGLarge scale energy recovery ppt HRSG
Large scale energy recovery ppt HRSGlorenzo Monasca
 
HTRI PRESENTATION.pdf
HTRI PRESENTATION.pdfHTRI PRESENTATION.pdf
HTRI PRESENTATION.pdfssuserbd5784
 
Flow assurance using AspenHYSYS Hydraulics
Flow assurance using AspenHYSYS HydraulicsFlow assurance using AspenHYSYS Hydraulics
Flow assurance using AspenHYSYS HydraulicsProcess Ecology Inc
 
Module 1 - Introduction to Aspen HYSYS
Module 1  - Introduction to Aspen HYSYSModule 1  - Introduction to Aspen HYSYS
Module 1 - Introduction to Aspen HYSYSriezqaandika
 
Filtration
FiltrationFiltration
Filtrationsjykmuch
 
431816062-IPR-and-FIPR-pdf.pdf
431816062-IPR-and-FIPR-pdf.pdf431816062-IPR-and-FIPR-pdf.pdf
431816062-IPR-and-FIPR-pdf.pdfMohanadHussien2
 
Sizing of relief valves for supercritical fluids
Sizing of relief valves for supercritical fluidsSizing of relief valves for supercritical fluids
Sizing of relief valves for supercritical fluidsAlexis Torreele
 
Project mass transfer
Project mass transferProject mass transfer
Project mass transferteklay godefa
 

What's hot (20)

Material & Energy Balance for Distillation
Material & Energy Balance for DistillationMaterial & Energy Balance for Distillation
Material & Energy Balance for Distillation
 
Pellet making and quality assurance
Pellet making and quality assurancePellet making and quality assurance
Pellet making and quality assurance
 
Single Phase Gas Flow Correlations
Single Phase Gas Flow CorrelationsSingle Phase Gas Flow Correlations
Single Phase Gas Flow Correlations
 
Line Sizing presentation on Types and governing Equations.
Line Sizing presentation on Types and governing Equations.Line Sizing presentation on Types and governing Equations.
Line Sizing presentation on Types and governing Equations.
 
PSV Calculation and Philosophy.pdf
PSV Calculation and Philosophy.pdfPSV Calculation and Philosophy.pdf
PSV Calculation and Philosophy.pdf
 
Affinity Laws for Variable Speed Centrifugal Pumps
Affinity Laws for Variable Speed Centrifugal PumpsAffinity Laws for Variable Speed Centrifugal Pumps
Affinity Laws for Variable Speed Centrifugal Pumps
 
Lo 2 b factors
Lo 2 b   factorsLo 2 b   factors
Lo 2 b factors
 
Technic Magazine issue 326 ( วารสารเทคนิค ฉบับ 326 )
Technic Magazine issue 326 ( วารสารเทคนิค ฉบับ 326 )Technic Magazine issue 326 ( วารสารเทคนิค ฉบับ 326 )
Technic Magazine issue 326 ( วารสารเทคนิค ฉบับ 326 )
 
CCR PFD-2
CCR PFD-2CCR PFD-2
CCR PFD-2
 
Large scale energy recovery ppt HRSG
Large scale energy recovery ppt HRSGLarge scale energy recovery ppt HRSG
Large scale energy recovery ppt HRSG
 
HTRI PRESENTATION.pdf
HTRI PRESENTATION.pdfHTRI PRESENTATION.pdf
HTRI PRESENTATION.pdf
 
GBH Enterprises Overview
GBH Enterprises OverviewGBH Enterprises Overview
GBH Enterprises Overview
 
Flow assurance using AspenHYSYS Hydraulics
Flow assurance using AspenHYSYS HydraulicsFlow assurance using AspenHYSYS Hydraulics
Flow assurance using AspenHYSYS Hydraulics
 
Distillation
DistillationDistillation
Distillation
 
Who Owns the Oil? The How and Why of Unitization
Who Owns the Oil? The How and Why of UnitizationWho Owns the Oil? The How and Why of Unitization
Who Owns the Oil? The How and Why of Unitization
 
Module 1 - Introduction to Aspen HYSYS
Module 1  - Introduction to Aspen HYSYSModule 1  - Introduction to Aspen HYSYS
Module 1 - Introduction to Aspen HYSYS
 
Filtration
FiltrationFiltration
Filtration
 
431816062-IPR-and-FIPR-pdf.pdf
431816062-IPR-and-FIPR-pdf.pdf431816062-IPR-and-FIPR-pdf.pdf
431816062-IPR-and-FIPR-pdf.pdf
 
Sizing of relief valves for supercritical fluids
Sizing of relief valves for supercritical fluidsSizing of relief valves for supercritical fluids
Sizing of relief valves for supercritical fluids
 
Project mass transfer
Project mass transferProject mass transfer
Project mass transfer
 

Similar to Lab 5 Report harith edit 8.32pm

working data(Group5)
working data(Group5)working data(Group5)
working data(Group5)Kritika Gupta
 
Feasibility studies of geopolymer as a coating material
Feasibility studies of geopolymer as a coating materialFeasibility studies of geopolymer as a coating material
Feasibility studies of geopolymer as a coating materialzerohead
 
Hydrogen Peroxide- Review of its Role as Part of a Mine Drainage Treatment St...
Hydrogen Peroxide- Review of its Role as Part of a Mine Drainage Treatment St...Hydrogen Peroxide- Review of its Role as Part of a Mine Drainage Treatment St...
Hydrogen Peroxide- Review of its Role as Part of a Mine Drainage Treatment St...Michael Hewitt, GISP
 
Color Removal
Color RemovalColor Removal
Color Removalmusry88
 
water quality assessment of groundwater
water quality assessment of groundwater water quality assessment of groundwater
water quality assessment of groundwater Rakesh Saini
 
A detailed study of Transition Metal Complexes of a Schiff base with its Phys...
A detailed study of Transition Metal Complexes of a Schiff base with its Phys...A detailed study of Transition Metal Complexes of a Schiff base with its Phys...
A detailed study of Transition Metal Complexes of a Schiff base with its Phys...Abhishek Ghara
 
Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...
Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...
Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...Shimadzu Scientific Instruments
 
Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...
Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...
Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...Tufan Ghosh
 
Balance de flotacion por el metodo computacional
Balance de flotacion por el metodo computacionalBalance de flotacion por el metodo computacional
Balance de flotacion por el metodo computacionalJavier Garcia Rodriguez
 
Determination of benzotriazoles in water samples by polyethersulfone solid-ph...
Determination of benzotriazoles in water samples by polyethersulfone solid-ph...Determination of benzotriazoles in water samples by polyethersulfone solid-ph...
Determination of benzotriazoles in water samples by polyethersulfone solid-ph...Jorge Casado Agrelo
 
Trace metal analysis in sediments using aas and asv techniques
Trace metal analysis in sediments using aas and asv techniquesTrace metal analysis in sediments using aas and asv techniques
Trace metal analysis in sediments using aas and asv techniquesAwad Albalwi
 
Poster-mAbChem-ppt file
Poster-mAbChem-ppt filePoster-mAbChem-ppt file
Poster-mAbChem-ppt fileRongliang Lou
 

Similar to Lab 5 Report harith edit 8.32pm (20)

working data(Group5)
working data(Group5)working data(Group5)
working data(Group5)
 
Feasibility studies of geopolymer as a coating material
Feasibility studies of geopolymer as a coating materialFeasibility studies of geopolymer as a coating material
Feasibility studies of geopolymer as a coating material
 
Hydrogen Peroxide- Review of its Role as Part of a Mine Drainage Treatment St...
Hydrogen Peroxide- Review of its Role as Part of a Mine Drainage Treatment St...Hydrogen Peroxide- Review of its Role as Part of a Mine Drainage Treatment St...
Hydrogen Peroxide- Review of its Role as Part of a Mine Drainage Treatment St...
 
Color Removal
Color RemovalColor Removal
Color Removal
 
water quality assessment of groundwater
water quality assessment of groundwater water quality assessment of groundwater
water quality assessment of groundwater
 
A detailed study of Transition Metal Complexes of a Schiff base with its Phys...
A detailed study of Transition Metal Complexes of a Schiff base with its Phys...A detailed study of Transition Metal Complexes of a Schiff base with its Phys...
A detailed study of Transition Metal Complexes of a Schiff base with its Phys...
 
Upgradation Of Coal
Upgradation Of CoalUpgradation Of Coal
Upgradation Of Coal
 
Optimization parameters in Countercurrent Chromatography
Optimization parameters in Countercurrent ChromatographyOptimization parameters in Countercurrent Chromatography
Optimization parameters in Countercurrent Chromatography
 
Tools of the Trade
Tools of the TradeTools of the Trade
Tools of the Trade
 
Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...
Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...
Fast, Sensitive, and Cost-effective Analysis of Trace Metals in Water by EPA ...
 
Hydraulic Fracturing and Environmental Testing of Water
Hydraulic Fracturing and Environmental Testing of WaterHydraulic Fracturing and Environmental Testing of Water
Hydraulic Fracturing and Environmental Testing of Water
 
Monthly report.pptx
Monthly report.pptxMonthly report.pptx
Monthly report.pptx
 
Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...
Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...
Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...
 
Balance de flotacion por el metodo computacional
Balance de flotacion por el metodo computacionalBalance de flotacion por el metodo computacional
Balance de flotacion por el metodo computacional
 
naocl_examples.pdf
naocl_examples.pdfnaocl_examples.pdf
naocl_examples.pdf
 
Determination of benzotriazoles in water samples by polyethersulfone solid-ph...
Determination of benzotriazoles in water samples by polyethersulfone solid-ph...Determination of benzotriazoles in water samples by polyethersulfone solid-ph...
Determination of benzotriazoles in water samples by polyethersulfone solid-ph...
 
Trace metal analysis in sediments using aas and asv techniques
Trace metal analysis in sediments using aas and asv techniquesTrace metal analysis in sediments using aas and asv techniques
Trace metal analysis in sediments using aas and asv techniques
 
TABLE3-1.RTF
TABLE3-1.RTFTABLE3-1.RTF
TABLE3-1.RTF
 
Poster_2
Poster_2Poster_2
Poster_2
 
Poster-mAbChem-ppt file
Poster-mAbChem-ppt filePoster-mAbChem-ppt file
Poster-mAbChem-ppt file
 

More from Muhammad Harith Mohd Fauzi (9)

Project 5 report 5.13 pm
Project 5 report 5.13 pmProject 5 report 5.13 pm
Project 5 report 5.13 pm
 
Supercapacitors as an Energy Storage Device
Supercapacitors as an Energy Storage DeviceSupercapacitors as an Energy Storage Device
Supercapacitors as an Energy Storage Device
 
Material Selection of Smartphone Body Shell [Autosaved].ppt 2
Material Selection of Smartphone Body Shell [Autosaved].ppt 2Material Selection of Smartphone Body Shell [Autosaved].ppt 2
Material Selection of Smartphone Body Shell [Autosaved].ppt 2
 
Project 2
Project 2Project 2
Project 2
 
MTRL 485 - V3
MTRL 485 - V3MTRL 485 - V3
MTRL 485 - V3
 
MTRL 460-2014-TutRep3-Team9
MTRL 460-2014-TutRep3-Team9MTRL 460-2014-TutRep3-Team9
MTRL 460-2014-TutRep3-Team9
 
MTRL 456 Term Project report March 24 11.21 pm
MTRL 456  Term Project report March 24 11.21 pmMTRL 456  Term Project report March 24 11.21 pm
MTRL 456 Term Project report March 24 11.21 pm
 
ANM-100 Proposal
ANM-100 ProposalANM-100 Proposal
ANM-100 Proposal
 
FinalReport
FinalReportFinalReport
FinalReport
 

Lab 5 Report harith edit 8.32pm

  • 1. THE UNIVERSITY OF BRITISH COLUMBIA DEPARTMENT OF MATERIALS ENGINEERING MTRL 359 LABORATORY 5: LEACHING MUHAMMAD HARITH MOHD FAUZI 18204115
  • 2. Introduction Leaching is one of the core processes in hydrometallurgy. The purpose is to dissolve minerals of interest from an ore or concentrate in a suitable “lixiviant”. Once a solution of the metal(s) of interest is obtained it may be purified and treated to recover pure metal. Results and Data PbS screen size: 200 -230micron mesh size Particle size: 63-75 micrometers  Experimental Conditions Experiment Weight of FeCl3.6H2O (g) Leach solution volume (ml) [Fe+3] (mg/L) Temperature PbS (oC) Weight PbS used (g) 1 21.9 1000 0.187 21 1.01 2 21.9 1000 0.187 30 0.98 3 21.9 1000 0.187 40 1.05 4 24.5 1000 0.130 21 1.02 Table 1  AA Calibration Data [Pb] ppm Vol. flask mL Vol. 100 ppm Pb standard mL Required HCl g/L Vol. 200 g/L HCl mL Blank 100.0 0 10 5 5 100.0 5 10 5 10 100.0 10 10 5 20 100.0 20 10 5 25 100.0 25 10 5 Table 2 Standard (mg/L) Absorbance 0 0.0004 5 0.0849 10 0.1687 20 0.3203 25 0.3941 Table 3
  • 3. Graph 1  PbS Analysis Data Weight PbS used 0.1003g Digested PbS solution volume 100ml Volumetric flask 250ml Dilution factor 50 Pb AA result 17.266 mg/L [Pb] 0.8633 mg/L Weight% of Pb 86.1 Theoretical weight% Pb 86.6 Table 4 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0 5 10 15 20 25 30 Absorbance [Pb] Absorbancevs [Pb]
  • 4.  Leaching Samples Analytical Data Sample ID [exp. #-time min)] Diluction factor AA result [Pb] (mg/L) Undiluted [Pb] (mg/L) Corrected [Pb] in samples (g/L) 1-0 25 0.033 0.825 0.000 1-5 3.637 90.925 0.090 1-15 5.486 137.15 0.136 1-25 8.399 209.975 0.209 1-35 50 6.54 327 0.326 1-45 8.477 423.85 0.423 1-60 10.717 535.85 0.535 1-80 13.278 663.9 0.663 Table 5 Sample ID [exp. #-time min)] Diluction factor AA result [Pb] (mg/L) Undiluted [Pb] (mg/L) Corrected [Pb] in samples (g/L) 2-0 25 0.399 9.975 0.000 2-5 8.559 213.975 0.204 2-11 13.257 331.425 0.321 2-20 50 11.97 598.5 0.589 2-30 13.836 691.8 0.682 2-45 16.208 810.4 0.800 2-60 17.351 867.55 0.858 2-80 17.535 876.75 0.867 Table 6 Sample ID [exp. #-time min)] Diluction factor AA result [Pb] (mg/L) Undiluted [Pb] (mg/L) Corrected [Pb] in samples (g/L) 3-0 25 0.805 20.125 0.000 3-3 24.269 606.725 0.587 3-6.5 19.84 496 0.476 3-10 50 15.413 770.65 0.751 3-15 17.266 863.3 0.843 3-25 17.721 886.05 0.866 3-35 17.817 890.85 0.871 3-45 17.758 887.9 0.868 Table 7
  • 5. Sample ID [exp. #-time min)] Diluction factor AA result [Pb] (mg/L) Undiluted [Pb] (mg/L) Corrected [Pb] in samples (g/L) 4-0 25 0 0 0.000 4-5.5 4.535 113.375 0.113 4-15 8.142 203.55 0.204 4-25 11.596 289.9 0.290 4-35 50 7.506 375.3 0.375 4-45 9.2 460 0.460 4-60 11.193 559.65 0.560 4-80 13.063 653.15 0.653 Table 8  Mass of Pb Leached and α Values Experiment 1 Time (min) Sample vol. (mL) Undiluted [Pb] (g/L) Corrected [Pb] (g/L) Cumulative mass Pb in samples (g) 0 7 3.30E-05 0.000 0.000000 5 3.64E-03 0.090 0.000631 15 5.49E-03 0.136 0.001585 25 8.40E-03 0.209 0.002418 35 6.54E-03 0.326 0.003747 45 8.48E-03 0.423 0.005244 60 1.07E-02 0.535 0.006706 80 1.33E-02 0.663 0.008387 Table 9 Experiment 2 Time (min) Sample vol. (mL) Undiluted [Pb] (g/L) Corrected [Pb] (g/L) Cumulative mass Pb in samples (g) 0 7 3.99E-04 0.000 0.000000 5 8.56E-03 0.204 0.001428 11 1.33E-02 0.321 0.003678 20 1.20E-02 0.589 0.006370 30 1.38E-02 0.682 0.008892 45 1.62E-02 0.800 0.010376 60 1.74E-02 0.858 0.011606 80 1.75E-02 0.867 0.012070 Table 10
  • 6. Experiment 3 Time (min) Sample vol. (mL) Undiluted [Pb] (g/L) Corrected [Pb] (g/L) Cumulative mass Pb in samples (g) 0 7 8.05E-04 0.000 0.000000 3 2.43E-02 0.587 0.004106 6.5 1.98E-02 0.476 0.007437 10 1.54E-02 0.751 0.008585 15 1.73E-02 0.843 0.011156 25 1.77E-02 0.866 0.011964 35 1.78E-02 0.871 0.012157 45 1.78E-02 0.868 0.012170 Table 11 Experiment 4 Time (min) Sample vol. (mL) Undiluted [Pb] (g/L) Corrected [Pb] (g/L) Cumulative mass Pb in samples (g) 0 7 0.00E+00 0.000 0.000000 5.5 4.54E-03 0.113 0.000794 15 8.14E-03 0.204 0.002218 25 1.16E-02 0.290 0.003454 35 7.51E-03 0.375 0.004656 45 9.20E-03 0.460 0.005847 60 1.12E-02 0.560 0.007138 80 1.31E-02 0.653 0.008490 Table 12
  • 7. Experiment 1 Time (min) Sample vol. (ml) Cumulative mass Pb in samples (g) Leach vol. remaining (ml) Mass Pb in the leach solution (g) 0 7 0.000000 993 0.0000 5 0.000631 986 0.0895 15 0.001585 979 0.1350 25 0.002418 972 0.2057 35 0.003747 965 0.3185 45 0.005244 958 0.4105 60 0.006706 951 0.5155 80 0.008387 944 0.6343 Table 13 Experiment 2 Time (min) Sample vol. (mL) Cumulative mass Pb in samples (g) Leach vol. remaining (ml) Mass Pb in the leach solution (g) 0 7 0.000000 993 0.0000 5 0.001428 986 0.2026 11 0.003678 979 0.3184 20 0.006370 972 0.5784 30 0.008892 965 0.6669 45 0.010376 958 0.7772 60 0.011606 951 0.8272 80 0.012070 944 0.8303 Table 14 Experiment 3 Time (min) Sample vol. (mL) Cumulative mass Pb in samples (g) Leach vol. remaining (ml) Mass Pb in the leach solution (g) 0 7 0.000000 993 0.0000 3 0.004106 986 0.5825 6.5 0.007437 979 0.4733 10 0.008585 972 0.7381 15 0.011156 965 0.8248 25 0.011964 958 0.8415 35 0.012157 951 0.8402 45 0.012170 944 0.8313 Table 15
  • 8. Experiment 4 Time (min) Sample vol. (mL) Cumulative mass Pb in samples (g) Leach vol. remaining (ml) Mass Pb in the leach solution (g) 0 7 0.000000 993 0.0000 5.5 0.000794 986 0.1126 15 0.002218 979 0.2015 25 0.003454 972 0.2852 35 0.004656 965 0.3668 45 0.005847 958 0.4465 60 0.007138 951 0.5394 80 0.008490 944 0.6251 Table16 Experiment 1 Time (min) Total mass Pb leached (g) α 1-(1-α)1/3 1-2/3 α – (1-α)2/3 0 0.0000 0.0000 0 0.0000 5 0.0895 0.1092 0.037826113 0.0054 15 0.2245 0.1649 0.058295516 0.0144 25 0.4302 0.2512 0.091912365 0.0573 35 0.7487 0.3889 0.151392776 0.0828 45 1.1592 0.5012 0.206942471 0.1281 60 1.6748 0.6294 0.281727687 0.1565 80 2.3091 0.7745 0.39133154 0.1585 Mass PbS used (g) 1.01 Mass Pb added (g) 0.81902 Table 17 Experiment 2 Time (min) Total mass Pb leached (g) α 1-(1-α)1/3 1-2/3 α – (1-α)2/3 0 0.0000 0.0000 0 0.0000 5 0.2026 0.2104 0.07571907 0.0726 11 0.5209 0.3307 0.125256438 0.0433 20 1.0994 0.6007 0.263650047 0.1427 30 1.7662 0.6926 0.325102985 0.2135 45 2.5434 0.8072 0.422281921 0.2337 60 3.3706 0.8591 0.479625371 0.2320 80 4.2009 0.8624 0.483679262 0.2210 Mass PbS used (g) 0.98 Mass Pb added (g) 0.96283
  • 9. Table 18 Experiment 3 Time (min) Total mass Pb leached (g) α 1-(1-α)1/3 1-2/3 α – (1-α)2/3 0 0.0000 0.0000 0 0.0000 3 0.5825 0.6592 0.301514377 0.0021 6.5 1.0558 0.5357 0.225638787 0.0070 10 1.7939 0.8353 0.451872826 0.0148 15 2.6187 0.9335 0.594791191 0.0259 25 3.4602 0.9524 0.637504283 0.0410 35 4.3005 0.9509 0.633799175 0.0653 45 5.1318 0.9409 0.610384899 0.0968 Mass PbS used (g) 1.05 Mass Pb added (g) 0.88361 Table 19 Experiment 4 Time (min) Total mass Pb leached (g) α 1-(1-α)1/3 1-2/3 α – (1-α)2/3 0 0.0000 0.0000 0 0 5.5 0.1126 0.1321 0.046117414 0.001741873 15 0.3141 0.2364 0.085970339 0.006278368 25 0.5993 0.3346 0.126978907 0.016484711 35 0.9661 0.4303 0.171020643 0.034844932 45 1.4127 0.5238 0.219111021 0.053493991 60 1.9520 0.6327 0.283865835 0.086688913 80 2.5771 0.7333 0.35628571 0.130044604 Mass PbS used (g) 1.02 Mass Pb added (g) 0.883176 Table 20
  • 10. Discussion 1. (i) Plot the following  Leach solution [Pb] vs Time Graph 2 Test 1, 2, and 3 0 200 400 600 800 1000 1200 0 10 20 30 40 50 60 70 80 90 [Pb](mg/L) Time (min) Leach solution [Pb] versus Time Test 1 Test 2 Test 3
  • 11. Graph 3 Test 1 and 4 o 1-(1-α)1/3 versus Time 0 100 200 300 400 500 600 700 800 0 10 20 30 40 50 60 70 80 90 [Pb](mg/L) Time (min) Leach solution [Pb] versus Time Test 1 Test 4
  • 12. Graph 4  1-(2/3)α – (1-α)2/3 versus Time Graph 5 Test y = 0.0048x - 0.0073 y = 0.0077x y = 0.0193x y = 0.0044x + 0.0157 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 10 20 30 40 50 60 70 80 90 1-(1-α)1/3 Time (min) 1-(1-α)1/3 versus time Test 1 Test 2 Test 3 Test 4 Linear (Test 1) Linear (Test 2) Linear (Test 3) Linear (Test 4) y = 9E-09x4 - 2E-06x3 + 0.0002x2 - 0.0009x + 0.0019 0 0.05 0.1 0.15 0.2 0 20 40 60 80 100 1-(2/3)α-(1-α)2/3 Time (min) 1-(2/3)α - (1-α)2/3 versus Time Series1 Poly. (Series1)
  • 13. Graph 6 Test 2 Graph 7 Test 3 Graph 8 Test 4 y = 5E-08x4 - 7E-06x3 + 0.0002x2 + 0.0038x + 0.0121 0 0.05 0.1 0.15 0.2 0.25 0.3 0 20 40 60 80 100 1-(2/3)α-(1-α)2/3 Time (min) 1-(2/3)α - (1-α)2/3 versus Time Series1 Poly. (Series1) y = 3E-08x4 - 3E-06x3 + 7E-05x2 + 0.001x - 0.0008 -0.05 0 0.05 0.1 0.15 0 10 20 30 40 50 1-(2/3)α-(1-α)2/3 Time (min) 1-(2/3)α - (1-α)2/3 versus Time Series1 Poly. (Series1) y = 1E-05x2 + 0.0005x - 0.0013 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0 20 40 60 80 100 1-(2/3)α-(1-α)2/3 Time (min) 1-(2/3)α - (1-α)2/3 versus Time Series1 Poly. (Series1)
  • 14. The alpha function should not be constrained to the origin. (ii) Leaching completion From the Pb analysis data, we can predict that the leaching of PbS did go to completion in experiment 2 and 3. This is because the last 2-3 samples have the roughly the same [Pb] which indicates that all the PbS has reacted before the end of the test. However, the condition of monosized particles is quite false and the simple leaching model thus fails. This affects the curve of the concentration versus time plot. This can lead to the wrong extraction of information from the graph. A good model should produce a smooth curve that close to the line of best fit for any types of equation of line. Samples that should be omitted from the alpha function plots.  Experiment 2 Time (min) Undiluted [Pb] (mg/L) 45 810.4 60 867.55 80 876.75 Table 21  Experiment 3 Time (min) Undiluted [Pb] (mg/L) 25 886.05 35 890.85 45 887.9 Table 22 These are some of the points that should be omitted since the undiluted concentration are roughly the same the same towards the end reaction. This indicates that all the PbS has fully reacted at the end of the experiment. Based on the leaching results, the function 1-(1-α)1/3 best fit the leaching results. This is because the values from the function produce curves that are closer to linear line of best fit compares to another function. Thus, the function 1-(1-α)1/3 is more reliable in showing the experimental data obtained from the experiments.
  • 15. 2. (i) Calculate rate constants. The rate constant is equal to the slope of the linear best fit of the chosen function. Graph 9 Summary of rate constant for each experiment. Experiment Rate constant (slope), k 1 0.0044 2 0.0077 3 0.0193 4 0.0048 Table 23 y = 0.0048x - 0.0073 y = 0.0077x y = 0.0193x y = 0.0044x + 0.0157 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 10 20 30 40 50 60 70 80 90 1-(1-α)1/3 Time (min) 1-(1-α)1/3 versus time Test 1 Test 2 Test 3 Test 4 Linear (Test 1) Linear (Test 2) Linear (Test 3) Linear (Test 4)
  • 16. (ii) Plot the natural logarithm of the rate constants versus 1/T. Graph 10 Calculation of pre-exponential factor A ln 𝑘 = ln 𝐴 − 𝐸𝑎 𝑅 ( 1 𝑇 )  From this formula, ln A is the y-intercept. Thus to find the value for A, equate it with the y- intercept from the line equation. ln 𝐴 = 18.952 𝐴 = 𝑒18.952 𝐴 = 1.701 ∗ 108 min^(−1 ) Calculation of activation energy in kJ/mol.  In this case, the activation energy is equal to the slope of the line equation. 𝐸𝑎 𝑅 = 7195.8 𝐸𝑎 = 7195.8 ∗ 8.314 y = -7195.8x + 18.952 -6 -5 -4 -3 -2 -1 0 0.00315 0.0032 0.00325 0.0033 0.00335 0.0034 0.00345 lnk 1/T Plot of natural logarithm of K vs (1/T) ln (k) Linear (ln (k))
  • 17. = 59825.88 𝐽 𝑚𝑜𝑙 = 59.826 𝑘𝐽 𝑚𝑜𝑙 (iii) The activation energy is consistent with the chosen leaching model. The activation energy of chemical reaction is between the range of 42 -105 kJ/mole. Our activation energy falls within this range. 3. (i) Proving. 𝑘 𝑠 = 𝑉𝑚 𝑘′ 𝑓(𝐶 𝐵) 𝑟𝑜 Since we are assuming that Vm and CB are constants, we eliminate these from the equation and get: 𝑘 𝑠 = 𝑘′ 𝑟𝑜 Rate constant for a PbS particle of initial size ro1: 𝑘 𝑠1 = 𝑘′ 𝑟𝑜1 𝑘′ = 𝑘 𝑠1 ∗ 𝑟𝑜1 Rate constant for a PbS particle of initial size ro2: 𝑘 𝑠2 = 𝑘′ 𝑟𝑜2 Therefore, substitute for k’ and get 𝑘 𝑠2 = 𝑘 𝑠1 ∗ 𝑟𝑜1 𝑟𝑜2 ( 𝑠ℎ𝑜𝑤𝑛)
  • 18. (ii) Value of ks at 32 degree Celcius. (ii) Value of ks at 32 degree Celsius. Using the equation [27] and our own data values, 𝑘 𝑠 = 𝐴𝑒−𝐸𝑎/𝑅𝑇 𝑘 𝑠 = (1.701 ∗ 108 )𝑒 ( −59825.884 8.314∗(32+273) ) 𝑘 𝑠 = 0.009649 (iii) Time taken From equation 21: 𝑡 = [1 − (1 − 𝛼)1 3⁄ ] ∗ 𝑟𝑜 𝑉𝑚 𝑘′ 𝑓(𝐶 𝐵 𝑜) = [1 − (1 − 𝛼)1 3⁄ ] 𝑘 𝑠2 Substituting equation from part i), 𝑘 𝑠2 = 𝑘 𝑠1 ∗ 𝑟𝑜1 𝑟𝑜2 𝑘 𝑠1 = 𝐴𝑒−𝐸𝑎/𝑅𝑇 𝑘 𝑠1 = (1.701 ∗ 108) 𝑒−(59825 .884 )/(8.314∗(28+273)) 𝑘 𝑠1 = 0.0070522 To find ro1 𝑟𝑜1 = 0.00004 2 = 0.00002𝑚 And ro2, 𝑟𝑜2 = 0.000063 + 0.000075 4 = 0.0000345𝑚 Coming back to the other equation, 𝑘 𝑠2 = 𝑘 𝑠1 ∗ 𝑟𝑜1 𝑟𝑜2
  • 19. 𝑘 𝑠2 = 0.0070522∗ 0.00002 0.0000345 = 0.00408 Based on equation: 𝑡 = [1 − (1 − 𝛼)1 3⁄ ] 𝑘 𝑠2 For α = 0.95, 𝑡 = [1 − (1 − 0.95)1 3⁄ ] 0.00408 = 154.8 𝑚𝑖𝑛 For α = 0.99, 𝑡 = [1 − (1 − 0.99)1 3⁄ ] 0.00408 = 192.29 𝑚𝑖𝑛