SlideShare a Scribd company logo
1 of 95
Download to read offline
Applications of the
      CHAPTER                    3                                          Derivative
                                                                                                                               3
      3.1 Concepts Review                                                           7. Ψ ′( x) = 2 x + 3; 2x + 3 = 0 when x = – .
                                                                                                                               2
         1. continuous; closed and bounded                                                                     3
                                                                                       Critical points: –2, – , 1
                                                                                                               2
         2. extreme                                                                                      ⎛ 3⎞      9
                                                                                       Ψ (–2) = –2, Ψ ⎜ – ⎟ = – , Ψ (1) = 4
                                                                                                         ⎝  2⎠     4
         3. endpoints; stationary points; singular points
                                                                                                                                         9
                                                                                         Maximum value = 4, minimum value = –
         4.   f ′(c) = 0; f ′(c) does not exist                                                                                          4

                                                                                                1                   6
                                                                                    8. G ′( x) = (6 x 2 + 6 x –12) = ( x 2 + x – 2);
      Problem Set 3.1                                                                           5                   5
         1. Endpoints: −2 , 4                                                            x 2 + x – 2 = 0 when x = –2, 1
            Singular points: none                                                        Critical points: –3, –2, 1, 3
            Stationary points: 0, 2                                                                9                     7
                                                                                         G (–3) = , G (–2) = 4, G (1) = – , G (3) = 9
            Critical points: −2, 0, 2, 4                                                           5                     5
                                                                                         Maximum value = 9,
         2. Endpoints: −2 , 4                                                                                  7
            Singular points: 2                                                           minimum value = –
            Stationary points: 0                                                                               5
            Critical points: −2, 0, 2, 4
                                                                                    9.    f ′( x) = 3 x 2 – 3; 3x 2 – 3 = 0 when x = –1, 1.
         3. Endpoints: −2 , 4                                                            Critical points: –1, 1
            Singular points: none                                                        f(–1) = 3, f(1) = –1
            Stationary points: −1, 0,1, 2,3                                              No maximum value, minimum value = –1
            Critical points: −2, −1, 0,1, 2,3, 4
                                                                                         (See graph.)
         4. Endpoints: −2 , 4
            Singular points: none
            Stationary points: none
            Critical points: −2, 4

         5.    f ′( x) = 2 x + 4; 2 x + 4 = 0 when x = –2.
              Critical points: –4, –2, 0
              f(–4) = 4, f(–2) = 0, f(0) = 4
              Maximum value = 4, minimum value = 0
                                                                                   10.    f ′( x) = 3 x 2 – 3; 3x 2 – 3 = 0 when x = –1, 1.
                                                    1                                                      3
         6. h′( x) = 2 x + 1; 2 x + 1 = 0 when x = – .                                   Critical points: – , –1, 1, 3
                                                    2                                                      2
                                       1                                                    ⎛ 3 ⎞ 17
            Critical points: –2, – , 2                                                    f ⎜ – ⎟ = , f (–1) = 3, f (1) = –1, f (3) = 19
                                       2                                                    ⎝ 2⎠ 8
                           ⎛ 1⎞          1                                               Maximum value = 19, minimum value = –1
            h(–2) = 2, h ⎜ – ⎟ = – , h(2) = 6
                           ⎝   2⎠        4
                                                              1
              Maximum value = 6, minimum value = –
                                                              4




      154       Section 3.1                                                                                   Instructor’s Resource Manual
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
1                                                                                2x                    2x
                      11. h′(r ) = −            ; h′(r ) is never 0; h′(r ) is not defined       15. g ′( x) = −                      ; −                  = 0 when x = 0.
                                                                                                                            2 2
                                       r    2
                                                                                                                  (1 + x )                  (1 + x 2 ) 2
                            when r = 0, but r = 0 is not in the domain on                              Critical point: 0
                            [–1, 3] since h(0) is not defined.                                         g(0) = 1
                            Critical points: –1, 3
                                                                                                       As x → ∞, g ( x) → 0+ ; as x → −∞, g ( x) → 0+.
                            Note that lim h(r ) = −∞ and lim h( x) = ∞.
                                         x → 0−                       x → 0+                           Maximum value = 1, no minimum value
                            No maximum value, no minimum value.                                        (See graph.)

                                                 2x              2x
                      12. g ′( x) = −                      ; −         = 0 when x = 0
                                                     2 2
                                       (1 + x )       (1 + x 2 ) 2
                            Critical points: –3, 0, 1
                                      1                       1
                            g(–3) =      , g(0) = 1, g(1) =
                                     10                       2
                                                                                1
                            Maximum value = 1, minimum value =
                                                                               10
                                                                                                                     1 − x2
                                                                                                 16.    f ′( x) =                 ;
                      13.    f '( x) = 4x − 4x
                                            3
                                                                                                                    (1 + x 2 )2
                                             (
                                    = 4 x x2 − 1       )                                                 1 − x2
                                                                                                                   = 0 when x = –1, 1
                                    = 4 x ( x − 1)( x + 1)                                             (1 + x 2 )2
                             4 x ( x − 1)( x + 1) = 0 when x = 0,1, −1 .                               Critical points: –1, 1, 4
                            Critical points: −2, −1, 0,1, 2                                                         1        1          4
                                                                                                        f (−1) = − , f (1) = , f (4) =
                                                                                                                    2        2         17
                             f ( −2 ) = 10 ; f ( −1) = 1 ; f ( 0 ) = 2 ; f (1) = 1 ;
                                                                                                                            1
                             f ( 2 ) = 10                                                              Maximum value = ,
                                                                                                                            2
                            Maximum value: 10                                                                                1
                            Minimum value: 1                                                           minimum value = –
                                                                                                                             2
                      14.    f ' ( x ) = 5 x 4 − 25 x 2 + 20                                                                                                 π
                                                                                                 17. r ′(θ ) = cos θ ; cos θ = 0 when θ =                      + kπ
                                        (        4
                                    = 5 x − 5x + 4        )2
                                                                                                                                                             2
                                                                                                                          π π
                                    = 5 ( x 2 − 4 )( x 2 − 1)                                          Critical points: – ,
                                                                                                                          4 6
                                    = 5 ( x − 2 )( x + 2 )( x − 1)( x + 1)                              ⎛ π⎞         1     ⎛ π⎞ 1
                                                                                                       r⎜− ⎟ = −        , r⎜ ⎟ =
                            5 ( x − 2 )( x + 2 )( x − 1)( x + 1) = 0 when                               ⎝ 4⎠          2    ⎝6⎠ 2
                            x = −2, −1,1, 2                                                                                1               1
                                                                                                       Maximum value = , minimum value = –
                            Critical points: −3, −2, −1,1, 2                                                               2                2
                                                         19            41
                             f ( −3) = −79 ; f ( −2 ) = − ; f ( −1) = − ;                        18. s ′(t ) = cos t + sin t ; cos t + sin t = 0 when
                                                          3            3
                                     35            13                                                                      π
                             f (1) =    ; f ( 2) =                                                     tan t = –1 or t = –   + k π.
                                      3             3                                                                      4
                                                 35                                                                        3π
                            Maximum value:                                                             Critical points: 0,    ,π
                                                  3                                                                         4
                            Minimum value: −79                                                                      ⎛ 3π ⎞
                                                                                                       s(0) = –1, s ⎜ ⎟ = 2, s (π ) = 1 .
                                                                                                                    ⎝ 4 ⎠
                                                                                                       Maximum value = 2,
                                                                                                       minimum value = –1




                    Instructor’s Resource Manual                                                                                                     Section 3.1        155
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
x –1                                                    25. g ' (θ ) = θ 2 ( sec θ tan θ ) + 2θ sec θ
        19. a ′( x) =           ; a ′( x) does not exist when x = 1.
                           x –1                                                                  = θ sec θ (θ tan θ + 2 )
              Critical points: 0, 1, 3                                                   θ sec θ (θ tan θ + 2 ) = 0 when θ = 0 .
              a(0) = 1, a(1) = 0, a(3) = 2
              Maximum value = 2, minimum value = 0                                      Consider the graph:
                                                                                                                    y
                           3(3s – 2)
        20.   f ′( s ) =             ; f ′( s ) does not exist when s = 2 .
                            3s – 2                                      3

              Critical points: −1, 2 , 4                                                                   1
                                   3
              f(–1) = 5, f
                            3      ( )
                            2 = 0, f(4) = 10
                                                                                              −π                                π              x
              Maximum value = 10, minimum value = 0                                            4                                4
                                                                                                         −1
                             1
        21. g ′( x) =          ; f ′( x) does not exist when x = 0.
                       3x2 / 3
              Critical points: –1, 0, 27                                                                                    π          π
                                                                                        Critical points: −                      , 0,
              g(–1) = –1, g(0) = 0, g(27) = 3                                                                               4          4
              Maximum value = 3, minimum value = –1
                                                                                          ⎛ π⎞ π 2                   ⎛π ⎞ π 2
                                                                                                               2                                        2
                                                                                         g⎜− ⎟ =    ; g ( 0) = 0 ; g ⎜ ⎟ =
                            2                                                             ⎝ 4⎠   16                  ⎝4⎠   16
        22. s ′(t ) =       ; s ′(t ) does not exist when t = 0.
                            3/ 5
                      5t                                                                                                    π2 2
              Critical points: –1, 0, 32                                                Maximum value:                                     ; Minimum value: 0
                                                                                                                                16
              s(–1) = 1, s(0) = 0, s(32) = 4
              Maximum value = 4, minimum value = 0
                                                                                                     ( 2 + t ) ⎛ t 2 / 3 ⎞ − t 5/ 3 (1)
                                                                                                                 5
                                                                                                               ⎜         ⎟
        23. H ' ( t ) = − sin t                                                    26. h ' ( t ) =                 ⎝3       ⎠
              − sin t = 0 when                                                                                      ( 2 + t )2
              t = 0, π , 2π ,3π , 4π ,5π , 6π , 7π ,8π                                                 ⎛5             ⎞      ⎛ 10 2 ⎞
                                                                                                  t2/3 ⎜ (2 + t ) − t ⎟ t2/3 ⎜ + t ⎟
              Critical points: 0, π , 2π ,3π , 4π ,5π , 6π , 7π ,8π                                    ⎝3             ⎠=     ⎝ 3 3 ⎠
                                                                                                =
              H ( 0 ) = 1 ; H (π ) = −1 ; H ( 2π ) = 1 ;                                                ( 2 + t )2          ( 2 + t )2
              H ( 3π ) = −1 ; H ( 4π ) = 1 ; H ( 5π ) = −1 ;                                         2t 2 / 3 ( t + 5 )
                                                                                                =
              H ( 6π ) = 1 ; H ( 7π ) = −1 ; H ( 8π ) = 1                                             3( 2 + t )
                                                                                                                        2

              Maximum value: 1                                                           h ' ( t ) is undefined when t = −2 and h ' ( t ) = 0
              Minimum value: −1
                                                                                        when t = 0 or t = −5 . Since −5 is not in the
        24. g ' ( x ) = 1 − 2 cos x                                                     interval of interest, it is not a critical point.
                                                                                        Critical points: −1, 0,8
                                             1
              1 − 2 cos x = 0 → cos x =        when                                      h ( −1) = −1 ; h ( 0 ) = 0 ; h ( 8 ) = 16
                                             2                                                                                   5
                     5π π π 5π                                                          Maximum value: 16 ; Minimum value: −1
              x=−       ,− , ,                                                                          5
                      3   3 3 3
                                        5π π π 5π                                              f ′( x) = 3 x 2 –12 x + 1;3x 2 –12 x + 1 = 0
              Critical points: −2π , −      , − , , , 2π                           27. a.
                                         3     3 3 3
                                                                                                                                33             33
                                  ⎛ 5π ⎞ −5π                                                  when x = 2 –                         and x = 2 +    .
              g ( −2π ) = −2π ; g ⎜ −      ⎟=     − 3;                                                                          3              3
                                  ⎝ 3 ⎠         3
                                                                                                                                              33     33
                ⎛ π⎞       π            ⎛π ⎞ π                                                Critical points: –1, 2 –                           ,2+    ,5
              g⎜− ⎟ = − + 3 ; g⎜ ⎟ = − 3 ;                                                                                                    3      3
                ⎝ 3⎠        3           ⎝3⎠ 3
                                                                                                            ⎛     33 ⎞
                ⎛ 5π ⎞ 5π                                                                     f(–1) = –6, f ⎜ 2 –    ⎟ ≈ 2.04,
              g⎜     ⎟=      + 3 ; g ( 2π ) = 2π                                                            ⎜     3 ⎟
                ⎝ 3 ⎠ 3                                                                                     ⎝        ⎠
                                 5π                                                              ⎛     33 ⎞
              Maximum value:           + 3                                                     f ⎜2+
                                                                                                 ⎜        ⎟ ≈ –26.04, f(5) = –18
                                   3                                                             ⎝     3 ⎟⎠
                                   5π                                                         Maximum value ≈ 2.04;
              Minimum value: −          − 3
                                     3                                                        minimum value ≈ −26.04


      156       Section 3.1                                                                                                 Instructor’s Resource Manual
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
( x3 – 6 x 2 + x + 2)(3x 2 – 12 x + 1)             29. Answers will vary. One possibility:
                            b.    g ′( x) =                                            ;                                y
                                                         3      2
                                                       x – 6x + x + 2
                                                                                                                    5
                                                           33
                                  g '( x) = 0 when x = 2 –    and
                                                           3
                                            33
                                  x = 2+       . g ′( x) does not exist when
                                            3                                                           −5                         5      x
                                 f(x) = 0; on [–1, 5], f(x) = 0 when
                                  x ≈ –0.4836 and x ≈ 0.7172
                                                                      33                                           −5
                                 Critical points: –1, –0.4836, 2 –       ,
                                                                      3
                                                                                                 30. Answers will vary. One possibility:
                                               33                                                             y
                                 0.7172, 2 +      , 5
                                               3
                                 g(–1) = 6, g(–0.4836) = 0,                                               5
                                   ⎛      33 ⎞
                                 g⎜2 –
                                   ⎜         ⎟ ≈ 2.04, g(0.7172) = 0,
                                   ⎝      3 ⎟⎠
                                   ⎛      33 ⎞
                                 g⎜2+
                                   ⎜         ⎟ ≈ 26.04, g(5) = 18                                                        5                x
                                   ⎝      3 ⎟⎠
                                 Maximum value ≈ 26.04,
                                 minimum value = 0                                                      −5

                      28. a.      f ′( x) = x cos x; on [–1, 5], x cos x = 0 when
                                                                                                 31. Answers will vary. One possibility:
                                           π      3π                                                          y
                                 x = 0, x = , x =
                                           2       2
                                                                                                          5
                                                         π 3π
                                 Critical points: –1, 0, , , 5
                                                         2 2
                                                           ⎛π⎞
                                 f(–1) ≈3.38, f(0) = 3, f ⎜ ⎟ ≈ 3.57,
                                                           ⎝2⎠                                                                            x
                                                                                                                         5
                                    ⎛ 3π ⎞
                                  f ⎜ ⎟ ≈ –2.71, f(5) ≈ −2.51
                                    ⎝ 2 ⎠
                                 Maximum value ≈ 3.57,                                                  −5
                                 minimum value ≈–2.71
                                                                                                 32. Answers will vary. One possibility:
                                              (cos x + x sin x + 2)( x cos x)                                 y
                            b.    g ′( x) =                                   ;
                                                   cos x + x sin x + 2
                                                                                                          5
                                                             π       3π
                                  g ′( x ) = 0 when x = 0, x = , x=
                                                             2        2
                                 g ′( x) does not exist when f(x) = 0;
                                 on [–1, 5], f(x) = 0 when x ≈ 3.45
                                                                                                                         5                x
                                                         π        3π
                                 Critical points: –1, 0, , 3.45, , 5
                                                         2         2
                                                           ⎛π⎞                                          −5
                                 g(–1) ≈ 3.38, g(0) = 3, g ⎜ ⎟ ≈ 3.57,
                                                           ⎝2⎠
                                                 ⎛ 3π ⎞
                                 g(3.45) = 0, g ⎜ ⎟ ≈ 2.71, g(5) ≈ 2.51
                                                 ⎝ 2 ⎠
                                 Maximum value ≈ 3.57;
                                 minimum value = 0




                    Instructor’s Resource Manual                                                                                         Section 3.1          157
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
33. Answers will vary. One possibility:                                 3.2 Concepts Review
                     y

                                                                                    1. Increasing; concave up
                5
                                                                                    2.    f ′( x) > 0; f ′′( x) < 0

                                                                                    3. An inflection point
                               5                x
                                                                                    4.    f ′′(c) = 0; f ′′(c) does not exist.


               −5                                                               Problem Set 3.2

        34. Answers will vary. One possibility:                                     1.    f ′( x) = 3; 3 > 0 for all x. f(x) is increasing
                     y
                                                                                         for all x.
                5                                                                                                            1
                                                                                    2. g ′( x) = 2 x – 1; 2x – 1 > 0 when x > . g(x) is
                                                                                                                             2
                                                                                                         ⎡1 ⎞
                                                                                       increasing on ⎢ , ∞ ⎟ and decreasing on
                                                                                                         ⎣2 ⎠
                               5                x
                                                                                        ⎛      1⎤
                                                                                        ⎜ – ∞, ⎥ .
                                                                                        ⎝      2⎦
               −5
                                                                                    3. h′(t ) = 2t + 2; 2t + 2 > 0 when t > –1. h(t) is
        35. Answers will vary. One possibility:                                        increasing on [–1, ∞ ) and decreasing on
                     y                                                                 ( −∞ , –1].

                5                                                                   4.    f ′( x) = 3x 2 ; 3 x 2 > 0 for x ≠ 0 .
                                                                                         f(x) is increasing for all x.

                                                                                    5. G ′( x ) = 6 x 2 – 18 x + 12 = 6( x – 2)( x – 1)
                               5                x                                      Split the x-axis into the intervals (– ∞ , 1), (1, 2),
                                                                                       (2, ∞ ).
                                                                                                               3                        ⎛3⎞ 3
                                                                                       Test points: x = 0, , 3; G ′(0) = 12, G ′ ⎜ ⎟ = – ,
               −5                                                                                              2                        ⎝2⎠ 2
                                                                                       G ′(3) = 12
        36. Answers will vary. One possibility:                                        G(x) is increasing on (– ∞ , 1] ∪ [2, ∞ ) and
                     y
                                                                                       decreasing on [1, 2].
                5
                                                                                    6.    f ′(t ) = 3t 2 + 6t = 3t (t + 2)
                                                                                         Split the x-axis into the intervals (– ∞ , –2),
                                                                                         (–2, 0), (0, ∞ ).
                                                                                         Test points: t = –3, –1, 1; f ′(–3) = 9,
                                5               x
                                                                                          f ′(–1) = –3, f ′(1) = 9
                                                                                         f(t) is increasing on (– ∞ , –2] ∪ [0, ∞ ) and
               −5
                                                                                         decreasing on [–2, 0].

                                                                                    7. h′( z ) = z 3 – 2 z 2 = z 2 ( z – 2)
                                                                                       Split the x-axis into the intervals (– ∞ , 0), (0, 2),
                                                                                       (2, ∞ ).
                                                                                       Test points: z = –1, 1, 3; h′(–1) = –3, h′(1) = –1,
                                                                                        h′(3) = 9
                                                                                       h(z) is increasing on [2, ∞ ) and decreasing on
                                                                                       (– ∞ , 2].


      158       Section 3.2                                                                                      Instructor’s Resource Manual
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
8.    f ′( x) =
                                          2– x                                                   16.    f ′′( x) = 12 x 2 + 48 x = 12 x( x + 4); f ′′( x) > 0 when
                                            3
                                        x                                                              x < –4 and x > 0.
                             Split the x-axis into the intervals (– ∞ , 0), (0, 2),                    f(x) is concave up on (– ∞ , –4) ∪ (0, ∞ ) and
                             (2, ∞ ).                                                                  concave down on (–4, 0); inflection points are
                             Test points: –1, 1, 3; f ′(–1) = –3, f ′(1) = 1,                          (–4, –258) and (0, –2).
                                         1
                              f ′(3) = –                                                         17. F ′′( x) = 2sin 2 x – 2 cos 2 x + 4 = 6 – 4 cos 2 x;
                                         27
                             f(x) is increasing on (0, 2] and decreasing on                            6 – 4 cos 2 x > 0 for all x since 0 ≤ cos 2 x ≤ 1.
                             (– ∞ , 0) ∪ [2, ∞ ).                                                      F(x) is concave up for all x; no inflection points.

                                                                                    π            18. G ′′( x) = 48 + 24 cos 2 x – 24sin 2 x
                        9. H ′(t ) = cos t ; H ′(t ) > 0 when 0 ≤ t <                 and
                                                                                    2
                             3π                                                                        = 24 + 48cos 2 x; 24 + 48cos 2 x > 0 for all x.
                                < t ≤ 2π.                                                              G(x) is concave up for all x; no inflection points.
                              2
                                                   ⎡ π ⎤ ⎡ 3π      ⎤
                             H(t) is increasing on ⎢ 0, ⎥ ∪ ⎢ , 2π ⎥ and                         19.    f ′( x) = 3 x 2 – 12; 3 x 2 – 12 > 0 when
                                                   ⎣ 2⎦ ⎣ 2        ⎦
                                                                                                       x < –2 or x > 2.
                                             ⎡ π 3π ⎤                                                  f(x) is increasing on (– ∞ , –2] ∪ [2, ∞ ) and
                             decreasing on ⎢ , ⎥ .
                                             ⎣2 2 ⎦                                                    decreasing on [–2, 2].
                                                                                                        f ′′( x) = 6 x; 6x > 0 when x > 0. f(x) is concave up
                                                                                      π                on (0, ∞ ) and concave down on (– ∞ , 0).
                      10. R ′(θ ) = –2 cos θ sin θ ; R ′(θ ) > 0 when                   <θ < π
                                                                                      2
                                   3π
                             and      < θ < 2π.
                                    2
                                                     ⎡ π ⎤ ⎡ 3π       ⎤
                             R( θ ) is increasing on ⎢ , π ⎥ ∪ ⎢ , 2π ⎥ and
                                                     ⎣2 ⎦ ⎣ 2         ⎦
                                             ⎡ π ⎤ ⎡ 3π ⎤
                             decreasing on ⎢ 0, ⎥ ∪ ⎢ π, ⎥ .
                                             ⎣ 2⎦ ⎣ 2 ⎦

                      11.     f ′′( x) = 2; 2 > 0 for all x. f(x) is concave up for all
                             x; no inflection points.                                            20. g ′( x) = 12 x 2 – 6 x – 6 = 6(2 x + 1)( x – 1); g ′( x) > 0
                      12. G ′′( w) = 2; 2 > 0 for all w. G(w) is concave up for                                       1
                                                                                                       when x < –        or x > 1. g(x) is increasing on
                          all w; no inflection points.                                                                2
                                                                                                       ⎛         1⎤                                  ⎡ 1 ⎤
                      13. T ′′(t ) = 18t ; 18t > 0 when t > 0. T(t) is concave up                      ⎜ – ∞, – ⎥ ∪ [1, ∞) and decreasing on ⎢ – , 1⎥ .
                                                                                                       ⎝         2⎦                                  ⎣ 2 ⎦
                          on (0, ∞ ) and concave down on (– ∞ , 0);                                    g ′′( x) = 24 x – 6 = 6(4 x – 1); g ′′( x) > 0 when
                          (0, 0) is the only inflection point.
                                                                                                         1
                                                                                                       x> .
                                                6           2                                            4
                      14.     f ′′( z ) = 2 –           =        ( z 4 – 3); z 4 – 3 > 0 for                                 ⎛1 ⎞
                                                    4
                                                z           z4                                         g(x) is concave up on ⎜ , ∞ ⎟ and concave down
                                                                                                                             ⎝4 ⎠
                             z < – 4 3 and z > 4 3.
                                                                                                          ⎛      1⎞
                             f(z) is concave up on (– ∞, – 4 3) ∪ ( 4 3, ∞) and                        on ⎜ – ∞, ⎟ .
                                                                                                          ⎝      4⎠
                             concave down on (– 4 3, 0) ∪ (0, 4 3); inflection
                                        ⎛            1 ⎞     ⎛4       1 ⎞
                             points are ⎜ – 4 3, 3 –   ⎟ and ⎜ 3, 3 –   ⎟.
                                        ⎝             3⎠     ⎝         3⎠

                      15. q ′′( x ) = 12 x 2 – 36 x – 48; q ′′( x) > 0 when x < –1
                          and x > 4.
                          q(x) is concave up on (– ∞ , –1) ∪ (4, ∞ ) and
                          concave down on (–1, 4); inflection points are
                          (–1, –19) and (4, –499).


                    Instructor’s Resource Manual                                                                                          Section 3.2          159
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
21. g ′( x) = 12 x3 – 12 x 2 = 12 x 2 ( x – 1); g ′( x) > 0                23. G ′( x ) = 15 x 4 – 15 x 2 = 15 x 2 ( x 2 – 1); G ′( x) > 0
            when x > 1. g(x) is increasing on [1, ∞ ) and                              when x < –1 or x > 1. G(x) is increasing on
            decreasing on (−∞,1].                                                      (– ∞ , –1] ∪ [1, ∞ ) and decreasing on [–1, 1].
              g ′′( x) = 36 x 2 – 24 x = 12 x(3 x – 2); g ′′( x) > 0                   G ′′( x) = 60 x3 – 30 x = 30 x(2 x 2 – 1);
                                2                                                                                            ⎛      1 ⎞
             when x < 0 or x > . g(x) is concave up on                                  Split the x-axis into the intervals ⎜ −∞, −   ⎟,
                                3                                                                                            ⎝       2⎠
                        ⎛2 ⎞                        ⎛ 2⎞                                ⎛ 1         ⎞ ⎛ 1 ⎞ ⎛ 1           ⎞
             (– ∞, 0) ∪ ⎜ , ∞ ⎟ and concave down on ⎜ 0, ⎟ .                            ⎜−      , 0 ⎟ , ⎜ 0,  ⎟, ⎜    , ∞ ⎟.
                        ⎝ 3 ⎠                       ⎝ 3⎠                                ⎝      2 ⎠ ⎝         2⎠ ⎝ 2       ⎠
                                                                                                                  1 1
                                                                                        Test points: x = –1, – , , 1; G ′′(–1) = –30,
                                                                                                                  2 2
                                                                                             ⎛ 1 ⎞ 15 ′′ ⎛ 1 ⎞         15
                                                                                        G ′′ ⎜ – ⎟ = , G ⎜ ⎟ = – , G ′′(1) = 30.
                                                                                             ⎝ 2⎠ 2           ⎝2⎠       2
                                                                                                              ⎛ 1      ⎞ ⎛             1      ⎞
                                                                                        G(x) is concave up on ⎜ –   , 0⎟ ∪ ⎜              , ∞ ⎟ and
                                                                                                              ⎝    2 ⎠ ⎝                2     ⎠
                                                                                                          ⎛       1 ⎞ ⎛                1 ⎞
                                                                                        concave down on ⎜ – ∞, –    ⎟ ∪ ⎜ 0,              ⎟.
                                                                                                          ⎝        2⎠ ⎝                 2⎠

        22. F ′( x) = 6 x5 – 12 x3 = 6 x3 ( x 2 – 2)
             Split the x-axis into the intervals (– ∞ , − 2) ,
              (− 2, 0), (0, 2), ( 2, ∞) .
             Test points: x = –2, –1, 1, 2; F ′(–2) = –96,
             F ′(–1) = 6, F ′(1) = –6, F ′(2) = 96
             F(x) is increasing on [– 2, 0] ∪ [ 2, ∞) and
             decreasing on (– ∞, – 2] ∪ [0, 2]                                                         2x
                            4        2       2     2           2                   24. H ′( x ) =                ; H ′( x) > 0 when x > 0.
              F ′′( x) = 30 x – 36 x = 6 x (5 x – 6); 5 x – 6 > 0                                   ( x + 1)2
                                                                                                      2

                           6          6                                                 H(x) is increasing on [0, ∞ ) and decreasing on
             when x < –      or x >     .                                               (– ∞ , 0].
                           5          5
                                   ⎛                                                                 2(1 – 3 x 2 )
                                             6⎞ ⎛ 6 ⎞                                    H ′′( x) =                ; H ′′( x) > 0 when
             F(x) is concave up on ⎜ – ∞, –
                                   ⎜          ⎟∪⎜  , ∞ ⎟ and                                          ( x 2 + 1)3
                                   ⎝         5⎟ ⎜ 5 ⎟
                                              ⎠ ⎝      ⎠
                                                                                             1            1
                               ⎛ 6 6⎞                                                    –       <x<          .
             concave down on ⎜ – ,
                               ⎜ 5 5 ⎟.    ⎟                                                 3            3
                               ⎝           ⎠                                                                  ⎛          1    1 ⎞
                                                                                        H(x) is concave up on ⎜ –             ,   ⎟ and concave
                                                                                                              ⎝           3    3⎠
                                                                                                  ⎛      1 ⎞ ⎛           1     ⎞
                                                                                        down on ⎜ – ∞, –    ⎟∪⎜            , ∞ ⎟.
                                                                                                  ⎝       3⎠ ⎝            3 ⎠




      160       Section 3.2                                                                                       Instructor’s Resource Manual
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
cos x                                   π                                 –2(5 x + 1)
                      25.    f ′( x) =              ; f ′( x) > 0 when 0 < x <       . f(x)             f ′′( x) =                 ; –2(5x + 1) > 0 when
                                          2 sin x                                  2                                   9 x4 / 3
                                             ⎡ π⎤                                                            1
                            is increasing on ⎢ 0, ⎥ and decreasing on                                  x < – , f ′′( x) does not exist at x = 0.
                                             ⎣ 2⎦                                                            5
                             ⎡π ⎤                                                                                          1
                                                                                                       Test points: –1, – , 1; f ′′(–1) = ,
                                                                                                                                           8
                             ⎢ 2 , π⎥ .                                                                                   10               9
                             ⎣      ⎦
                                          – cos 2 x – 2sin 2 x                                               ⎛ 1⎞      104 / 3            4
                             f ′′( x) =                          ; f ′′( x) < 0 for all x in            f ′′ ⎜ – ⎟ = –         , f (1) = – .
                                           4sin 3 / 2 x                                                      ⎝  10 ⎠     9                3
                            (0, ∞ ). f(x) is concave down on (0, π ).                                                           ⎛        1⎞
                                                                                                       f(x) is concave up on ⎜ – ∞, – ⎟ and concave
                                                                                                                                ⎝        5⎠
                                                                                                                   ⎛ 1 ⎞
                                                                                                       down on ⎜ – , 0 ⎟ ∪ (0, ∞).
                                                                                                                   ⎝ 5 ⎠




                                          3x – 4                        4
                      26. g ′( x) =              ; 3x – 4 > 0 when x > .
                                       2 x–2                            3
                            g(x) is increasing on [2, ∞ ).
                                          3x – 8                           8
                            g ′′( x) =                ; 3x – 8 > 0 when x > .
                                                 3/ 2                      3
                                       4( x – 2)                                                                     4( x + 2)
                                                                                                 28. g ′( x) =            ; x + 2 > 0 when x > –2, g ′( x)
                                                  ⎛8 ⎞                                                           3x 2 / 3
                            g(x) is concave up on ⎜ , ∞ ⎟ and concave down
                                                  ⎝3 ⎠                                                 does not exist at x = 0.
                               ⎛ 8⎞                                                                    Split the x-axis into the intervals ( −∞, −2 ) ,
                            on ⎜ 2, ⎟ .
                               ⎝ 3⎠                                                                    (–2, 0), (0, ∞ ).
                                                                                                                                                    4
                                                                                                       Test points: –3, –1, 1; g ′(–3) = –              ,
                                                                                                                                                 5/3
                                                                                                                                                3
                                                                                                                    4
                                                                                                        g ′(–1) =      , g ′(1) = 4.
                                                                                                                    3
                                                                                                       g(x) is increasing on [–2, ∞ ) and decreasing on
                                                                                                       (– ∞ , –2].
                                                                                                                    4( x – 4)
                                                                                                        g ′′( x ) =            ; x – 4 > 0 when x > 4, g ′′( x)
                                                                                                                     9 x5 / 3
                                                                                                       does not exist at x = 0.
                                          2 – 5x                     2                                                                         20
                      27.    f ′( x) =      ; 2 – 5x > 0 when x < , f ′( x )                           Test points: –1, 1, 5; g ′′(–1) = ,
                                     3x     1/ 3                     5                                                                         9
                            does not exist at x = 0.                                                                 4                4
                                                                                                        g ′′(1) = – , g ′′(5) =              .
                            Split the x-axis into the intervals ( − ∞, 0),                                           3             9(5)5 / 3
                             ⎛ 2⎞ ⎛2 ⎞                                                                 g(x) is concave up on (– ∞ , 0) ∪ (4, ∞ ) and
                             ⎜ 0, ⎟ , ⎜ , ∞ ⎟ .                                                        concave down on (0, 4).
                             ⎝ 5⎠ ⎝5 ⎠
                                            1                7
                            Test points: –1, , 1; f ′(−1) = – ,
                                            5                3
                                 ⎛1⎞ 35 ′
                              f ′⎜ ⎟ =     , f (1) = –1.
                                 ⎝5⎠ 3
                                                    ⎡ 2⎤
                            f(x) is increasing on ⎢ 0, ⎥ and decreasing on
                                                    ⎣ 5⎦
                                        ⎡2 ⎞
                             (– ∞, 0] ∪ ⎢ , ∞ ⎟ .
                                        ⎣5 ⎠

                    Instructor’s Resource Manual                                                                                            Section 3.2       161
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
29.                                                                         35.    f ( x) = ax 2 + bx + c; f ′( x) = 2ax + b;
                                                                                          f ′′( x) = 2a
                                                                                         An inflection point would occur where f ′′( x) = 0 ,
                                                                                         or 2a = 0. This would only occur when a = 0, but
                                                                                         if a = 0, the equation is not quadratic. Thus,
                                                                                         quadratic functions have no points of inflection.

                                                                                   36.    f ( x) = ax3 + bx 2 + cx + d ;
       30.                                                                                f ′( x) = 3ax 2 + 2bx + c; f ′′( x) = 6ax + 2b
                                                                                         An inflection point occurs where f ′′( x) = 0 , or
                                                                                         6ax + 2b = 0.
                                                                                         The function will have an inflection point at
                                                                                                   b
                                                                                         x = – , a ≠ 0.
                                                                                                  3a
       31.                                                                         37. Suppose that there are points x1 and x2 in I
                                                                                       where f ′( x1 ) > 0 and f ′( x2 ) < 0. Since f ′ is
                                                                                       continuous on I, the Intermediate Value Theorem
                                                                                       says that there is some number c between x1 and
                                                                                        x2 such that f ′(c) = 0, which is a contradiction.
                                                                                       Thus, either f ′( x) > 0 for all x in I and f is
                                                                                       increasing throughout I or f ′( x) < 0 for all x in I
                                                                                       and f is decreasing throughout I.
       32.
                                                                                   38. Since x 2 + 1 = 0 has no real solutions, f ′( x )
                                                                                       exists and is continuous everywhere.
                                                                                         x 2 – x + 1 = 0 has no real solutions. x 2 – x + 1 > 0
                                                                                         and x 2 + 1 > 0 for all x, so f ′( x) > 0 for all x.
                                                                                         Thus f is increasing everywhere.

                                                                                   39. a.     Let f ( x) = x 2 and let I = [ 0, a ] , a > y .
       33.                                                                                     f ′( x) = 2 x > 0 on I. Therefore, f(x) is
                                                                                              increasing on I, so f(x) < f(y) for x < y.

                                                                                         b. Let f ( x) = x and let I = [ 0, a ] , a > y .
                                                                                                        1
                                                                                               f ′( x) =    > 0 on I. Therefore, f(x) is
                                                                                                       2 x
                                                                                              increasing on I, so f(x) < f(y) for x < y.

                                                                                                            1
                                                                                         c.   Let f ( x) =     and let I = [0, a], a > y.
       34.                                                                                                  x
                                                                                                           1
                                                                                               f ′( x) = −    < 0 on I. Therefore f(x) is
                                                                                                           x2
                                                                                              decreasing on I, so f(x) > f(y) for x < y.

                                                                                   40.    f ′( x) = 3ax 2 + 2bx + c
                                                                                         In order for f(x) to always be increasing, a, b, and
                                                                                         c must meet the condition 3ax 2 + 2bx + c > 0 for
                                                                                         all x. More specifically, a > 0 and b 2 − 3ac < 0.


      162       Section 3.2                                                                                    Instructor’s Resource Manual
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
3b – ax                                                45. a.
                      41.    f ′′( x) =               . If (4, 13) is an inflection point
                                               5/ 2
                                          4x
                                          b      3b – 4a
                            then 13 = 2a +   and          = 0. Solving these
                                          2        4 ⋅ 32
                                                          39          13
                            equations simultaneously, a =     and b = .
                                                           8           2
                                                                                                       b.    f ′( x) < 0 : (1.3, 5.0)
                      42.    f ( x) = a ( x − r1 )( x − r2 )( x − r3 )
                             f ′( x) = a[( x − r1 )(2 x − r2 − r3 ) + ( x − r2 )( x − r3 )]            c.    f ′′( x) < 0 : (−0.25, 3.1) ∪ (6.5, 7]
                                                2
                             f ′( x) = a[3 x − 2 x(r1 + r2 + r3 ) + r1r2 + r2 r3 + r1r3 ]
                             f ′′( x) = a[6 x − 2(r1 + r2 + r3 )]                                                             1    x
                                                                                                       d.    f ′( x) = cos x – sin
                                                                                                                              2    2
                             a[6 x − 2(r1 + r2 + r3 )] = 0
                                                        r +r +r
                            6 x = 2(r1 + r2 + r3 ); x = 1 2 3
                                                            3

                      43. a.     [ f ( x ) + g ( x)]′ = f ′( x) + g ′( x).
                                 Since f ′( x) > 0 and g ′( x) > 0 for all x,
                                  f ′( x) + g ′( x) > 0 for all x. No additional
                                 conditions are needed.                                                                          1    x
                                                                                                       e.    f ′′( x) = − sin x − cos
                                                                                                                                 4    2
                            b.    [ f ( x) ⋅ g ( x)]′ = f ( x) g ′( x) + f ′( x) g ( x).
                                   f ( x) g ′( x) + f ′( x) g ( x) > 0 if
                                                    f ′( x)
                                   f ( x) > −               g ( x) for all x.
                                                    g ′( x)

                            c.   [ f ( g ( x))]′ = f ′( g ( x)) g ′( x).
                                 Since f ′( x) > 0 and g ′( x) > 0 for all x,
                                                                                                 46. a.
                                  f ′( g ( x)) g ′( x) > 0 for all x. No additional
                                 conditions are needed.

                      44. a.     [ f ( x) + g ( x)]′′ = f ′′( x) + g ′′( x).
                                 Since f ′′( x) > 0 and g ′′ > 0 for all x,
                                  f ′′( x) + g ′′( x) > 0 for all x. No additional
                                 conditions are needed.                                                b.    f ′( x) < 0 : (2.0, 4.7) ∪ (9.9, 10]

                            b.   [ f ( x ) ⋅ g ( x)]′′ = [ f ( x) g ′( x) + f ′( x) g ( x)]′           c.    f ′′( x) < 0 : [0, 3.4) ∪ (7.6, 10]
                                  = f ( x) g ′′( x) + f ′′( x) g ( x) + 2 f ′( x) g ′( x).
                                 The additional condition is that                                                     ⎡ 2     ⎛ x ⎞ ⎛ x ⎞⎤         ⎛ x⎞
                                                                                                       d. f ′( x) = x ⎢ − cos ⎜ ⎟ sin ⎜ ⎟ ⎥ + cos2 ⎜ ⎟
                                  f ( x) g ′′( x) + f ′′( x) g ( x) + 2 f ′( x) g ′( x) > 0                           ⎣ 3     ⎝ 3 ⎠ ⎝ 3 ⎠⎦         ⎝3⎠
                                 for all x is needed.                                                                ⎛ x⎞ x      ⎛ 2x ⎞
                                                                                                            = cos 2 ⎜ ⎟ − sin ⎜ ⎟
                            c.    [ f ( g ( x))]′′ = [ f ′( g ( x)) g ′( x)]′                                        ⎝ 3⎠ 3 ⎝ 3 ⎠

                                 = f ′( g ( x)) g ′′( x) + f ′′( g ( x))[ g ′( x)]2 .
                                 The additional condition is that
                                                     f ′′( g ( x))[ g ′( x)]2
                                  f ′( g ( x)) > −                             for all x.
                                                              g ′′( x)




                    Instructor’s Resource Manual                                                                                           Section 3.2        163
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
f ′′( x) = −
                                    2x     ⎛ 2x ⎞ 2 ⎛ 2x ⎞
                                       cos ⎜ ⎟ − sin ⎜ ⎟                                      d 3s          d 2s
              e.                                                                        c.           < 0,          >0
                                    9      ⎝ 3 ⎠ 3 ⎝ 3 ⎠                                      dt 3          dt 2
                                                                                                s




        47.    f ′( x) > 0 on (–0.598, 0.680)
              f is increasing on [–0.598, 0.680].

        48.    f ′′( x) < 0 when x > 1.63 in [–2, 3]
              f is concave down on (1.63, 3).                                                                                    t
                                                                                             Concave up.
                                                           ds
        49. Let s be the distance traveled. Then              is the                          d 2s
                                                           dt                           d.           = 10 mph/min
              speed of the car.                                                               dt 2
                                                                                                s
                     ds
              a.        = ks, k a constant
                     dt
                      s




                                                                                                                             t
                                                                                             Concave up.

                                                                                              ds     d 2s
                                                   t                                    e.       and      are approaching zero.
                    Concave up.                                                               dt     dt 2

                      d 2s                                                                      s
              b.             >0
                      dt 2
                      s




                                                                                                                                     t
                                                                                             Concave down.

                                                       t
                    Concave up.




      164          Section 3.2                                                                                     Instructor’s Resource Manual
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
ds
                                     is constant.                                                           dV       dh      d 2h
                            f.                                                                         c.       = k,    > 0,      <0
                                  dt                                                                         dt      dt      dt 2
                                    s                                                                       Concave down.
                                                                                                               h ( t)




                                                                     t
                                                                                                                                                t
                                 Neither concave up nor down.
                                                                                                                                dI d 2 I
                      50. a.
                                  dV
                                     = k <0, V is the volume of water in the                           d.    I ( t) = k now, but   ,     > 0 in the future
                                  dt                                                                                             dt dt 2
                                 tank, k is a constant.                                                     where I is inflation.
                                                                                                               I ( t)
                                 Neither concave up nor down.
                                    v(t)




                                                                                                                                                t
                                                                     t
                                                                                                            dp           d2 p                    dp
                                                                                                       e.       < 0, but       > 0 and at t = 2:    >0.
                                 dV        1    1                                                            dt           dt 2                   dt
                            b.       = 3 – = 2 gal/min
                                  dt       2    2                                                           where p is the price of oil.
                                 Neither concave up nor down.                                               Concave up.
                                    v(t)                                                                       P ( t)




                                                                     t                                                  2                       t




                    Instructor’s Resource Manual                                                                                         Section 3.2          165
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
dT      d 2T                                                              dP      d 2P
             f.        > 0,      < 0 , where T is David’s                               c.       > 0,      < 0 , where P is world
                    dt      dt 2                                                              dt      dt 2
                   temperature.                                                              population.
                   Concave down.                                                             Concave down.
                     T ( t)                                                                     P ( t)




                                                      t                                                                          t


                   dC       d 2C                                                              dθ       d 2θ
        51. a.         > 0,      > 0 , where C is the car’s cost.                       d.        > 0,      > 0 , where θ is the angle that
                    dt      dt 2                                                              dt       dt 2
                   Concave up.                                                               the tower makes with the vertical.
                     C ( t)                                                                  Concave up.
                                                                                                θ( t)




                                                      t
                                                                                                                                 t
             b. f(t) is oil consumption at time t.
                 df        d2 f                                                         e.   P = f(t) is profit at time t.
                     < 0,       >0
                 dt        dt 2                                                              dP        d 2P
                                                                                                 > 0,        <0
                Concave up.                                                                   dt        dt 2
                     f( t)                                                                   Concave down.
                                                                                                P ( t)




                                                      t
                                                                                                                                 t




      166         Section 3.2                                                                                 Instructor’s Resource Manual
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
f.   R is revenue at time t.
                                         dP
                                 P < 0,     >0
                                         dt
                                 Could be either concave up or down.
                                    P




                                                                                                 54. The height is always increasing so h '(t ) > 0 . The
                                                                                                     rate of change of the height decreases for the first
                                                                                                     50 minutes and then increases over the next 50
                                                                                                     minutes. Thus h ''(t ) < 0 for 0 ≤ t ≤ 50 and
                                                                         t                            h ''(t ) > 0 for 50 < t ≤ 100 .

                                    P




                                                                     t
                                                                                                 55. V = 3t , 0 ≤ t ≤ 8 . The height is always increasing,
                                                                                                     so h '(t ) > 0. The rate of change of the height
                                                                                                     decreases from time t = 0 until time t1 when the
                                                                                                     water reaches the middle of the rounded bottom
                      52. a.     R(t) ≈ 0.28, t < 1981                                               part. The rate of change then increases until time
                                                       dR      d 2R                                   t2 when the water reaches the middle of the neck.
                            b. On [1981, 1983],           > 0,      >0,
                                                       dt      dt 2                                  Then the rate of change decreases until t = 8 and
                                 R(1983) ≈ 0.36                                                      the vase is full. Thus, h ''(t ) > 0 for t1 < t < t2 and
                                                                                                      h ''(t ) < 0 for t2 < t < 8 .
                             dV
                      53.         = 2 in 3 / sec                                                             h ( t)
                              dt
                            The cup is a portion of a cone with the bottom cut
                            off. If we let x represent the height of the missing                       24
                            cone, we can use similar triangles to show that
                                 x x+5
                                   =
                                 3    3.5
                             3.5 x = 3 x + 15
                             0.5 x = 15
                                 x = 30
                            Similar triangles can be used again to show that, at                                                   t2
                                                                                                                      t1                 8    t
                            any given time, the radius of the cone at water
                            level is
                                  h + 30
                             r=
                                    20
                            Therefore, the volume of water can be expressed
                            as
                                  π (h + 30) 3 45π
                            V=               −     .
                                   1200         2
                            We also know that V = 2t from above. Setting the
                            two volume equations equal to each other and
                                                      2400
                            solving for h gives h = 3      t + 27000 − 30 .
                                                           π

                    Instructor’s Resource Manual                                                                                         Section 3.2          167
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
56. V = 20 − .1t , 0 ≤ t ≤ 200 . The height of the water                3.3 Concepts Review
            is always decreasing so h '(t ) < 0 . The rate of
            change in the height increases (the rate is negative,                   1. maximum
            and its absolute value decreases) for the first 100
            days and then decreases for the remaining time.                         2. maximum; minimum
            Therefore we have h ''(t ) > 0 for 0 < t < 100 , and
             h ''(t ) < 0 for 100 < t < 200 .                                       3. maximum

                                                                                    4. local maximum, local minimum, 0



                                                                                Problem Set 3.3

                                                                                    1.    f ′( x) = 3 x 2 –12 x = 3 x( x – 4)
                                                                                         Critical points: 0, 4
        57. a. The cross-sectional area of the vase is
                                                                                          f ′( x) > 0 on (– ∞ , 0), f ′( x) < 0 on (0, 4),
               approximately equal to ΔV and the
                                                                                          f ′( x) > 0 on (4, ∞ )
               corresponding radius is r = ΔV / π . The
               table below gives the approximate values for r.                             f ′′( x) = 6 x –12; f ′′(0) = –12, f ′′(4) = 12.
               The vase becomes slightly narrower as you                                 Local minimum at x = 4;
               move above the base, and then gets wider as                               local maximum at x = 0
               you near the top.
                                                                                    2.    f ′( x) = 3 x 2 –12 = 3( x 2 – 4)
                       Depth         V      A ≈ ΔV       r = ΔV / π                      Critical points: –2, 2
                                                                                          f ′( x) > 0 on (– ∞ , –2), f ′( x) < 0 on (–2, 2),
                          1          4         4             1.13
                                                                                          f ′( x) > 0 on (2, ∞ )
                          2          8         4             1.13                         f ′′( x) = 6 x; f ′′(–2) = –12, f ′′(2) = 12
                                                                                         Local minimum at x = 2;
                          3         11         3             0.98                        local maximum at x = –2
                          4         14         3             0.98
                                                                                                                               ⎛ π⎞
                                                                                    3.    f ′(θ ) = 2 cos 2θ ; 2 cos 2θ ≠ 0 on ⎜ 0, ⎟
                          5         20         6             1.38                                                              ⎝ 4⎠
                                                                                         No critical points; no local maxima or minima on
                          6         28         8             1.60                        ⎛ π⎞
                                                                                         ⎜ 0, ⎟ .
                                                                                         ⎝ 4⎠
             b. Near the base, this vase is like the one in part
                (a), but just above the base it becomes larger.                                     1         1                               1
                Near the middle of the vase it becomes very                         4.    f ′( x) =   + cos x; + cos x = 0 when cos x = – .
                                                                                                    2         2                               2
                narrow. The top of the vase is similar to the                                               2π 4π
                one in part (a).                                                         Critical points:      ,
                                                                                                             3 3
                       Depth         V      A ≈ ΔV       r = ΔV / π                                      ⎛ 2π ⎞                     ⎛ 2π 4π ⎞
                                                                                          f ′( x) > 0 on ⎜ 0,    ⎟ , f ′( x) < 0 on ⎜ ,     ⎟,
                                                                                                         ⎝    3 ⎠                   ⎝ 3 3 ⎠
                          1          4         4             1.13                                        ⎛ 4π       ⎞
                                                                                          f ′( x) > 0 on ⎜ , 2π ⎟
                          2          9         5             1.26                                        ⎝ 3        ⎠
                                                                                                                   ⎛ 2π ⎞       3        ⎛ 4π ⎞  3
                          3         12         3             0.98                         f ′′( x) = – sin x; f ′′ ⎜ ⎟ = –        , f ′′ ⎜ ⎟ =
                                                                                                                   ⎝  3 ⎠      2         ⎝  3 ⎠ 2
                          4         14         2             0.80                                                       4π
                                                                                         Local minimum at x =              ; local maximum at
                                                                                                                         3
                          5         20         6             1.38                               2π
                                                                                         x=         .
                                                                                                 3
                          6         28         8             1.60



      168       Section 3.3                                                                                    Instructor’s Resource Manual
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3
solucionario de purcell 3

More Related Content

What's hot

Tutorial 7 mth 3201
Tutorial 7 mth 3201Tutorial 7 mth 3201
Tutorial 7 mth 3201Drradz Maths
 
Tutorial 5 mth 3201
Tutorial 5 mth 3201Tutorial 5 mth 3201
Tutorial 5 mth 3201Drradz Maths
 
Квадратное неравенство
Квадратное неравенствоКвадратное неравенство
Квадратное неравенствоИлья Сыч
 
1.1 exponents t
1.1 exponents t1.1 exponents t
1.1 exponents tmath260
 
コンピュータ先端ガイド2巻3章勉強会(SVM)
コンピュータ先端ガイド2巻3章勉強会(SVM)コンピュータ先端ガイド2巻3章勉強会(SVM)
コンピュータ先端ガイド2巻3章勉強会(SVM)Masaya Kaneko
 
Ejercicios inecuaciones
Ejercicios inecuacionesEjercicios inecuaciones
Ejercicios inecuacionesIES, ALBORÁN
 
1 exponents yz
1 exponents yz1 exponents yz
1 exponents yzmath260
 
Tutorial 4 mth 3201
Tutorial 4 mth 3201Tutorial 4 mth 3201
Tutorial 4 mth 3201Drradz Maths
 
Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reducedKyro Fitkry
 
Respuestas De Las Derivadas
Respuestas De Las DerivadasRespuestas De Las Derivadas
Respuestas De Las DerivadasERICK CONDE
 
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...Hareem Aslam
 
PRML 1.6 情報理論
PRML 1.6 情報理論PRML 1.6 情報理論
PRML 1.6 情報理論sleepy_yoshi
 
統計的学習の基礎 4.4~
統計的学習の基礎 4.4~統計的学習の基礎 4.4~
統計的学習の基礎 4.4~Atsushi Hayakawa
 
Advanced Trigonometry
Advanced TrigonometryAdvanced Trigonometry
Advanced Trigonometrytimschmitz
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1cideni
 
Lesson 26: Integration by Substitution (slides)
Lesson 26: Integration by Substitution (slides)Lesson 26: Integration by Substitution (slides)
Lesson 26: Integration by Substitution (slides)Matthew Leingang
 
Tutorial 8 mth 3201
Tutorial 8 mth 3201Tutorial 8 mth 3201
Tutorial 8 mth 3201Drradz Maths
 

What's hot (20)

Tutorial 7 mth 3201
Tutorial 7 mth 3201Tutorial 7 mth 3201
Tutorial 7 mth 3201
 
Tutorial 5 mth 3201
Tutorial 5 mth 3201Tutorial 5 mth 3201
Tutorial 5 mth 3201
 
Квадратное неравенство
Квадратное неравенствоКвадратное неравенство
Квадратное неравенство
 
1.1 exponents t
1.1 exponents t1.1 exponents t
1.1 exponents t
 
コンピュータ先端ガイド2巻3章勉強会(SVM)
コンピュータ先端ガイド2巻3章勉強会(SVM)コンピュータ先端ガイド2巻3章勉強会(SVM)
コンピュータ先端ガイド2巻3章勉強会(SVM)
 
Ejercicios inecuaciones
Ejercicios inecuacionesEjercicios inecuaciones
Ejercicios inecuaciones
 
1 exponents yz
1 exponents yz1 exponents yz
1 exponents yz
 
Limites trigonométricos
Limites trigonométricosLimites trigonométricos
Limites trigonométricos
 
Tutorial 4 mth 3201
Tutorial 4 mth 3201Tutorial 4 mth 3201
Tutorial 4 mth 3201
 
Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reduced
 
Respuestas De Las Derivadas
Respuestas De Las DerivadasRespuestas De Las Derivadas
Respuestas De Las Derivadas
 
Ch2
Ch2Ch2
Ch2
 
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
 
PRML 1.6 情報理論
PRML 1.6 情報理論PRML 1.6 情報理論
PRML 1.6 情報理論
 
統計的学習の基礎 4.4~
統計的学習の基礎 4.4~統計的学習の基礎 4.4~
統計的学習の基礎 4.4~
 
Capitulo 5 Soluciones Purcell 9na Edicion
Capitulo 5 Soluciones Purcell 9na EdicionCapitulo 5 Soluciones Purcell 9na Edicion
Capitulo 5 Soluciones Purcell 9na Edicion
 
Advanced Trigonometry
Advanced TrigonometryAdvanced Trigonometry
Advanced Trigonometry
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
 
Lesson 26: Integration by Substitution (slides)
Lesson 26: Integration by Substitution (slides)Lesson 26: Integration by Substitution (slides)
Lesson 26: Integration by Substitution (slides)
 
Tutorial 8 mth 3201
Tutorial 8 mth 3201Tutorial 8 mth 3201
Tutorial 8 mth 3201
 

Similar to solucionario de purcell 3

Math 17 midterm exam review jamie
Math 17 midterm exam review jamieMath 17 midterm exam review jamie
Math 17 midterm exam review jamielittrpgaddict
 
鳳山高級中學 B1 3 3---ans
鳳山高級中學   B1  3 3---ans鳳山高級中學   B1  3 3---ans
鳳山高級中學 B1 3 3---ans祥益 顏祥益
 
5 indices & logarithms
5  indices & logarithms5  indices & logarithms
5 indices & logarithmslinusshy
 
Unit 4 Review
Unit 4 ReviewUnit 4 Review
Unit 4 Reviewrfrettig
 
09 Trial Penang S1
09 Trial Penang S109 Trial Penang S1
09 Trial Penang S1guest9442c5
 
Higher Maths 2.1.2 - Quadratic Functions
Higher Maths 2.1.2 - Quadratic FunctionsHigher Maths 2.1.2 - Quadratic Functions
Higher Maths 2.1.2 - Quadratic Functionstimschmitz
 
Quadratic functions and models
Quadratic functions and modelsQuadratic functions and models
Quadratic functions and modelsTarun Gehlot
 
Lesson 26: Optimization II: Data Fitting
Lesson 26: Optimization II: Data FittingLesson 26: Optimization II: Data Fitting
Lesson 26: Optimization II: Data FittingMatthew Leingang
 
Classzone Chapter 4
Classzone Chapter 4Classzone Chapter 4
Classzone Chapter 4DallinS
 
Foundation c2 exam june 2013 resit 2 sols
Foundation c2 exam june 2013 resit 2 solsFoundation c2 exam june 2013 resit 2 sols
Foundation c2 exam june 2013 resit 2 solsfatima d
 

Similar to solucionario de purcell 3 (20)

0304 ch 3 day 4
0304 ch 3 day 40304 ch 3 day 4
0304 ch 3 day 4
 
Add maths 2
Add maths 2Add maths 2
Add maths 2
 
Add Maths 2
Add Maths 2Add Maths 2
Add Maths 2
 
3. aplicaciones de la derivada
3. aplicaciones de la derivada3. aplicaciones de la derivada
3. aplicaciones de la derivada
 
Math 17 midterm exam review jamie
Math 17 midterm exam review jamieMath 17 midterm exam review jamie
Math 17 midterm exam review jamie
 
鳳山高級中學 B1 3 3---ans
鳳山高級中學   B1  3 3---ans鳳山高級中學   B1  3 3---ans
鳳山高級中學 B1 3 3---ans
 
5 indices & logarithms
5  indices & logarithms5  indices & logarithms
5 indices & logarithms
 
Unit 4 Review
Unit 4 ReviewUnit 4 Review
Unit 4 Review
 
09 Trial Penang S1
09 Trial Penang S109 Trial Penang S1
09 Trial Penang S1
 
Higher Maths 2.1.2 - Quadratic Functions
Higher Maths 2.1.2 - Quadratic FunctionsHigher Maths 2.1.2 - Quadratic Functions
Higher Maths 2.1.2 - Quadratic Functions
 
MATH : EQUATIONS
MATH : EQUATIONSMATH : EQUATIONS
MATH : EQUATIONS
 
Ca8e Ppt 5 6
Ca8e Ppt 5 6Ca8e Ppt 5 6
Ca8e Ppt 5 6
 
Quadratic functions and models
Quadratic functions and modelsQuadratic functions and models
Quadratic functions and models
 
Nota math-spm
Nota math-spmNota math-spm
Nota math-spm
 
1-3-Mdpt--Distance.ppt
1-3-Mdpt--Distance.ppt1-3-Mdpt--Distance.ppt
1-3-Mdpt--Distance.ppt
 
Distance
DistanceDistance
Distance
 
Lesson 26: Optimization II: Data Fitting
Lesson 26: Optimization II: Data FittingLesson 26: Optimization II: Data Fitting
Lesson 26: Optimization II: Data Fitting
 
Classzone Chapter 4
Classzone Chapter 4Classzone Chapter 4
Classzone Chapter 4
 
Foundation c2 exam june 2013 resit 2 sols
Foundation c2 exam june 2013 resit 2 solsFoundation c2 exam june 2013 resit 2 sols
Foundation c2 exam june 2013 resit 2 sols
 
Chapter 04
Chapter 04Chapter 04
Chapter 04
 

More from José Encalada

solucionario de purcell 0
solucionario de purcell 0solucionario de purcell 0
solucionario de purcell 0José Encalada
 
Determinacion Del Punto De Ebullicion
Determinacion Del Punto De EbullicionDeterminacion Del Punto De Ebullicion
Determinacion Del Punto De EbullicionJosé Encalada
 
Propiedades Quimicas De Los Elementos
Propiedades Quimicas De Los ElementosPropiedades Quimicas De Los Elementos
Propiedades Quimicas De Los ElementosJosé Encalada
 
Determinacion De La Densidad
Determinacion De La DensidadDeterminacion De La Densidad
Determinacion De La DensidadJosé Encalada
 
Materiales De Laboratorio
Materiales De LaboratorioMateriales De Laboratorio
Materiales De LaboratorioJosé Encalada
 
Ayudas%2 Bcifras%2 Bsignificativas
Ayudas%2 Bcifras%2 BsignificativasAyudas%2 Bcifras%2 Bsignificativas
Ayudas%2 Bcifras%2 BsignificativasJosé Encalada
 
Rubrica Para Elaboracion De Proyectos De Curso
Rubrica Para Elaboracion De Proyectos De CursoRubrica Para Elaboracion De Proyectos De Curso
Rubrica Para Elaboracion De Proyectos De CursoJosé Encalada
 
Funciones De Dos Variables
Funciones De Dos VariablesFunciones De Dos Variables
Funciones De Dos VariablesJosé Encalada
 
Funciones De Dos Variables
Funciones De Dos VariablesFunciones De Dos Variables
Funciones De Dos VariablesJosé Encalada
 

More from José Encalada (15)

solucionario de purcell 0
solucionario de purcell 0solucionario de purcell 0
solucionario de purcell 0
 
Determinacion Del Punto De Ebullicion
Determinacion Del Punto De EbullicionDeterminacion Del Punto De Ebullicion
Determinacion Del Punto De Ebullicion
 
Propiedades Quimicas De Los Elementos
Propiedades Quimicas De Los ElementosPropiedades Quimicas De Los Elementos
Propiedades Quimicas De Los Elementos
 
Determinacion De La Densidad
Determinacion De La DensidadDeterminacion De La Densidad
Determinacion De La Densidad
 
Materiales De Laboratorio
Materiales De LaboratorioMateriales De Laboratorio
Materiales De Laboratorio
 
Diapositivas C11
Diapositivas C11Diapositivas C11
Diapositivas C11
 
Etilenglicol
EtilenglicolEtilenglicol
Etilenglicol
 
eteretilico
eteretilicoeteretilico
eteretilico
 
Pendiente
PendientePendiente
Pendiente
 
Ayudas%2 Bcifras%2 Bsignificativas
Ayudas%2 Bcifras%2 BsignificativasAyudas%2 Bcifras%2 Bsignificativas
Ayudas%2 Bcifras%2 Bsignificativas
 
Rubrica Para Elaboracion De Proyectos De Curso
Rubrica Para Elaboracion De Proyectos De CursoRubrica Para Elaboracion De Proyectos De Curso
Rubrica Para Elaboracion De Proyectos De Curso
 
Funciones De Dos Variables
Funciones De Dos VariablesFunciones De Dos Variables
Funciones De Dos Variables
 
Corordenadas Polares
Corordenadas PolaresCorordenadas Polares
Corordenadas Polares
 
Funciones De Dos Variables
Funciones De Dos VariablesFunciones De Dos Variables
Funciones De Dos Variables
 
Corordenadas Polares
Corordenadas PolaresCorordenadas Polares
Corordenadas Polares
 

solucionario de purcell 3

  • 1. Applications of the CHAPTER 3 Derivative 3 3.1 Concepts Review 7. Ψ ′( x) = 2 x + 3; 2x + 3 = 0 when x = – . 2 1. continuous; closed and bounded 3 Critical points: –2, – , 1 2 2. extreme ⎛ 3⎞ 9 Ψ (–2) = –2, Ψ ⎜ – ⎟ = – , Ψ (1) = 4 ⎝ 2⎠ 4 3. endpoints; stationary points; singular points 9 Maximum value = 4, minimum value = – 4. f ′(c) = 0; f ′(c) does not exist 4 1 6 8. G ′( x) = (6 x 2 + 6 x –12) = ( x 2 + x – 2); Problem Set 3.1 5 5 1. Endpoints: −2 , 4 x 2 + x – 2 = 0 when x = –2, 1 Singular points: none Critical points: –3, –2, 1, 3 Stationary points: 0, 2 9 7 G (–3) = , G (–2) = 4, G (1) = – , G (3) = 9 Critical points: −2, 0, 2, 4 5 5 Maximum value = 9, 2. Endpoints: −2 , 4 7 Singular points: 2 minimum value = – Stationary points: 0 5 Critical points: −2, 0, 2, 4 9. f ′( x) = 3 x 2 – 3; 3x 2 – 3 = 0 when x = –1, 1. 3. Endpoints: −2 , 4 Critical points: –1, 1 Singular points: none f(–1) = 3, f(1) = –1 Stationary points: −1, 0,1, 2,3 No maximum value, minimum value = –1 Critical points: −2, −1, 0,1, 2,3, 4 (See graph.) 4. Endpoints: −2 , 4 Singular points: none Stationary points: none Critical points: −2, 4 5. f ′( x) = 2 x + 4; 2 x + 4 = 0 when x = –2. Critical points: –4, –2, 0 f(–4) = 4, f(–2) = 0, f(0) = 4 Maximum value = 4, minimum value = 0 10. f ′( x) = 3 x 2 – 3; 3x 2 – 3 = 0 when x = –1, 1. 1 3 6. h′( x) = 2 x + 1; 2 x + 1 = 0 when x = – . Critical points: – , –1, 1, 3 2 2 1 ⎛ 3 ⎞ 17 Critical points: –2, – , 2 f ⎜ – ⎟ = , f (–1) = 3, f (1) = –1, f (3) = 19 2 ⎝ 2⎠ 8 ⎛ 1⎞ 1 Maximum value = 19, minimum value = –1 h(–2) = 2, h ⎜ – ⎟ = – , h(2) = 6 ⎝ 2⎠ 4 1 Maximum value = 6, minimum value = – 4 154 Section 3.1 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 2. 1 2x 2x 11. h′(r ) = − ; h′(r ) is never 0; h′(r ) is not defined 15. g ′( x) = − ; − = 0 when x = 0. 2 2 r 2 (1 + x ) (1 + x 2 ) 2 when r = 0, but r = 0 is not in the domain on Critical point: 0 [–1, 3] since h(0) is not defined. g(0) = 1 Critical points: –1, 3 As x → ∞, g ( x) → 0+ ; as x → −∞, g ( x) → 0+. Note that lim h(r ) = −∞ and lim h( x) = ∞. x → 0− x → 0+ Maximum value = 1, no minimum value No maximum value, no minimum value. (See graph.) 2x 2x 12. g ′( x) = − ; − = 0 when x = 0 2 2 (1 + x ) (1 + x 2 ) 2 Critical points: –3, 0, 1 1 1 g(–3) = , g(0) = 1, g(1) = 10 2 1 Maximum value = 1, minimum value = 10 1 − x2 16. f ′( x) = ; 13. f '( x) = 4x − 4x 3 (1 + x 2 )2 ( = 4 x x2 − 1 ) 1 − x2 = 0 when x = –1, 1 = 4 x ( x − 1)( x + 1) (1 + x 2 )2 4 x ( x − 1)( x + 1) = 0 when x = 0,1, −1 . Critical points: –1, 1, 4 Critical points: −2, −1, 0,1, 2 1 1 4 f (−1) = − , f (1) = , f (4) = 2 2 17 f ( −2 ) = 10 ; f ( −1) = 1 ; f ( 0 ) = 2 ; f (1) = 1 ; 1 f ( 2 ) = 10 Maximum value = , 2 Maximum value: 10 1 Minimum value: 1 minimum value = – 2 14. f ' ( x ) = 5 x 4 − 25 x 2 + 20 π 17. r ′(θ ) = cos θ ; cos θ = 0 when θ = + kπ ( 4 = 5 x − 5x + 4 )2 2 π π = 5 ( x 2 − 4 )( x 2 − 1) Critical points: – , 4 6 = 5 ( x − 2 )( x + 2 )( x − 1)( x + 1) ⎛ π⎞ 1 ⎛ π⎞ 1 r⎜− ⎟ = − , r⎜ ⎟ = 5 ( x − 2 )( x + 2 )( x − 1)( x + 1) = 0 when ⎝ 4⎠ 2 ⎝6⎠ 2 x = −2, −1,1, 2 1 1 Maximum value = , minimum value = – Critical points: −3, −2, −1,1, 2 2 2 19 41 f ( −3) = −79 ; f ( −2 ) = − ; f ( −1) = − ; 18. s ′(t ) = cos t + sin t ; cos t + sin t = 0 when 3 3 35 13 π f (1) = ; f ( 2) = tan t = –1 or t = – + k π. 3 3 4 35 3π Maximum value: Critical points: 0, ,π 3 4 Minimum value: −79 ⎛ 3π ⎞ s(0) = –1, s ⎜ ⎟ = 2, s (π ) = 1 . ⎝ 4 ⎠ Maximum value = 2, minimum value = –1 Instructor’s Resource Manual Section 3.1 155 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 3. x –1 25. g ' (θ ) = θ 2 ( sec θ tan θ ) + 2θ sec θ 19. a ′( x) = ; a ′( x) does not exist when x = 1. x –1 = θ sec θ (θ tan θ + 2 ) Critical points: 0, 1, 3 θ sec θ (θ tan θ + 2 ) = 0 when θ = 0 . a(0) = 1, a(1) = 0, a(3) = 2 Maximum value = 2, minimum value = 0 Consider the graph: y 3(3s – 2) 20. f ′( s ) = ; f ′( s ) does not exist when s = 2 . 3s – 2 3 Critical points: −1, 2 , 4 1 3 f(–1) = 5, f 3 ( ) 2 = 0, f(4) = 10 −π π x Maximum value = 10, minimum value = 0 4 4 −1 1 21. g ′( x) = ; f ′( x) does not exist when x = 0. 3x2 / 3 Critical points: –1, 0, 27 π π Critical points: − , 0, g(–1) = –1, g(0) = 0, g(27) = 3 4 4 Maximum value = 3, minimum value = –1 ⎛ π⎞ π 2 ⎛π ⎞ π 2 2 2 g⎜− ⎟ = ; g ( 0) = 0 ; g ⎜ ⎟ = 2 ⎝ 4⎠ 16 ⎝4⎠ 16 22. s ′(t ) = ; s ′(t ) does not exist when t = 0. 3/ 5 5t π2 2 Critical points: –1, 0, 32 Maximum value: ; Minimum value: 0 16 s(–1) = 1, s(0) = 0, s(32) = 4 Maximum value = 4, minimum value = 0 ( 2 + t ) ⎛ t 2 / 3 ⎞ − t 5/ 3 (1) 5 ⎜ ⎟ 23. H ' ( t ) = − sin t 26. h ' ( t ) = ⎝3 ⎠ − sin t = 0 when ( 2 + t )2 t = 0, π , 2π ,3π , 4π ,5π , 6π , 7π ,8π ⎛5 ⎞ ⎛ 10 2 ⎞ t2/3 ⎜ (2 + t ) − t ⎟ t2/3 ⎜ + t ⎟ Critical points: 0, π , 2π ,3π , 4π ,5π , 6π , 7π ,8π ⎝3 ⎠= ⎝ 3 3 ⎠ = H ( 0 ) = 1 ; H (π ) = −1 ; H ( 2π ) = 1 ; ( 2 + t )2 ( 2 + t )2 H ( 3π ) = −1 ; H ( 4π ) = 1 ; H ( 5π ) = −1 ; 2t 2 / 3 ( t + 5 ) = H ( 6π ) = 1 ; H ( 7π ) = −1 ; H ( 8π ) = 1 3( 2 + t ) 2 Maximum value: 1 h ' ( t ) is undefined when t = −2 and h ' ( t ) = 0 Minimum value: −1 when t = 0 or t = −5 . Since −5 is not in the 24. g ' ( x ) = 1 − 2 cos x interval of interest, it is not a critical point. Critical points: −1, 0,8 1 1 − 2 cos x = 0 → cos x = when h ( −1) = −1 ; h ( 0 ) = 0 ; h ( 8 ) = 16 2 5 5π π π 5π Maximum value: 16 ; Minimum value: −1 x=− ,− , , 5 3 3 3 3 5π π π 5π f ′( x) = 3 x 2 –12 x + 1;3x 2 –12 x + 1 = 0 Critical points: −2π , − , − , , , 2π 27. a. 3 3 3 3 33 33 ⎛ 5π ⎞ −5π when x = 2 – and x = 2 + . g ( −2π ) = −2π ; g ⎜ − ⎟= − 3; 3 3 ⎝ 3 ⎠ 3 33 33 ⎛ π⎞ π ⎛π ⎞ π Critical points: –1, 2 – ,2+ ,5 g⎜− ⎟ = − + 3 ; g⎜ ⎟ = − 3 ; 3 3 ⎝ 3⎠ 3 ⎝3⎠ 3 ⎛ 33 ⎞ ⎛ 5π ⎞ 5π f(–1) = –6, f ⎜ 2 – ⎟ ≈ 2.04, g⎜ ⎟= + 3 ; g ( 2π ) = 2π ⎜ 3 ⎟ ⎝ 3 ⎠ 3 ⎝ ⎠ 5π ⎛ 33 ⎞ Maximum value: + 3 f ⎜2+ ⎜ ⎟ ≈ –26.04, f(5) = –18 3 ⎝ 3 ⎟⎠ 5π Maximum value ≈ 2.04; Minimum value: − − 3 3 minimum value ≈ −26.04 156 Section 3.1 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 4. ( x3 – 6 x 2 + x + 2)(3x 2 – 12 x + 1) 29. Answers will vary. One possibility: b. g ′( x) = ; y 3 2 x – 6x + x + 2 5 33 g '( x) = 0 when x = 2 – and 3 33 x = 2+ . g ′( x) does not exist when 3 −5 5 x f(x) = 0; on [–1, 5], f(x) = 0 when x ≈ –0.4836 and x ≈ 0.7172 33 −5 Critical points: –1, –0.4836, 2 – , 3 30. Answers will vary. One possibility: 33 y 0.7172, 2 + , 5 3 g(–1) = 6, g(–0.4836) = 0, 5 ⎛ 33 ⎞ g⎜2 – ⎜ ⎟ ≈ 2.04, g(0.7172) = 0, ⎝ 3 ⎟⎠ ⎛ 33 ⎞ g⎜2+ ⎜ ⎟ ≈ 26.04, g(5) = 18 5 x ⎝ 3 ⎟⎠ Maximum value ≈ 26.04, minimum value = 0 −5 28. a. f ′( x) = x cos x; on [–1, 5], x cos x = 0 when 31. Answers will vary. One possibility: π 3π y x = 0, x = , x = 2 2 5 π 3π Critical points: –1, 0, , , 5 2 2 ⎛π⎞ f(–1) ≈3.38, f(0) = 3, f ⎜ ⎟ ≈ 3.57, ⎝2⎠ x 5 ⎛ 3π ⎞ f ⎜ ⎟ ≈ –2.71, f(5) ≈ −2.51 ⎝ 2 ⎠ Maximum value ≈ 3.57, −5 minimum value ≈–2.71 32. Answers will vary. One possibility: (cos x + x sin x + 2)( x cos x) y b. g ′( x) = ; cos x + x sin x + 2 5 π 3π g ′( x ) = 0 when x = 0, x = , x= 2 2 g ′( x) does not exist when f(x) = 0; on [–1, 5], f(x) = 0 when x ≈ 3.45 5 x π 3π Critical points: –1, 0, , 3.45, , 5 2 2 ⎛π⎞ −5 g(–1) ≈ 3.38, g(0) = 3, g ⎜ ⎟ ≈ 3.57, ⎝2⎠ ⎛ 3π ⎞ g(3.45) = 0, g ⎜ ⎟ ≈ 2.71, g(5) ≈ 2.51 ⎝ 2 ⎠ Maximum value ≈ 3.57; minimum value = 0 Instructor’s Resource Manual Section 3.1 157 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 5. 33. Answers will vary. One possibility: 3.2 Concepts Review y 1. Increasing; concave up 5 2. f ′( x) > 0; f ′′( x) < 0 3. An inflection point 5 x 4. f ′′(c) = 0; f ′′(c) does not exist. −5 Problem Set 3.2 34. Answers will vary. One possibility: 1. f ′( x) = 3; 3 > 0 for all x. f(x) is increasing y for all x. 5 1 2. g ′( x) = 2 x – 1; 2x – 1 > 0 when x > . g(x) is 2 ⎡1 ⎞ increasing on ⎢ , ∞ ⎟ and decreasing on ⎣2 ⎠ 5 x ⎛ 1⎤ ⎜ – ∞, ⎥ . ⎝ 2⎦ −5 3. h′(t ) = 2t + 2; 2t + 2 > 0 when t > –1. h(t) is 35. Answers will vary. One possibility: increasing on [–1, ∞ ) and decreasing on y ( −∞ , –1]. 5 4. f ′( x) = 3x 2 ; 3 x 2 > 0 for x ≠ 0 . f(x) is increasing for all x. 5. G ′( x ) = 6 x 2 – 18 x + 12 = 6( x – 2)( x – 1) 5 x Split the x-axis into the intervals (– ∞ , 1), (1, 2), (2, ∞ ). 3 ⎛3⎞ 3 Test points: x = 0, , 3; G ′(0) = 12, G ′ ⎜ ⎟ = – , −5 2 ⎝2⎠ 2 G ′(3) = 12 36. Answers will vary. One possibility: G(x) is increasing on (– ∞ , 1] ∪ [2, ∞ ) and y decreasing on [1, 2]. 5 6. f ′(t ) = 3t 2 + 6t = 3t (t + 2) Split the x-axis into the intervals (– ∞ , –2), (–2, 0), (0, ∞ ). Test points: t = –3, –1, 1; f ′(–3) = 9, 5 x f ′(–1) = –3, f ′(1) = 9 f(t) is increasing on (– ∞ , –2] ∪ [0, ∞ ) and −5 decreasing on [–2, 0]. 7. h′( z ) = z 3 – 2 z 2 = z 2 ( z – 2) Split the x-axis into the intervals (– ∞ , 0), (0, 2), (2, ∞ ). Test points: z = –1, 1, 3; h′(–1) = –3, h′(1) = –1, h′(3) = 9 h(z) is increasing on [2, ∞ ) and decreasing on (– ∞ , 2]. 158 Section 3.2 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 6. 8. f ′( x) = 2– x 16. f ′′( x) = 12 x 2 + 48 x = 12 x( x + 4); f ′′( x) > 0 when 3 x x < –4 and x > 0. Split the x-axis into the intervals (– ∞ , 0), (0, 2), f(x) is concave up on (– ∞ , –4) ∪ (0, ∞ ) and (2, ∞ ). concave down on (–4, 0); inflection points are Test points: –1, 1, 3; f ′(–1) = –3, f ′(1) = 1, (–4, –258) and (0, –2). 1 f ′(3) = – 17. F ′′( x) = 2sin 2 x – 2 cos 2 x + 4 = 6 – 4 cos 2 x; 27 f(x) is increasing on (0, 2] and decreasing on 6 – 4 cos 2 x > 0 for all x since 0 ≤ cos 2 x ≤ 1. (– ∞ , 0) ∪ [2, ∞ ). F(x) is concave up for all x; no inflection points. π 18. G ′′( x) = 48 + 24 cos 2 x – 24sin 2 x 9. H ′(t ) = cos t ; H ′(t ) > 0 when 0 ≤ t < and 2 3π = 24 + 48cos 2 x; 24 + 48cos 2 x > 0 for all x. < t ≤ 2π. G(x) is concave up for all x; no inflection points. 2 ⎡ π ⎤ ⎡ 3π ⎤ H(t) is increasing on ⎢ 0, ⎥ ∪ ⎢ , 2π ⎥ and 19. f ′( x) = 3 x 2 – 12; 3 x 2 – 12 > 0 when ⎣ 2⎦ ⎣ 2 ⎦ x < –2 or x > 2. ⎡ π 3π ⎤ f(x) is increasing on (– ∞ , –2] ∪ [2, ∞ ) and decreasing on ⎢ , ⎥ . ⎣2 2 ⎦ decreasing on [–2, 2]. f ′′( x) = 6 x; 6x > 0 when x > 0. f(x) is concave up π on (0, ∞ ) and concave down on (– ∞ , 0). 10. R ′(θ ) = –2 cos θ sin θ ; R ′(θ ) > 0 when <θ < π 2 3π and < θ < 2π. 2 ⎡ π ⎤ ⎡ 3π ⎤ R( θ ) is increasing on ⎢ , π ⎥ ∪ ⎢ , 2π ⎥ and ⎣2 ⎦ ⎣ 2 ⎦ ⎡ π ⎤ ⎡ 3π ⎤ decreasing on ⎢ 0, ⎥ ∪ ⎢ π, ⎥ . ⎣ 2⎦ ⎣ 2 ⎦ 11. f ′′( x) = 2; 2 > 0 for all x. f(x) is concave up for all x; no inflection points. 20. g ′( x) = 12 x 2 – 6 x – 6 = 6(2 x + 1)( x – 1); g ′( x) > 0 12. G ′′( w) = 2; 2 > 0 for all w. G(w) is concave up for 1 when x < – or x > 1. g(x) is increasing on all w; no inflection points. 2 ⎛ 1⎤ ⎡ 1 ⎤ 13. T ′′(t ) = 18t ; 18t > 0 when t > 0. T(t) is concave up ⎜ – ∞, – ⎥ ∪ [1, ∞) and decreasing on ⎢ – , 1⎥ . ⎝ 2⎦ ⎣ 2 ⎦ on (0, ∞ ) and concave down on (– ∞ , 0); g ′′( x) = 24 x – 6 = 6(4 x – 1); g ′′( x) > 0 when (0, 0) is the only inflection point. 1 x> . 6 2 4 14. f ′′( z ) = 2 – = ( z 4 – 3); z 4 – 3 > 0 for ⎛1 ⎞ 4 z z4 g(x) is concave up on ⎜ , ∞ ⎟ and concave down ⎝4 ⎠ z < – 4 3 and z > 4 3. ⎛ 1⎞ f(z) is concave up on (– ∞, – 4 3) ∪ ( 4 3, ∞) and on ⎜ – ∞, ⎟ . ⎝ 4⎠ concave down on (– 4 3, 0) ∪ (0, 4 3); inflection ⎛ 1 ⎞ ⎛4 1 ⎞ points are ⎜ – 4 3, 3 – ⎟ and ⎜ 3, 3 – ⎟. ⎝ 3⎠ ⎝ 3⎠ 15. q ′′( x ) = 12 x 2 – 36 x – 48; q ′′( x) > 0 when x < –1 and x > 4. q(x) is concave up on (– ∞ , –1) ∪ (4, ∞ ) and concave down on (–1, 4); inflection points are (–1, –19) and (4, –499). Instructor’s Resource Manual Section 3.2 159 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 7. 21. g ′( x) = 12 x3 – 12 x 2 = 12 x 2 ( x – 1); g ′( x) > 0 23. G ′( x ) = 15 x 4 – 15 x 2 = 15 x 2 ( x 2 – 1); G ′( x) > 0 when x > 1. g(x) is increasing on [1, ∞ ) and when x < –1 or x > 1. G(x) is increasing on decreasing on (−∞,1]. (– ∞ , –1] ∪ [1, ∞ ) and decreasing on [–1, 1]. g ′′( x) = 36 x 2 – 24 x = 12 x(3 x – 2); g ′′( x) > 0 G ′′( x) = 60 x3 – 30 x = 30 x(2 x 2 – 1); 2 ⎛ 1 ⎞ when x < 0 or x > . g(x) is concave up on Split the x-axis into the intervals ⎜ −∞, − ⎟, 3 ⎝ 2⎠ ⎛2 ⎞ ⎛ 2⎞ ⎛ 1 ⎞ ⎛ 1 ⎞ ⎛ 1 ⎞ (– ∞, 0) ∪ ⎜ , ∞ ⎟ and concave down on ⎜ 0, ⎟ . ⎜− , 0 ⎟ , ⎜ 0, ⎟, ⎜ , ∞ ⎟. ⎝ 3 ⎠ ⎝ 3⎠ ⎝ 2 ⎠ ⎝ 2⎠ ⎝ 2 ⎠ 1 1 Test points: x = –1, – , , 1; G ′′(–1) = –30, 2 2 ⎛ 1 ⎞ 15 ′′ ⎛ 1 ⎞ 15 G ′′ ⎜ – ⎟ = , G ⎜ ⎟ = – , G ′′(1) = 30. ⎝ 2⎠ 2 ⎝2⎠ 2 ⎛ 1 ⎞ ⎛ 1 ⎞ G(x) is concave up on ⎜ – , 0⎟ ∪ ⎜ , ∞ ⎟ and ⎝ 2 ⎠ ⎝ 2 ⎠ ⎛ 1 ⎞ ⎛ 1 ⎞ concave down on ⎜ – ∞, – ⎟ ∪ ⎜ 0, ⎟. ⎝ 2⎠ ⎝ 2⎠ 22. F ′( x) = 6 x5 – 12 x3 = 6 x3 ( x 2 – 2) Split the x-axis into the intervals (– ∞ , − 2) , (− 2, 0), (0, 2), ( 2, ∞) . Test points: x = –2, –1, 1, 2; F ′(–2) = –96, F ′(–1) = 6, F ′(1) = –6, F ′(2) = 96 F(x) is increasing on [– 2, 0] ∪ [ 2, ∞) and decreasing on (– ∞, – 2] ∪ [0, 2] 2x 4 2 2 2 2 24. H ′( x ) = ; H ′( x) > 0 when x > 0. F ′′( x) = 30 x – 36 x = 6 x (5 x – 6); 5 x – 6 > 0 ( x + 1)2 2 6 6 H(x) is increasing on [0, ∞ ) and decreasing on when x < – or x > . (– ∞ , 0]. 5 5 ⎛ 2(1 – 3 x 2 ) 6⎞ ⎛ 6 ⎞ H ′′( x) = ; H ′′( x) > 0 when F(x) is concave up on ⎜ – ∞, – ⎜ ⎟∪⎜ , ∞ ⎟ and ( x 2 + 1)3 ⎝ 5⎟ ⎜ 5 ⎟ ⎠ ⎝ ⎠ 1 1 ⎛ 6 6⎞ – <x< . concave down on ⎜ – , ⎜ 5 5 ⎟. ⎟ 3 3 ⎝ ⎠ ⎛ 1 1 ⎞ H(x) is concave up on ⎜ – , ⎟ and concave ⎝ 3 3⎠ ⎛ 1 ⎞ ⎛ 1 ⎞ down on ⎜ – ∞, – ⎟∪⎜ , ∞ ⎟. ⎝ 3⎠ ⎝ 3 ⎠ 160 Section 3.2 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 8. cos x π –2(5 x + 1) 25. f ′( x) = ; f ′( x) > 0 when 0 < x < . f(x) f ′′( x) = ; –2(5x + 1) > 0 when 2 sin x 2 9 x4 / 3 ⎡ π⎤ 1 is increasing on ⎢ 0, ⎥ and decreasing on x < – , f ′′( x) does not exist at x = 0. ⎣ 2⎦ 5 ⎡π ⎤ 1 Test points: –1, – , 1; f ′′(–1) = , 8 ⎢ 2 , π⎥ . 10 9 ⎣ ⎦ – cos 2 x – 2sin 2 x ⎛ 1⎞ 104 / 3 4 f ′′( x) = ; f ′′( x) < 0 for all x in f ′′ ⎜ – ⎟ = – , f (1) = – . 4sin 3 / 2 x ⎝ 10 ⎠ 9 3 (0, ∞ ). f(x) is concave down on (0, π ). ⎛ 1⎞ f(x) is concave up on ⎜ – ∞, – ⎟ and concave ⎝ 5⎠ ⎛ 1 ⎞ down on ⎜ – , 0 ⎟ ∪ (0, ∞). ⎝ 5 ⎠ 3x – 4 4 26. g ′( x) = ; 3x – 4 > 0 when x > . 2 x–2 3 g(x) is increasing on [2, ∞ ). 3x – 8 8 g ′′( x) = ; 3x – 8 > 0 when x > . 3/ 2 3 4( x – 2) 4( x + 2) 28. g ′( x) = ; x + 2 > 0 when x > –2, g ′( x) ⎛8 ⎞ 3x 2 / 3 g(x) is concave up on ⎜ , ∞ ⎟ and concave down ⎝3 ⎠ does not exist at x = 0. ⎛ 8⎞ Split the x-axis into the intervals ( −∞, −2 ) , on ⎜ 2, ⎟ . ⎝ 3⎠ (–2, 0), (0, ∞ ). 4 Test points: –3, –1, 1; g ′(–3) = – , 5/3 3 4 g ′(–1) = , g ′(1) = 4. 3 g(x) is increasing on [–2, ∞ ) and decreasing on (– ∞ , –2]. 4( x – 4) g ′′( x ) = ; x – 4 > 0 when x > 4, g ′′( x) 9 x5 / 3 does not exist at x = 0. 2 – 5x 2 20 27. f ′( x) = ; 2 – 5x > 0 when x < , f ′( x ) Test points: –1, 1, 5; g ′′(–1) = , 3x 1/ 3 5 9 does not exist at x = 0. 4 4 g ′′(1) = – , g ′′(5) = . Split the x-axis into the intervals ( − ∞, 0), 3 9(5)5 / 3 ⎛ 2⎞ ⎛2 ⎞ g(x) is concave up on (– ∞ , 0) ∪ (4, ∞ ) and ⎜ 0, ⎟ , ⎜ , ∞ ⎟ . concave down on (0, 4). ⎝ 5⎠ ⎝5 ⎠ 1 7 Test points: –1, , 1; f ′(−1) = – , 5 3 ⎛1⎞ 35 ′ f ′⎜ ⎟ = , f (1) = –1. ⎝5⎠ 3 ⎡ 2⎤ f(x) is increasing on ⎢ 0, ⎥ and decreasing on ⎣ 5⎦ ⎡2 ⎞ (– ∞, 0] ∪ ⎢ , ∞ ⎟ . ⎣5 ⎠ Instructor’s Resource Manual Section 3.2 161 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 9. 29. 35. f ( x) = ax 2 + bx + c; f ′( x) = 2ax + b; f ′′( x) = 2a An inflection point would occur where f ′′( x) = 0 , or 2a = 0. This would only occur when a = 0, but if a = 0, the equation is not quadratic. Thus, quadratic functions have no points of inflection. 36. f ( x) = ax3 + bx 2 + cx + d ; 30. f ′( x) = 3ax 2 + 2bx + c; f ′′( x) = 6ax + 2b An inflection point occurs where f ′′( x) = 0 , or 6ax + 2b = 0. The function will have an inflection point at b x = – , a ≠ 0. 3a 31. 37. Suppose that there are points x1 and x2 in I where f ′( x1 ) > 0 and f ′( x2 ) < 0. Since f ′ is continuous on I, the Intermediate Value Theorem says that there is some number c between x1 and x2 such that f ′(c) = 0, which is a contradiction. Thus, either f ′( x) > 0 for all x in I and f is increasing throughout I or f ′( x) < 0 for all x in I and f is decreasing throughout I. 32. 38. Since x 2 + 1 = 0 has no real solutions, f ′( x ) exists and is continuous everywhere. x 2 – x + 1 = 0 has no real solutions. x 2 – x + 1 > 0 and x 2 + 1 > 0 for all x, so f ′( x) > 0 for all x. Thus f is increasing everywhere. 39. a. Let f ( x) = x 2 and let I = [ 0, a ] , a > y . 33. f ′( x) = 2 x > 0 on I. Therefore, f(x) is increasing on I, so f(x) < f(y) for x < y. b. Let f ( x) = x and let I = [ 0, a ] , a > y . 1 f ′( x) = > 0 on I. Therefore, f(x) is 2 x increasing on I, so f(x) < f(y) for x < y. 1 c. Let f ( x) = and let I = [0, a], a > y. 34. x 1 f ′( x) = − < 0 on I. Therefore f(x) is x2 decreasing on I, so f(x) > f(y) for x < y. 40. f ′( x) = 3ax 2 + 2bx + c In order for f(x) to always be increasing, a, b, and c must meet the condition 3ax 2 + 2bx + c > 0 for all x. More specifically, a > 0 and b 2 − 3ac < 0. 162 Section 3.2 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 10. 3b – ax 45. a. 41. f ′′( x) = . If (4, 13) is an inflection point 5/ 2 4x b 3b – 4a then 13 = 2a + and = 0. Solving these 2 4 ⋅ 32 39 13 equations simultaneously, a = and b = . 8 2 b. f ′( x) < 0 : (1.3, 5.0) 42. f ( x) = a ( x − r1 )( x − r2 )( x − r3 ) f ′( x) = a[( x − r1 )(2 x − r2 − r3 ) + ( x − r2 )( x − r3 )] c. f ′′( x) < 0 : (−0.25, 3.1) ∪ (6.5, 7] 2 f ′( x) = a[3 x − 2 x(r1 + r2 + r3 ) + r1r2 + r2 r3 + r1r3 ] f ′′( x) = a[6 x − 2(r1 + r2 + r3 )] 1 x d. f ′( x) = cos x – sin 2 2 a[6 x − 2(r1 + r2 + r3 )] = 0 r +r +r 6 x = 2(r1 + r2 + r3 ); x = 1 2 3 3 43. a. [ f ( x ) + g ( x)]′ = f ′( x) + g ′( x). Since f ′( x) > 0 and g ′( x) > 0 for all x, f ′( x) + g ′( x) > 0 for all x. No additional conditions are needed. 1 x e. f ′′( x) = − sin x − cos 4 2 b. [ f ( x) ⋅ g ( x)]′ = f ( x) g ′( x) + f ′( x) g ( x). f ( x) g ′( x) + f ′( x) g ( x) > 0 if f ′( x) f ( x) > − g ( x) for all x. g ′( x) c. [ f ( g ( x))]′ = f ′( g ( x)) g ′( x). Since f ′( x) > 0 and g ′( x) > 0 for all x, 46. a. f ′( g ( x)) g ′( x) > 0 for all x. No additional conditions are needed. 44. a. [ f ( x) + g ( x)]′′ = f ′′( x) + g ′′( x). Since f ′′( x) > 0 and g ′′ > 0 for all x, f ′′( x) + g ′′( x) > 0 for all x. No additional conditions are needed. b. f ′( x) < 0 : (2.0, 4.7) ∪ (9.9, 10] b. [ f ( x ) ⋅ g ( x)]′′ = [ f ( x) g ′( x) + f ′( x) g ( x)]′ c. f ′′( x) < 0 : [0, 3.4) ∪ (7.6, 10] = f ( x) g ′′( x) + f ′′( x) g ( x) + 2 f ′( x) g ′( x). The additional condition is that ⎡ 2 ⎛ x ⎞ ⎛ x ⎞⎤ ⎛ x⎞ d. f ′( x) = x ⎢ − cos ⎜ ⎟ sin ⎜ ⎟ ⎥ + cos2 ⎜ ⎟ f ( x) g ′′( x) + f ′′( x) g ( x) + 2 f ′( x) g ′( x) > 0 ⎣ 3 ⎝ 3 ⎠ ⎝ 3 ⎠⎦ ⎝3⎠ for all x is needed. ⎛ x⎞ x ⎛ 2x ⎞ = cos 2 ⎜ ⎟ − sin ⎜ ⎟ c. [ f ( g ( x))]′′ = [ f ′( g ( x)) g ′( x)]′ ⎝ 3⎠ 3 ⎝ 3 ⎠ = f ′( g ( x)) g ′′( x) + f ′′( g ( x))[ g ′( x)]2 . The additional condition is that f ′′( g ( x))[ g ′( x)]2 f ′( g ( x)) > − for all x. g ′′( x) Instructor’s Resource Manual Section 3.2 163 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 11. f ′′( x) = − 2x ⎛ 2x ⎞ 2 ⎛ 2x ⎞ cos ⎜ ⎟ − sin ⎜ ⎟ d 3s d 2s e. c. < 0, >0 9 ⎝ 3 ⎠ 3 ⎝ 3 ⎠ dt 3 dt 2 s 47. f ′( x) > 0 on (–0.598, 0.680) f is increasing on [–0.598, 0.680]. 48. f ′′( x) < 0 when x > 1.63 in [–2, 3] f is concave down on (1.63, 3). t Concave up. ds 49. Let s be the distance traveled. Then is the d 2s dt d. = 10 mph/min speed of the car. dt 2 s ds a. = ks, k a constant dt s t Concave up. ds d 2s t e. and are approaching zero. Concave up. dt dt 2 d 2s s b. >0 dt 2 s t Concave down. t Concave up. 164 Section 3.2 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 12. ds is constant. dV dh d 2h f. c. = k, > 0, <0 dt dt dt dt 2 s Concave down. h ( t) t t Neither concave up nor down. dI d 2 I 50. a. dV = k <0, V is the volume of water in the d. I ( t) = k now, but , > 0 in the future dt dt dt 2 tank, k is a constant. where I is inflation. I ( t) Neither concave up nor down. v(t) t t dp d2 p dp e. < 0, but > 0 and at t = 2: >0. dV 1 1 dt dt 2 dt b. = 3 – = 2 gal/min dt 2 2 where p is the price of oil. Neither concave up nor down. Concave up. v(t) P ( t) t 2 t Instructor’s Resource Manual Section 3.2 165 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 13. dT d 2T dP d 2P f. > 0, < 0 , where T is David’s c. > 0, < 0 , where P is world dt dt 2 dt dt 2 temperature. population. Concave down. Concave down. T ( t) P ( t) t t dC d 2C dθ d 2θ 51. a. > 0, > 0 , where C is the car’s cost. d. > 0, > 0 , where θ is the angle that dt dt 2 dt dt 2 Concave up. the tower makes with the vertical. C ( t) Concave up. θ( t) t t b. f(t) is oil consumption at time t. df d2 f e. P = f(t) is profit at time t. < 0, >0 dt dt 2 dP d 2P > 0, <0 Concave up. dt dt 2 f( t) Concave down. P ( t) t t 166 Section 3.2 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 14. f. R is revenue at time t. dP P < 0, >0 dt Could be either concave up or down. P 54. The height is always increasing so h '(t ) > 0 . The rate of change of the height decreases for the first 50 minutes and then increases over the next 50 minutes. Thus h ''(t ) < 0 for 0 ≤ t ≤ 50 and t h ''(t ) > 0 for 50 < t ≤ 100 . P t 55. V = 3t , 0 ≤ t ≤ 8 . The height is always increasing, so h '(t ) > 0. The rate of change of the height decreases from time t = 0 until time t1 when the water reaches the middle of the rounded bottom 52. a. R(t) ≈ 0.28, t < 1981 part. The rate of change then increases until time dR d 2R t2 when the water reaches the middle of the neck. b. On [1981, 1983], > 0, >0, dt dt 2 Then the rate of change decreases until t = 8 and R(1983) ≈ 0.36 the vase is full. Thus, h ''(t ) > 0 for t1 < t < t2 and h ''(t ) < 0 for t2 < t < 8 . dV 53. = 2 in 3 / sec h ( t) dt The cup is a portion of a cone with the bottom cut off. If we let x represent the height of the missing 24 cone, we can use similar triangles to show that x x+5 = 3 3.5 3.5 x = 3 x + 15 0.5 x = 15 x = 30 Similar triangles can be used again to show that, at t2 t1 8 t any given time, the radius of the cone at water level is h + 30 r= 20 Therefore, the volume of water can be expressed as π (h + 30) 3 45π V= − . 1200 2 We also know that V = 2t from above. Setting the two volume equations equal to each other and 2400 solving for h gives h = 3 t + 27000 − 30 . π Instructor’s Resource Manual Section 3.2 167 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 15. 56. V = 20 − .1t , 0 ≤ t ≤ 200 . The height of the water 3.3 Concepts Review is always decreasing so h '(t ) < 0 . The rate of change in the height increases (the rate is negative, 1. maximum and its absolute value decreases) for the first 100 days and then decreases for the remaining time. 2. maximum; minimum Therefore we have h ''(t ) > 0 for 0 < t < 100 , and h ''(t ) < 0 for 100 < t < 200 . 3. maximum 4. local maximum, local minimum, 0 Problem Set 3.3 1. f ′( x) = 3 x 2 –12 x = 3 x( x – 4) Critical points: 0, 4 57. a. The cross-sectional area of the vase is f ′( x) > 0 on (– ∞ , 0), f ′( x) < 0 on (0, 4), approximately equal to ΔV and the f ′( x) > 0 on (4, ∞ ) corresponding radius is r = ΔV / π . The table below gives the approximate values for r. f ′′( x) = 6 x –12; f ′′(0) = –12, f ′′(4) = 12. The vase becomes slightly narrower as you Local minimum at x = 4; move above the base, and then gets wider as local maximum at x = 0 you near the top. 2. f ′( x) = 3 x 2 –12 = 3( x 2 – 4) Depth V A ≈ ΔV r = ΔV / π Critical points: –2, 2 f ′( x) > 0 on (– ∞ , –2), f ′( x) < 0 on (–2, 2), 1 4 4 1.13 f ′( x) > 0 on (2, ∞ ) 2 8 4 1.13 f ′′( x) = 6 x; f ′′(–2) = –12, f ′′(2) = 12 Local minimum at x = 2; 3 11 3 0.98 local maximum at x = –2 4 14 3 0.98 ⎛ π⎞ 3. f ′(θ ) = 2 cos 2θ ; 2 cos 2θ ≠ 0 on ⎜ 0, ⎟ 5 20 6 1.38 ⎝ 4⎠ No critical points; no local maxima or minima on 6 28 8 1.60 ⎛ π⎞ ⎜ 0, ⎟ . ⎝ 4⎠ b. Near the base, this vase is like the one in part (a), but just above the base it becomes larger. 1 1 1 Near the middle of the vase it becomes very 4. f ′( x) = + cos x; + cos x = 0 when cos x = – . 2 2 2 narrow. The top of the vase is similar to the 2π 4π one in part (a). Critical points: , 3 3 Depth V A ≈ ΔV r = ΔV / π ⎛ 2π ⎞ ⎛ 2π 4π ⎞ f ′( x) > 0 on ⎜ 0, ⎟ , f ′( x) < 0 on ⎜ , ⎟, ⎝ 3 ⎠ ⎝ 3 3 ⎠ 1 4 4 1.13 ⎛ 4π ⎞ f ′( x) > 0 on ⎜ , 2π ⎟ 2 9 5 1.26 ⎝ 3 ⎠ ⎛ 2π ⎞ 3 ⎛ 4π ⎞ 3 3 12 3 0.98 f ′′( x) = – sin x; f ′′ ⎜ ⎟ = – , f ′′ ⎜ ⎟ = ⎝ 3 ⎠ 2 ⎝ 3 ⎠ 2 4 14 2 0.80 4π Local minimum at x = ; local maximum at 3 5 20 6 1.38 2π x= . 3 6 28 8 1.60 168 Section 3.3 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.