SlideShare a Scribd company logo
1 of 56
Download to read offline
Bottom-Tetraquarks – Current Status & Prospects
Ahmed Ali
DESY, Hamburg
April. 27, 2015
WG7: B2TiP Workshop, Krakow
Ahmed Ali (DESY, Hamburg) 1 / 33
An Overview of Charmonium- and Bottomonium-like states
Enigmatic Υ(5S) decays?
Spectroscopy of tetraquark states
Charged tetraquarks and heavy quark spin conservation
Dipion mass distributions in Υ(5S) → Υ(nS)ππ decays
Tetraquark model for Yb production and decays
Summary
Ahmed Ali (DESY, Hamburg) 2 / 33
Charmonia and Charmonium-like Hadrons (Olsen, arxiv:1411.7738)
Ahmed Ali (DESY, Hamburg) 3 / 33
Bottomonia and Bottomonium-like Hadrons (Olsen, arxiv:1411.7738)
Ahmed Ali (DESY, Hamburg) 4 / 33
Exotica
Belle & others [Liu et al., 13] , [Ablikim et al., 13] , [Brambilla et al., 14]
State M (MeV) Γ (MeV) JPC Decay Modes Production Modes Also observed by
e+e− (ISR)
Ys(2175) 2175 ± 8 58 ± 26 1−− φf0(980) J/ψ → ηYs(2175) BaBar∗, BESII
π+π−J/ψ, BaBar
X(3872) 3871.68 ± 0.17 < 1.2 1++ γJ/ψ,D ¯D∗ B → KX(3872), p¯p CDF, D0, BaBar, LHCb
Z(3900) 3891.2 ± 3.3 40 ± 8 1+ π±J/ψ Y(4260) → Z(3900)π BESIII∗, CLEO
X(3915) 3914 ± 4 28+12
−14
0/2++ ωJ/ψ γγ → X(3915)
Z(3930) 3929 ± 5 29 ± 10 2++ D ¯D γγ → Z(3940)
D ¯D∗ (not D ¯D
X(3940) 3942 ± 9 37 ± 17 0?+ or ωJ/ψ) e+e− → J/ψX(3940)
Y(3940) 3943 ± 17 87 ± 34 ??+ ωJ/ψ (not D ¯D∗) B → KY(3940) BaBar
Y(4008) 4008+82
−49
226+97
−80
1−− π+π−J/ψ e+e−(ISR)
Z(4020) 4022 ± 3 8 ± 4 1+ π±J/ψ Y(4260) → Z(4020)π BESIII∗(only)
Z(4025) 4026 ± 5 25 ± 10 1+ π±J/ψ Y(4260) → Z(4025)π BESIII∗(only)
X(4160) 4156 ± 29 139+113
−65
0?+ D∗ ¯D∗ (not D ¯D) e+e− → J/ψX(4160)
Y(4260) 4264 ± 12 83 ± 22 1−− π+π−J/ψ e+e−(ISR) BaBar∗, CLEO
Y(4350) 4361 ± 13 74 ± 18 1−− π+π−ψ e+e−(ISR) BaBar∗
X(4630) 4634+9
−11
92+41
−32
1−− Λ+
c Λ−
c e+e−(ISR)
Y(4660) 4664 ± 12 48 ± 15 1−− π+π−ψ e+e−(ISR)
Z(4050) 4051+24
−23
82+51
−29
? π±χc1 B → KZ±(4050)
Z(4250) 4248+185
−45
177+320
−72
? π±χc1 B → KZ±(4250)
Z(4430) 4475 ± 7 172 ± 13+37
−34
1+ π±ψ B → KZ±(4430) LHCb
Zb(10610) 10, 607 ± 2 18.4 ± 2.4 1+ π±hb(1, 2P), π±Υ(1, 2, 3S) Yb/Υ(5S) → Zb(10610)π
Zb(10650) 10, 652 ± 2 11.5 ± 2.2 1+ π±hb(1, 2P), π±Υ(1, 2, 3S) Yb/Υ(5S) → Zb(10650)π
Yb(10890) 10, 890 ± 3 55 ± 9 1−− π+π−Υ(1, 2, 3S) e+e− → Yb
Ahmed Ali (DESY, Hamburg) 5 / 33
Exotica
Belle & others [Liu et al., 13] , [Ablikim et al., 13] , [Brambilla et al., 14]
State M (MeV) Γ (MeV) JPC Decay Modes Production Modes Also observed by
e+e− (ISR)
Ys(2175) 2175 ± 8 58 ± 26 1−− φf0(980) J/ψ → ηYs(2175) BaBar∗, BESII
π+π−J/ψ, BaBar
X(3872) 3871.68 ± 0.17 < 1.2 1++ γJ/ψ,D ¯D∗ B → KX(3872), p¯p CDF, D0, BaBar, LHCb
Z(3900) 3891.2 ± 3.3 40 ± 8 1+ π±J/ψ Y(4260) → Z(3900)π BESIII∗, CLEO
X(3915) 3914 ± 4 28+12
−14
0/2++ ωJ/ψ γγ → X(3915)
Z(3930) 3929 ± 5 29 ± 10 2++ D ¯D γγ → Z(3940)
D ¯D∗ (not D ¯D
X(3940) 3942 ± 9 37 ± 17 0?+ or ωJ/ψ) e+e− → J/ψX(3940)
Y(3940) 3943 ± 17 87 ± 34 ??+ ωJ/ψ (not D ¯D∗) B → KY(3940) BaBar
Y(4008) 4008+82
−49
226+97
−80
1−− π+π−J/ψ e+e−(ISR)
Z(4020) 4022 ± 3 8 ± 4 1+ π±J/ψ Y(4260) → Z(4020)π BESIII∗(only)
Z(4025) 4026 ± 5 25 ± 10 1+ π±J/ψ Y(4260) → Z(4025)π BESIII∗(only)
X(4160) 4156 ± 29 139+113
−65
0?+ D∗ ¯D∗ (not D ¯D) e+e− → J/ψX(4160)
Y(4260) 4264 ± 12 83 ± 22 1−− π+π−J/ψ e+e−(ISR) BaBar∗, CLEO
Y(4350) 4361 ± 13 74 ± 18 1−− π+π−ψ e+e−(ISR) BaBar∗
X(4630) 4634+9
−11
92+41
−32
1−− Λ+
c Λ−
c e+e−(ISR)
Y(4660) 4664 ± 12 48 ± 15 1−− π+π−ψ e+e−(ISR)
Z(4050) 4051+24
−23
82+51
−29
? π±χc1 B → KZ±(4050)
Z(4250) 4248+185
−45
177+320
−72
? π±χc1 B → KZ±(4250)
Z(4430) 4475 ± 7 172 ± 13+37
−34
1+ π±ψ B → KZ±(4430) LHCb
Zb(10610) 10, 607 ± 2 18.4 ± 2.4 1+ π±hb(1, 2P), π±Υ(1, 2, 3S) Yb/Υ(5S) → Zb(10610)π
Zb(10650) 10, 652 ± 2 11.5 ± 2.2 1+ π±hb(1, 2P), π±Υ(1, 2, 3S) Yb/Υ(5S) → Zb(10650)π
Yb(10890) 10, 890 ± 3 55 ± 9 1−− π+π−Υ(1, 2, 3S) e+e− → Yb
Light states [PDG] :
a0(980) in 1965, σ(600)now 500 in 1972, f0(980) in 1979, κ(980) in 1997
discussion reopened: [’t Hooft, Isidori, Maiani, Polosa, Riquer, PLB 08]
Ahmed Ali (DESY, Hamburg) 5 / 33
Exotica
Belle & others [Liu et al., 13] , [Ablikim et al., 13] , [Brambilla et al., 14]
State M (MeV) Γ (MeV) JPC Decay Modes Production Modes Also observed by
e+e− (ISR)
Ys(2175) 2175 ± 8 58 ± 26 1−− φf0(980) J/ψ → ηYs(2175) BaBar∗, BESII
π+π−J/ψ, BaBar
X(3872) 3871.68 ± 0.17 < 1.2 1++ γJ/ψ,D ¯D∗ B → KX(3872), p¯p CDF, D0, BaBar, LHCb
Z(3900) 3891.2 ± 3.3 40 ± 8 1+ π±J/ψ Y(4260) → Z(3900)π BESIII∗, CLEO
X(3915) 3914 ± 4 28+12
−14
0/2++ ωJ/ψ γγ → X(3915)
Z(3930) 3929 ± 5 29 ± 10 2++ D ¯D γγ → Z(3940)
D ¯D∗ (not D ¯D
X(3940) 3942 ± 9 37 ± 17 0?+ or ωJ/ψ) e+e− → J/ψX(3940)
Y(3940) 3943 ± 17 87 ± 34 ??+ ωJ/ψ (not D ¯D∗) B → KY(3940) BaBar
Y(4008) 4008+82
−49
226+97
−80
1−− π+π−J/ψ e+e−(ISR)
Z(4020) 4022 ± 3 8 ± 4 1+ π±J/ψ Y(4260) → Z(4020)π BESIII∗(only)
Z(4025) 4026 ± 5 25 ± 10 1+ π±J/ψ Y(4260) → Z(4025)π BESIII∗(only)
X(4160) 4156 ± 29 139+113
−65
0?+ D∗ ¯D∗ (not D ¯D) e+e− → J/ψX(4160)
Y(4260) 4264 ± 12 83 ± 22 1−− π+π−J/ψ e+e−(ISR) BaBar∗, CLEO
Y(4350) 4361 ± 13 74 ± 18 1−− π+π−ψ e+e−(ISR) BaBar∗
X(4630) 4634+9
−11
92+41
−32
1−− Λ+
c Λ−
c e+e−(ISR)
Y(4660) 4664 ± 12 48 ± 15 1−− π+π−ψ e+e−(ISR)
Z(4050) 4051+24
−23
82+51
−29
? π±χc1 B → KZ±(4050)
Z(4250) 4248+185
−45
177+320
−72
? π±χc1 B → KZ±(4250)
Z(4430) 4475 ± 7 172 ± 13+37
−34
1+ π±ψ B → KZ±(4430) LHCb
Zb(10610) 10, 607 ± 2 18.4 ± 2.4 1+ π±hb(1, 2P), π±Υ(1, 2, 3S) Yb/Υ(5S) → Zb(10610)π
Zb(10650) 10, 652 ± 2 11.5 ± 2.2 1+ π±hb(1, 2P), π±Υ(1, 2, 3S) Yb/Υ(5S) → Zb(10650)π
Yb(10890) 10, 890 ± 3 55 ± 9 1−− π+π−Υ(1, 2, 3S) e+e− → Yb
Light states [PDG] :
a0(980) in 1965, σ(600)now 500 in 1972, f0(980) in 1979, κ(980) in 1997
discussion reopened: [’t Hooft, Isidori, Maiani, Polosa, Riquer, PLB 08]
focus here:
Zc(3900, 402X)
Yc(4260)
Zb(106XX)
Yb(10890)
Ahmed Ali (DESY, Hamburg) 5 / 33
Ahmed Ali (DESY, Hamburg) 6 / 33
Enigmatic Υ(5S) Decays: Is there a Yb(10890) close to Υ(5S)?
Ahmed Ali (DESY, Hamburg) 7 / 33
σ(e+e− → b¯b) in the Υ(10860) and Υ(11020) region [Belle 2015]
Rb data and fit
Fb¯b = |Anr|2 + |Ar + A5Seiφ5S f5S + A6Seiφ6S f6S|2
fnS = MnsΓnS/[(s − M2
ns) + iMnSΓnS] [Breit-Wigner]
Ar and Anr are coherent and incoherent continuum terms
No peaking structure seen at 10.9 GeV, hinted by the BaBar data;
Γ(e+e−) < 9 eV (@ 90% C.L.)
Ahmed Ali (DESY, Hamburg) 8 / 33
σ(e+e− → Υ(nS)π+π−) in the Υ(10860) and Υ(11020) region [Belle 2015]
FΥ(nS)ππ = |A5S,nf5S|2 + |A6S,nf6S|2 + 2KnA5S,nA6S,nR[eiδn f5Sf∗
6S]
Kn and δn allowed to float
Fit Values (MeV): M5S = 10891.1 ± 3.2+0.6
−1.5; Γ5S = 53.7+7.1 +0.9
−5.6 −5.4
M5S(Υ(nS)ππ) − M5S(b¯b) = 9.2 ± 3.4 ± 1.9 MeV
Ahmed Ali (DESY, Hamburg) 9 / 33
Evidence for Zb(10610)± and Zb(10650)± (Belle)
Ahmed Ali (DESY, Hamburg) 10 / 33
Branching Ratios of Υ(10860) is a Puzzle!
Rb and Rπ+π−Υ(nS) are not independent
b¯b contribution: Pb = |A5S(b¯b) × BW(5S)|2
Υ(nS)ππ contribution: P(π+π−nS) =
PHSP × |A5S(nS) × BW(5S)|2
Book-keeping of the BRs at Υ(10860)
From Rπ+π−Υ(nS): P(π+π−nS) = (17 ± 0.9)% of Pb
Adding Υ(5S) → ππhb(1P, 2P)and assuming isospin symmetry
yields P(ππb¯b) = (42 ± 4)%
Adding Zb → πB(∗) ¯B(∗)yields P(ππb¯b + πZb) = (109 ± 15)%
No, or very little, room for direct decays: Υ(5S) → B(∗) ¯B(∗), Bs
¯Bs
In particular, what is the source of the Bs
¯B
(∗)
s events? They are not
seen off-the resonance, nor in the decays of Zb!!
Ahmed Ali (DESY, Hamburg) 11 / 33
Spectroscopy of tetraquark states
Interpolating diquark operators (P = −1 larger energy):
“good”: 0+ Qiα = αβγ(¯b
β
c γ5q
γ
i − ¯q
β
ic
γ5bγ) α, β, γ: SU(3)C indices
“bad”: 1+ Qiα = αβγ(¯b
β
c γq
γ
i + ¯q
β
ic
γbγ)
Ahmed Ali (DESY, Hamburg) 12 / 33
Spectroscopy of tetraquark states
Interpolating diquark operators (P = −1 larger energy):
“good”: 0+ Qiα = αβγ(¯b
β
c γ5q
γ
i − ¯q
β
ic
γ5bγ) α, β, γ: SU(3)C indices
“bad”: 1+ Qiα = αβγ(¯b
β
c γq
γ
i + ¯q
β
ic
γbγ)
NR limit: States parametrized by Pauli matrices :
“good”: 0+ Γ0 = σ2√
2
“bad”: 1+ Γ = σ2σ√
2
Ahmed Ali (DESY, Hamburg) 12 / 33
Spectroscopy of tetraquark states
Interpolating diquark operators (P = −1 larger energy):
“good”: 0+ Qiα = αβγ(¯b
β
c γ5q
γ
i − ¯q
β
ic
γ5bγ) α, β, γ: SU(3)C indices
“bad”: 1+ Qiα = αβγ(¯b
β
c γq
γ
i + ¯q
β
ic
γbγ)
NR limit: States parametrized by Pauli matrices :
“good”: 0+ Γ0 = σ2√
2
“bad”: 1+ Γ = σ2σ√
2
Diquark spin sQ tetraquark total angular momentum J:
Y[bq] = sQ, s ¯Q; J
Tetraquark matrix representation:
0Q, 0 ¯Q; 0J = Γ0
⊗ Γ0
,
1Q, 1 ¯Q; 0J =
1
√
3
Γi
⊗ Γi, . . .
0 iAhmed Ali (DESY, Hamburg) 12 / 33
NR Hamiltonian
States need to diagonalize Hamiltonian:
H = 2mQ + H
(qq)
SS + H
(q¯q)
SS + HSL + HLL
Ahmed Ali (DESY, Hamburg) 13 / 33
NR Hamiltonian
States need to diagonalize Hamiltonian:
H = 2mQ + H
(qq)
SS + H
(q¯q)
SS + HSL + HLL
with constituent mass
Ahmed Ali (DESY, Hamburg) 13 / 33
NR Hamiltonian
States need to diagonalize Hamiltonian:
H = 2mQ + H
(qq)
SS + H
(q¯q)
SS + HSL + HLL
with
H
(qq)
SS = 2(Kbq)¯3[(Sb · Sq) + (S¯b · S¯q)]
H
(q¯q)
SS = 2(Kb¯q)(Sb · S¯q + S¯b · Sq)
+ 2Kb¯b(Sb · S¯b) + 2Kq¯q(Sq · S¯q)
qq spin coupling q¯q spin coupling
Ahmed Ali (DESY, Hamburg) 13 / 33
NR Hamiltonian
States need to diagonalize Hamiltonian:
H = 2mQ + H
(qq)
SS + H
(q¯q)
SS + HSL + HLL
with
H
(qq)
SS = 2(Kbq)¯3[(Sb · Sq) + (S¯b · S¯q)]
H
(q¯q)
SS = 2(Kb¯q)(Sb · S¯q + S¯b · Sq)
+ 2Kb¯b(Sb · S¯b) + 2Kq¯q(Sq · S¯q)
HSL = 2AQ(SQ · L + S ¯Q · L)
HLL = BQ
LQ ¯Q(LQ ¯Q + 1)
2
LS coupling LL coupling
Ahmed Ali (DESY, Hamburg) 13 / 33
NR Hamiltonian
States need to diagonalize Hamiltonian:
H = 2mQ + H
(qq)
SS + H
(q¯q)
SS + HSL + HLL
with
H
(qq)
SS = 2(Kbq)¯3[(Sb · Sq) + (S¯b · S¯q)]
H
(q¯q)
SS = 2(Kb¯q)(Sb · S¯q + S¯b · Sq)
+ 2Kb¯b(Sb · S¯b) + 2Kq¯q(Sq · S¯q)
HSL = 2AQ(SQ · L + S ¯Q · L)
HLL = BQ
LQ ¯Q(LQ ¯Q + 1)
2
fit to known hadrons Empirical observation
Spin-spin interactions scale as the inverse product of quark masses, i.e.,
(κij)¯3mimj is constant, leading to a weak spin-spin interaction in diquarks,
counter-intuitive, and in disagreement with data
Ahmed Ali (DESY, Hamburg) 13 / 33
New Paradigm for spin interactions in tetraquarks
L. Maiani et al., Phys. Rev. D89, 114110 (2014)
Replace the spin-spin part in the q¯q coupling in different diquarks
H ∼ 2κq¯qsq¯q(sq¯q + 1)
by the spin coupling between quarks in the same diquark
H ∼ 2κqc(sq.sc + s¯q.s¯c)
M = M00 +
BQ
2
L2
− 2a L · S + 2κqQ sq · sQ + s¯q · s ¯Q
= M00 − 3κqQ − aJ(J + 1) +
BQ
2
+ a L(L + 1) + aS(S + 1)
+ κqQ sqQ(sqQ + 1) + s¯q ¯Q(s¯q ¯Q + 1)
Q = c, b; signs of BQ, a and κqQ are positive
Ahmed Ali (DESY, Hamburg) 14 / 33
Low-lying S- and P-wave Tetraquark States
S-wave states
In the |sqQ, s¯q ¯Q; S, L Jand |sq¯q, sQ ¯Q; S , L J bases, the positive parity
S-wave tetraquarks are given in terms of the six states listed
below (charge conjugation is defined for neutral states)
Label JPC |sqQ, s¯q ¯Q; S, L J |sq¯q, sQ ¯Q; S , L J Mass
X0 0++ |0, 0; 0, 0 0 |0, 0; 0, 0 0 +
√
3|1, 1; 0, 0 0 /2 M00 − 3κqQ
X0
0++ |1, 1; 0, 0 0
√
3|0, 0; 0, 0 0 − |1, 1; 0, 0 0 /2 M00 + κqQ
X1 1++ |1, 0; 1, 0 1 + |0, 1; 1, 0 1 /
√
2 |1, 1; 1, L 1 M00 − κqQ
Z 1+− |1, 0; 1, 0 1 − |0, 1; 1, 0 1 /
√
2 |1, 0; 1, L 1 − |0, 1; 1, L 1 /
√
2 M00 − κqQ
Z 1+− |1, 1; 1, 0 1 |1, 0; 1, L 1 + |0, 1; 1, L 1 /
√
2 M00 + κqQ
X2 2++ |1, 1; 2, 0 2 |1, 1; 2, L 2 M00 + κqQ
P-wave (JPC = 1−−) states
Label JPC |sqQ, s¯q ¯Q; S, L J |sq¯q, sQ ¯Q; S , L J Mass
Y1 1−− |0, 0; 0, 1 1 |0, 0; 0, 1 1 +
√
3|1, 1; 0, 1 1 /2 M00 − 3κqQ + BQ
Y2 1−− |1, 0; 1, 1 1 + |0, 1; 1, 1 1 /
√
2 |1, 1; 1, L 1 M00 − κqQ + 2a + BQ
Y3 1−− |1, 1; 0, 1 1
√
3|0, 0; 0, 1 1 − |1, 1; 0, 1 1 /2 M00 + κqQ + BQ
Y4 1−− |1, 1; 2, 1 1 |1, 1; 2, L 1 M00 + κqQ + 6a + BQ
Y5 1−− |1, 1; 2, 3 1 |1, 1; 2, L 1 M00 + κqQ + 16a + 6BQ
Ahmed Ali (DESY, Hamburg) 15 / 33
Belle Data on (Bottomonium-like) exotic states
State JPC Mass [MeV]
Yb(10891) 1−− 10891.1 ± 3.2+0.6
−1.5
Yb(10987) 1−− 10987.5+6.4+9.0
−2.5−2.1
Z+
b
(10610) 1+ 10607.2 ± 2.0
Z0
b
(10610) 1+− 10609 ± 4 ± 4
Z+
b
(10650) 1+ 10652.2 ± 1.5
We identify Z+
b
(10610) and Z+
b
(10650) with Zand Z , respectively. Their mass
difference determines 2κqb
2κqb = M[Z+
b
(10650)] − M[Z+
b
(10610)] = 45 MeV
The parameter M00 can be calculated as
M00 = M[Z+
b
(10610)] + κqb = 10630 MeV
We identify Yb(10891) and Yb(10977) with Y1 and Y2, respectively. The
parameter a can be calculated from their mass difference:
2a = M[Yb(10987)] − M[Yb(10891)] − 2κqQ = 51 MeV
The parameter BQ is given by
BQ = M[Yb(10891)] − M00 + 3κqQ = 329 MeV
Ahmed Ali (DESY, Hamburg) 16 / 33
Charmonium-like and Bottomonium-like Tetraquark Spectrum
(with Satoshi Mishima)
Parameters in the Mass Formula
charmonium-like bottomonium-like
M00 [MeV] 3957 10629.7
κqQ [MeV] 67 22.5
BQ [MeV] 268 328.9
a [MeV] 52.5 25.7
charmonium-like bottomonium-like
Label JPC State Mass [MeV] State Mass [MeV]
X0 0++ — 3756 — 10562.2
X0 0++ — 4024 — 10652.2
X1 1++ X(3872) 3890 — 10607.2
Z 1+− Z+
c (3900) 3890 Z+,0
b
(10610) 10607.2
Z 1+− Z+
c (4020) 4024 Z+
b
(10650) 10652.2
X2 2++ — 4024 — 10652.2
Y1 1−− Y(4008) 4024 Yb(10891) 10891.1
Y2 1−− Y(4260) 4263 Yb(10987) 10987.5
Y3 1−− Y(4290) (or Y(4220)) 4292 — 10981.1
Y4 1−− Y(4630) 4607 — 11135.3
Y5 1−− — 6472 — 13036.8
Ahmed Ali (DESY, Hamburg) 17 / 33
Comparison with current data in the Charmonium-like sector
Our determination of the parameters M00, κqc, BC and a in the Charmonium-like
sector close to the one by Maiani et al. (2014). Their results are shown below
− − − − New; - - - - - Old
Quarks inside a Diquark are much more tightly bound than Diquarks in Baryons
Ahmed Ali (DESY, Hamburg) 18 / 33
Production and decay characteristics of Z±
b (10610) and Z±
b (10650)
Belle, PRL 108, 122001 (2012)
Z±
b
(10610) and Z±
b
(10650) are produced in the decays of Υ(10890)
Υ(10890) → Zb/Zb + π → Υ(1S, 2S, 3S)ππ
Ahmed Ali (DESY, Hamburg) 19 / 33
Parameters of the Z±
b (10610) and Z±
b (10650) decays
Belle, PRL 108, 122001 (2012)
Υ(10890) → Zb/Zb + π → hb(1P, 2P)ππ
Final state Υ(1S)π+π− Υ(2S)π+π− Υ(3S)π+π− hb(1P)π+π− hb(2P)π+π−
M[Zb(10610)], MeV/c2 10611 ± 4 ± 3 10609 ± 2 ± 3 10608 ± 2 ± 3 10605 ± 2+3
−1
10599+6+5
−3−4
Γ[Zb(10610)], MeV 22.3 ± 7.7+3.0
−4.0
24.2 ± 3.1+2.0
−3.0
17.6 ± 3.0 ± 3.0 11.4 +4.5+2.1
−3.9−1.2
13 +10+9
−8−7
M[Zb(10650)], MeV/c2 10657 ± 6 ± 3 10651 ± 2 ± 3 10652 ± 1 ± 2 10654 ± 3 +1
−2
10651+2+3
−3−2
Γ[Zb(10650)], MeV 16.3 ± 9.8+6.0
−2.0
13.3 ± 3.3+4.0
−3.0
8.4 ± 2.0 ± 2.0 20.9 +5.4+2.1
−4.7−5.7
19 ± 7 +11
−7
Rel. normalization 0.57 ± 0.21+0.19
−0.04
0.86 ± 0.11+0.04
−0.10
0.96 ± 0.14+0.08
−0.05
1.39 ± 0.37+0.05
−0.15
1.6+0.6+0.4
−0.4−0.6
Rel. phase, degrees 58 ± 43+4
−9
−13 ± 13+17
−8
−9 ± 19+11
−26
187+44+3
−57−12
181+65+74
−105−109
Ahmed Ali (DESY, Hamburg) 20 / 33
Hidden-Beauty Charged Tetraquarks and Heavy Quark Spin Conservation
A.A., L. Maiani, A.D. Polosa, V. Riquer; PR D91, 017502 (2015)
Interpret the Z±,0
b
(10610) = Zb and Z±,0
b
(10650) = Zb as S-wave
JPG = 1++ tetraquark states (in the notation |s[bq], s[¯b¯q] )
|Zb =
|1bq, 0¯b¯q − |0bq, 1¯b¯q
√
2
, |Zb = |1bq, 1¯b¯q J=1
JP = 1+ multiplet is completed by Xb, given by the C = +1 combination
|Xb =
|1bq, 0¯b¯q + |0bq, 1¯b¯q
√
2
Expect Xb and Zb to be degenerate, with Zb heavier
M(Zb) − M(Zb) = 2κb
A similar analysis for the hidden-charm charged tetraquarks Zc and Zc yields
2κc = M(Zc) − M(Zc) 120 MeV
QCD expectation: κb : κc = Mc : Mb. With Mc
Mb
1.27
4.18 = 0.30, yields
2κb 36 MeV, fits OK with the observed Zb − Zbmass difference ( 45 MeV)
Ahmed Ali (DESY, Hamburg) 21 / 33
Heavy-Quark-Spin Flip in Υ(10890) → Zb/Zb + π → hb(1P, 2P)ππ
In Υ(10890), Sb¯b = 1. In hb(nP), Sb¯b = 0, so the above transition involves
heavy-quark spin-flip, yet its rate is not suppressed, violating heavy-quark-spin
conservation
This contradiction is only apparent. Expressing the states Zb and Zb in the basis
of definite b¯b and light quark q¯q spins,
|Zb =
|1q¯q, 0b¯b − |0q¯q, 1b¯b
√
2
, |Zb =
|1q¯q, 0b¯b + |0q¯q, 1b¯b
√
2
More generally, admitting a subdominant spin-spin interaction, the above
composition may be written as
|Zb =
α|1q¯q, 0b¯b − β|0q¯q, 1b¯b
√
2
, |Zb =
β|1q¯q, 0b¯b + α|0q¯q, 1b¯b
√
2
Define gZ = g(Υ → Zbπ)g(Zb → hbπ) ∝ −αβ hb|Zb Zb|Υ
gZ = g(Υ → Zbπ)g(Zb → hbπ) ∝ αβ hb|Zb Zb|Υ
where g are the effective strong couplings at the vertices Υ Zb π and Zb hb π
Therefore, independently from the values of the mixing coefficients, the above
equation and heavy quark spin conservation require gZ = −gZ
Ahmed Ali (DESY, Hamburg) 22 / 33
Heavy-Quark-Spin Flip in Υ(10890) → Zb/Zb + π → hb(1P, 2P)ππ
Relative normalizations and phases for sb¯b: 1 → 1 and 1 → 0 transitions
Final State Υ(1S)π+π− Υ(2S)π+π− Υ(3S)π+π− hb(1P)π+π− hb(2P)π+π−
Rel. Norm. 0.57 ± 0.21+0.19
−0.04
0.86 ± 0.11+0.04
−0.10
0.96 ± 0.14+0.08
−0.05
1.39 ± 0.37+0.05
−0.15
1.6+0.6+0.4
−0.4−0.6
Rel. Phase 58 ± 43+4
−9
−13 ± 13+17
−8
−9 ± 19+11
−26
187+44+3
−57−12
181+65+74
−105−109
Within errors, Belle data is consistent with heavy quark spin conservation
To determine the coefficients α and β, one has to resort to sb¯b: 1 → 1 transitions
Υ(10890) → Zb/Zb + π → Υ(nS)ππ (n = 1, 2, 3)
The analogous effective couplings are
fZ = f(Υ → Zbπ)f(Zb → Υ(nS)π) ∝ |β|2
Υ(nS)|0q¯q, 1b¯b 0q¯q, 1b¯b|Υ
fZ = f(Υ → Zbπ)f(Zb → Υ(nS)π) ∝ |α|2
Υ(nS)|0q¯q, 1b¯b 0q¯q, 1b¯b|Υ
Ahmed Ali (DESY, Hamburg) 23 / 33
Determination of α/β from Υ(10890) → Zb/Zb + π → Υ(nS)ππ (n = 1, 2, 3)
Dalitz analysis indicate that
Υ(10890) → Zb/Zb + π → Υ(nS)ππ (n = 1, 2, 3) proceed mainly through the
resonances Zb and Zb, though Υ(10890) → Υ(1S)ππ has a significant direct
component, expected in tetraquark interpretation of Υ(10890)
A comprehensive analysis of the Belle data including the direct and resonant
components is required to test the underlying dynamics, yet to be carried out
Parametrizing the amplitudes in terms of two Breit-Wigners, one can determine
the ratio α/β
sb¯b : 1 → 1 transition
Rel.Norm. = 0.85 ± 0.08 = |α|2
/|β|2
Rel.Phase = (−8 ± 10)◦
sb¯b : 1 → 0 transition
Rel.Norm. = 1.4 ± 0.3
Rel.Phase = (185 ± 42)◦
Within errors, the tetraquark assignment with α = β = 1 is supported, i.e.,
|Zb =
|1bq, 0¯b¯q − |0bq, 1¯b¯q
√
2
, |Zb
= |1bq, 1¯b¯q J=1
|Zb =
|1q¯q, 0b¯b − |0q¯q, 1b¯b
√
2
, |Zb
=
|1q¯q, 0b¯b + |0q¯q, 1b¯b
√
2
Ahmed Ali (DESY, Hamburg) 24 / 33
Zb(10610)/Zb(10650) → B(∗) ¯B(∗) States
Molecule Tetraquark
[Bondar, Garmash, Milstein, Mizuk,
Voloshin, PRD 11] , [Zhang, Zhong, Huang,
PLB 11] , [Voloshin, PRD 11] , [Yang,Ping,
Deng, Zong, JPG 11] , [Sun, He, Liu, Luo,
Zhu, PRD 11] , ...
[Yang, Ping, Deng, Zong, JPG 11] , [Guo,
Cao, Zhou, Chen, 11] , [Ali, Hambrock,
Wang, PRD 11] , ...
|Zb(10610) = 0b¯q ⊗ 1¯bq + 1b¯q ⊗ 0¯bq /
√
2 |Zb(10610) = 0[bq] ⊗ 1[¯b¯q] − 1[bq] ⊗ 0[¯b¯q] /
√
2
|Zb(10650) = 1b¯q ⊗ 1¯bq |Zb(10650) = 1[bq] ⊗ 1[¯b¯q]
Ahmed Ali (DESY, Hamburg) 25 / 33
Zb(10610)/Zb(10650) → B(∗) ¯B(∗) States
Molecule Tetraquark
[Bondar, Garmash, Milstein, Mizuk,
Voloshin, PRD 11] , [Zhang, Zhong, Huang,
PLB 11] , [Voloshin, PRD 11] , [Yang,Ping,
Deng, Zong, JPG 11] , [Sun, He, Liu, Luo,
Zhu, PRD 11] , ...
[Yang, Ping, Deng, Zong, JPG 11] , [Guo,
Cao, Zhou, Chen, 11] , [Ali, Hambrock,
Wang, PRD 11] , ...
|Zb(10610) = 0b¯q ⊗ 1¯bq + 1b¯q ⊗ 0¯bq /
√
2 |Zb(10610) = 0[bq] ⊗ 1[¯b¯q] − 1[bq] ⊗ 0[¯b¯q] /
√
2
|Zb(10650) = 1b¯q ⊗ 1¯bq |Zb(10650) = 1[bq] ⊗ 1[¯b¯q]
↓ Fierz ↓
|Zb(10610) = 1−
b¯q
⊗ 1−
q¯b
|Zb(10650) = 1−
b¯q
⊗ 0−
q¯b
+ 0−
b¯q
⊗ 1−
q¯b
/
√
2
Ahmed Ali (DESY, Hamburg) 25 / 33
Zb(10610)/Zb(10650) → B(∗) ¯B(∗) States
Molecule Tetraquark
[Bondar, Garmash, Milstein, Mizuk,
Voloshin, PRD 11] , [Zhang, Zhong, Huang,
PLB 11] , [Voloshin, PRD 11] , [Yang,Ping,
Deng, Zong, JPG 11] , [Sun, He, Liu, Luo,
Zhu, PRD 11] , ...
[Yang, Ping, Deng, Zong, JPG 11] , [Guo,
Cao, Zhou, Chen, 11] , [Ali, Hambrock,
Wang, PRD 11] , ...
|Zb(10610) = 0b¯q ⊗ 1¯bq + 1b¯q ⊗ 0¯bq /
√
2 |Zb(10610) = 0[bq] ⊗ 1[¯b¯q] − 1[bq] ⊗ 0[¯b¯q] /
√
2
|Zb(10650) = 1b¯q ⊗ 1¯bq |Zb(10650) = 1[bq] ⊗ 1[¯b¯q]
↓ Fierz ↓
|Zb(10610) = 1−
b¯q
⊗ 1−
q¯b
|Zb(10650) = 1−
b¯q
⊗ 0−
q¯b
+ 0−
b¯q
⊗ 1−
q¯b
/
√
2
Zb(10610) → B¯B∗ + B∗ ¯B Zb(10610) → B∗ ¯B∗
Zb(10650) → B∗ ¯B∗ Zb(10650) → B¯B∗ + B∗ ¯B
Ahmed Ali (DESY, Hamburg) 25 / 33
Zb(10610)/Zb(10650) → B(∗) ¯B(∗) States
Molecule Tetraquark
[Bondar, Garmash, Milstein, Mizuk,
Voloshin, PRD 11] , [Zhang, Zhong, Huang,
PLB 11] , [Voloshin, PRD 11] , [Yang,Ping,
Deng, Zong, JPG 11] , [Sun, He, Liu, Luo,
Zhu, PRD 11] , ...
[Yang, Ping, Deng, Zong, JPG 11] , [Guo,
Cao, Zhou, Chen, 11] , [Ali, Hambrock,
Wang, PRD 11] , ...
|Zb(10610) = 0b¯q ⊗ 1¯bq + 1b¯q ⊗ 0¯bq /
√
2 |Zb(10610) = 0[bq] ⊗ 1[¯b¯q] − 1[bq] ⊗ 0[¯b¯q] /
√
2
|Zb(10650) = 1b¯q ⊗ 1¯bq |Zb(10650) = 1[bq] ⊗ 1[¯b¯q]
↓ Fierz ↓
|Zb(10610) = 1−
b¯q
⊗ 1−
q¯b
|Zb(10650) = 1−
b¯q
⊗ 0−
q¯b
+ 0−
b¯q
⊗ 1−
q¯b
/
√
2
Zb(10610) → B¯B∗ + B∗ ¯B Zb(10610) → B∗ ¯B∗
Zb(10650) → B∗ ¯B∗ Zb(10650) → B¯B∗ + B∗ ¯B
Ahmed Ali (DESY, Hamburg) 25 / 33
Zb(10610)/Zb(10650) → B(∗) ¯B(∗) Contd.
|B and |B∗ differ in the spin alignment of the light quark. However, light quark
spin is not conserved by QCD (gluonic) interactions
Hence, predictions derived from the the representations (labels 0b¯q and 1b¯q are
viewed as B and B∗ mesons, respectively)
|Zb = |1b¯q, 1q¯b J=1
|Zb =
|1b¯q, 0q¯b + |0b¯q, 1q¯b
√
2
are not as reliable as those derived from the representation
|Zb =
|1q¯q, 0b¯b − |0q¯q, 1b¯b
√
2
, |Zb =
|1q¯q, 0b¯b + |0q¯q, 1b¯b
√
2
The issue of the unaccounted direct production of the B∗ ¯B∗, B¯B∗ etc., at and near
the Υ(10890), once satisfactorily resolved, may also reflect on the resonant
contributions Zb → B∗ ¯B∗ and Zb → B¯B∗
In view of this, Zb(10610)/Zb(10650) → B(∗) ¯B(∗) decays offer no firm distinction
between the tetraquark vs. hadron molecules scenarios at present, and we wait
for the improved Belle/Belle-2 measurements
Ahmed Ali (DESY, Hamburg) 26 / 33
Dipion mass distributions in Υ(5S) → Υ(nS)ππ decays?
Ahmed Ali (DESY, Hamburg) 27 / 33
Dipion mass distributions in Υ(5S) → Υ(nS)ππ decays?
Ahmed Ali (DESY, Hamburg) 27 / 33
Dipion mass distributions in Υ(5S) → Υ(nS)ππ decays?
Ahmed Ali (DESY, Hamburg) 27 / 33
Dipion mass distributions in Υ(5S) → Υ(nS)ππ decays?
Ahmed Ali (DESY, Hamburg) 27 / 33
Dipion mass distributions in Υ(5S) → Υ(nS)ππ decays?
Ahmed Ali (DESY, Hamburg) 27 / 33
Dipion mass distributions in Υ(5S) → Υ(nS)ππ decays?
Ahmed Ali (DESY, Hamburg) 27 / 33
Dipion mass distributions in Υ(5S) → Υ(nS)ππ decays?
Ahmed Ali (DESY, Hamburg) 27 / 33
Dipion mass distributions in Υ(5S) → Υ(nS)ππ decays?
tetraquark &
rescattering trying to explain data (unresolved so far)
Ahmed Ali (DESY, Hamburg) 27 / 33
Tetraquark model for Yb production and decays
Van Royen-Weisskopf formula
⇒ Γ(1−−→ e+e−)
Assumption: Point-like diquarks
[AA, Hambrock, Mishima, PRL (2010)]
Ahmed Ali (DESY, Hamburg) 28 / 33
Tetraquark model for Yb production and decays
Van Royen-Weisskopf formula
⇒ Γ(1−−→ e+e−)
Assumption: Point-like diquarks
[AA, Hambrock, Mishima, PRL (2010)]
Γee(Y[b,l/h]) =
24α2Q2
[b,l/h]
M4
Y[b,l/h]
κ2
R
(1)
11 (0)
2
Ahmed Ali (DESY, Hamburg) 28 / 33
Tetraquark model for Yb production and decays
Van Royen-Weisskopf formula
⇒ Γ(1−−→ e+e−)
Assumption: Point-like diquarks
[AA, Hambrock, Mishima, PRL (2010)]
diquark charge
Γee(Y[b,l/h]) =
24α2Q2
[b,l/h]
M4
Y[b,l/h]
κ2
R
(1)
11 (0)
2
Ahmed Ali (DESY, Hamburg) 28 / 33
Tetraquark model for Yb production and decays
Van Royen-Weisskopf formula
⇒ Γ(1−−→ e+e−)
Assumption: Point-like diquarks
[AA, Hambrock, Mishima, PRL (2010)]
radial tetraquark WF @ origin
Γee(Y[b,l/h]) =
24α2Q2
[b,l/h]
M4
Y[b,l/h]
κ2
R
(1)
11 (0)
2
Ahmed Ali (DESY, Hamburg) 28 / 33
Tetraquark model for Yb production and decays
Van Royen-Weisskopf formula
⇒ Γ(1−−→ e+e−)
Assumption: Point-like diquarks
[AA, Hambrock, Mishima, PRL (2010)]
hadronic size parameter
Γee(Y[b,l/h]) =
24α2Q2
[b,l/h]
M4
Y[b,l/h]
κ2
R
(1)
11 (0)
2
Ahmed Ali (DESY, Hamburg) 28 / 33
Tetraquark model for Yb production and decays
Van Royen-Weisskopf formula
⇒ Γ(1−−→ e+e−)
Assumption: Point-like diquarks
[AA, Hambrock, Mishima, PRL (2010)]
Γee(Y[b,l/h]) =
24α2Q2
[b,l/h]
M4
Y[b,l/h]
κ2
R
(1)
11 (0)
2
Suppressed O(10) vs Υ(5S)
Production ratio: ΓY[b,l]
/ ΓY[b,h]
= 1−2 tan θ
2+tan θ
2
Isospin breaking through production
e.g.
σΥ(1S)K+K−
σΥ(1S)K0 ¯K0
=
Q2
[bu]
Q2
[bd]
= 1
4
Ahmed Ali (DESY, Hamburg) 28 / 33
Yb decay
Continuum Resonance
+
Breit-Wigner shape for resonance:
1
(q2 − M2) + iMΓ
q2 ≡ M2
PP Resonances show in MPP spectrum
Not in MΥP spectrum since Zb negligible
Ahmed Ali (DESY, Hamburg) 29 / 33
Fit to σ(e+e− → Yb → Υ(1S)π+π−)
Fit results, data from [Belle, PRL 08]
χ2/d.o.f. = 21.5/15 Good agreement with data
Clear resonance dominance!
(˜σ: normalized to measurement )
0++ tetraquarks σ(500) + f0(980)
2++ meson f2(1270)
Ahmed Ali (DESY, Hamburg) 30 / 33
Predictions for Υ(1S)(K+K−, ηπ0)
Fit determines couplings (assume SU(3) flavor symmetry for couplings
(σ(500), f0(980), a0(980)) → PP , [’t Hooft, Isidori, Maiani, Polosa, Riquer, PLB 08] )
predictions for spectra:
Agreement with σK+K− = 0.11+0.04
−0.03 (BELLE)
1.0 σηπ0 2.0 predicted
Resonance dominance
Characteristic shape
Good tests (relying on Yb has 2 flavor states)
Ahmed Ali (DESY, Hamburg) 31 / 33
Central Issue: Are Yc, Zcs, Yb and Zbs related?
Ahmed Ali (DESY, Hamburg) 32 / 33
Summary
A new facet of QCD is opened by the discovery of the exotic X, Y, Z states
Dedicated studies required to establish the nature of exotics in experiments and QCD
Important puzzles remain in the complex:
What is the nature of Yc(4260)? A tetraquark? or a c¯cg hybrid?
What exactly is Υ(10888)? Is it a pure Υ(5S)? Does Yb(10890) still exist?
Branching ratios at Υ(5S) enigmatic
Tetraquarks tentatively provide a credible explanation for the BELLE anomaly at Υ(5S)
Need detailed Dalitz distributions of Y(11020). Do Zb, Zb (and related excited states) play
a role in the the decays of Y(11020)?
There is a good case for having dedicated runs above Υ(4S)at Belle-II
We look forward to experimental results from Belle-II and LHC
Ahmed Ali (DESY, Hamburg) 33 / 33

More Related Content

Similar to Ali-Krakow-2015

Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures? Alessandro Palmeri
 
2013_Talk.Regensburg.DPG
2013_Talk.Regensburg.DPG2013_Talk.Regensburg.DPG
2013_Talk.Regensburg.DPGStephan Hensel
 
Pharmacosiderite_HFM.pptx
Pharmacosiderite_HFM.pptxPharmacosiderite_HFM.pptx
Pharmacosiderite_HFM.pptxRyutaro Okuma
 
On Repetitive Right Application of B-terms (for PPL 2019)
On Repetitive Right Application of B-terms (for PPL 2019)On Repetitive Right Application of B-terms (for PPL 2019)
On Repetitive Right Application of B-terms (for PPL 2019)ksknac
 
M. Dimitrijević, Noncommutative models of gauge and gravity theories
M. Dimitrijević, Noncommutative models of gauge and gravity theoriesM. Dimitrijević, Noncommutative models of gauge and gravity theories
M. Dimitrijević, Noncommutative models of gauge and gravity theoriesSEENET-MTP
 
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...Deep Learning JP
 
Capítulo 05 deflexão e rigidez
Capítulo 05   deflexão e rigidezCapítulo 05   deflexão e rigidez
Capítulo 05 deflexão e rigidezJhayson Carvalho
 
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixturesSpectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixturesDaisuke Satow
 
El text.life science6.matsubayashi191120
El text.life science6.matsubayashi191120El text.life science6.matsubayashi191120
El text.life science6.matsubayashi191120RCCSRENKEI
 
Formulario Trigonometria
Formulario TrigonometriaFormulario Trigonometria
Formulario TrigonometriaAntonio Guasco
 
[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)
[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)
[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)Harrisson David Assis Santos
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsVjekoslavKovac1
 
Particle Physics Report
Particle Physics ReportParticle Physics Report
Particle Physics ReportDrew Silcock
 
小1にルービックキューブを教えてみた 〜群論スポーツの教育とパターン認知〜
小1にルービックキューブを教えてみた 〜群論スポーツの教育とパターン認知〜小1にルービックキューブを教えてみた 〜群論スポーツの教育とパターン認知〜
小1にルービックキューブを教えてみた 〜群論スポーツの教育とパターン認知〜Ichigaku Takigawa
 
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]Henrique Covatti
 

Similar to Ali-Krakow-2015 (20)

CMSI計算科学技術特論C (2015) ALPS と量子多体問題①
CMSI計算科学技術特論C (2015) ALPS と量子多体問題①CMSI計算科学技術特論C (2015) ALPS と量子多体問題①
CMSI計算科学技術特論C (2015) ALPS と量子多体問題①
 
Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?
 
2013_Talk.Regensburg.DPG
2013_Talk.Regensburg.DPG2013_Talk.Regensburg.DPG
2013_Talk.Regensburg.DPG
 
Pharmacosiderite_HFM.pptx
Pharmacosiderite_HFM.pptxPharmacosiderite_HFM.pptx
Pharmacosiderite_HFM.pptx
 
Non standard
Non standardNon standard
Non standard
 
On Repetitive Right Application of B-terms (for PPL 2019)
On Repetitive Right Application of B-terms (for PPL 2019)On Repetitive Right Application of B-terms (for PPL 2019)
On Repetitive Right Application of B-terms (for PPL 2019)
 
M. Dimitrijević, Noncommutative models of gauge and gravity theories
M. Dimitrijević, Noncommutative models of gauge and gravity theoriesM. Dimitrijević, Noncommutative models of gauge and gravity theories
M. Dimitrijević, Noncommutative models of gauge and gravity theories
 
Capítulo 11 (5th edition)rewrweerww
Capítulo 11 (5th edition)rewrweerwwCapítulo 11 (5th edition)rewrweerww
Capítulo 11 (5th edition)rewrweerww
 
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
 
Capítulo 05 deflexão e rigidez
Capítulo 05   deflexão e rigidezCapítulo 05   deflexão e rigidez
Capítulo 05 deflexão e rigidez
 
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixturesSpectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
 
El text.life science6.matsubayashi191120
El text.life science6.matsubayashi191120El text.life science6.matsubayashi191120
El text.life science6.matsubayashi191120
 
Formulario Trigonometria
Formulario TrigonometriaFormulario Trigonometria
Formulario Trigonometria
 
Shi20396 ch05
Shi20396 ch05Shi20396 ch05
Shi20396 ch05
 
[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)
[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)
[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operators
 
Particle Physics Report
Particle Physics ReportParticle Physics Report
Particle Physics Report
 
小1にルービックキューブを教えてみた 〜群論スポーツの教育とパターン認知〜
小1にルービックキューブを教えてみた 〜群論スポーツの教育とパターン認知〜小1にルービックキューブを教えてみた 〜群論スポーツの教育とパターン認知〜
小1にルービックキューブを教えてみた 〜群論スポーツの教育とパターン認知〜
 
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
 
Ec gate 13
Ec gate 13Ec gate 13
Ec gate 13
 

Ali-Krakow-2015

  • 1. Bottom-Tetraquarks – Current Status & Prospects Ahmed Ali DESY, Hamburg April. 27, 2015 WG7: B2TiP Workshop, Krakow Ahmed Ali (DESY, Hamburg) 1 / 33
  • 2. An Overview of Charmonium- and Bottomonium-like states Enigmatic Υ(5S) decays? Spectroscopy of tetraquark states Charged tetraquarks and heavy quark spin conservation Dipion mass distributions in Υ(5S) → Υ(nS)ππ decays Tetraquark model for Yb production and decays Summary Ahmed Ali (DESY, Hamburg) 2 / 33
  • 3. Charmonia and Charmonium-like Hadrons (Olsen, arxiv:1411.7738) Ahmed Ali (DESY, Hamburg) 3 / 33
  • 4. Bottomonia and Bottomonium-like Hadrons (Olsen, arxiv:1411.7738) Ahmed Ali (DESY, Hamburg) 4 / 33
  • 5. Exotica Belle & others [Liu et al., 13] , [Ablikim et al., 13] , [Brambilla et al., 14] State M (MeV) Γ (MeV) JPC Decay Modes Production Modes Also observed by e+e− (ISR) Ys(2175) 2175 ± 8 58 ± 26 1−− φf0(980) J/ψ → ηYs(2175) BaBar∗, BESII π+π−J/ψ, BaBar X(3872) 3871.68 ± 0.17 < 1.2 1++ γJ/ψ,D ¯D∗ B → KX(3872), p¯p CDF, D0, BaBar, LHCb Z(3900) 3891.2 ± 3.3 40 ± 8 1+ π±J/ψ Y(4260) → Z(3900)π BESIII∗, CLEO X(3915) 3914 ± 4 28+12 −14 0/2++ ωJ/ψ γγ → X(3915) Z(3930) 3929 ± 5 29 ± 10 2++ D ¯D γγ → Z(3940) D ¯D∗ (not D ¯D X(3940) 3942 ± 9 37 ± 17 0?+ or ωJ/ψ) e+e− → J/ψX(3940) Y(3940) 3943 ± 17 87 ± 34 ??+ ωJ/ψ (not D ¯D∗) B → KY(3940) BaBar Y(4008) 4008+82 −49 226+97 −80 1−− π+π−J/ψ e+e−(ISR) Z(4020) 4022 ± 3 8 ± 4 1+ π±J/ψ Y(4260) → Z(4020)π BESIII∗(only) Z(4025) 4026 ± 5 25 ± 10 1+ π±J/ψ Y(4260) → Z(4025)π BESIII∗(only) X(4160) 4156 ± 29 139+113 −65 0?+ D∗ ¯D∗ (not D ¯D) e+e− → J/ψX(4160) Y(4260) 4264 ± 12 83 ± 22 1−− π+π−J/ψ e+e−(ISR) BaBar∗, CLEO Y(4350) 4361 ± 13 74 ± 18 1−− π+π−ψ e+e−(ISR) BaBar∗ X(4630) 4634+9 −11 92+41 −32 1−− Λ+ c Λ− c e+e−(ISR) Y(4660) 4664 ± 12 48 ± 15 1−− π+π−ψ e+e−(ISR) Z(4050) 4051+24 −23 82+51 −29 ? π±χc1 B → KZ±(4050) Z(4250) 4248+185 −45 177+320 −72 ? π±χc1 B → KZ±(4250) Z(4430) 4475 ± 7 172 ± 13+37 −34 1+ π±ψ B → KZ±(4430) LHCb Zb(10610) 10, 607 ± 2 18.4 ± 2.4 1+ π±hb(1, 2P), π±Υ(1, 2, 3S) Yb/Υ(5S) → Zb(10610)π Zb(10650) 10, 652 ± 2 11.5 ± 2.2 1+ π±hb(1, 2P), π±Υ(1, 2, 3S) Yb/Υ(5S) → Zb(10650)π Yb(10890) 10, 890 ± 3 55 ± 9 1−− π+π−Υ(1, 2, 3S) e+e− → Yb Ahmed Ali (DESY, Hamburg) 5 / 33
  • 6. Exotica Belle & others [Liu et al., 13] , [Ablikim et al., 13] , [Brambilla et al., 14] State M (MeV) Γ (MeV) JPC Decay Modes Production Modes Also observed by e+e− (ISR) Ys(2175) 2175 ± 8 58 ± 26 1−− φf0(980) J/ψ → ηYs(2175) BaBar∗, BESII π+π−J/ψ, BaBar X(3872) 3871.68 ± 0.17 < 1.2 1++ γJ/ψ,D ¯D∗ B → KX(3872), p¯p CDF, D0, BaBar, LHCb Z(3900) 3891.2 ± 3.3 40 ± 8 1+ π±J/ψ Y(4260) → Z(3900)π BESIII∗, CLEO X(3915) 3914 ± 4 28+12 −14 0/2++ ωJ/ψ γγ → X(3915) Z(3930) 3929 ± 5 29 ± 10 2++ D ¯D γγ → Z(3940) D ¯D∗ (not D ¯D X(3940) 3942 ± 9 37 ± 17 0?+ or ωJ/ψ) e+e− → J/ψX(3940) Y(3940) 3943 ± 17 87 ± 34 ??+ ωJ/ψ (not D ¯D∗) B → KY(3940) BaBar Y(4008) 4008+82 −49 226+97 −80 1−− π+π−J/ψ e+e−(ISR) Z(4020) 4022 ± 3 8 ± 4 1+ π±J/ψ Y(4260) → Z(4020)π BESIII∗(only) Z(4025) 4026 ± 5 25 ± 10 1+ π±J/ψ Y(4260) → Z(4025)π BESIII∗(only) X(4160) 4156 ± 29 139+113 −65 0?+ D∗ ¯D∗ (not D ¯D) e+e− → J/ψX(4160) Y(4260) 4264 ± 12 83 ± 22 1−− π+π−J/ψ e+e−(ISR) BaBar∗, CLEO Y(4350) 4361 ± 13 74 ± 18 1−− π+π−ψ e+e−(ISR) BaBar∗ X(4630) 4634+9 −11 92+41 −32 1−− Λ+ c Λ− c e+e−(ISR) Y(4660) 4664 ± 12 48 ± 15 1−− π+π−ψ e+e−(ISR) Z(4050) 4051+24 −23 82+51 −29 ? π±χc1 B → KZ±(4050) Z(4250) 4248+185 −45 177+320 −72 ? π±χc1 B → KZ±(4250) Z(4430) 4475 ± 7 172 ± 13+37 −34 1+ π±ψ B → KZ±(4430) LHCb Zb(10610) 10, 607 ± 2 18.4 ± 2.4 1+ π±hb(1, 2P), π±Υ(1, 2, 3S) Yb/Υ(5S) → Zb(10610)π Zb(10650) 10, 652 ± 2 11.5 ± 2.2 1+ π±hb(1, 2P), π±Υ(1, 2, 3S) Yb/Υ(5S) → Zb(10650)π Yb(10890) 10, 890 ± 3 55 ± 9 1−− π+π−Υ(1, 2, 3S) e+e− → Yb Light states [PDG] : a0(980) in 1965, σ(600)now 500 in 1972, f0(980) in 1979, κ(980) in 1997 discussion reopened: [’t Hooft, Isidori, Maiani, Polosa, Riquer, PLB 08] Ahmed Ali (DESY, Hamburg) 5 / 33
  • 7. Exotica Belle & others [Liu et al., 13] , [Ablikim et al., 13] , [Brambilla et al., 14] State M (MeV) Γ (MeV) JPC Decay Modes Production Modes Also observed by e+e− (ISR) Ys(2175) 2175 ± 8 58 ± 26 1−− φf0(980) J/ψ → ηYs(2175) BaBar∗, BESII π+π−J/ψ, BaBar X(3872) 3871.68 ± 0.17 < 1.2 1++ γJ/ψ,D ¯D∗ B → KX(3872), p¯p CDF, D0, BaBar, LHCb Z(3900) 3891.2 ± 3.3 40 ± 8 1+ π±J/ψ Y(4260) → Z(3900)π BESIII∗, CLEO X(3915) 3914 ± 4 28+12 −14 0/2++ ωJ/ψ γγ → X(3915) Z(3930) 3929 ± 5 29 ± 10 2++ D ¯D γγ → Z(3940) D ¯D∗ (not D ¯D X(3940) 3942 ± 9 37 ± 17 0?+ or ωJ/ψ) e+e− → J/ψX(3940) Y(3940) 3943 ± 17 87 ± 34 ??+ ωJ/ψ (not D ¯D∗) B → KY(3940) BaBar Y(4008) 4008+82 −49 226+97 −80 1−− π+π−J/ψ e+e−(ISR) Z(4020) 4022 ± 3 8 ± 4 1+ π±J/ψ Y(4260) → Z(4020)π BESIII∗(only) Z(4025) 4026 ± 5 25 ± 10 1+ π±J/ψ Y(4260) → Z(4025)π BESIII∗(only) X(4160) 4156 ± 29 139+113 −65 0?+ D∗ ¯D∗ (not D ¯D) e+e− → J/ψX(4160) Y(4260) 4264 ± 12 83 ± 22 1−− π+π−J/ψ e+e−(ISR) BaBar∗, CLEO Y(4350) 4361 ± 13 74 ± 18 1−− π+π−ψ e+e−(ISR) BaBar∗ X(4630) 4634+9 −11 92+41 −32 1−− Λ+ c Λ− c e+e−(ISR) Y(4660) 4664 ± 12 48 ± 15 1−− π+π−ψ e+e−(ISR) Z(4050) 4051+24 −23 82+51 −29 ? π±χc1 B → KZ±(4050) Z(4250) 4248+185 −45 177+320 −72 ? π±χc1 B → KZ±(4250) Z(4430) 4475 ± 7 172 ± 13+37 −34 1+ π±ψ B → KZ±(4430) LHCb Zb(10610) 10, 607 ± 2 18.4 ± 2.4 1+ π±hb(1, 2P), π±Υ(1, 2, 3S) Yb/Υ(5S) → Zb(10610)π Zb(10650) 10, 652 ± 2 11.5 ± 2.2 1+ π±hb(1, 2P), π±Υ(1, 2, 3S) Yb/Υ(5S) → Zb(10650)π Yb(10890) 10, 890 ± 3 55 ± 9 1−− π+π−Υ(1, 2, 3S) e+e− → Yb Light states [PDG] : a0(980) in 1965, σ(600)now 500 in 1972, f0(980) in 1979, κ(980) in 1997 discussion reopened: [’t Hooft, Isidori, Maiani, Polosa, Riquer, PLB 08] focus here: Zc(3900, 402X) Yc(4260) Zb(106XX) Yb(10890) Ahmed Ali (DESY, Hamburg) 5 / 33
  • 8. Ahmed Ali (DESY, Hamburg) 6 / 33
  • 9. Enigmatic Υ(5S) Decays: Is there a Yb(10890) close to Υ(5S)? Ahmed Ali (DESY, Hamburg) 7 / 33
  • 10. σ(e+e− → b¯b) in the Υ(10860) and Υ(11020) region [Belle 2015] Rb data and fit Fb¯b = |Anr|2 + |Ar + A5Seiφ5S f5S + A6Seiφ6S f6S|2 fnS = MnsΓnS/[(s − M2 ns) + iMnSΓnS] [Breit-Wigner] Ar and Anr are coherent and incoherent continuum terms No peaking structure seen at 10.9 GeV, hinted by the BaBar data; Γ(e+e−) < 9 eV (@ 90% C.L.) Ahmed Ali (DESY, Hamburg) 8 / 33
  • 11. σ(e+e− → Υ(nS)π+π−) in the Υ(10860) and Υ(11020) region [Belle 2015] FΥ(nS)ππ = |A5S,nf5S|2 + |A6S,nf6S|2 + 2KnA5S,nA6S,nR[eiδn f5Sf∗ 6S] Kn and δn allowed to float Fit Values (MeV): M5S = 10891.1 ± 3.2+0.6 −1.5; Γ5S = 53.7+7.1 +0.9 −5.6 −5.4 M5S(Υ(nS)ππ) − M5S(b¯b) = 9.2 ± 3.4 ± 1.9 MeV Ahmed Ali (DESY, Hamburg) 9 / 33
  • 12. Evidence for Zb(10610)± and Zb(10650)± (Belle) Ahmed Ali (DESY, Hamburg) 10 / 33
  • 13. Branching Ratios of Υ(10860) is a Puzzle! Rb and Rπ+π−Υ(nS) are not independent b¯b contribution: Pb = |A5S(b¯b) × BW(5S)|2 Υ(nS)ππ contribution: P(π+π−nS) = PHSP × |A5S(nS) × BW(5S)|2 Book-keeping of the BRs at Υ(10860) From Rπ+π−Υ(nS): P(π+π−nS) = (17 ± 0.9)% of Pb Adding Υ(5S) → ππhb(1P, 2P)and assuming isospin symmetry yields P(ππb¯b) = (42 ± 4)% Adding Zb → πB(∗) ¯B(∗)yields P(ππb¯b + πZb) = (109 ± 15)% No, or very little, room for direct decays: Υ(5S) → B(∗) ¯B(∗), Bs ¯Bs In particular, what is the source of the Bs ¯B (∗) s events? They are not seen off-the resonance, nor in the decays of Zb!! Ahmed Ali (DESY, Hamburg) 11 / 33
  • 14. Spectroscopy of tetraquark states Interpolating diquark operators (P = −1 larger energy): “good”: 0+ Qiα = αβγ(¯b β c γ5q γ i − ¯q β ic γ5bγ) α, β, γ: SU(3)C indices “bad”: 1+ Qiα = αβγ(¯b β c γq γ i + ¯q β ic γbγ) Ahmed Ali (DESY, Hamburg) 12 / 33
  • 15. Spectroscopy of tetraquark states Interpolating diquark operators (P = −1 larger energy): “good”: 0+ Qiα = αβγ(¯b β c γ5q γ i − ¯q β ic γ5bγ) α, β, γ: SU(3)C indices “bad”: 1+ Qiα = αβγ(¯b β c γq γ i + ¯q β ic γbγ) NR limit: States parametrized by Pauli matrices : “good”: 0+ Γ0 = σ2√ 2 “bad”: 1+ Γ = σ2σ√ 2 Ahmed Ali (DESY, Hamburg) 12 / 33
  • 16. Spectroscopy of tetraquark states Interpolating diquark operators (P = −1 larger energy): “good”: 0+ Qiα = αβγ(¯b β c γ5q γ i − ¯q β ic γ5bγ) α, β, γ: SU(3)C indices “bad”: 1+ Qiα = αβγ(¯b β c γq γ i + ¯q β ic γbγ) NR limit: States parametrized by Pauli matrices : “good”: 0+ Γ0 = σ2√ 2 “bad”: 1+ Γ = σ2σ√ 2 Diquark spin sQ tetraquark total angular momentum J: Y[bq] = sQ, s ¯Q; J Tetraquark matrix representation: 0Q, 0 ¯Q; 0J = Γ0 ⊗ Γ0 , 1Q, 1 ¯Q; 0J = 1 √ 3 Γi ⊗ Γi, . . . 0 iAhmed Ali (DESY, Hamburg) 12 / 33
  • 17. NR Hamiltonian States need to diagonalize Hamiltonian: H = 2mQ + H (qq) SS + H (q¯q) SS + HSL + HLL Ahmed Ali (DESY, Hamburg) 13 / 33
  • 18. NR Hamiltonian States need to diagonalize Hamiltonian: H = 2mQ + H (qq) SS + H (q¯q) SS + HSL + HLL with constituent mass Ahmed Ali (DESY, Hamburg) 13 / 33
  • 19. NR Hamiltonian States need to diagonalize Hamiltonian: H = 2mQ + H (qq) SS + H (q¯q) SS + HSL + HLL with H (qq) SS = 2(Kbq)¯3[(Sb · Sq) + (S¯b · S¯q)] H (q¯q) SS = 2(Kb¯q)(Sb · S¯q + S¯b · Sq) + 2Kb¯b(Sb · S¯b) + 2Kq¯q(Sq · S¯q) qq spin coupling q¯q spin coupling Ahmed Ali (DESY, Hamburg) 13 / 33
  • 20. NR Hamiltonian States need to diagonalize Hamiltonian: H = 2mQ + H (qq) SS + H (q¯q) SS + HSL + HLL with H (qq) SS = 2(Kbq)¯3[(Sb · Sq) + (S¯b · S¯q)] H (q¯q) SS = 2(Kb¯q)(Sb · S¯q + S¯b · Sq) + 2Kb¯b(Sb · S¯b) + 2Kq¯q(Sq · S¯q) HSL = 2AQ(SQ · L + S ¯Q · L) HLL = BQ LQ ¯Q(LQ ¯Q + 1) 2 LS coupling LL coupling Ahmed Ali (DESY, Hamburg) 13 / 33
  • 21. NR Hamiltonian States need to diagonalize Hamiltonian: H = 2mQ + H (qq) SS + H (q¯q) SS + HSL + HLL with H (qq) SS = 2(Kbq)¯3[(Sb · Sq) + (S¯b · S¯q)] H (q¯q) SS = 2(Kb¯q)(Sb · S¯q + S¯b · Sq) + 2Kb¯b(Sb · S¯b) + 2Kq¯q(Sq · S¯q) HSL = 2AQ(SQ · L + S ¯Q · L) HLL = BQ LQ ¯Q(LQ ¯Q + 1) 2 fit to known hadrons Empirical observation Spin-spin interactions scale as the inverse product of quark masses, i.e., (κij)¯3mimj is constant, leading to a weak spin-spin interaction in diquarks, counter-intuitive, and in disagreement with data Ahmed Ali (DESY, Hamburg) 13 / 33
  • 22. New Paradigm for spin interactions in tetraquarks L. Maiani et al., Phys. Rev. D89, 114110 (2014) Replace the spin-spin part in the q¯q coupling in different diquarks H ∼ 2κq¯qsq¯q(sq¯q + 1) by the spin coupling between quarks in the same diquark H ∼ 2κqc(sq.sc + s¯q.s¯c) M = M00 + BQ 2 L2 − 2a L · S + 2κqQ sq · sQ + s¯q · s ¯Q = M00 − 3κqQ − aJ(J + 1) + BQ 2 + a L(L + 1) + aS(S + 1) + κqQ sqQ(sqQ + 1) + s¯q ¯Q(s¯q ¯Q + 1) Q = c, b; signs of BQ, a and κqQ are positive Ahmed Ali (DESY, Hamburg) 14 / 33
  • 23. Low-lying S- and P-wave Tetraquark States S-wave states In the |sqQ, s¯q ¯Q; S, L Jand |sq¯q, sQ ¯Q; S , L J bases, the positive parity S-wave tetraquarks are given in terms of the six states listed below (charge conjugation is defined for neutral states) Label JPC |sqQ, s¯q ¯Q; S, L J |sq¯q, sQ ¯Q; S , L J Mass X0 0++ |0, 0; 0, 0 0 |0, 0; 0, 0 0 + √ 3|1, 1; 0, 0 0 /2 M00 − 3κqQ X0 0++ |1, 1; 0, 0 0 √ 3|0, 0; 0, 0 0 − |1, 1; 0, 0 0 /2 M00 + κqQ X1 1++ |1, 0; 1, 0 1 + |0, 1; 1, 0 1 / √ 2 |1, 1; 1, L 1 M00 − κqQ Z 1+− |1, 0; 1, 0 1 − |0, 1; 1, 0 1 / √ 2 |1, 0; 1, L 1 − |0, 1; 1, L 1 / √ 2 M00 − κqQ Z 1+− |1, 1; 1, 0 1 |1, 0; 1, L 1 + |0, 1; 1, L 1 / √ 2 M00 + κqQ X2 2++ |1, 1; 2, 0 2 |1, 1; 2, L 2 M00 + κqQ P-wave (JPC = 1−−) states Label JPC |sqQ, s¯q ¯Q; S, L J |sq¯q, sQ ¯Q; S , L J Mass Y1 1−− |0, 0; 0, 1 1 |0, 0; 0, 1 1 + √ 3|1, 1; 0, 1 1 /2 M00 − 3κqQ + BQ Y2 1−− |1, 0; 1, 1 1 + |0, 1; 1, 1 1 / √ 2 |1, 1; 1, L 1 M00 − κqQ + 2a + BQ Y3 1−− |1, 1; 0, 1 1 √ 3|0, 0; 0, 1 1 − |1, 1; 0, 1 1 /2 M00 + κqQ + BQ Y4 1−− |1, 1; 2, 1 1 |1, 1; 2, L 1 M00 + κqQ + 6a + BQ Y5 1−− |1, 1; 2, 3 1 |1, 1; 2, L 1 M00 + κqQ + 16a + 6BQ Ahmed Ali (DESY, Hamburg) 15 / 33
  • 24. Belle Data on (Bottomonium-like) exotic states State JPC Mass [MeV] Yb(10891) 1−− 10891.1 ± 3.2+0.6 −1.5 Yb(10987) 1−− 10987.5+6.4+9.0 −2.5−2.1 Z+ b (10610) 1+ 10607.2 ± 2.0 Z0 b (10610) 1+− 10609 ± 4 ± 4 Z+ b (10650) 1+ 10652.2 ± 1.5 We identify Z+ b (10610) and Z+ b (10650) with Zand Z , respectively. Their mass difference determines 2κqb 2κqb = M[Z+ b (10650)] − M[Z+ b (10610)] = 45 MeV The parameter M00 can be calculated as M00 = M[Z+ b (10610)] + κqb = 10630 MeV We identify Yb(10891) and Yb(10977) with Y1 and Y2, respectively. The parameter a can be calculated from their mass difference: 2a = M[Yb(10987)] − M[Yb(10891)] − 2κqQ = 51 MeV The parameter BQ is given by BQ = M[Yb(10891)] − M00 + 3κqQ = 329 MeV Ahmed Ali (DESY, Hamburg) 16 / 33
  • 25. Charmonium-like and Bottomonium-like Tetraquark Spectrum (with Satoshi Mishima) Parameters in the Mass Formula charmonium-like bottomonium-like M00 [MeV] 3957 10629.7 κqQ [MeV] 67 22.5 BQ [MeV] 268 328.9 a [MeV] 52.5 25.7 charmonium-like bottomonium-like Label JPC State Mass [MeV] State Mass [MeV] X0 0++ — 3756 — 10562.2 X0 0++ — 4024 — 10652.2 X1 1++ X(3872) 3890 — 10607.2 Z 1+− Z+ c (3900) 3890 Z+,0 b (10610) 10607.2 Z 1+− Z+ c (4020) 4024 Z+ b (10650) 10652.2 X2 2++ — 4024 — 10652.2 Y1 1−− Y(4008) 4024 Yb(10891) 10891.1 Y2 1−− Y(4260) 4263 Yb(10987) 10987.5 Y3 1−− Y(4290) (or Y(4220)) 4292 — 10981.1 Y4 1−− Y(4630) 4607 — 11135.3 Y5 1−− — 6472 — 13036.8 Ahmed Ali (DESY, Hamburg) 17 / 33
  • 26. Comparison with current data in the Charmonium-like sector Our determination of the parameters M00, κqc, BC and a in the Charmonium-like sector close to the one by Maiani et al. (2014). Their results are shown below − − − − New; - - - - - Old Quarks inside a Diquark are much more tightly bound than Diquarks in Baryons Ahmed Ali (DESY, Hamburg) 18 / 33
  • 27. Production and decay characteristics of Z± b (10610) and Z± b (10650) Belle, PRL 108, 122001 (2012) Z± b (10610) and Z± b (10650) are produced in the decays of Υ(10890) Υ(10890) → Zb/Zb + π → Υ(1S, 2S, 3S)ππ Ahmed Ali (DESY, Hamburg) 19 / 33
  • 28. Parameters of the Z± b (10610) and Z± b (10650) decays Belle, PRL 108, 122001 (2012) Υ(10890) → Zb/Zb + π → hb(1P, 2P)ππ Final state Υ(1S)π+π− Υ(2S)π+π− Υ(3S)π+π− hb(1P)π+π− hb(2P)π+π− M[Zb(10610)], MeV/c2 10611 ± 4 ± 3 10609 ± 2 ± 3 10608 ± 2 ± 3 10605 ± 2+3 −1 10599+6+5 −3−4 Γ[Zb(10610)], MeV 22.3 ± 7.7+3.0 −4.0 24.2 ± 3.1+2.0 −3.0 17.6 ± 3.0 ± 3.0 11.4 +4.5+2.1 −3.9−1.2 13 +10+9 −8−7 M[Zb(10650)], MeV/c2 10657 ± 6 ± 3 10651 ± 2 ± 3 10652 ± 1 ± 2 10654 ± 3 +1 −2 10651+2+3 −3−2 Γ[Zb(10650)], MeV 16.3 ± 9.8+6.0 −2.0 13.3 ± 3.3+4.0 −3.0 8.4 ± 2.0 ± 2.0 20.9 +5.4+2.1 −4.7−5.7 19 ± 7 +11 −7 Rel. normalization 0.57 ± 0.21+0.19 −0.04 0.86 ± 0.11+0.04 −0.10 0.96 ± 0.14+0.08 −0.05 1.39 ± 0.37+0.05 −0.15 1.6+0.6+0.4 −0.4−0.6 Rel. phase, degrees 58 ± 43+4 −9 −13 ± 13+17 −8 −9 ± 19+11 −26 187+44+3 −57−12 181+65+74 −105−109 Ahmed Ali (DESY, Hamburg) 20 / 33
  • 29. Hidden-Beauty Charged Tetraquarks and Heavy Quark Spin Conservation A.A., L. Maiani, A.D. Polosa, V. Riquer; PR D91, 017502 (2015) Interpret the Z±,0 b (10610) = Zb and Z±,0 b (10650) = Zb as S-wave JPG = 1++ tetraquark states (in the notation |s[bq], s[¯b¯q] ) |Zb = |1bq, 0¯b¯q − |0bq, 1¯b¯q √ 2 , |Zb = |1bq, 1¯b¯q J=1 JP = 1+ multiplet is completed by Xb, given by the C = +1 combination |Xb = |1bq, 0¯b¯q + |0bq, 1¯b¯q √ 2 Expect Xb and Zb to be degenerate, with Zb heavier M(Zb) − M(Zb) = 2κb A similar analysis for the hidden-charm charged tetraquarks Zc and Zc yields 2κc = M(Zc) − M(Zc) 120 MeV QCD expectation: κb : κc = Mc : Mb. With Mc Mb 1.27 4.18 = 0.30, yields 2κb 36 MeV, fits OK with the observed Zb − Zbmass difference ( 45 MeV) Ahmed Ali (DESY, Hamburg) 21 / 33
  • 30. Heavy-Quark-Spin Flip in Υ(10890) → Zb/Zb + π → hb(1P, 2P)ππ In Υ(10890), Sb¯b = 1. In hb(nP), Sb¯b = 0, so the above transition involves heavy-quark spin-flip, yet its rate is not suppressed, violating heavy-quark-spin conservation This contradiction is only apparent. Expressing the states Zb and Zb in the basis of definite b¯b and light quark q¯q spins, |Zb = |1q¯q, 0b¯b − |0q¯q, 1b¯b √ 2 , |Zb = |1q¯q, 0b¯b + |0q¯q, 1b¯b √ 2 More generally, admitting a subdominant spin-spin interaction, the above composition may be written as |Zb = α|1q¯q, 0b¯b − β|0q¯q, 1b¯b √ 2 , |Zb = β|1q¯q, 0b¯b + α|0q¯q, 1b¯b √ 2 Define gZ = g(Υ → Zbπ)g(Zb → hbπ) ∝ −αβ hb|Zb Zb|Υ gZ = g(Υ → Zbπ)g(Zb → hbπ) ∝ αβ hb|Zb Zb|Υ where g are the effective strong couplings at the vertices Υ Zb π and Zb hb π Therefore, independently from the values of the mixing coefficients, the above equation and heavy quark spin conservation require gZ = −gZ Ahmed Ali (DESY, Hamburg) 22 / 33
  • 31. Heavy-Quark-Spin Flip in Υ(10890) → Zb/Zb + π → hb(1P, 2P)ππ Relative normalizations and phases for sb¯b: 1 → 1 and 1 → 0 transitions Final State Υ(1S)π+π− Υ(2S)π+π− Υ(3S)π+π− hb(1P)π+π− hb(2P)π+π− Rel. Norm. 0.57 ± 0.21+0.19 −0.04 0.86 ± 0.11+0.04 −0.10 0.96 ± 0.14+0.08 −0.05 1.39 ± 0.37+0.05 −0.15 1.6+0.6+0.4 −0.4−0.6 Rel. Phase 58 ± 43+4 −9 −13 ± 13+17 −8 −9 ± 19+11 −26 187+44+3 −57−12 181+65+74 −105−109 Within errors, Belle data is consistent with heavy quark spin conservation To determine the coefficients α and β, one has to resort to sb¯b: 1 → 1 transitions Υ(10890) → Zb/Zb + π → Υ(nS)ππ (n = 1, 2, 3) The analogous effective couplings are fZ = f(Υ → Zbπ)f(Zb → Υ(nS)π) ∝ |β|2 Υ(nS)|0q¯q, 1b¯b 0q¯q, 1b¯b|Υ fZ = f(Υ → Zbπ)f(Zb → Υ(nS)π) ∝ |α|2 Υ(nS)|0q¯q, 1b¯b 0q¯q, 1b¯b|Υ Ahmed Ali (DESY, Hamburg) 23 / 33
  • 32. Determination of α/β from Υ(10890) → Zb/Zb + π → Υ(nS)ππ (n = 1, 2, 3) Dalitz analysis indicate that Υ(10890) → Zb/Zb + π → Υ(nS)ππ (n = 1, 2, 3) proceed mainly through the resonances Zb and Zb, though Υ(10890) → Υ(1S)ππ has a significant direct component, expected in tetraquark interpretation of Υ(10890) A comprehensive analysis of the Belle data including the direct and resonant components is required to test the underlying dynamics, yet to be carried out Parametrizing the amplitudes in terms of two Breit-Wigners, one can determine the ratio α/β sb¯b : 1 → 1 transition Rel.Norm. = 0.85 ± 0.08 = |α|2 /|β|2 Rel.Phase = (−8 ± 10)◦ sb¯b : 1 → 0 transition Rel.Norm. = 1.4 ± 0.3 Rel.Phase = (185 ± 42)◦ Within errors, the tetraquark assignment with α = β = 1 is supported, i.e., |Zb = |1bq, 0¯b¯q − |0bq, 1¯b¯q √ 2 , |Zb = |1bq, 1¯b¯q J=1 |Zb = |1q¯q, 0b¯b − |0q¯q, 1b¯b √ 2 , |Zb = |1q¯q, 0b¯b + |0q¯q, 1b¯b √ 2 Ahmed Ali (DESY, Hamburg) 24 / 33
  • 33. Zb(10610)/Zb(10650) → B(∗) ¯B(∗) States Molecule Tetraquark [Bondar, Garmash, Milstein, Mizuk, Voloshin, PRD 11] , [Zhang, Zhong, Huang, PLB 11] , [Voloshin, PRD 11] , [Yang,Ping, Deng, Zong, JPG 11] , [Sun, He, Liu, Luo, Zhu, PRD 11] , ... [Yang, Ping, Deng, Zong, JPG 11] , [Guo, Cao, Zhou, Chen, 11] , [Ali, Hambrock, Wang, PRD 11] , ... |Zb(10610) = 0b¯q ⊗ 1¯bq + 1b¯q ⊗ 0¯bq / √ 2 |Zb(10610) = 0[bq] ⊗ 1[¯b¯q] − 1[bq] ⊗ 0[¯b¯q] / √ 2 |Zb(10650) = 1b¯q ⊗ 1¯bq |Zb(10650) = 1[bq] ⊗ 1[¯b¯q] Ahmed Ali (DESY, Hamburg) 25 / 33
  • 34. Zb(10610)/Zb(10650) → B(∗) ¯B(∗) States Molecule Tetraquark [Bondar, Garmash, Milstein, Mizuk, Voloshin, PRD 11] , [Zhang, Zhong, Huang, PLB 11] , [Voloshin, PRD 11] , [Yang,Ping, Deng, Zong, JPG 11] , [Sun, He, Liu, Luo, Zhu, PRD 11] , ... [Yang, Ping, Deng, Zong, JPG 11] , [Guo, Cao, Zhou, Chen, 11] , [Ali, Hambrock, Wang, PRD 11] , ... |Zb(10610) = 0b¯q ⊗ 1¯bq + 1b¯q ⊗ 0¯bq / √ 2 |Zb(10610) = 0[bq] ⊗ 1[¯b¯q] − 1[bq] ⊗ 0[¯b¯q] / √ 2 |Zb(10650) = 1b¯q ⊗ 1¯bq |Zb(10650) = 1[bq] ⊗ 1[¯b¯q] ↓ Fierz ↓ |Zb(10610) = 1− b¯q ⊗ 1− q¯b |Zb(10650) = 1− b¯q ⊗ 0− q¯b + 0− b¯q ⊗ 1− q¯b / √ 2 Ahmed Ali (DESY, Hamburg) 25 / 33
  • 35. Zb(10610)/Zb(10650) → B(∗) ¯B(∗) States Molecule Tetraquark [Bondar, Garmash, Milstein, Mizuk, Voloshin, PRD 11] , [Zhang, Zhong, Huang, PLB 11] , [Voloshin, PRD 11] , [Yang,Ping, Deng, Zong, JPG 11] , [Sun, He, Liu, Luo, Zhu, PRD 11] , ... [Yang, Ping, Deng, Zong, JPG 11] , [Guo, Cao, Zhou, Chen, 11] , [Ali, Hambrock, Wang, PRD 11] , ... |Zb(10610) = 0b¯q ⊗ 1¯bq + 1b¯q ⊗ 0¯bq / √ 2 |Zb(10610) = 0[bq] ⊗ 1[¯b¯q] − 1[bq] ⊗ 0[¯b¯q] / √ 2 |Zb(10650) = 1b¯q ⊗ 1¯bq |Zb(10650) = 1[bq] ⊗ 1[¯b¯q] ↓ Fierz ↓ |Zb(10610) = 1− b¯q ⊗ 1− q¯b |Zb(10650) = 1− b¯q ⊗ 0− q¯b + 0− b¯q ⊗ 1− q¯b / √ 2 Zb(10610) → B¯B∗ + B∗ ¯B Zb(10610) → B∗ ¯B∗ Zb(10650) → B∗ ¯B∗ Zb(10650) → B¯B∗ + B∗ ¯B Ahmed Ali (DESY, Hamburg) 25 / 33
  • 36. Zb(10610)/Zb(10650) → B(∗) ¯B(∗) States Molecule Tetraquark [Bondar, Garmash, Milstein, Mizuk, Voloshin, PRD 11] , [Zhang, Zhong, Huang, PLB 11] , [Voloshin, PRD 11] , [Yang,Ping, Deng, Zong, JPG 11] , [Sun, He, Liu, Luo, Zhu, PRD 11] , ... [Yang, Ping, Deng, Zong, JPG 11] , [Guo, Cao, Zhou, Chen, 11] , [Ali, Hambrock, Wang, PRD 11] , ... |Zb(10610) = 0b¯q ⊗ 1¯bq + 1b¯q ⊗ 0¯bq / √ 2 |Zb(10610) = 0[bq] ⊗ 1[¯b¯q] − 1[bq] ⊗ 0[¯b¯q] / √ 2 |Zb(10650) = 1b¯q ⊗ 1¯bq |Zb(10650) = 1[bq] ⊗ 1[¯b¯q] ↓ Fierz ↓ |Zb(10610) = 1− b¯q ⊗ 1− q¯b |Zb(10650) = 1− b¯q ⊗ 0− q¯b + 0− b¯q ⊗ 1− q¯b / √ 2 Zb(10610) → B¯B∗ + B∗ ¯B Zb(10610) → B∗ ¯B∗ Zb(10650) → B∗ ¯B∗ Zb(10650) → B¯B∗ + B∗ ¯B Ahmed Ali (DESY, Hamburg) 25 / 33
  • 37. Zb(10610)/Zb(10650) → B(∗) ¯B(∗) Contd. |B and |B∗ differ in the spin alignment of the light quark. However, light quark spin is not conserved by QCD (gluonic) interactions Hence, predictions derived from the the representations (labels 0b¯q and 1b¯q are viewed as B and B∗ mesons, respectively) |Zb = |1b¯q, 1q¯b J=1 |Zb = |1b¯q, 0q¯b + |0b¯q, 1q¯b √ 2 are not as reliable as those derived from the representation |Zb = |1q¯q, 0b¯b − |0q¯q, 1b¯b √ 2 , |Zb = |1q¯q, 0b¯b + |0q¯q, 1b¯b √ 2 The issue of the unaccounted direct production of the B∗ ¯B∗, B¯B∗ etc., at and near the Υ(10890), once satisfactorily resolved, may also reflect on the resonant contributions Zb → B∗ ¯B∗ and Zb → B¯B∗ In view of this, Zb(10610)/Zb(10650) → B(∗) ¯B(∗) decays offer no firm distinction between the tetraquark vs. hadron molecules scenarios at present, and we wait for the improved Belle/Belle-2 measurements Ahmed Ali (DESY, Hamburg) 26 / 33
  • 38. Dipion mass distributions in Υ(5S) → Υ(nS)ππ decays? Ahmed Ali (DESY, Hamburg) 27 / 33
  • 39. Dipion mass distributions in Υ(5S) → Υ(nS)ππ decays? Ahmed Ali (DESY, Hamburg) 27 / 33
  • 40. Dipion mass distributions in Υ(5S) → Υ(nS)ππ decays? Ahmed Ali (DESY, Hamburg) 27 / 33
  • 41. Dipion mass distributions in Υ(5S) → Υ(nS)ππ decays? Ahmed Ali (DESY, Hamburg) 27 / 33
  • 42. Dipion mass distributions in Υ(5S) → Υ(nS)ππ decays? Ahmed Ali (DESY, Hamburg) 27 / 33
  • 43. Dipion mass distributions in Υ(5S) → Υ(nS)ππ decays? Ahmed Ali (DESY, Hamburg) 27 / 33
  • 44. Dipion mass distributions in Υ(5S) → Υ(nS)ππ decays? Ahmed Ali (DESY, Hamburg) 27 / 33
  • 45. Dipion mass distributions in Υ(5S) → Υ(nS)ππ decays? tetraquark & rescattering trying to explain data (unresolved so far) Ahmed Ali (DESY, Hamburg) 27 / 33
  • 46. Tetraquark model for Yb production and decays Van Royen-Weisskopf formula ⇒ Γ(1−−→ e+e−) Assumption: Point-like diquarks [AA, Hambrock, Mishima, PRL (2010)] Ahmed Ali (DESY, Hamburg) 28 / 33
  • 47. Tetraquark model for Yb production and decays Van Royen-Weisskopf formula ⇒ Γ(1−−→ e+e−) Assumption: Point-like diquarks [AA, Hambrock, Mishima, PRL (2010)] Γee(Y[b,l/h]) = 24α2Q2 [b,l/h] M4 Y[b,l/h] κ2 R (1) 11 (0) 2 Ahmed Ali (DESY, Hamburg) 28 / 33
  • 48. Tetraquark model for Yb production and decays Van Royen-Weisskopf formula ⇒ Γ(1−−→ e+e−) Assumption: Point-like diquarks [AA, Hambrock, Mishima, PRL (2010)] diquark charge Γee(Y[b,l/h]) = 24α2Q2 [b,l/h] M4 Y[b,l/h] κ2 R (1) 11 (0) 2 Ahmed Ali (DESY, Hamburg) 28 / 33
  • 49. Tetraquark model for Yb production and decays Van Royen-Weisskopf formula ⇒ Γ(1−−→ e+e−) Assumption: Point-like diquarks [AA, Hambrock, Mishima, PRL (2010)] radial tetraquark WF @ origin Γee(Y[b,l/h]) = 24α2Q2 [b,l/h] M4 Y[b,l/h] κ2 R (1) 11 (0) 2 Ahmed Ali (DESY, Hamburg) 28 / 33
  • 50. Tetraquark model for Yb production and decays Van Royen-Weisskopf formula ⇒ Γ(1−−→ e+e−) Assumption: Point-like diquarks [AA, Hambrock, Mishima, PRL (2010)] hadronic size parameter Γee(Y[b,l/h]) = 24α2Q2 [b,l/h] M4 Y[b,l/h] κ2 R (1) 11 (0) 2 Ahmed Ali (DESY, Hamburg) 28 / 33
  • 51. Tetraquark model for Yb production and decays Van Royen-Weisskopf formula ⇒ Γ(1−−→ e+e−) Assumption: Point-like diquarks [AA, Hambrock, Mishima, PRL (2010)] Γee(Y[b,l/h]) = 24α2Q2 [b,l/h] M4 Y[b,l/h] κ2 R (1) 11 (0) 2 Suppressed O(10) vs Υ(5S) Production ratio: ΓY[b,l] / ΓY[b,h] = 1−2 tan θ 2+tan θ 2 Isospin breaking through production e.g. σΥ(1S)K+K− σΥ(1S)K0 ¯K0 = Q2 [bu] Q2 [bd] = 1 4 Ahmed Ali (DESY, Hamburg) 28 / 33
  • 52. Yb decay Continuum Resonance + Breit-Wigner shape for resonance: 1 (q2 − M2) + iMΓ q2 ≡ M2 PP Resonances show in MPP spectrum Not in MΥP spectrum since Zb negligible Ahmed Ali (DESY, Hamburg) 29 / 33
  • 53. Fit to σ(e+e− → Yb → Υ(1S)π+π−) Fit results, data from [Belle, PRL 08] χ2/d.o.f. = 21.5/15 Good agreement with data Clear resonance dominance! (˜σ: normalized to measurement ) 0++ tetraquarks σ(500) + f0(980) 2++ meson f2(1270) Ahmed Ali (DESY, Hamburg) 30 / 33
  • 54. Predictions for Υ(1S)(K+K−, ηπ0) Fit determines couplings (assume SU(3) flavor symmetry for couplings (σ(500), f0(980), a0(980)) → PP , [’t Hooft, Isidori, Maiani, Polosa, Riquer, PLB 08] ) predictions for spectra: Agreement with σK+K− = 0.11+0.04 −0.03 (BELLE) 1.0 σηπ0 2.0 predicted Resonance dominance Characteristic shape Good tests (relying on Yb has 2 flavor states) Ahmed Ali (DESY, Hamburg) 31 / 33
  • 55. Central Issue: Are Yc, Zcs, Yb and Zbs related? Ahmed Ali (DESY, Hamburg) 32 / 33
  • 56. Summary A new facet of QCD is opened by the discovery of the exotic X, Y, Z states Dedicated studies required to establish the nature of exotics in experiments and QCD Important puzzles remain in the complex: What is the nature of Yc(4260)? A tetraquark? or a c¯cg hybrid? What exactly is Υ(10888)? Is it a pure Υ(5S)? Does Yb(10890) still exist? Branching ratios at Υ(5S) enigmatic Tetraquarks tentatively provide a credible explanation for the BELLE anomaly at Υ(5S) Need detailed Dalitz distributions of Y(11020). Do Zb, Zb (and related excited states) play a role in the the decays of Y(11020)? There is a good case for having dedicated runs above Υ(4S)at Belle-II We look forward to experimental results from Belle-II and LHC Ahmed Ali (DESY, Hamburg) 33 / 33