SlideShare a Scribd company logo
1 of 25
Download to read offline
 
	
  
	
  

	
  

	
  
Advanced	
  Research	
  Projects	
  Agency	
  for	
  Energy,	
  U.S.	
  Department	
  of	
  Energy	
  

Benefits	
  of	
  Power	
  
Flow	
  Control	
  
Hardware	
  and	
  Software	
  Technologies	
  

Lotte	
  Schlegel,	
  Chris	
  Babcock	
  and	
  Josh	
  Gould	
  
9/27/2013	
  
	
  
Contents	
  
Purpose	
  and	
  Scope	
  ......................................................................................................................................	
  3	
  
Characteristics,	
  Capabilities	
  and	
  Technologies	
  of	
  a	
  Flexible	
  Grid	
  ................................................................	
  3	
  
Power	
  Flow	
  Control	
  Technology	
  Defined	
  ................................................................................................	
  4	
  
Hardware	
  .............................................................................................................................................	
  5	
  
	
  	
  High	
  Voltage	
  Direct	
  Current	
  ...............................................................................................................	
  5	
  
	
  	
  HVAC	
  Power	
  Transmission	
  Controllers	
  (PTC)	
  .....................................................................................	
  7	
  
	
  	
  Software	
  .............................................................................................................................................	
  9	
  
	
  	
  Topology	
  Control	
  Algorithms	
  (TCAs)	
  ..................................................................................................	
  9	
  
Value	
  Analysis	
  of	
  Power	
  Flow	
  Control	
  .......................................................................................................	
  11	
  
Identification	
  of	
  Value	
  Propositions	
  ......................................................................................................	
  12	
  
Asset	
  Management	
  ............................................................................................................................	
  12	
  
Reliability	
  and	
  Security	
  
.......................................................................................................................	
  13	
  
Congestion	
  Relief	
  ...............................................................................................................................	
  14	
  
	
  	
  Integration	
  of	
  renewable	
  energy	
  .....................................................................................................	
  14	
  
	
  	
  Economic	
  Efficiency	
  .........................................................................................................................	
  15	
  
Summary	
  of	
  Power	
  Flow	
  Control	
  Technology	
  Value	
  
..............................................................................	
  18	
  
Stakeholders	
  in	
  the	
  Transmission	
  Grid	
  Influence	
  Technology	
  Investment	
  Decisions	
  ............................	
  18	
  
Conclusion/Next	
  steps	
  ...............................................................................................................................	
  21	
  
References	
  .................................................................................................................................................	
  24	
  
	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

2	
  
	
  
Purpose	
  and	
  Scope	
  
	
  
Electricity	
  is	
  dynamic	
  –	
  supply	
  must	
  meet	
  demand	
  that	
  changes	
  by	
  the	
  second	
  in	
  the	
  electric	
  grid.	
  While	
  
electricity	
  markets	
  have	
  evolved	
  to	
  price	
  supply	
  dynamically	
  and	
  demand	
  response	
  systems	
  have	
  
developed	
  to	
  manage	
  demand	
  on	
  a	
  dynamic	
  basis,	
  the	
  transmission	
  grid	
  is	
  inflexible.	
  When	
  the	
  flow	
  of	
  
electrons	
  is	
  disrupted	
  by	
  a	
  storm,	
  an	
  accident,	
  or	
  congestion	
  choking	
  the	
  lines	
  like	
  cars	
  on	
  an	
  interstate,	
  
it	
  affects	
  the	
  wallets	
  of	
  people	
  and	
  businesses.	
  	
  The	
  electric	
  transmission	
  grid	
  costs	
  consumers	
  billions	
  in	
  
congestion	
  costs,	
  is	
  difficult	
  and	
  expensive	
  to	
  upgrade,	
  and	
  does	
  not	
  respond	
  quickly	
  to	
  contingency	
  
events	
  –	
  costing	
  $79	
  billion	
  annually	
  in	
  power	
  interruptions	
  (Hamachi	
  LaCommare,	
  2004).	
  Transmission	
  
infrastructure	
  in	
  the	
  U.S.	
  is	
  aging	
  -­‐	
  as	
  of	
  2008,	
  70%	
  of	
  transmission	
  lines	
  and	
  transformers	
  are	
  25	
  years	
  or	
  
older	
  and	
  60%	
  of	
  circuit	
  breakers	
  are	
  30	
  years	
  or	
  older	
  (DOE,	
  2008).	
  	
  
The	
  electric	
  grid	
  of	
  the	
  future	
  will	
  need	
  to	
  be	
  sufficiently	
  flexible,	
  responsive,	
  and	
  reliable	
  to	
  support	
  
variable	
  generation	
  resources,	
  reduce	
  areas	
  of	
  transmission	
  congestion,	
  and	
  respond	
  quickly	
  to	
  system	
  
disruptions	
  due	
  to	
  severe	
  weather	
  events.	
  The	
  impending	
  upgrades	
  to	
  infrastructure	
  present	
  an	
  
opportunity	
  to	
  include	
  technologies	
  to	
  improve	
  resiliency	
  of	
  the	
  grid.	
  Increasing	
  the	
  flexibility	
  of	
  the	
  
electric	
  transmission	
  grid	
  can	
  be	
  the	
  cornerstone	
  to	
  addressing	
  all	
  of	
  these	
  challenges.	
  	
  
ARPA-­‐E’s	
  Green	
  Electricity	
  Network	
  Integration	
  “GENI”	
  program	
  envisions	
  a	
  future	
  in	
  which	
  the	
  
transmission	
  grid	
  can	
  be	
  controlled	
  to	
  optimize	
  the	
  use	
  of	
  cost-­‐effective,	
  clean	
  generation	
  resources	
  
while	
  providing	
  high-­‐quality,	
  reliable	
  power1.	
  To	
  that	
  end,	
  ARPA-­‐E	
  is	
  funding	
  research	
  into	
  
transformative	
  hardware	
  and	
  software	
  technologies	
  that	
  could	
  significantly	
  change	
  the	
  ability	
  to	
  control	
  
the	
  flow	
  of	
  electricity	
  in	
  the	
  power	
  grid.	
  	
  
This	
  analysis	
  is	
  intended	
  to	
  add	
  to	
  the	
  conversation	
  about	
  the	
  benefits	
  of	
  a	
  flexible	
  transmission	
  system	
  
achieved	
  through	
  power	
  flow	
  control	
  technologies.	
  Specifically,	
  it	
  will	
  describe	
  and	
  categorize	
  the	
  
benefits	
  of	
  power	
  flow	
  control	
  technologies	
  and	
  define	
  the	
  impact	
  of	
  technologies	
  used	
  for	
  power	
  flow	
  
control.	
  It	
  will	
  also	
  make	
  recommendations	
  for	
  further	
  studies	
  and	
  analyses	
  on	
  power	
  flow	
  control.	
  	
  	
  

Characteristics,	
  Capabilities	
  and	
  Technologies	
  of	
  a	
  Flexible	
  Grid	
  	
  
	
  
Historically,	
  the	
  electric	
  grid	
  was	
  designed	
  to	
  be	
  a	
  passive,	
  one-­‐directional	
  system.	
  To	
  improve	
  the	
  grid’s	
  
reliability	
  and	
  turn	
  intermittent	
  power	
  sources	
  into	
  major	
  contributors	
  in	
  the	
  U.S.	
  energy	
  mix,	
  the	
  grid	
  
needs	
  to	
  be	
  designed	
  and	
  operated	
  to	
  be	
  smarter	
  and	
  more	
  flexible.	
  Power	
  flow	
  control	
  is	
  one	
  way	
  to	
  
increase	
  the	
  flexibility	
  and	
  resiliency	
  of	
  the	
  electric	
  grid.	
  Power	
  flow	
  is	
  determined	
  by	
  the	
  impedance	
  of	
  
a	
  transmission	
  line	
  and	
  the	
  difference	
  in	
  voltage	
  at	
  each	
  end	
  (M.I.T.,	
  2011)2.	
  Power	
  flow	
  control	
  is	
  the	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1

	
  More	
  at	
  http://arpa-­‐e.energy.gov/?q=arpa-­‐e-­‐programs/geni	
  	
  
	
  From	
  MIT’s	
  Future	
  of	
  the	
  Electric	
  Grid.	
  “Two	
  factors	
  determine	
  power	
  flow:	
  the	
  impedance	
  of	
  a	
  line	
  and	
  the	
  
difference	
  in	
  the	
  instantaneous	
  voltages	
  at	
  its	
  two	
  ends.	
  Impedance	
  is	
  the	
  combination	
  of	
  resistance	
  and	
  
reactance.	
  Resistance	
  accounts	
  for	
  energy	
  that	
  is	
  lost	
  as	
  heat	
  in	
  the	
  line.	
  It	
  is	
  analogous	
  to	
  the	
  physical	
  resistance	
  
exerted	
  by	
  water	
  on	
  a	
  swimmer	
  or	
  wind	
  on	
  a	
  cyclist.	
  Energy	
  lost	
  in	
  this	
  way	
  can	
  never	
  be	
  recovered.	
  Reactance	
  
accounts	
  for	
  energy	
  associated	
  with	
  the	
  electric	
  and	
  magnetic	
  fields	
  around	
  the	
  line.	
  This	
  energy	
  is	
  analogous	
  to	
  
2

3	
  
	
  
ability	
  to	
  change	
  the	
  way	
  that	
  power	
  flows	
  through	
  the	
  transmission	
  grid	
  using	
  hardware	
  and	
  software	
  
to	
  maximize	
  system	
  value.	
  These	
  technologies	
  can	
  change	
  the	
  effective	
  impedance	
  of	
  the	
  network	
  or	
  
the	
  sending	
  and	
  receiving	
  voltages	
  to	
  influence	
  the	
  path	
  of	
  electrons	
  flowing	
  through	
  the	
  transmission	
  
grid.	
  This	
  enables	
  the	
  ability	
  to	
  hold	
  power	
  on	
  a	
  transmission	
  line	
  at	
  a	
  certain	
  level	
  or	
  direction.	
  
Electrons	
  follow	
  the	
  path	
  of	
  least	
  resistance	
  (or	
  lowest	
  impedance),	
  and	
  the	
  result	
  of	
  changing	
  the	
  
pathways	
  of	
  the	
  grid	
  is	
  to	
  change	
  the	
  way	
  that	
  power	
  flows	
  through	
  the	
  transmission	
  system.	
  
Specifically,	
  power	
  flow	
  control	
  can	
  be	
  used	
  to	
  remove	
  congestion,	
  respond	
  to	
  contingency	
  events	
  (e.g.	
  
loss	
  of	
  a	
  generator	
  or	
  transmission	
  line),	
  and	
  mitigate	
  power	
  quality	
  issues.	
  
Power	
  flow	
  control	
  includes	
  the	
  faculties	
  to	
  control	
  the	
  voltage	
  or	
  impedance	
  on	
  given	
  major	
  
transmission	
  lines,	
  switch	
  lines	
  on	
  and	
  off,	
  direct	
  power	
  from	
  one	
  line	
  to	
  another	
  to	
  increase	
  the	
  
capacity	
  of	
  a	
  transmission	
  route,	
  provide	
  voltage	
  support,	
  transport	
  power	
  efficiently	
  over	
  long	
  
distances,	
  and	
  quickly	
  reverse	
  the	
  direction	
  of	
  power	
  flow	
  from	
  one	
  area	
  to	
  another	
  in	
  response	
  to	
  
contingencies.	
  A	
  system	
  planner	
  can	
  optimize	
  power	
  flow	
  on	
  a	
  system	
  by	
  choosing	
  among	
  technologies	
  
to	
  enable	
  each	
  of	
  these	
  capabilities	
  as	
  appropriate.	
  In	
  order	
  to	
  fully	
  integrate	
  power	
  flow	
  control	
  at	
  the	
  
system	
  level,	
  information	
  systems,	
  hardware	
  technology,	
  and	
  human	
  operators	
  at	
  ISOs/RTOs,	
  
generators,	
  and	
  transmission	
  and	
  distribution	
  companies	
  coordinate	
  to	
  match	
  system	
  supply	
  and	
  
demand	
  at	
  every	
  moment.	
  For	
  instance,	
  information	
  (such	
  as	
  forecasting	
  of	
  weather,	
  supply	
  and	
  
demand),	
  sensors,	
  communication	
  devices,	
  and	
  control	
  technology	
  work	
  together	
  to	
  enable	
  physical	
  
changes	
  to	
  the	
  transmission	
  grid.	
  As	
  power	
  flow	
  control	
  hardware	
  technologies	
  are	
  added	
  to	
  the	
  system,	
  
coordinated	
  control	
  of	
  the	
  transmission	
  grid	
  will	
  maximize	
  the	
  efficacy	
  of	
  power	
  flow	
  control	
  and	
  ensure	
  
reliability	
  across	
  the	
  system.	
  Changes	
  are	
  likely	
  required	
  to	
  optimize	
  the	
  coordination	
  of	
  the	
  grid	
  with	
  
the	
  addition	
  of	
  power	
  flow	
  control	
  technologies	
  -­‐	
  for	
  instance,	
  as	
  variables	
  and	
  options	
  are	
  added	
  to	
  the	
  
system,	
  either	
  a	
  central	
  operator	
  with	
  sufficient	
  computational	
  power	
  to	
  respond	
  to	
  dynamic	
  grid	
  
conditions	
  or	
  coordinated	
  distributed	
  control	
  will	
  be	
  necessary	
  to	
  ensure	
  system	
  optimization.	
  	
  
Power	
  flow	
  control	
  can	
  increase	
  reliability	
  and	
  resiliency,	
  optimize	
  transmission	
  asset	
  efficiency	
  and	
  help	
  
prioritize	
  new	
  transmission	
  construction	
  by	
  increasing	
  the	
  capacity	
  of	
  the	
  transmission	
  grid,	
  reduce	
  cost	
  
to	
  electric	
  consumers,	
  facilitate	
  grid-­‐interconnection	
  of	
  generation,	
  storage,	
  demand	
  response,	
  and	
  
detect	
  and	
  minimize	
  the	
  impact	
  of	
  unforeseen	
  disruption	
  events	
  such	
  as	
  extreme	
  weather.	
  The	
  
following	
  sections	
  will	
  describe	
  the	
  technologies	
  that	
  enable	
  power	
  flow	
  control	
  and	
  the	
  value	
  that	
  
power	
  flow	
  control	
  capabilities	
  afford	
  to	
  different	
  stakeholders	
  in	
  the	
  electric	
  grid.	
  	
  

Power	
  Flow	
  Control	
  Technology	
  Defined	
  
	
  
Both	
  hardware	
  and	
  software	
  technologies	
  have	
  power	
  flow	
  control	
  applications.	
  This	
  analysis	
  will	
  focus	
  
on	
  two	
  types	
  of	
  hardware	
  technologies	
  –	
  High	
  Voltage	
  Direct	
  Current	
  (HVDC)	
  transmission	
  cables	
  and	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
the	
  potential	
  energy	
  stored	
  when	
  riding	
  a	
  bicycle	
  up	
  a	
  hill.	
  It	
  is	
  recovered	
  (in	
  the	
  ideal	
  case)	
  when	
  going	
  down	
  the	
  
other	
  side.	
  In	
  an	
  AC	
  line	
  in	
  the	
  U.S.,	
  this	
  energy	
  is	
  stored	
  and	
  recovered	
  120	
  times	
  per	
  second,	
  and	
  thus	
  is	
  quite	
  
different	
  from	
  the	
  behavior	
  of	
  energy	
  stored	
  in	
  devices	
  such	
  as	
  batteries.	
  The	
  resistance	
  of	
  a	
  line	
  is	
  determined	
  by	
  
the	
  material	
  properties,	
  length,	
  and	
  cross-­‐section	
  of	
  the	
  conductor,	
  while	
  reactance	
  is	
  determined	
  by	
  geometric	
  
properties	
  (the	
  position	
  of	
  conductors	
  relative	
  to	
  each	
  other	
  and	
  ground).	
  In	
  practical	
  transmission	
  lines,	
  resistance	
  
is	
  small	
  compared	
  to	
  reactance,	
  and	
  thus	
  reactance	
  has	
  more	
  influence	
  on	
  power	
  flow	
  than	
  resistance.”	
  

4	
  
	
  
substation	
  equipment;	
  and	
  High	
  Voltage	
  Alternating	
  Current	
  (HVAC)	
  power	
  transmission	
  controllers	
  that	
  
use	
  power	
  electronics	
  to	
  augment	
  the	
  existing	
  AC	
  grid.	
  In	
  addition,	
  the	
  capabilities	
  enabled	
  by	
  software	
  
control	
  algorithms	
  such	
  as	
  topology	
  control	
  are	
  discussed.	
  	
  
Hardware	
  
Hardware	
  can	
  efficiently	
  direct	
  the	
  flow	
  of	
  power	
  on	
  the	
  grid,	
  help	
  stem	
  energy	
  losses,	
  and	
  enable	
  the	
  
grid	
  to	
  be	
  more	
  responsive	
  and	
  resilient.	
  Advances	
  in	
  materials	
  and	
  engineering	
  are	
  decreasing	
  the	
  costs	
  
of	
  power	
  flow	
  hardware;	
  many	
  of	
  the	
  concepts	
  of	
  which	
  have	
  been	
  around	
  for	
  a	
  long	
  time.	
  The	
  
descriptions	
  below	
  include	
  power	
  flow	
  control	
  technologies	
  that	
  already	
  exist	
  and	
  are	
  in	
  wide	
  spread	
  
use	
  in	
  the	
  grid	
  today,	
  as	
  well	
  as	
  emerging	
  technologies	
  not	
  yet	
  in	
  use	
  that	
  show	
  tremendous	
  promise	
  for	
  
power	
  flow	
  control	
  applications.	
  	
  
High	
  Voltage	
  Direct	
  Current	
  transmission	
  systems	
  are	
  composed	
  of	
  one	
  or	
  more	
  DC	
  transmission	
  
lines	
  or	
  cables	
  between	
  a	
  converter	
  (combined	
  rectifier	
  and	
  inverter),	
  which	
  converts	
  AC	
  to	
  DC	
  or	
  vice	
  
versa.	
  The	
  DC	
  lines/cables	
  in	
  concert	
  with	
  the	
  most	
  recent	
  voltage	
  source	
  converter	
  (VSC)	
  technology	
  
enable	
  rapid	
  control	
  of	
  the	
  direction	
  of	
  power	
  flow.	
  Both	
  voltage	
  and	
  current	
  source	
  converters	
  can	
  
invert	
  DC	
  to	
  a	
  matching	
  AC	
  frequency	
  of	
  an	
  interconnected	
  AC	
  grid,	
  which	
  affords	
  HVDC	
  the	
  ability	
  to	
  
connect	
  two	
  asynchronous	
  AC	
  systems.	
  DC	
  poses	
  fewer	
  technical	
  challenges	
  compared	
  to	
  AC	
  because	
  it	
  
is	
  not	
  necessary	
  to	
  match	
  frequency,	
  phase	
  or	
  voltage.	
  DC	
  can	
  be	
  configured	
  as	
  a	
  monopolar	
  (one	
  cable)	
  
or	
  bipolar	
  (two	
  cable)	
  system	
  which	
  offers	
  cost	
  savings	
  over	
  tripolar	
  AC	
  designs	
  which	
  require	
  one	
  cable	
  
for	
  each	
  of	
  the	
  three	
  phases.	
  Because	
  of	
  this	
  and	
  the	
  lower	
  line	
  losses	
  (30-­‐50%	
  lower	
  as	
  compared	
  to	
  
AC),	
  HVDC	
  transmission	
  lines	
  are	
  the	
  least	
  expensive	
  option	
  for	
  transmitting	
  power	
  over	
  long	
  distances	
  
(Reed,	
  2012).	
  HVDC	
  transformers	
  have	
  been	
  more	
  expensive	
  relative	
  to	
  HVAC.	
  The	
  distance	
  at	
  which	
  a	
  
given	
  HVDC	
  line	
  becomes	
  more	
  cost	
  effective	
  than	
  HVAC	
  at	
  a	
  given	
  voltage	
  is	
  the	
  difference	
  between	
  
line	
  and	
  terminal	
  costs	
  including	
  the	
  difference	
  between	
  losses	
  (see	
  Figure	
  1).	
  Also,	
  when	
  connected	
  
with	
  an	
  AC	
  grid,	
  HVDC	
  can	
  mitigate	
  power	
  factor	
  issues	
  (current	
  lagging/leading	
  voltage)	
  by	
  providing	
  
reactive	
  power	
  support,	
  and	
  can	
  provide	
  black	
  start	
  capabilities3	
  with	
  VSCs.	
  	
  
HVDC	
  transmission	
  systems	
  are	
  used	
  to	
  transport	
  power	
  over	
  long	
  distances	
  and	
  sub-­‐sea.	
  HVDC	
  lines	
  
with	
  VSCs	
  allow	
  for	
  bi-­‐directional	
  control	
  of	
  power	
  flow	
  and	
  can	
  be	
  directly	
  scheduled	
  and	
  dispatched.	
  
Bi-­‐directionality	
  allows	
  for	
  the	
  export	
  of	
  energy	
  from	
  control	
  area	
  A	
  to	
  control	
  area	
  B	
  under	
  certain	
  
conditions,	
  and	
  re-­‐dispatch	
  for	
  import	
  of	
  energy	
  from	
  area	
  B	
  to	
  area	
  A	
  in	
  other	
  scenarios.	
  One	
  example	
  
of	
  bi-­‐directional	
  flow	
  is	
  the	
  HVDC	
  cross	
  channel	
  2,000	
  MW	
  link	
  that	
  imports	
  electricity	
  to	
  Britain	
  from	
  
France	
  during	
  much	
  of	
  the	
  year,	
  but	
  exports	
  power	
  to	
  France	
  during	
  the	
  summer	
  when	
  demand	
  is	
  high	
  
or	
  to	
  meet	
  load	
  during	
  scheduled	
  outages.	
  The	
  Cross	
  Sound	
  Cable	
  between	
  Connecticut	
  and	
  Long	
  Island	
  
is	
  also	
  bi-­‐directional,	
  although	
  power	
  flows	
  from	
  Connecticut	
  to	
  Long	
  Island	
  for	
  most	
  hours	
  of	
  the	
  year.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3

	
  Black	
  start	
  is	
  the	
  process	
  of	
  restoring	
  power	
  to	
  a	
  power	
  plant,	
  normally	
  without	
  relying	
  on	
  the	
  power	
  of	
  the	
  
transmission	
  grid.	
  Typically	
  in	
  the	
  case	
  of	
  a	
  wider	
  grid	
  outage,	
  black	
  start	
  is	
  provided	
  in	
  a	
  sequence:	
  a	
  portable	
  
generator	
  is	
  used	
  to	
  start	
  one	
  power	
  plant,	
  the	
  proximal	
  transmission	
  lines	
  are	
  energized	
  and	
  the	
  power	
  used	
  to	
  
start	
  the	
  next	
  base	
  load	
  generator,	
  and	
  so	
  on.	
  Voltage	
  Source	
  Converters	
  can	
  be	
  used	
  for	
  black	
  start	
  as	
  they	
  can	
  
synthesize	
  a	
  balanced	
  set	
  of	
  three	
  phase	
  voltages.	
  	
  
	
  

5	
  
	
  
 
Fig.	
  1.	
  Breakeven	
  
distance	
  for	
  HVDC	
  
transmission	
  lines	
  
HVDC	
  becomes	
  cost	
  
competitive	
  with	
  HVAC	
  
over	
  a	
  distance	
  at	
  which	
  
line	
  losses	
  at	
  a	
  given	
  
voltage	
  are	
  lower	
  than	
  a	
  
comparable	
  HVAC	
  line.	
  	
  

	
  
	
  

	
  

	
  
	
  
	
  
	
  
	
  

Source:	
  Pike	
  Research,	
  
	
   2012	
  

	
  
HVDC	
  technology	
  has	
  gained	
  popularity	
  since	
  the	
  mid-­‐20th	
  century.	
  Historically,	
  the	
  limitations	
  to	
  its	
  
practical	
  use	
  have	
  been	
  the	
  high	
  cost	
  of	
  the	
  power	
  electronics	
  required	
  for	
  the	
  converter.	
  Recent	
  
technical	
  breakthroughs	
  have	
  reduced	
  the	
  cost	
  of	
  power	
  electronics	
  and	
  increased	
  their	
  application.	
  
HVDC	
  is	
  now	
  being	
  deployed	
  globally,	
  with	
  dozens	
  of	
  projects	
  in	
  the	
  global	
  pipeline,	
  and	
  is	
  of	
  particular	
  
importance	
  to	
  integrating	
  distant,	
  renewable	
  energy	
  generators	
  such	
  as	
  offshore	
  wind	
  farms.	
  When	
  
considering	
  new	
  transmission	
  corridors,	
  HVDC	
  is	
  more	
  favorable	
  to	
  HVAC	
  because	
  of	
  the	
  smaller	
  
footprint	
  of	
  the	
  transmission	
  towers.	
  HVDC	
  proponents	
  envision	
  a	
  future	
  in	
  which	
  DC	
  cables	
  are	
  
embedded	
  within	
  the	
  existing	
  AC	
  grid	
  and	
  multi-­‐terminal	
  HVDC	
  allows	
  for	
  a	
  superimposed	
  HVDC	
  
network	
  that	
  will	
  help	
  to	
  integrate	
  remote	
  resources,	
  improve	
  system	
  stability	
  and	
  reliability	
  via	
  AC-­‐DC	
  
interties,	
  and	
  increase	
  control	
  of	
  power	
  flows	
  through	
  the	
  system.	
  HVDC	
  technologies	
  are	
  being	
  
developed	
  by	
  numerous	
  vendors,	
  including	
  General	
  Electric	
  with	
  funding	
  from	
  the	
  ARPA-­‐E	
  GENI	
  
program.	
  
	
  

GE	
  Global	
  Research	
  is	
  developing	
  two	
  ARPA-­‐E	
  funded	
  projects	
  to	
  
	
   improve	
  HVDC	
  technology	
  –	
  multi-­‐terminal	
  HVDC	
  and	
  improved	
  cable	
  
insulation.	
  	
  
	
  
The	
  multi-­‐terminal	
  HVDC	
  Networks	
  with	
  High-­‐Voltage	
  High-­‐
	
   Frequency	
  Electronics	
  project	
  is	
  developing	
  multi-­‐terminal	
  HVDC-­‐
compatible	
  converters	
  to	
  improve	
  the	
  ability	
  to	
  network	
  HVDC	
  and	
  
	
  
integrate	
  renewable	
  energy	
  into	
  the	
  grid.	
  	
  
	
   	
  
Nanoclay	
  Reinforced	
  Ethylene-­‐Propylene-­‐Rubber	
  for	
  Low-­‐Cost	
  HVDC	
  
	
   Cabling	
  project	
  is	
  developing	
  low-­‐cost	
  insulation	
  for	
  HVDC	
  
transmission	
  cables.	
  Cables	
  will	
  be	
  less	
  expensive	
  and	
  suppress	
  excess	
  
	
   charge	
  accumulation,	
  which	
  will	
  protect	
  the	
  insulation.	
  
	
  
	
  

	
  

	
  

6	
  
	
  
HVAC	
  Power	
  Transmission	
  Controllers	
  (PTC)	
  can	
  control	
  impedance,	
  voltage	
  and	
  phase	
  and	
  hold	
  
power	
  at	
  a	
  desired	
  level	
  and	
  direction	
  of	
  flow.	
  PTC	
  devices	
  use	
  a	
  combination	
  of	
  solid	
  state	
  power	
  
electronics	
  and	
  other	
  static	
  equipment	
  to	
  modulate	
  the	
  state	
  of	
  a	
  given	
  AC	
  transmission	
  line	
  by	
  injecting	
  
and	
  removing	
  voltage	
  and	
  impedance.	
  These	
  coordinated	
  actions	
  result	
  in	
  controllable	
  voltage/current	
  
phase	
  shift	
  to	
  manage	
  real	
  and	
  reactive	
  power	
  flows,	
  controllable	
  line	
  impedance	
  to	
  increase	
  or	
  
decrease	
  current,	
  and	
  the	
  ability	
  to	
  balance	
  the	
  current	
  phase	
  between	
  the	
  three	
  phases	
  of	
  an	
  AC	
  
transmission	
  system.	
  	
  
Historically,	
  these	
  capabilities	
  were	
  accomplished	
  by	
  Flexible	
  Alternating	
  Current	
  Transmission	
  Systems	
  
(FACTS),	
  which	
  employed	
  similar	
  power	
  electronic	
  devices	
  in	
  substations	
  and	
  were	
  typically	
  large	
  and	
  
capital	
  intensive.	
  Today,	
  advances	
  in	
  technology	
  are	
  decreasing	
  the	
  cost	
  and	
  footprint,	
  and	
  increasing	
  
the	
  reliability	
  and	
  operability	
  of	
  these	
  devices,	
  making	
  HVAC	
  PTC	
  viable	
  solutions	
  for	
  power	
  flow	
  control	
  
applications.	
  Such	
  devices	
  are	
  being	
  developed	
  by	
  several	
  ARPA-­‐E	
  GENI	
  teams,	
  including	
  Smart	
  Wire	
  
Grid,	
  Varentec,	
  Oak	
  Ridge	
  National	
  Laboratory,	
  and	
  Michigan	
  State	
  University.	
  	
  
	
  
Phase	
  Shifting	
  Transformers	
  
Phase	
  shifting	
  transformers	
  change	
  the	
  voltage	
  phase	
  angle	
  between	
  primary	
  and	
  secondary	
  windings,	
  
changing	
  the	
  input	
  and	
  output	
  voltages	
  of	
  a	
  line	
  and	
  thereby	
  controlling	
  the	
  active	
  power	
  that	
  can	
  flow	
  
in	
  the	
  line.	
  Effectively,	
  they	
  inject	
  a	
  voltage	
  in	
  series	
  with	
  the	
  line.	
  This	
  enables	
  control	
  of	
  power	
  flow	
  
between	
  two	
  power	
  systems,	
  balances	
  loading,	
  and	
  improves	
  system	
  stability.	
  

	
  

	
  

Dynamic	
  Power	
  Flow	
  Controller	
  
Varentec	
  is	
  developing	
  low	
  cost	
  transmission	
  controllers	
  to	
  
dynamically	
  control	
  voltage	
  and	
  power	
  flow	
  with	
  ARPA-­‐E	
  funding.	
  The	
  
technology	
  would	
  enable	
  early	
  detection	
  and	
  fail-­‐safe	
  protection	
  of	
  
the	
  transmission	
  grid	
  to	
  maintain	
  its	
  operating	
  state.	
  
	
  
	
  

Magnetic	
  Amplifier	
  for	
  Power	
  Flow	
  Control	
  
Oak	
  Ridge	
  National	
  Laboratory	
  is	
  developing	
  an	
  electromagnet-­‐based	
  
amplifier-­‐like	
  device	
  that	
  will	
  allow	
  for	
  complete	
  control	
  over	
  the	
  flow	
  
of	
  power.	
  The	
  prototype	
  device	
  is	
  a	
  low	
  cost	
  iron-­‐based	
  magnetic	
  
amplifier.	
  	
  
	
  

	
  

	
  

Distributed	
  Series	
  Reactor	
  
The	
  Distributed	
  Series	
  Reactor	
  (DSR)	
  is	
  a	
  technology	
  being	
  developed	
  by	
  Smart	
  Wire	
  Grid,	
  a	
  startup	
  
based	
  in	
  Oakland,	
  California.	
  DSRs	
  are	
  small,	
  single-­‐turn	
  transformers	
  that	
  inject	
  inductance	
  onto	
  a	
  
transmission	
  line.	
  The	
  level	
  of	
  inductance	
  is	
  tunable	
  to	
  alter	
  the	
  overall	
  line	
  impedance	
  and	
  thus	
  the	
  flow	
  
of	
  current.	
  DSRs	
  are	
  distributed	
  along	
  transmission	
  lines,	
  in	
  all	
  3	
  phases,	
  and	
  can	
  communicate	
  with	
  each	
  
other	
  to	
  form	
  a	
  variable	
  impedance	
  system.	
  They	
  can	
  also	
  operate	
  autonomously	
  to	
  alter	
  flows	
  at	
  a	
  
specific	
  point	
  on	
  the	
  line.	
  As	
  such,	
  the	
  technology	
  can	
  help	
  to	
  reduce	
  congestion	
  and	
  balance	
  power	
  flow	
  
within	
  a	
  system.	
  
7	
  
	
  
Shunt	
  Compensators	
  	
  
Shunt	
  devices	
  are	
  used	
  to	
  control	
  transmission	
  voltage,	
  reduce	
  reactive	
  losses,	
  dampen	
  power	
  
oscillations	
  and	
  are	
  connected	
  in	
  shunt	
  to	
  a	
  transmission	
  line.	
  A	
  Static	
  Synchronous	
  Compensator	
  
(STATCOM)	
  is	
  a	
  VSC	
  usually	
  connected	
  to	
  the	
  grid	
  through	
  a	
  shunt	
  transformer.	
  STATCOMs	
  do	
  not	
  
require	
  the	
  bulk	
  capacitors	
  and	
  inductors	
  that	
  are	
  used	
  in	
  the	
  thyristor-­‐based	
  Static	
  Var	
  Compensators	
  
(SVCs)	
  which	
  are	
  still	
  in	
  widespread	
  use	
  today.	
  Instead,	
  the	
  STATCOM	
  generates	
  reactive	
  power	
  entirely	
  
electronically	
  and	
  can	
  act	
  as	
  either	
  a	
  source	
  or	
  sink	
  of	
  reactive	
  power.	
  The	
  STATCOM	
  can	
  also	
  exchange	
  
real	
  power	
  between	
  the	
  grid	
  and	
  an	
  energy	
  storage	
  device	
  connected	
  at	
  its	
  DC	
  terminals.	
  VSCs	
  based	
  on	
  
Insulated-­‐gate	
  bipolar	
  transistor	
  (IGBT)	
  technology4	
  have	
  much	
  faster	
  switching	
  times	
  than	
  other	
  
compensator	
  technologies,	
  which	
  makes	
  them	
  particularly	
  useful	
  for	
  dynamic	
  voltage	
  support	
  and	
  
power	
  factor	
  correction.	
  	
  
	
  
A	
  STATCOM	
  does	
  not	
  affect	
  power	
  flow	
  on	
  a	
  transmission	
  line	
  directly.	
  However,	
  by	
  using	
  local	
  shunt	
  
reactive	
  power	
  injection	
  to	
  change	
  the	
  voltage	
  profile	
  of	
  a	
  transmission	
  line	
  (e.g.	
  support	
  voltage	
  at	
  the	
  
midpoint	
  of	
  a	
  long	
  line),	
  it	
  can	
  enable	
  a	
  line	
  to	
  be	
  loaded	
  more	
  heavily	
  (e.g.	
  to	
  thermal	
  limits)	
  without	
  
exceeding	
  steady	
  state	
  stability	
  margins	
  or	
  voltage	
  drop	
  limits.	
  In	
  contracts,	
  a	
  power	
  flow	
  controller	
  is	
  
connected	
  in	
  series	
  with	
  a	
  transmission	
  line	
  and	
  has	
  the	
  ability	
  to	
  force	
  a	
  change	
  in	
  power	
  flow	
  on	
  the	
  
line,	
  essentially	
  by	
  introducing	
  a	
  controllable	
  voltage	
  in	
  series	
  with	
  the	
  line.	
  
Series	
  Compensators	
  
A	
  Static	
  Series	
  Synchronous	
  Compensator	
  (SSSC)	
  is	
  a	
  VSC	
  connected	
  in	
  series	
  with	
  a	
  transmission	
  line.	
  It	
  
has	
  the	
  ability	
  to	
  raise,	
  lower,	
  or	
  even	
  reverse	
  the	
  power	
  flow	
  on	
  the	
  line	
  by	
  injecting	
  a	
  relatively	
  small	
  
voltage	
  in	
  series.	
  For	
  a	
  wide	
  range	
  of	
  power	
  flow	
  control,	
  only	
  reactive	
  power	
  output	
  from	
  the	
  VSC	
  is	
  
needed.	
  However,	
  additional	
  control	
  capabilities	
  such	
  as	
  independent	
  control	
  of	
  real	
  and	
  reactive	
  power	
  
flow,	
  can	
  be	
  obtained	
  if	
  a	
  source/sink	
  of	
  real	
  power	
  is	
  connected	
  to	
  the	
  DC	
  terminals	
  of	
  the	
  VSC.	
  
Currently,	
  there	
  are	
  no	
  examples	
  of	
  SSSC	
  installations	
  in	
  transmission	
  grids	
  except	
  those	
  installed	
  as	
  part	
  
of	
  the	
  three	
  Unified	
  Power	
  Flow	
  Controller	
  demonstration	
  projects.	
  	
  
	
  
A	
  stand-­‐alone	
  SSSC	
  is	
  a	
  more	
  versatile	
  (and	
  potentially	
  lower-­‐cost)	
  power	
  flow	
  controller	
  than	
  a	
  
Thyristor-­‐Controlled	
  Phase	
  Angle	
  Regulating	
  Transformer	
  with	
  a	
  similar	
  MVA	
  rating,	
  which	
  is	
  the	
  closest	
  
comparable	
  device.	
  At	
  present,	
  back-­‐to-­‐back	
  HVDC	
  is	
  being	
  considered	
  in	
  some	
  places	
  to	
  solve	
  loop	
  
flows	
  and	
  other	
  transmission	
  problems,	
  but	
  requires	
  two	
  converters	
  rated	
  for	
  full	
  transmitted	
  power.	
  In	
  
most	
  cases	
  the	
  problem	
  could	
  be	
  solved	
  with	
  a	
  single	
  fractionally	
  rated	
  SSSC.	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4

	
  IGBT	
  technology	
  is	
  a	
  power	
  semiconductor	
  device	
  that	
  forms	
  an	
  electronic	
  switch.	
  They	
  are	
  high	
  efficiency,	
  fast	
  
switching	
  and	
  can	
  handle	
  high	
  voltages	
  and	
  current	
  when	
  many	
  devices	
  are	
  stacked	
  in	
  parallel.	
  	
  

8	
  
	
  
Thyristor	
  Controlled	
  Series	
  Capacitors	
  (TCSC)	
  are	
  a	
  family	
  of	
  equipment	
  that	
  provides	
  a	
  controllable	
  
capacitance	
  (or	
  in	
  some	
  cases,	
  an	
  inductance)	
  connected	
  in	
  series	
  with	
  a	
  transmission	
  line	
  to	
  reduce	
  (or	
  
increase)	
  the	
  total	
  reactance	
  of	
  the	
  line.	
  	
  
Unified	
  Power	
  Flow	
  Controllers	
  (UPFCs)	
  
UPFCs	
  provide	
  the	
  functionality	
  of	
  both	
  shunt	
  and	
  series	
  compensators.	
  They	
  control	
  real	
  and	
  reactive	
  
power	
  flow	
  and	
  provide	
  voltage	
  support	
  for	
  the	
  connecting	
  bus5.	
  Historically,	
  UPFCs	
  have	
  taken	
  up	
  
significant	
  space,	
  been	
  very	
  expensive,	
  and	
  required	
  the	
  construction	
  of	
  large	
  transformers.	
  There	
  are	
  
only	
  three	
  operational	
  UPFCs	
  in	
  the	
  world,	
  each	
  of	
  which	
  was	
  tailored	
  to	
  meet	
  a	
  particular	
  utility’s	
  
problem.	
  However,	
  grid	
  operators	
  are	
  largely	
  uncomfortable	
  with	
  the	
  series	
  compensation	
  capabilities	
  
of	
  UPFCs,	
  and	
  as	
  a	
  result	
  these	
  operating	
  modes	
  are	
  rarely	
  used,	
  leaving	
  the	
  UPFCs	
  to	
  operate	
  largely	
  as	
  
a	
  STATCOM	
  (for	
  more,	
  see	
  Marcy	
  UPFC	
  case	
  study	
  in	
  this	
  document).	
  Moreover,	
  the	
  company	
  that	
  built	
  
the	
  UPFCs	
  –	
  Westinghouse	
  –	
  was	
  acquired	
  by	
  Siemens,	
  which	
  no	
  longer	
  sells	
  or	
  supports	
  the	
  devices.	
  An	
  
ARPA-­‐E	
  team	
  from	
  Michigan	
  State	
  University	
  is	
  building	
  a	
  transformer-­‐less	
  UPFC	
  which	
  addresses	
  these	
  
issues	
  and	
  can	
  control	
  power	
  flows	
  from	
  intermittent	
  resources	
  including	
  wind	
  and	
  solar	
  resources.	
  
	
  
	
  
Transformer-­‐Less	
  Unified	
  Power	
  Flow	
  Controller	
  
	
  
Michigan	
  State	
  University	
  is	
  developing	
  a	
  power	
  flow	
  controller	
  to	
  
	
  
improve	
  the	
  routing	
  of	
  electricity	
  from	
  renewable	
  sources	
  through	
  existing	
  
power	
  lines.	
  The	
  UPFC	
  will	
  eliminate	
  the	
  need	
  for	
  a	
  transformer	
  and	
  
	
  
construction	
  of	
  new	
  transmission	
  lines.	
  It	
  will	
  optimize	
  energy	
  transmission	
  
	
  
	
   and	
  h elp	
  reduce	
  transmission	
  congestion.	
  
	
  

Software	
  
Advancements	
  in	
  computing	
  and	
  data	
  communications	
  can	
  optimize	
  grid	
  operations,	
  match	
  power	
  
delivery	
  to	
  real-­‐time	
  demand,	
  and	
  find	
  effective	
  ways	
  to	
  manage	
  sporadically	
  available	
  renewable	
  power	
  
sources	
  and	
  grid-­‐level	
  power	
  storage.	
  	
  
Topology	
  Control	
  Algorithms	
  (TCAs)	
  are	
  a	
  network	
  solution	
  to	
  optimally	
  activate	
  (close)	
  and	
  
deactivate	
  (open)	
  transmission	
  lines	
  to	
  decrease	
  the	
  cost	
  of	
  the	
  transmission	
  system.	
  This	
  is	
  based	
  on	
  
the	
  counter-­‐intuitive,	
  but	
  demonstrated,	
  phenomenon	
  that	
  closing	
  a	
  congested	
  pathway	
  improves	
  the	
  
overall	
  system	
  flow6.	
  TCAs	
  are	
  integrated	
  into	
  software	
  that	
  controls	
  the	
  grid’s	
  hardware	
  infrastructure,	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5

	
  Real	
  power	
  is	
  power	
  delivered	
  to	
  the	
  end	
  user	
  to	
  do	
  work	
  (measured	
  in	
  watts).	
  Reactive	
  power	
  is	
  current	
  
energizing	
  the	
  system	
  components	
  (measured	
  in	
  volt-­‐amperes	
  reactive-­‐	
  VAR).	
  	
  
6
	
  Closing	
  a	
  congested	
  pathway	
  can	
  open	
  the	
  electric	
  flow	
  at	
  the	
  system	
  level.	
  This	
  has	
  been	
  demonstrated	
  by	
  ISOs	
  
and	
  researchers,	
  including	
  the	
  Brattle	
  Group,	
  Argonne	
  National	
  Labs,	
  and	
  a	
  team	
  from	
  Texas	
  A&M.	
  To	
  illustrate	
  
this	
  concept	
  a	
  team	
  from	
  Texas	
  A&M	
  showed	
  that	
  when	
  a	
  50MW	
  line	
  was	
  dropped	
  in	
  a	
  3-­‐line,	
  3-­‐generator	
  system,	
  
the	
  feasible	
  cost	
  to	
  serve	
  load	
  dropped.	
  This	
  concept	
  is	
  demonstrated	
  in	
  the	
  diagrams	
  below:	
  

9	
  
	
  
and	
  change	
  the	
  shape	
  of	
  the	
  grid	
  by	
  actuating	
  line	
  switching	
  hardware	
  or	
  by	
  controlling	
  the	
  HVAC	
  PTC	
  
devices	
  listed	
  above.	
  The	
  net	
  effect	
  of	
  changing	
  the	
  shape	
  of	
  the	
  grid	
  is	
  to	
  change	
  the	
  way	
  that	
  power	
  
flows	
  through	
  the	
  transmission	
  system.	
  	
  
TCAs	
  are	
  not	
  a	
  new	
  concept;	
  they	
  have	
  been	
  employed	
  by	
  operators	
  of	
  wireless	
  ad-­‐hoc	
  networks	
  for	
  
radios	
  (since	
  1970’s)	
  and	
  computers	
  (since	
  1990’s)	
  by	
  optimizing	
  the	
  transmission	
  power	
  of	
  each	
  node	
  
to	
  improve	
  signal	
  flow	
  in	
  the	
  network.	
  For	
  the	
  electric	
  power	
  industry,	
  recent	
  advances	
  such	
  as	
  phasor	
  
measurement	
  units	
  (PMUs),	
  low-­‐latency	
  communication	
  systems,	
  and	
  the	
  reduced	
  cost	
  and	
  improved	
  
speed	
  of	
  computer	
  processors	
  allow	
  for	
  TCAs	
  to	
  be	
  an	
  effective	
  solution	
  for	
  power	
  flow	
  in	
  the	
  
transmission	
  grid.	
  TCAs	
  are	
  being	
  developed	
  through	
  the	
  ARPA-­‐E	
  GENI	
  program	
  by	
  Texas	
  A&M	
  and	
  
Boston	
  University.	
  
	
  
Automated	
  Grid	
  Disruption	
  Response	
  System	
  
Texas	
  A&M	
  is	
  developing	
  a	
  Robust	
  Adaptive	
  Topology	
  Control	
  (RATC)	
  
	
   system	
  designed	
  to	
  detect,	
  classify,	
  and	
  respond	
  to	
  grid	
  disturbances	
  
by	
  reconfiguring	
  the	
  grid	
  to	
  maintain	
  economically	
  efficient,	
  reliable	
  
	
   operations.	
  The	
  system	
  would	
  help	
  to	
  prevent	
  outages	
  and	
  minimize	
  
the	
  time	
  it	
  takes	
  for	
  the	
  grid	
  to	
  respond	
  to	
  interruptions,	
  and	
  make	
  it	
  
	
   easier	
  to	
  integrate	
  renewable	
  resources	
  into	
  the	
  grid.	
  
	
  

	
  
	
  

	
  
	
  
	
  

	
  
Transmission	
  Topology	
  Control	
  for	
  Infrastructure	
  Resilience	
  to	
  the	
  
Integration	
  of	
  Renewable	
  Generation	
  
Boston	
  University	
  is	
  developing	
  a	
  technology	
  that	
  helps	
  grid	
  operators	
  
manage	
  power	
  flows	
  and	
  integrates	
  renewable	
  resources	
  by	
  optimizing	
  the	
  
transmission	
  system.	
  The	
  system	
  would	
  have	
  the	
  capability	
  of	
  turning	
  power	
  
lines	
  on	
  and	
  off	
  to	
  manage	
  transmission	
  congestion,	
  increase	
  use	
  of	
  
renewable	
  resources,	
  and	
  improve	
  system	
  reliability.	
  The	
  fast	
  optimization	
  
	
   algorithms	
  would	
  enable	
  near	
  real-­‐time	
  change	
  in	
  the	
  grid.	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
  

	
  

10	
  
	
  
Value	
  Analysis	
  of	
  Power	
  Flow	
  Control	
  
	
  
Power	
  flow	
  control	
  benefits	
  the	
  entire	
  transmission	
  system	
  as	
  well	
  as	
  transmission	
  owners,	
  generators,	
  
operators,	
  planners,	
  regulators,	
  and	
  consumers.	
  Transmission	
  benefits	
  can	
  be	
  numerous	
  and	
  diverse,	
  
including:	
  
•
•
•
•
•
•
•
•

Reduce	
  energy	
  transmission	
  losses	
  
Mitigate	
  transmission	
  outages	
  
Defer	
  and	
  prioritize	
  transmission	
  investments	
  
Increase	
  transfer	
  capability	
  from	
  one	
  part	
  of	
  the	
  system	
  to	
  another	
  
Reduce	
  cycling	
  of	
  base	
  load	
  generators	
  to	
  increase	
  asset	
  efficiency	
  
Increase	
  wheeling	
  of	
  power	
  in	
  and	
  out	
  	
  
Reduce	
  loop	
  flows	
  
Meet	
  public	
  policy	
  goals	
  

Any	
  one	
  of	
  the	
  technologies	
  described	
  above	
  can	
  help	
  to	
  achieve	
  these	
  benefits.	
  However,	
  to	
  maximize	
  
the	
  benefits	
  of	
  power	
  flow	
  control	
  and	
  to	
  maintain	
  system	
  reliability,	
  some	
  system	
  coordination	
  is	
  
required	
  in	
  order	
  to	
  understand	
  the	
  system-­‐level	
  effect	
  of	
  the	
  installation	
  of	
  power	
  flow	
  control	
  
technologies,	
  to	
  plan	
  for	
  future	
  asset	
  mix,	
  and	
  to	
  optimize	
  operations	
  of	
  the	
  physical	
  grid	
  and	
  electricity	
  
markets.	
  Power	
  flow	
  control	
  is	
  achieved	
  when	
  software	
  technologies	
  in	
  concert	
  with	
  well-­‐placed	
  
hardware	
  work	
  together	
  to	
  optimize	
  the	
  transmission	
  system.	
  Ultimately,	
  planners,	
  operators	
  and	
  
regulators	
  may	
  need	
  to	
  consider	
  several	
  additional	
  factors	
  to	
  realize	
  the	
  full	
  potential	
  and	
  system	
  
benefits	
  of	
  power	
  flow	
  control	
  technologies,	
  including:	
  
•
•
•

Market/regulatory	
  structure	
  for	
  wide	
  area	
  control	
  –	
  to	
  make	
  sure	
  that	
  market	
  structure	
  and	
  
technical	
  capabilities	
  are	
  aligned	
  to	
  properly	
  value	
  the	
  benefits	
  of	
  power	
  flow	
  control	
  technologies	
  
Software	
  –	
  synchronous	
  access	
  to	
  cloud	
  resources	
  for	
  optimized	
  coordinated	
  control	
  
Sensors	
  –	
  accurate,	
  real-­‐time,	
  dispersed	
  estimation	
  sensors	
  to	
  measure	
  and	
  communicate	
  the	
  
conditions	
  of	
  the	
  electric	
  grid	
  in	
  real	
  time	
  and	
  ensure	
  

This	
  analysis	
  does	
  not	
  consider	
  the	
  many	
  complementary	
  technologies	
  that	
  would	
  help	
  to	
  maximize	
  
flexibility	
  and	
  control	
  including	
  PMUs,	
  advanced	
  metering	
  infrastructure	
  or	
  distribution-­‐level	
  
technologies,	
  or	
  incentives	
  and	
  market	
  structures	
  that	
  could	
  enable	
  power	
  flow	
  control.	
  The	
  analysis	
  is	
  
solely	
  focused	
  on	
  the	
  high-­‐voltage	
  transmission	
  technologies	
  and	
  software	
  applications	
  described	
  above.	
  
One	
  can	
  think	
  of	
  the	
  value	
  of	
  power	
  flow	
  control	
  technologies	
  in	
  terms	
  of	
  the	
  total	
  costs	
  and	
  benefits	
  of	
  
a	
  transmission	
  grid	
  with	
  power	
  flow	
  control	
  capabilities	
  as	
  compared	
  to	
  the	
  total	
  cost	
  and	
  benefits	
  of	
  
the	
  system	
  without	
  these	
  capabilities.	
  However,	
  one	
  of	
  the	
  difficulties	
  in	
  quantifying	
  the	
  value	
  of	
  power	
  
flow	
  control	
  capabilities	
  is	
  that	
  system	
  optimization	
  requires	
  that	
  there	
  be	
  short-­‐term	
  beneficiaries	
  of	
  a	
  
change	
  in	
  power	
  flow,	
  and	
  corresponding	
  entities	
  that	
  might	
  see	
  a	
  drop	
  in	
  revenue	
  in	
  the	
  short-­‐term,	
  as	
  
any	
  change	
  to	
  the	
  physical	
  constraints	
  of	
  the	
  electric	
  grid	
  can	
  affect	
  the	
  price	
  that	
  generators	
  or	
  
transmission	
  owners	
  are	
  paid	
  for	
  electricity.	
  This	
  analysis	
  explores	
  five	
  distinct	
  value	
  streams	
  of	
  power	
  

11	
  
	
  
flow	
  control,	
  defines	
  the	
  associated	
  benefits	
  and	
  costs,	
  and	
  identifies	
  the	
  stakeholders	
  and	
  how	
  they	
  
might	
  be	
  affected	
  at	
  a	
  system	
  level.	
  

Identification	
  of	
  Value	
  Propositions	
  
Asset	
  Management	
  
	
  
Transmission	
  infrastructure	
  in	
  the	
  United	
  States	
  is	
  built	
  to	
  meet	
  peak	
  demand,	
  which	
  leads	
  to	
  sub-­‐
optimal	
  utilization	
  outcomes	
  at	
  a	
  system	
  level	
  during	
  non-­‐peak	
  periods.	
  Reliability	
  standards	
  and	
  
favorable	
  FERC-­‐established	
  rates	
  of	
  return	
  provide	
  incentives	
  for	
  transmission	
  investment.	
  At	
  the	
  same	
  
time,	
  much	
  of	
  the	
  existing	
  transmission	
  infrastructure	
  is	
  reaching	
  the	
  end	
  of	
  its	
  useful	
  life,	
  and	
  new	
  
transmission	
  is	
  difficult,	
  expensive,	
  time-­‐consuming,	
  and	
  highly	
  litigious	
  to	
  build.	
  Transmission	
  owners	
  
are	
  also	
  faced	
  with	
  competing	
  calls	
  for	
  capital	
  to	
  meet	
  reliability	
  and	
  environmental	
  priorities.	
  Research	
  
from	
  the	
  Edison	
  Electric	
  Institute	
  shows	
  that	
  its	
  shareholder-­‐owned	
  utility	
  members	
  increased	
  their	
  
investment	
  in	
  transmission	
  infrastructure,	
  investing	
  $11.1	
  billion	
  in	
  2011	
  and	
  planning	
  to	
  spend	
  $54.6	
  
billion	
  through	
  2015	
  (Edison	
  Electric	
  Institute).	
  Several	
  power	
  flow	
  control	
  technologies	
  could	
  increase	
  
the	
  capacity	
  of	
  existing	
  transmission	
  lines	
  and	
  defer	
  new	
  investment	
  in	
  construction	
  or	
  help	
  prioritize	
  
construction	
  of	
  new	
  lines	
  to	
  optimize	
  the	
  use	
  of	
  the	
  transmission	
  grid.	
  While	
  increasing	
  the	
  capacity	
  of	
  
transmission	
  lines	
  would	
  produce	
  system-­‐level	
  benefits,	
  ultimately	
  some	
  transmission	
  owners	
  and	
  
electricity	
  generators	
  would	
  see	
  lower	
  revenues	
  in	
  cases	
  where	
  they	
  currently	
  benefit	
  from	
  congestion.	
  	
  
HVDC	
  
In	
  some	
  scenarios,	
  power	
  flow	
  control	
  technologies	
  could	
  decrease	
  transmission	
  losses	
  and	
  increase	
  
transmission	
  utilization.	
  Most	
  notably,	
  HVDC	
  lines	
  have	
  lower	
  losses	
  in	
  transporting	
  power	
  over	
  long	
  
distances,	
  and	
  technological	
  advances	
  in	
  insulation	
  could	
  increase	
  this	
  benefit	
  further.	
  For	
  instance,	
  GE	
  
Global	
  Research	
  is	
  developing	
  a	
  nanoclay	
  reinforced	
  ethylene-­‐propylene-­‐rubber	
  for	
  low-­‐cost	
  HVDC	
  
cabling	
  that	
  could	
  bring	
  down	
  the	
  cost	
  of	
  HVDC	
  cable	
  by	
  as	
  much	
  as	
  80%.	
  Such	
  a	
  decrease	
  in	
  the	
  cost	
  of	
  
HVDC	
  would	
  lower	
  the	
  distance	
  at	
  which	
  HVDC	
  is	
  cost	
  competitive	
  with	
  HVAC,	
  and	
  increase	
  its	
  
affordability	
  as	
  an	
  option	
  for	
  integration	
  into	
  the	
  AC	
  grid.	
  	
  
HVDC	
  requires	
  smaller	
  transmission	
  right	
  of	
  ways,	
  so	
  new	
  construction	
  or	
  reconductoring	
  of	
  
transmission	
  lines	
  can	
  be	
  easier	
  to	
  achieve.	
  	
  This	
  is	
  particularly	
  important	
  in	
  heavily	
  populated	
  areas,	
  
which	
  often	
  suffer	
  from	
  transmission	
  congestion.	
  In	
  these	
  cases,	
  transmission	
  planners	
  may	
  consider	
  
using	
  existing	
  transmission	
  right	
  of	
  ways	
  to	
  install	
  buried	
  HVDC	
  cable	
  to	
  increase	
  transmission	
  capacity	
  
without	
  permitting	
  a	
  completely	
  new	
  transmission	
  pathway.	
  	
  
Power	
  Transmission	
  Controllers	
  and	
  Topology	
  Control	
  Algorithms	
  
HVAC	
  PTCs	
  such	
  as	
  DSRs	
  and	
  STATCOMs	
  can	
  increase	
  the	
  capacity	
  of	
  AC	
  transmission	
  infrastructure	
  and	
  
reduce	
  the	
  need	
  for	
  a	
  new	
  transmission	
  line,	
  to	
  optimize	
  the	
  existing	
  AC	
  transmission.	
  Because	
  
repowering	
  existing	
  assets	
  could	
  be	
  less	
  costly,	
  a	
  transmission	
  owner	
  could	
  prioritize	
  capital	
  
expenditures	
  and	
  deploy	
  resources	
  for	
  new	
  transmission	
  lines	
  in	
  parts	
  of	
  the	
  system	
  where	
  it	
  would	
  

12	
  
	
  
make	
  the	
  most	
  difference.	
  In	
  addition,	
  they	
  can	
  increase	
  the	
  flexibility	
  and	
  adaptability	
  for	
  grid	
  
operators	
  to	
  use	
  existing	
  AC	
  lines.	
  	
  
Topology	
  control	
  allows	
  for	
  line	
  switching	
  to	
  optimize	
  economic	
  efficiency	
  and	
  minimize	
  congestion.	
  In	
  
some	
  cases,	
  employing	
  topology	
  control	
  alone	
  would	
  increase	
  the	
  utilization	
  of	
  transmission	
  lines	
  and	
  
defer	
  the	
  need	
  for	
  new	
  transmission	
  construction.	
  One	
  common	
  concern	
  about	
  topology	
  control	
  is	
  that	
  
it	
  might	
  increase	
  circuit	
  breaker	
  operations	
  and	
  maintenance	
  expenses.	
  Under	
  a	
  scenario	
  with	
  topology	
  
control,	
  circuits	
  will	
  be	
  switched	
  more	
  frequently,	
  but	
  in	
  non-­‐fault	
  conditions	
  with	
  much	
  less	
  current.	
  
Circuit	
  breakers	
  have	
  a	
  robust	
  design	
  to	
  deal	
  with	
  fault	
  conditions	
  are	
  expected	
  to	
  operate	
  will	
  in	
  a	
  
topology	
  control	
  case.	
  However,	
  equipment	
  manufacturers	
  will	
  need	
  to	
  validate	
  and	
  support	
  this	
  new	
  
use	
  case.	
  Circuit	
  breakers	
  that	
  are	
  old	
  and	
  past	
  warranty	
  may	
  be	
  of	
  greater	
  concern	
  in	
  than	
  newer	
  
devices.	
  While	
  it	
  is	
  thus	
  possible	
  that	
  line	
  switching	
  could	
  increase	
  the	
  need	
  for	
  maintenance	
  on	
  
breakers	
  that	
  are	
  used	
  more	
  frequently	
  in	
  switching	
  than	
  static	
  scenarios,	
  the	
  system-­‐level	
  benefits	
  
should	
  outweigh	
  the	
  costs.	
  	
  
Reliability	
  and	
  Security	
  
	
  
Where	
  power	
  systems	
  are	
  designed	
  to	
  meet	
  one	
  or	
  two	
  contingency	
  extreme	
  events,	
  power	
  flow	
  
control	
  capabilities	
  could	
  help	
  to	
  mitigate	
  the	
  impact	
  of	
  one	
  or	
  two	
  outages	
  by	
  providing	
  alternate	
  
power	
  flow	
  paths	
  to	
  continue	
  to	
  serve	
  load.	
  The	
  economic	
  impact	
  of	
  the	
  infamous	
  northeastern	
  August	
  
2003	
  blackout	
  was	
  estimated	
  to	
  be	
  $4	
  to	
  $10	
  billion	
  in	
  the	
  United	
  States,	
  highlighting	
  the	
  importance	
  of	
  
the	
  electric	
  grid	
  in	
  today’s	
  economy	
  (U.S.-­‐Canada	
  Task	
  Force,	
  2004).	
  Reliability	
  is	
  top	
  of	
  mind	
  for	
  system	
  
operators,	
  regulators,	
  policy	
  makers,	
  and	
  businesses	
  in	
  the	
  U.S.	
  today,	
  as	
  reflected	
  in	
  the	
  regional	
  
implementation	
  of	
  North	
  American	
  Electric	
  Reliability	
  Corporation	
  (NERC)	
  standards.	
  Power	
  flow	
  control	
  
technology	
  could	
  increase	
  the	
  flexibility	
  and	
  responsiveness	
  of	
  the	
  grid.	
  	
  	
  
HVDC	
  
HVDC	
  technology	
  provides	
  several	
  reliability	
  benefits.	
  Specifically,	
  a	
  DC	
  circuit	
  breaker	
  with	
  
instantaneous	
  response	
  time	
  will	
  allow	
  for	
  quick	
  fault	
  detection	
  and	
  response,	
  which,	
  in	
  conjunction	
  
with	
  other	
  power	
  flow	
  control	
  technologies,	
  can	
  prevent	
  a	
  system-­‐level	
  problem	
  and	
  re-­‐route	
  power	
  to	
  
enable	
  continual,	
  uninterrupted	
  service.	
  Similarly,	
  directional	
  switching	
  of	
  power	
  flow	
  enables	
  routing	
  
options	
  post-­‐contingency.	
  The	
  ability	
  to	
  reverse	
  power	
  flow	
  in	
  response	
  to	
  a	
  contingency	
  can	
  decrease	
  
generation	
  capacity	
  requirements	
  for	
  ancillary	
  services.	
  	
  
In	
  the	
  case	
  of	
  an	
  HVDC	
  intertie	
  between	
  two	
  asynchronous	
  grids,	
  VSCs	
  can	
  provide	
  black	
  start	
  service	
  
from	
  one	
  grid	
  to	
  another,	
  significantly	
  decreasing	
  response	
  time	
  without	
  the	
  need	
  for	
  reserve	
  
installations	
  that	
  would	
  otherwise	
  be	
  idle	
  much	
  of	
  the	
  year.	
  	
  
	
  Power	
  Transmission	
  Controllers	
  and	
  Topology	
  Control	
  Algorithms	
  
DSRs,	
  STATCOMs,	
  and	
  TCAs	
  each	
  provide	
  reliability	
  benefits.	
  DSRs	
  can	
  control	
  potential	
  transmission	
  
overload	
  and	
  bypass	
  congested	
  lines,	
  increasing	
  transmission	
  utilization,	
  decreasing	
  congestion,	
  and	
  
thereby	
  increasing	
  dispatch	
  options.	
  The	
  built	
  in	
  device-­‐to-­‐device	
  communication	
  system	
  in	
  DSRs	
  
13	
  
	
  
enables	
  dynamic,	
  autonomous	
  response	
  and	
  eliminates	
  risks	
  associated	
  with	
  other	
  central-­‐control	
  
communications	
  devices.	
  The	
  AC	
  regulation	
  function	
  of	
  STATCOMs	
  can	
  automatically	
  control	
  
transmission	
  contingency	
  conditions	
  and	
  prevent	
  problems	
  or	
  decrease	
  recovery	
  time.	
  TCAs	
  will	
  
optimize	
  transmission	
  line	
  switching	
  under	
  normal	
  and	
  contingency	
  conditions	
  –	
  bypassing	
  congested	
  
lines	
  and	
  finding	
  the	
  optimal	
  path	
  to	
  serve	
  load.	
  	
  
In	
  order	
  to	
  quantify	
  the	
  specific	
  benefits	
  of	
  power	
  flow	
  control	
  technologies	
  on	
  a	
  particular	
  system,	
  it	
  
would	
  be	
  necessary	
  to	
  model	
  the	
  grid	
  response	
  under	
  contingency	
  conditions	
  using	
  reliability	
  software,	
  
and	
  then	
  again	
  with	
  power	
  flow	
  control	
  technologies	
  built	
  in	
  and	
  estimating	
  the	
  economic	
  value	
  of	
  the	
  
reduction	
  in	
  load	
  loss	
  (Budhraja,	
  Mobasheri,	
  Ballance,	
  Dyer,	
  Silverstein,	
  &	
  Eto,	
  2009).	
  	
  
	
  
Congestion	
  Relief	
  
	
  
Transmission	
  congestion	
  happens	
  whenever	
  preferable	
  or	
  low	
  cost	
  generation	
  is	
  unable	
  to	
  serve	
  electric	
  
load	
  due	
  to	
  a	
  physical	
  limit	
  on	
  the	
  transmission	
  system.	
  Market	
  efficiency	
  is	
  based	
  on	
  optimal	
  economic	
  
operation	
  of	
  the	
  grid	
  by	
  dispatching	
  the	
  lowest-­‐cost	
  generation.	
  Congestion	
  disrupts	
  this	
  process	
  and	
  
leads	
  to	
  dispatch	
  of	
  higher	
  cost	
  generation	
  to	
  meet	
  demand	
  in	
  the	
  importing	
  location,	
  and	
  exerts	
  
downward	
  pressure	
  on	
  prices	
  in	
  exporting	
  areas.	
  Reducing	
  congestion	
  on	
  the	
  transmission	
  grid	
  will	
  
reduce	
  congestion	
  pricing	
  for	
  energy	
  and	
  ancillary	
  services	
  and	
  allow	
  for	
  economic	
  dispatch	
  of	
  
generation	
  while	
  balancing	
  transmission	
  lines.	
  At	
  a	
  system	
  level,	
  the	
  cost	
  of	
  constructing	
  new	
  
transmission	
  lines	
  or	
  adding	
  power	
  flow	
  control	
  technologies	
  must	
  be	
  weighed	
  against	
  the	
  benefits	
  of	
  
doing	
  so.	
  Congestion	
  is	
  often	
  a	
  problem	
  in	
  or	
  around	
  densely	
  populated	
  areas,	
  where	
  permitting	
  new	
  
transmission	
  lines	
  can	
  be	
  particularly	
  difficult.	
  In	
  these	
  cases,	
  there	
  may	
  be	
  a	
  clear	
  system-­‐level	
  benefit	
  
to	
  power	
  flow	
  control	
  technologies.	
  Congestion	
  relief	
  brings	
  multiple	
  benefits	
  in	
  terms	
  of	
  integration	
  of	
  
renewable	
  energy	
  and	
  economic	
  efficiency	
  of	
  energy	
  markets.	
  
Integration	
  of	
  renewable	
  energy	
  
Multiple	
  renewable	
  integration	
  studies	
  have	
  validated	
  the	
  substantial	
  system	
  level	
  and	
  societal	
  benefits	
  
of	
  increased	
  renewable	
  energy	
  penetration.	
  Wind	
  and	
  solar	
  energy	
  generators	
  reduce	
  the	
  system	
  
operating	
  costs	
  by	
  displacing	
  fuel	
  expenses	
  and	
  deferring	
  upgrades	
  to	
  existing	
  conventional	
  generators;	
  
in	
  addition	
  to	
  lowering	
  generation	
  fleet	
  carbon	
  emissions.	
  In	
  the	
  Western	
  Wind	
  and	
  Solar	
  
Interconnection	
  Study	
  (WWSIS),	
  it	
  was	
  found	
  that	
  by	
  tapping	
  the	
  large	
  solar	
  and	
  wind	
  resource	
  in	
  the	
  
Western	
  Connection,	
  up	
  to	
  35%	
  of	
  the	
  required	
  energy	
  could	
  be	
  delivered	
  by	
  renewables	
  (GE	
  Energy,	
  
2010).	
  This	
  results	
  in	
  a	
  40%	
  reduction	
  in	
  the	
  annual	
  system	
  OPEX.	
  In	
  the	
  Eastern	
  Wind	
  Integration	
  and	
  
Transmission	
  Study	
  (EWITS),	
  a	
  10%	
  reduction	
  in	
  annual	
  system	
  OPEX	
  was	
  achieved	
  by	
  incorporating	
  30%	
  
of	
  the	
  energy	
  requirement	
  from	
  wind	
  in	
  the	
  Eastern	
  Connection	
  (EnerNex	
  Corporation,	
  2011).	
  EWITS	
  
also	
  calculated	
  an	
  18%	
  reduction	
  in	
  CO2	
  emissions.	
  
The	
  challenge	
  to	
  incorporating	
  variable,	
  uncertain	
  renewable	
  energy	
  is	
  that	
  the	
  current	
  system	
  
infrastructure	
  and	
  operational	
  practices	
  were	
  designed	
  for	
  dispatch-­‐able	
  and	
  predictable	
  generation	
  
supplies.	
  However,	
  renewable	
  energy	
  generators,	
  such	
  as	
  wind	
  and	
  solar,	
  are	
  variable	
  and	
  uncertain	
  
(non-­‐perfectly	
  predictable)	
  due	
  to	
  the	
  nature	
  of	
  wind	
  and	
  cloud	
  coverage.	
  This	
  variability	
  and	
  
14	
  
	
  
uncertainty	
  has	
  the	
  potential	
  to	
  exacerbate	
  transmission	
  congestion	
  as	
  the	
  penetration	
  of	
  renewable	
  
generation	
  increases.	
  Conversely,	
  there	
  might	
  be	
  an	
  under	
  supply	
  of	
  energy	
  or	
  system	
  frequency	
  
disruption	
  if	
  the	
  renewable	
  generators	
  slow	
  or	
  stop	
  production	
  (due	
  to	
  ramping).	
  	
  
To	
  mitigate	
  these	
  challenges,	
  system	
  operators	
  can	
  require	
  additional	
  reserve	
  capacity	
  to	
  supplement	
  
renewables	
  and	
  come	
  online	
  quickly	
  to	
  stabilize	
  system	
  frequency	
  in	
  the	
  event	
  of	
  ramping	
  of	
  the	
  energy	
  
resource.	
  Other	
  generators	
  must	
  perform	
  load	
  following	
  to	
  match	
  their	
  output	
  to	
  any	
  changes	
  in	
  the	
  
energy	
  supply-­‐demand	
  balance.	
  Furthermore,	
  local	
  generators	
  are	
  called	
  upon	
  in	
  instances	
  when	
  
congestion	
  prevents	
  renewable	
  energy	
  from	
  serving	
  the	
  load.	
  In	
  this	
  case,	
  current	
  practice	
  empowers	
  
grid	
  operators	
  to	
  curtail	
  renewable	
  generators	
  if	
  their	
  supply	
  cannot	
  be	
  reliably	
  transmitted	
  due	
  to	
  
congestion	
  elsewhere	
  in	
  the	
  system.	
  In	
  all	
  these	
  cases,	
  the	
  operation	
  of	
  reserve	
  generators	
  is	
  generally	
  
higher	
  cost	
  than	
  the	
  renewable	
  generators.	
  Some	
  system	
  operators	
  have	
  begun	
  to	
  utilize	
  forecasts	
  of	
  
renewable	
  energy	
  regions	
  to	
  aid	
  in	
  more	
  economic	
  reserve	
  scheduling	
  and	
  transmission	
  system	
  
operation.	
  However,	
  the	
  accuracy	
  of	
  these	
  forecasts	
  at	
  present	
  is	
  marginally	
  better	
  than	
  assuming	
  
persistence.	
  Poor	
  information	
  leads	
  to	
  inefficient	
  dispatching	
  and	
  un-­‐necessary	
  cycling	
  of	
  conventional	
  
generators	
  which	
  is	
  a	
  less	
  efficient	
  operational	
  method	
  that	
  outputs	
  greater	
  emissions	
  and	
  more	
  wear	
  
and	
  tear	
  on	
  the	
  asset.	
  	
  
These	
  additional	
  operational	
  requirements	
  of	
  renewables	
  are	
  manageable,	
  but	
  lessen	
  the	
  total	
  
achievable	
  system	
  benefits	
  due	
  to	
  the	
  increased	
  demand	
  for	
  real-­‐time	
  reserves	
  and	
  inefficiencies	
  in	
  the	
  
near-­‐term	
  asset	
  scheduling	
  and	
  curtailment	
  practices.	
  For	
  example,	
  the	
  integration	
  of	
  wind	
  energy	
  in	
  
ERCOT	
  is	
  estimated	
  to	
  cost	
  an	
  additional	
  $0.66/MWh	
  due	
  to	
  deployment/operation	
  of	
  reserves,	
  the	
  cost	
  
of	
  base	
  load	
  cycling,	
  and	
  transmission	
  congestion	
  (Ahlstrom,	
  2013).	
  In	
  terms	
  of	
  capital	
  outlay	
  for	
  reserve	
  
capacity,	
  it	
  is	
  estimated	
  that	
  PJM	
  spends	
  $3	
  per	
  each	
  additional	
  MW	
  of	
  wind	
  power	
  capacity	
  (The	
  Brattle	
  
Group,	
  2013).	
  
The	
  renewable	
  integration	
  studies	
  have	
  found	
  that	
  these	
  practices	
  and	
  associated	
  costs	
  can	
  be	
  largely	
  
avoided	
  if	
  the	
  grid	
  were	
  flexible	
  to	
  compensate	
  for	
  the	
  variable,	
  uncertain	
  supply.	
  Power	
  flow	
  control	
  
technologies	
  can	
  achieve	
  sufficient	
  transmission	
  system	
  flexibility	
  to	
  lower	
  renewable	
  integration	
  costs,	
  
reduce	
  congestion,	
  and	
  allow	
  for	
  even	
  further	
  economic	
  utilization	
  of	
  renewable	
  energy	
  by	
  minimizing	
  
curtailment.	
  In	
  addition,	
  a	
  more	
  interconnected	
  and	
  controllable	
  transmission	
  system	
  will	
  facilitate	
  the	
  
network	
  benefits	
  of	
  geographic	
  averaging	
  of	
  renewable	
  resources	
  and	
  more	
  accurate	
  wind	
  and	
  solar	
  
forecasts.	
  
Economic	
  Efficiency	
  
Power	
  flow	
  control	
  technologies	
  can	
  increase	
  the	
  economic	
  efficiency	
  of	
  the	
  electric	
  grid	
  through	
  lower	
  
losses	
  and	
  by	
  enabling	
  economic	
  dispatch	
  of	
  transmission	
  and	
  generation	
  assets.	
  HVDC	
  devices,	
  DSRs	
  
and	
  TCAs	
  can	
  be	
  installed	
  on	
  the	
  existing	
  transmission	
  grid	
  to	
  allow	
  for	
  the	
  necessary	
  flexibility	
  to	
  lower	
  
integration	
  costs	
  through	
  the	
  mitigation	
  of	
  curtailment-­‐causing	
  system	
  bottlenecks	
  and	
  congestion.	
  	
  
HVDC	
  
Long-­‐distance	
  HVDC	
  installations	
  improve	
  market	
  access	
  to	
  remote	
  resources.	
  When	
  congestion	
  is	
  
appropriately	
  managed,	
  HVDC	
  facilitates	
  lower	
  energy	
  prices.	
  Lower	
  line	
  losses	
  of	
  HVDC	
  can	
  further	
  
15	
  
	
  
reduce	
  the	
  overall	
  cost	
  to	
  serve	
  remote	
  load	
  by	
  30-­‐50%.	
  The	
  most	
  economic	
  generation,	
  including	
  
renewable	
  generation	
  resources,	
  are	
  often	
  not	
  located	
  in	
  close	
  proximity	
  to	
  major	
  load	
  centers.	
  To	
  tap	
  
these	
  resources,	
  a	
  transmission	
  system	
  must	
  be	
  developed.	
  For	
  long	
  distance	
  connection,	
  HVDC	
  
conductors	
  offer	
  the	
  most	
  value	
  because	
  of	
  5-­‐10%	
  less	
  line	
  loss	
  than	
  similar	
  capacity	
  AC	
  conductors	
  
(Bahrman,	
  2009).	
  Along	
  with	
  the	
  advantages	
  of	
  smaller	
  transmission	
  towers	
  and	
  no	
  need	
  for	
  
intermediate	
  substations,	
  lower	
  line	
  loss	
  equates	
  to	
  lower	
  overall	
  system	
  cost.	
  For	
  a	
  1000	
  mile	
  system	
  
rated	
  for	
  6000MW	
  an	
  800	
  kV	
  HVDC	
  system	
  is	
  $670/MW-­‐mi	
  less	
  expensive	
  than	
  a	
  765	
  kV	
  AC	
  system	
  
(Bahrman,	
  2009).	
  	
  
HVDC	
  can	
  be	
  used	
  to	
  route	
  power	
  around	
  a	
  congested	
  area	
  of	
  the	
  AC	
  grid,	
  bringing	
  less	
  expensive	
  power	
  
or	
  renewable	
  generation	
  situated	
  at	
  a	
  distance	
  to	
  market	
  in	
  an	
  area	
  of	
  higher	
  demand.	
  For	
  example,	
  the	
  
Trans	
  Bay	
  Cable	
  delivers	
  power	
  from	
  Pittsburg,	
  California	
  to	
  San	
  Francisco,	
  providing	
  an	
  alternate	
  route	
  
for	
  generation	
  to	
  serve	
  40%	
  of	
  the	
  city’s	
  peak	
  energy	
  needs.	
  Similarly,	
  the	
  Neptune	
  HVDC	
  cable	
  running	
  
from	
  New	
  Jersey	
  to	
  Long	
  Island	
  enables	
  power	
  flow	
  directly	
  to	
  Long	
  Island,	
  skirting	
  areas	
  of	
  transmission	
  
congestion	
  in	
  New	
  Jersey	
  and	
  New	
  York	
  and	
  serving	
  30%	
  of	
  electric	
  needs	
  of	
  Long	
  Island.	
  	
  
The	
  bi-­‐directional	
  flow	
  capabilities	
  of	
  many	
  HVDC	
  installations	
  could	
  allow	
  for	
  the	
  change	
  of	
  flow	
  to	
  
address	
  particular	
  points	
  of	
  congestion	
  where	
  congestion	
  stress	
  points	
  shift	
  with	
  changing	
  supply	
  and	
  
load	
  patterns.	
  For	
  example,	
  the	
  Cross	
  Sound	
  Cable,	
  a	
  merchant	
  transmission	
  line	
  between	
  CT	
  and	
  Long	
  
Island,	
  largely	
  sends	
  power	
  from	
  CT	
  to	
  Long	
  Island	
  but	
  on	
  occasion	
  sends	
  power	
  the	
  other	
  way	
  in	
  
response	
  to	
  changing	
  conditions.	
  
Back-­‐to-­‐back	
  HVDC	
  –AC	
  intertie	
  capabilities	
  enable	
  ties	
  between	
  asynchronous	
  grids	
  and	
  can	
  thereby	
  
increase	
  transfer	
  capacity,	
  allowing	
  for	
  access	
  to	
  supply	
  from	
  a	
  contiguous	
  grid	
  system	
  and	
  decreasing	
  
the	
  cost	
  of	
  reliability	
  services.	
  HVDC	
  that	
  is	
  multi-­‐terminal	
  or	
  bi-­‐polar	
  with	
  bi-­‐driectional	
  capabilities	
  will	
  
increase	
  the	
  interconnection	
  further	
  and	
  allow	
  for	
  economic	
  dispatch	
  in	
  multiple	
  directions.	
  For	
  
example,	
  the	
  Cross	
  Sound	
  Cable	
  can	
  send	
  power	
  from	
  Connecticut	
  to	
  Long	
  Island	
  or	
  from	
  Long	
  Island	
  to	
  
New	
  York	
  depending	
  on	
  system	
  conditions.	
  	
  
With	
  greater	
  HVDC	
  connectivity	
  of	
  disparate	
  renewable	
  generators	
  and	
  loads,	
  the	
  negative	
  system	
  
effects	
  of	
  renewable	
  intermittency	
  are	
  largely	
  displaced.	
  Using	
  multi-­‐terminal	
  HVDC	
  transmission	
  
systems	
  with	
  VSCs	
  that	
  allow	
  bi-­‐directional	
  power	
  flow,	
  system	
  operators	
  can	
  take	
  advantage	
  of	
  varying	
  
geographical	
  resource	
  profiles.	
  For	
  example,	
  the	
  proposed	
  Clean	
  Line	
  Energy	
  transmission	
  projects	
  
leverage	
  periods	
  of	
  excess	
  wind	
  energy	
  in	
  the	
  SPP	
  to	
  deliver	
  power	
  to	
  MISO	
  or	
  PJM	
  (Galli,	
  2012).	
  When	
  
SPP	
  is	
  not	
  producing	
  wind	
  energy,	
  MISO	
  might	
  be,	
  or	
  likewise	
  PJM	
  might	
  be	
  producing	
  solar	
  energy.	
  By	
  
connecting	
  large	
  geographical	
  areas,	
  the	
  average	
  amount	
  of	
  energy	
  available	
  to	
  serve	
  loads	
  is	
  higher	
  and	
  
more	
  predictable	
  than	
  an	
  individual	
  resource	
  area	
  alone;	
  and	
  HVDC	
  systems	
  are	
  the	
  most	
  cost-­‐efficient	
  
manner	
  to	
  create	
  the	
  connection.	
  The	
  geographical	
  averaging	
  effect	
  improves	
  energy	
  forecasts	
  (as	
  
forecast	
  error	
  is	
  smaller	
  for	
  larger	
  geographies),	
  reduces	
  the	
  system	
  impact	
  of	
  ramp	
  events,	
  and	
  thus	
  
reduces	
  base	
  load	
  cycling	
  and	
  the	
  use	
  of/need	
  for	
  reserve	
  capacity.	
  Additionally,	
  a	
  more	
  interconnected	
  
transmission	
  system	
  allows	
  for	
  reserve	
  capacity	
  sharing	
  between	
  balancing	
  areas,	
  which	
  reduces	
  the	
  
total	
  reserves	
  required	
  below	
  that	
  which	
  any	
  single	
  balancing	
  area	
  would	
  need	
  to	
  carry	
  to	
  meet	
  load	
  and	
  
frequency	
  regulation	
  requirements.	
  
16	
  
	
  
HVDC	
  collection	
  systems	
  enable	
  a	
  new	
  design	
  paradigm	
  for	
  renewable	
  energy	
  generation	
  stations.	
  With	
  
AC	
  collection	
  systems,	
  solar	
  PV	
  electricity	
  is	
  collected	
  as	
  DC	
  at	
  each	
  panel	
  and	
  then	
  converted	
  to	
  
synchronous	
  AC	
  electricity.	
  For	
  wind,	
  generators	
  produce	
  asynchronous	
  AC	
  electricity,	
  which	
  is	
  
converted	
  to	
  DC	
  and	
  then	
  to	
  synchronous	
  AC	
  electricity.	
  If	
  renewable	
  generators	
  were	
  designed	
  to	
  
connect	
  to	
  an	
  HVDC	
  collection	
  system,	
  PV	
  panels	
  would	
  not	
  need	
  an	
  inverter	
  and	
  wind	
  turbine-­‐side	
  
converters	
  would	
  be	
  reduced	
  in	
  complexity	
  to	
  output	
  DC.	
  This	
  not	
  only	
  reduces	
  the	
  costs	
  of	
  developing	
  
renewable	
  generator	
  stations	
  -­‐	
  by	
  7%	
  for	
  solar	
  (Goodrich,	
  2012)	
  -­‐	
  it	
  also	
  lowers	
  the	
  collection	
  losses	
  
when	
  there	
  are	
  long	
  feeder	
  lines	
  connecting	
  the	
  generators	
  to	
  the	
  transmission	
  system.	
  Vestas	
  
estimates	
  a	
  30%	
  improvement	
  in	
  reducing	
  energy	
  losses	
  for	
  wind	
  farms	
  developed	
  for	
  HVDC	
  collection	
  
instead	
  of	
  AC	
  (Manjrekar).	
  
	
  Power	
  Transmission	
  Controllers	
  and	
  Topology	
  Control	
  Algorithms	
  
DSRs	
  and	
  topology	
  control	
  algorithms	
  could	
  increase	
  the	
  flexibility	
  of	
  the	
  transmission	
  grid	
  and	
  thereby	
  
increase	
  the	
  economic	
  efficiency	
  of	
  generation	
  dispatch.	
  DSRs	
  allow	
  operators	
  to	
  bypass	
  congested	
  lines	
  
by	
  increasing	
  capacity	
  and	
  distributing	
  power	
  flow	
  among	
  portions	
  of	
  the	
  AC	
  grid,	
  thereby	
  increasing	
  
transmission	
  utilization,	
  decreasing	
  congestion,	
  and	
  allowing	
  for	
  economic	
  dispatch	
  of	
  generation.	
  For	
  
instance,	
  variable	
  impedance	
  devices	
  such	
  as	
  Smart	
  Wire	
  Grid’s	
  DSRs	
  can	
  increase	
  AC	
  transmission	
  
system	
  utilization.	
  A	
  Smart	
  Wire	
  Grid	
  simulation	
  of	
  3,000	
  modules	
  on	
  six	
  transmission	
  lines	
  in	
  an	
  eastern	
  
RTO	
  reduced	
  the	
  average	
  bus	
  marginal	
  cost	
  by	
  over	
  6%	
  in	
  a	
  summer	
  peak	
  scenario	
  (Smart	
  Wire	
  Grid,	
  
2013).	
  DSRs	
  balance	
  the	
  load	
  being	
  transmitted	
  across	
  each	
  phase	
  and	
  allow	
  for	
  the	
  increase	
  in	
  
transmission	
  capacity.	
  	
  
Power	
  flow	
  control	
  technologies	
  designed	
  to	
  alleviate	
  congestion	
  can	
  have	
  a	
  great	
  advantage	
  to	
  easing	
  
the	
  integration	
  of	
  renewables.	
  Smart	
  Wire	
  Grid’s	
  DSRs	
  have	
  been	
  demonstrated	
  to	
  create	
  a	
  variable	
  
impedance	
  transmission	
  network	
  that	
  allows	
  power	
  flow	
  to	
  bypass	
  congested	
  lines.	
  A	
  simulated	
  study	
  in	
  
the	
  Pacific	
  North	
  West	
  found	
  that	
  with	
  an	
  investment	
  of	
  $58	
  million	
  (~3000	
  devices),	
  the	
  variable	
  
impedance	
  system	
  created	
  was	
  able	
  to	
  unlock	
  and	
  additional	
  2.8GW	
  of	
  wind	
  energy	
  by	
  reducing	
  
congestion	
  (Smart	
  Wire	
  Grid,	
  2013).	
  This	
  benefit	
  would	
  be	
  achieved	
  without	
  adding	
  any	
  additional	
  
transmission	
  lines,	
  and	
  thus	
  deferred	
  significant	
  investment	
  for	
  the	
  transmission	
  owners.	
  	
  	
  
Likewise,	
  this	
  same	
  effect	
  can	
  be	
  accomplished	
  by	
  optimally	
  switching	
  transmission	
  lines	
  to	
  change	
  the	
  
impedance	
  characteristics	
  of	
  the	
  transmission	
  system.	
  TCAs	
  can	
  be	
  deployed	
  by	
  system	
  operators	
  to	
  
optimize	
  their	
  switching	
  decisions	
  based	
  on	
  real-­‐time	
  events	
  on	
  the	
  grid.	
  TCA	
  simulations	
  in	
  power	
  flow	
  
modeling	
  software	
  has	
  shown	
  a	
  reduction	
  in	
  wind	
  curtailment	
  instances	
  from	
  33%	
  to	
  14%	
  by	
  switching	
  
lines	
  (Qiu,	
  2013).	
  A	
  simulation	
  of	
  the	
  impact	
  of	
  TCA	
  using	
  historical	
  PJM	
  data	
  demonstrated	
  over	
  $100M	
  
in	
  annual	
  savings	
  from	
  congestion	
  relief	
  (The	
  Brattle	
  Group,	
  2013).	
  Again,	
  these	
  benefits	
  were	
  gained	
  
with	
  very	
  little	
  capital	
  investment	
  which	
  allows	
  transmission	
  owners	
  to	
  invest	
  elsewhere	
  in	
  their	
  system.	
  	
  
Other	
  HVAC	
  PTC	
  devices	
  that	
  can	
  provide	
  voltage	
  and	
  frequency	
  support,	
  such	
  as	
  STATCOMs	
  and	
  phase-­‐
shifting	
  transformers,	
  have	
  been	
  used	
  to	
  improve	
  the	
  integration	
  of	
  wind	
  and	
  solar	
  generators.	
  These	
  
devices,	
  which	
  also	
  allow	
  for	
  power	
  flow	
  control,	
  provide	
  dynamic	
  response	
  to	
  fluctuations	
  in	
  the	
  power	
  
quality	
  of	
  renewable	
  generators.	
  
17	
  
	
  
Summary	
  of	
  Power	
  Flow	
  Control	
  Technology	
  Value	
  
	
  
One	
  power	
  flow	
  control	
  technology	
  can	
  have	
  multiple	
  benefits	
  depending	
  on	
  its	
  application	
  in	
  the	
  grid.	
  
To	
  understand	
  the	
  possibility	
  of	
  various	
  power	
  flow	
  control	
  technologies	
  at	
  a	
  glance,	
  see	
  Table	
  1.	
  
Technical	
  capabilities	
  alone	
  are	
  not	
  sufficient	
  to	
  achieve	
  economic	
  efficiency	
  of	
  the	
  system	
  with	
  the	
  
deployment	
  of	
  a	
  power	
  flow	
  control	
  technology.	
  Market	
  and	
  regulatory	
  barriers	
  can	
  prevent	
  use	
  of	
  the	
  
technical	
  capabilities	
  even	
  when	
  it	
  would	
  be	
  economic,	
  highlighting	
  the	
  need	
  for	
  clear	
  understanding	
  
among	
  transmission	
  owners,	
  system	
  operators,	
  and	
  regulators	
  of	
  both	
  technical	
  capabilities	
  and	
  benefits	
  
of	
  technology	
  at	
  the	
  system	
  level.	
  
	
  
Table	
  1.	
  Power	
  Flow	
  Control	
  Technology	
  Value	
  Categories.	
  Power	
  flow	
  control	
  technologies	
  
can	
  have	
  different	
  or	
  multiple	
  benefits	
  depending	
  on	
  their	
  position	
  and	
  application	
  in	
  the	
  
electric	
  grid	
  –	
  asset	
  management,	
  renewable	
  integration,	
  congestion	
  relief,	
  economic	
  
efficiency,	
  and	
  reliability	
  and	
  security.	
  Classes	
  of	
  technologies	
  that	
  are	
  represented	
  by	
  one	
  or	
  
more	
  of	
  ARPA-­‐e’s	
  GENI	
  technology	
  teams	
  are	
  represented	
  in	
  bold	
  font.	
  	
  

GENI

Technology Value Categories

X

HVDC LCC

X

X

X

X

X

TCSC

X

X

X

X

X

X

X

X

X

X

X

UPFC

Real Time

X

Dispatch &
planning

X

Reduce
curtailment

X
X

HVDC VSC

Improve
Contingency

Reliability
&
Security

Ancillary

Economic
Efficiency

Energy

Congestion
Relief

Black start

Renewable
Integration

Improve inter –
connection

Prioritize or defer
new investment

Value

Asset
Management

Improve
Utilization

Power Flow
Control
Technology

Non-GENI

Shunt -STATCOM
Series - SSSC

X

X

X

X

X

X

X

X

X

X

PhaseShifting
Transformer

X

X

X

X

DSR

X

X

X

X

TCA

X

X

X

X

X
X

X

X
X

22

	
  

Stakeholders	
  in	
  the	
  Transmission	
  Grid	
  Influence	
  Technology	
  Investment	
  
Decisions	
  
	
  
As	
  previously	
  discussed,	
  quantifying	
  the	
  benefits	
  of	
  power	
  flow	
  control	
  capabilities	
  is	
  particularly	
  
difficult	
  due	
  to	
  the	
  dynamic	
  nature	
  of	
  the	
  electric	
  transmission	
  grid	
  and	
  the	
  differences	
  in	
  benefits	
  to	
  
individual	
  stakeholders	
  as	
  compared	
  to	
  the	
  overall	
  system	
  benefits.	
  At	
  the	
  same	
  time,	
  multiple	
  
18	
  
	
  
stakeholders	
  are	
  often	
  involved	
  in	
  technology	
  investment	
  decisions,	
  and	
  a	
  level	
  of	
  agreement	
  among	
  
them	
  is	
  necessary	
  in	
  order	
  to	
  optimize	
  system	
  efficiency.	
  	
  
Differences	
  in	
  regulatory	
  structure	
  among	
  federal	
  power	
  authorities,	
  investor	
  owned	
  utilities,	
  merchant	
  
transmission	
  owners,	
  municipal	
  utilities,	
  and	
  rural	
  electric	
  co-­‐ops	
  lead	
  to	
  substantial	
  differences	
  in	
  the	
  
way	
  certain	
  groups	
  assess	
  power	
  flow	
  control	
  technologies,	
  even	
  within	
  similar	
  stakeholder	
  categories.	
  
As	
  technology	
  vendors	
  consider	
  the	
  best	
  value	
  proposition	
  and	
  business	
  model	
  for	
  their	
  power	
  flow	
  
control	
  technologies,	
  they	
  should	
  bear	
  the	
  regulatory	
  environment	
  and	
  degree	
  of	
  restructuring	
  of	
  the	
  
electric	
  market	
  in	
  mind.	
  For	
  an	
  overview	
  of	
  influencers	
  in	
  the	
  electric	
  grid,	
  see	
  Figure	
  2.	
  	
  

Numerous influences on Transmission Owner’s
investment and siting decisions
ISO/RTO
NERC/
coordinating
councils

$
Tech

Transmission
Owner

Decreasing
influence
on
investment
decisions

Transmission CAPEX,
OPEX, rate recovery

FERC

PUC
Regulatory
industry groups
Other
regulators,
NGOs

16

	
  

Figure	
  2.	
  Overview	
  of	
  influencers	
  in	
  the	
  transmission	
  grid.	
  A	
  utility	
  or	
  
transmission	
  owner	
  investing	
  in	
  technology	
  must	
  be	
  mindful	
  and	
  responsive	
  to	
  
the	
  interests	
  of	
  multiple	
  stakeholders	
  in	
  the	
  grid:	
  the	
  ISO/RTO	
  that	
  dispatches	
  
assets	
  and	
  determines	
  set	
  points	
  for	
  power	
  flow	
  control	
  technologies,	
  the	
  
regulators	
  overseeing	
  investment	
  and	
  siting	
  decisions,	
  the	
  bodies	
  responsible	
  for	
  
overall	
  reliability	
  of	
  the	
  electric	
  grid,	
  and	
  other	
  interested	
  parties	
  who	
  may	
  
intervene	
  in	
  a	
  transmission	
  case.	
  	
  
	
  
The	
  benefits	
  of	
  power	
  flow	
  control	
  technology	
  to	
  each	
  stakeholder	
  will	
  vary	
  by	
  their	
  business	
  model	
  and	
  
geographic	
  and	
  regulatory	
  situation.	
  To	
  better	
  understand	
  the	
  business	
  models	
  and	
  motivations	
  of	
  
various	
  stakeholders	
  in	
  the	
  electric	
  transmission	
  grid,	
  see	
  Table	
  2.	
  	
  
For	
  the	
  most	
  part,	
  power	
  flow	
  control	
  will	
  have	
  positive	
  economic	
  outcomes,	
  with	
  the	
  exception	
  of	
  
those	
  stakeholders	
  who	
  currently	
  benefit	
  from	
  transmission	
  congestion	
  such	
  as	
  reserve	
  generators	
  and	
  
to	
  a	
  slightly	
  lesser	
  extent	
  base	
  load	
  generators,	
  renewable	
  energy	
  generators,	
  and	
  transmission	
  owners.	
  
19	
  
	
  
The	
  beneficiaries	
  of	
  a	
  change	
  in	
  power	
  flow	
  control	
  will	
  often	
  be	
  temporary	
  and	
  largely	
  situation-­‐
dependent,	
  as	
  market	
  conditions	
  will	
  remain	
  dynamic	
  in	
  a	
  world	
  with	
  power	
  flow	
  control.	
  An	
  overview	
  
of	
  how	
  each	
  stakeholder’s	
  situation	
  might	
  change	
  as	
  compared	
  to	
  current	
  conditions	
  is	
  presented	
  in	
  
Table	
  3.	
  
Table	
  2.	
  Motivations	
  of	
  stakeholders	
  in	
  the	
  electric	
  transmission	
  grid.	
  This	
  table	
  demonstrates	
  
the	
  motivations	
  of	
  each	
  stakeholder	
  involved	
  in	
  the	
  electric	
  transmission	
  grid,	
  including	
  their	
  
motivations,	
  inherent	
  conflicts	
  and	
  considerations,	
  and	
  a	
  brief	
  description	
  of	
  their	
  revenue	
  
model.	
  While	
  every	
  effort	
  was	
  made	
  to	
  provide	
  a	
  comprehensive	
  overview,	
  the	
  differences	
  in	
  
regulatory	
  structure	
  among	
  federal	
  power	
  authorities,	
  investor	
  owned	
  utilities,	
  merchant	
  
transmission	
  owners,	
  municipal	
  utilities,	
  and	
  rural	
  electric	
  coops	
  should	
  be	
  considered	
  when	
  
assessing	
  the	
  position	
  of	
  each	
  stakeholder.
Stakeholder How do they
Conflictsmakeinterest related to
of or recover $ Motivation

Conflicts & Considerations
PFR investment

Transmission
Owner

§ Rate of return (~13%) for
transmission investment
§ FERC technology
incentive rate
§ ~11.5% distribution
investment

§ Projects that will be approved or financed –leads
to incremental build out of system (relatively
short time horizon for utilities dependent on
regulated rate of return)
§ Invest in what they know (wires) rather than new
technology
§ Profit

§ Incentive towards construction to meet
peak - of new transmission lines rather
than investment in technology to
remove congestion etc.
§ Regulated: certainty of public benefit
case (to rate-base)
§ Merchant transmission need 20 year,
low-risk opportunity

ISO/RTO

Fees charged to:
§ Generators
§ Transmission owners
(allocated to states and
recovered in rate base)

§ Reliability (& compliance with standards)
§ Reduced congestion
§ Reserve margin
§ Economic efficiency
§ Known solutions

Split in priority/focus :
§ Reliability
§ Economic dispatch
§ Capacity margins

Renewable
Generator

§ Contracts (PPA, tariff)

§ Bankability
§ Off-take certainty
§ Reduced curtailment

Base Load
Generator

§ Dispatch
§ Regulated return (where
applicable)

§ Bankability
§ Increase utilization
§ Compliance with regulations

§ Risk change schedule/dispatch
§ No compensation for cycling & wear &
tear for slow ramping

Reserve /peak
Generator

§ Dispatch
§ Ancillary services
§ Regulated return (where
applicable)

§ Increase utilization
§ Ability to access ancillary services revenue
streams (where applicable)
§ Compliance with regulations

Risk lowering utilization by removing
ancillary service functions

FERC

§ Congressional approval
§ Recovered from
regulated industries

§ Economic efficiency
§ Reliability
§ Policy implementation

TO needs to approach FERC with new
technology to receive favorable return for
new tech solution. Theoretically could
change incentive for transmission
technology investment over new wires.

PUC

§ Budget set at state level
§ Recovered from rate
payers.

§ Customer rates
§ Economic efficiency
§ Reliability
§ Policy implementation

§Transmission investment on economic
benefits accruing to their state rate
base vs everyone else in market area
§ Public perception
§ Re-election (where applicable)

ARPA-E Template
	
  

19

	
  
	
  
	
  
	
  
	
  

20	
  
	
  
Table	
  3.	
  Overview	
  of	
  beneficiaries	
  as	
  a	
  result	
  of	
  power	
  flow	
  control	
  improvements	
  in	
  the	
  
electric	
  grid.	
  

Power flow control technology
beneficiaries

Benefit is dependent on situation
Revenue losses likely in current system

Black start

Reliability &
Security

Improve
Contingency

Ancillary

Economic
Efficiency

Energy

Real Time

Congestion
Relief

Dispatch &
planning

Reduce
curtailment

Renewable
Integration
Improve inter
–connection

Prioritize or
defer new
investment

Value

Asset
Management
Improve
Utilization

Stakeholders

Likely benefit (financial or operational)

Transmission Owner
ISO/RTO
Renewable
Generator

Base Load
Generator
Reserve Generator
FERC
PUC
Consumer

PFC generally produces beneficiaries…except in cases where stakeholders
currently profit off of system inefficiencies

	
  

Conclusion/Next	
  steps	
  	
  
	
  
This	
  document	
  defined	
  power	
  flow	
  control	
  and	
  identified	
  and	
  described	
  technologies	
  that	
  enable	
  power	
  
flow	
  control.	
  It	
  identified	
  the	
  benefits	
  of	
  power	
  flow	
  control	
  and	
  how	
  these	
  benefits	
  accrue	
  to	
  various	
  
stakeholders	
  involved	
  in	
  the	
  electric	
  grid.	
  It	
  did	
  not	
  perform	
  a	
  detailed	
  analysis	
  of	
  system-­‐level	
  benefits	
  
or	
  provide	
  case	
  studies	
  quantifying	
  the	
  impact	
  of	
  power	
  flow	
  control	
  technologies.	
  	
  
As	
  power	
  flow	
  control	
  technologies	
  become	
  more	
  common	
  on	
  the	
  electric	
  grid,	
  further	
  analysis	
  will	
  be	
  
required	
  to	
  optimize	
  their	
  use	
  at	
  a	
  system	
  level.	
  This	
  should	
  include:	
  	
  	
  
Technology	
  case	
  studies	
  and	
  models	
  
•

Power	
  flow	
  control	
  technology	
  case	
  studies	
  and	
  data	
  sharing	
  to	
  document	
  lessons	
  learned	
  	
  
For	
  the	
  existing	
  cases	
  where	
  power	
  flow	
  control	
  technologies	
  are	
  installed	
  and	
  operated,	
  in-­‐
depth	
  analyses	
  will	
  advance	
  the	
  understanding	
  of	
  the	
  technical	
  capabilities,	
  costs,	
  and	
  benefits	
  
of	
  the	
  technology.	
  Where	
  possible,	
  case	
  studies	
  should	
  include	
  quantitative	
  analysis	
  of	
  the	
  

21	
  
	
  
•

•

•

effects	
  of	
  the	
  technology.	
  Data	
  sharing	
  at	
  a	
  high-­‐level	
  will	
  enable	
  deeper	
  understanding	
  of	
  the	
  
applications	
  of	
  power	
  flow	
  control	
  technologies.	
  Possible	
  case	
  studies	
  include	
  
o HVDC:	
  	
  
 Trans	
  Bay	
  Cable	
  and	
  its	
  use	
  and	
  effects	
  on	
  transmission	
  congestion	
  
 Bi-­‐polar	
  HVDC	
  applications	
  such	
  as	
  Cross	
  Sound	
  Cable	
  between	
  Connecticut	
  and	
  
Long	
  Island,	
  Cross	
  Chanel	
  Cable	
  between	
  the	
  UK	
  and	
  France	
  
o UPFC:	
  
 Marcy	
  station	
  UPFC	
  in	
  New	
  York.	
  What	
  was	
  the	
  economic	
  (market)	
  response	
  to	
  
its	
  operating	
  mode	
  set	
  points,	
  before	
  and	
  after	
  installation	
  
o DSR:	
  
 Case	
  study	
  on	
  the	
  Tennessee	
  Valley	
  Authority	
  pilot	
  installation	
  
Further	
  describe	
  and	
  quantify	
  the	
  benefits	
  of	
  power	
  flow	
  control	
  technology	
  to	
  a	
  particular	
  
stakeholder	
  
Interested	
  parties	
  will	
  seek	
  more	
  information	
  on	
  how	
  the	
  benefits	
  of	
  power	
  flow	
  control	
  
technologies	
  change	
  the	
  economics	
  of	
  the	
  system,	
  particularly	
  for	
  cases	
  where	
  the	
  benefits	
  of	
  a	
  
power	
  flow	
  control	
  vary	
  (e.g.,	
  those	
  situation	
  identified	
  as	
  “yellow”	
  in	
  Table	
  3–	
  in	
  what	
  
situations	
  are	
  these	
  green	
  and	
  red?)	
  
Develop	
  or	
  identify	
  a	
  uniform	
  model	
  for	
  analyzing	
  transmission	
  technologies	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Numerous	
  stakeholders	
  expressed	
  interest	
  in	
  a	
  uniform	
  grid	
  model	
  of	
  sufficient	
  size	
  to	
  model	
  
system-­‐level	
  effects	
  of	
  combinations	
  of	
  technological	
  installations.	
  
Add	
  power	
  flow	
  control	
  technology	
  specifications	
  to	
  existing	
  grid	
  modeling	
  software	
  	
  	
  	
  	
  	
  	
  
Recent	
  modeling	
  exercises	
  may	
  have	
  been	
  limited	
  by	
  the	
  technical	
  specifications	
  available	
  to	
  
modelers.	
  To	
  the	
  extent	
  that	
  these	
  set	
  points	
  can	
  be	
  added	
  rather	
  than	
  programmed	
  for	
  each	
  
specific	
  hypothetical	
  or	
  actual	
  installation,	
  decision	
  makers	
  would	
  have	
  more	
  accurate	
  models	
  
and	
  understanding	
  of	
  the	
  effects	
  of	
  technological	
  installations.	
  	
  

System	
  level	
  technical	
  and	
  market	
  analyses	
  
•

•

•

Technological	
  analysis	
  of	
  what	
  is	
  required	
  to	
  enable	
  power	
  flow	
  control	
  at	
  a	
  system	
  operator	
  
level	
  
Analysis	
  may	
  include	
  modeling	
  of	
  optimal	
  physical	
  positioning	
  of	
  devices	
  in	
  the	
  grid,	
  reliability	
  
modeling,	
  and	
  economic	
  modeling	
  of	
  the	
  impact	
  of	
  increased	
  transmission	
  capabilities	
  and	
  the	
  
increased	
  fluidity	
  of	
  changing	
  grid	
  topologies.	
  
Define	
  level	
  of	
  coordination	
  and	
  control	
  required	
  within	
  an	
  RTO	
  and	
  among	
  regions.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
In	
  order	
  to	
  increase	
  the	
  flexibility	
  of	
  the	
  transmission	
  and	
  distribution	
  grid	
  and	
  meet	
  goals	
  
around	
  reliability,	
  integration	
  of	
  renewable	
  electricity	
  at	
  the	
  utility	
  and	
  distributed	
  scale,	
  energy	
  
efficiency	
  and	
  demand	
  response	
  capabilities,	
  we	
  will	
  need	
  some	
  centralized	
  control	
  and	
  
centrally	
  coordinated	
  distributed	
  control.	
  This	
  will	
  provide	
  quick,	
  responsive	
  voltage	
  support	
  and	
  
meet	
  the	
  changing	
  needs	
  of	
  the	
  electric	
  grid.	
  
Consideration	
  of	
  market	
  design	
  for	
  a	
  flexible	
  transmission	
  grid	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Changing	
  grid	
  topologies	
  can	
  change	
  the	
  economics	
  of	
  generator	
  and	
  transmission	
  positioning	
  

22	
  
	
  
Benefits of power flow control
Benefits of power flow control
Benefits of power flow control

More Related Content

What's hot

Lecture 9 load equalization
Lecture 9 load equalizationLecture 9 load equalization
Lecture 9 load equalizationSwapnil Gadgune
 
1590053 634881478003587500
1590053 6348814780035875001590053 634881478003587500
1590053 634881478003587500Navyasri Jiguru
 
Transient overvoltages and currents: lightning surges
Transient overvoltages and currents: lightning surgesTransient overvoltages and currents: lightning surges
Transient overvoltages and currents: lightning surgesBruno De Wachter
 
DISTANCE PROTECTION RELAY
DISTANCE PROTECTION RELAYDISTANCE PROTECTION RELAY
DISTANCE PROTECTION RELAYRaviraj solanki
 
Induction Motor Tests Using MATLAB/Simulink
Induction Motor Tests Using MATLAB/SimulinkInduction Motor Tests Using MATLAB/Simulink
Induction Motor Tests Using MATLAB/SimulinkGirish Gupta
 
Ppt of current transformer
Ppt of current transformerPpt of current transformer
Ppt of current transformerROOPAL PANCHOLI
 
Over current protection
Over current protectionOver current protection
Over current protectionSHUBHAM KUMAR
 
HVDC and FACTS for Improved Power Delivery Through Long Transmission Lines
HVDC and FACTS for Improved Power Delivery Through Long Transmission LinesHVDC and FACTS for Improved Power Delivery Through Long Transmission Lines
HVDC and FACTS for Improved Power Delivery Through Long Transmission LinesRajaram Meena
 
Automatic Generation Control
Automatic Generation ControlAutomatic Generation Control
Automatic Generation ControlBirju Besra
 
32.open circuit and short circuit test .ppt
32.open circuit and short circuit test .ppt32.open circuit and short circuit test .ppt
32.open circuit and short circuit test .pptNANDHAKUMARA10
 
FPGA Based Speed Control of BLDC Motor
FPGA Based Speed Control of BLDC MotorFPGA Based Speed Control of BLDC Motor
FPGA Based Speed Control of BLDC MotorRajesh Pindoriya
 
Differential protection
Differential protectionDifferential protection
Differential protectionRishi Tandon
 
Control of active power & reactive power
Control of active power & reactive powerControl of active power & reactive power
Control of active power & reactive powerPavithran Selvam
 
power electronics digital notes.pdf
power electronics digital notes.pdfpower electronics digital notes.pdf
power electronics digital notes.pdfLucasMogaka
 

What's hot (20)

Lecture 9 load equalization
Lecture 9 load equalizationLecture 9 load equalization
Lecture 9 load equalization
 
UPQC ppt main
UPQC ppt mainUPQC ppt main
UPQC ppt main
 
Armature windings
Armature windingsArmature windings
Armature windings
 
Power flow analysis
Power flow analysisPower flow analysis
Power flow analysis
 
1590053 634881478003587500
1590053 6348814780035875001590053 634881478003587500
1590053 634881478003587500
 
Power quality improvement using UPQC
Power quality improvement using UPQCPower quality improvement using UPQC
Power quality improvement using UPQC
 
Transient overvoltages and currents: lightning surges
Transient overvoltages and currents: lightning surgesTransient overvoltages and currents: lightning surges
Transient overvoltages and currents: lightning surges
 
Armature reaction
Armature reactionArmature reaction
Armature reaction
 
DISTANCE PROTECTION RELAY
DISTANCE PROTECTION RELAYDISTANCE PROTECTION RELAY
DISTANCE PROTECTION RELAY
 
Induction Motor Tests Using MATLAB/Simulink
Induction Motor Tests Using MATLAB/SimulinkInduction Motor Tests Using MATLAB/Simulink
Induction Motor Tests Using MATLAB/Simulink
 
Ppt of current transformer
Ppt of current transformerPpt of current transformer
Ppt of current transformer
 
Over current protection
Over current protectionOver current protection
Over current protection
 
HVDC and FACTS for Improved Power Delivery Through Long Transmission Lines
HVDC and FACTS for Improved Power Delivery Through Long Transmission LinesHVDC and FACTS for Improved Power Delivery Through Long Transmission Lines
HVDC and FACTS for Improved Power Delivery Through Long Transmission Lines
 
Automatic Generation Control
Automatic Generation ControlAutomatic Generation Control
Automatic Generation Control
 
32.open circuit and short circuit test .ppt
32.open circuit and short circuit test .ppt32.open circuit and short circuit test .ppt
32.open circuit and short circuit test .ppt
 
FPGA Based Speed Control of BLDC Motor
FPGA Based Speed Control of BLDC MotorFPGA Based Speed Control of BLDC Motor
FPGA Based Speed Control of BLDC Motor
 
Transformer basics
Transformer   basicsTransformer   basics
Transformer basics
 
Differential protection
Differential protectionDifferential protection
Differential protection
 
Control of active power & reactive power
Control of active power & reactive powerControl of active power & reactive power
Control of active power & reactive power
 
power electronics digital notes.pdf
power electronics digital notes.pdfpower electronics digital notes.pdf
power electronics digital notes.pdf
 

Viewers also liked

The Advanced Distribution Management System (ADMS)
The Advanced Distribution Management System (ADMS)The Advanced Distribution Management System (ADMS)
The Advanced Distribution Management System (ADMS)Schneider Electric
 
Authority flows from who knows
Authority flows from who knowsAuthority flows from who knows
Authority flows from who knowsRamziya Begam
 
ITFT- Principles of Management
ITFT- Principles of ManagementITFT- Principles of Management
ITFT- Principles of ManagementNeelu333
 
Power Flow Control in Power System Using FACT Device Thyristor Controlled Ser...
Power Flow Control in Power System Using FACT Device Thyristor Controlled Ser...Power Flow Control in Power System Using FACT Device Thyristor Controlled Ser...
Power Flow Control in Power System Using FACT Device Thyristor Controlled Ser...IOSR Journals
 
Delegation.ppt
Delegation.pptDelegation.ppt
Delegation.pptEVEN15
 
authority relationships: delegation and decentralization
authority relationships: delegation and decentralizationauthority relationships: delegation and decentralization
authority relationships: delegation and decentralizationivani katal
 
Advanced AC and DC Power Electronics Based Grid Technologies for the Ecosyste...
Advanced AC and DC Power Electronics Based Grid Technologies for the Ecosyste...Advanced AC and DC Power Electronics Based Grid Technologies for the Ecosyste...
Advanced AC and DC Power Electronics Based Grid Technologies for the Ecosyste...Energy Network marcus evans
 
Delegation & empowerment presentation
Delegation & empowerment presentationDelegation & empowerment presentation
Delegation & empowerment presentationKamal Prasad
 
power flow and optimal power flow
power flow and optimal power flowpower flow and optimal power flow
power flow and optimal power flowAhmed M. Elkholy
 
Wireless Power Transmission through TESLA COILS
Wireless Power Transmission through TESLA COILS Wireless Power Transmission through TESLA COILS
Wireless Power Transmission through TESLA COILS Naila Syed
 
Delegation of authority, responsibility and Decntralization
Delegation of authority, responsibility and DecntralizationDelegation of authority, responsibility and Decntralization
Delegation of authority, responsibility and DecntralizationRajan Neupane
 
Departmentalization
Departmentalization Departmentalization
Departmentalization Fawad Ahmad
 
DISTRIBUTED GENERATION ENVIRONMENT WITH SMART GRID
DISTRIBUTED GENERATION ENVIRONMENT WITH SMART GRIDDISTRIBUTED GENERATION ENVIRONMENT WITH SMART GRID
DISTRIBUTED GENERATION ENVIRONMENT WITH SMART GRIDNIT MEGHALAYA
 
Power Flow Control In A Transmission Line Using Unified Power Flow Controller
Power Flow Control In A Transmission Line Using Unified  Power Flow ControllerPower Flow Control In A Transmission Line Using Unified  Power Flow Controller
Power Flow Control In A Transmission Line Using Unified Power Flow ControllerIJMER
 
Democracy and participation revision 2014
Democracy and participation revision 2014Democracy and participation revision 2014
Democracy and participation revision 2014ajo909
 

Viewers also liked (20)

The Advanced Distribution Management System (ADMS)
The Advanced Distribution Management System (ADMS)The Advanced Distribution Management System (ADMS)
The Advanced Distribution Management System (ADMS)
 
Authority flows from who knows
Authority flows from who knowsAuthority flows from who knows
Authority flows from who knows
 
Unit 4 organising
Unit 4 organisingUnit 4 organising
Unit 4 organising
 
ITFT- Principles of Management
ITFT- Principles of ManagementITFT- Principles of Management
ITFT- Principles of Management
 
Power Flow Control in Power System Using FACT Device Thyristor Controlled Ser...
Power Flow Control in Power System Using FACT Device Thyristor Controlled Ser...Power Flow Control in Power System Using FACT Device Thyristor Controlled Ser...
Power Flow Control in Power System Using FACT Device Thyristor Controlled Ser...
 
Delegation.ppt
Delegation.pptDelegation.ppt
Delegation.ppt
 
authority relationships: delegation and decentralization
authority relationships: delegation and decentralizationauthority relationships: delegation and decentralization
authority relationships: delegation and decentralization
 
Delegate to Empower (Powerpoint)
Delegate to Empower (Powerpoint)Delegate to Empower (Powerpoint)
Delegate to Empower (Powerpoint)
 
Advanced AC and DC Power Electronics Based Grid Technologies for the Ecosyste...
Advanced AC and DC Power Electronics Based Grid Technologies for the Ecosyste...Advanced AC and DC Power Electronics Based Grid Technologies for the Ecosyste...
Advanced AC and DC Power Electronics Based Grid Technologies for the Ecosyste...
 
Delegation & empowerment presentation
Delegation & empowerment presentationDelegation & empowerment presentation
Delegation & empowerment presentation
 
DELEGATION
DELEGATIONDELEGATION
DELEGATION
 
Auhtority and responsibilty
Auhtority and responsibiltyAuhtority and responsibilty
Auhtority and responsibilty
 
power flow and optimal power flow
power flow and optimal power flowpower flow and optimal power flow
power flow and optimal power flow
 
Wireless Power Transmission through TESLA COILS
Wireless Power Transmission through TESLA COILS Wireless Power Transmission through TESLA COILS
Wireless Power Transmission through TESLA COILS
 
Delegation of authority, responsibility and Decntralization
Delegation of authority, responsibility and DecntralizationDelegation of authority, responsibility and Decntralization
Delegation of authority, responsibility and Decntralization
 
Delegation
Delegation Delegation
Delegation
 
Departmentalization
Departmentalization Departmentalization
Departmentalization
 
DISTRIBUTED GENERATION ENVIRONMENT WITH SMART GRID
DISTRIBUTED GENERATION ENVIRONMENT WITH SMART GRIDDISTRIBUTED GENERATION ENVIRONMENT WITH SMART GRID
DISTRIBUTED GENERATION ENVIRONMENT WITH SMART GRID
 
Power Flow Control In A Transmission Line Using Unified Power Flow Controller
Power Flow Control In A Transmission Line Using Unified  Power Flow ControllerPower Flow Control In A Transmission Line Using Unified  Power Flow Controller
Power Flow Control In A Transmission Line Using Unified Power Flow Controller
 
Democracy and participation revision 2014
Democracy and participation revision 2014Democracy and participation revision 2014
Democracy and participation revision 2014
 

Similar to Benefits of power flow control

Smart Power Transmission System Using FACTS Device
Smart Power Transmission System Using FACTS DeviceSmart Power Transmission System Using FACTS Device
Smart Power Transmission System Using FACTS DeviceIJAPEJOURNAL
 
New solutions for optimization of the electrical distribution system availabi...
New solutions for optimization of the electrical distribution system availabi...New solutions for optimization of the electrical distribution system availabi...
New solutions for optimization of the electrical distribution system availabi...Mohamed Ghaieth Abidi
 
H6 Handbook of Electrical Power System Dynamics Modeling, Stability and Contr...
H6 Handbook of Electrical Power System Dynamics Modeling, Stability and Contr...H6 Handbook of Electrical Power System Dynamics Modeling, Stability and Contr...
H6 Handbook of Electrical Power System Dynamics Modeling, Stability and Contr...EMERSON EDUARDO RODRIGUES
 
A comprehensive review on D-FACTS devices
A comprehensive review on D-FACTS devicesA comprehensive review on D-FACTS devices
A comprehensive review on D-FACTS devicesijtsrd
 
Improving power quality in microgrid by means of using
Improving power quality in microgrid by means of usingImproving power quality in microgrid by means of using
Improving power quality in microgrid by means of usingeSAT Publishing House
 
IRJET- Analysis of Demand Side Management of Distribution Systems
IRJET-  	  Analysis of Demand Side Management of Distribution SystemsIRJET-  	  Analysis of Demand Side Management of Distribution Systems
IRJET- Analysis of Demand Side Management of Distribution SystemsIRJET Journal
 
1-s2.0-S037877962100095X-main.pdf
1-s2.0-S037877962100095X-main.pdf1-s2.0-S037877962100095X-main.pdf
1-s2.0-S037877962100095X-main.pdfbhimsen987
 
Optimal Placement of Distributed Generation on Radial Distribution System for...
Optimal Placement of Distributed Generation on Radial Distribution System for...Optimal Placement of Distributed Generation on Radial Distribution System for...
Optimal Placement of Distributed Generation on Radial Distribution System for...IJMER
 
Dealing With Reactive Power in Islanded Micro Grid Corresponding Power Distri...
Dealing With Reactive Power in Islanded Micro Grid Corresponding Power Distri...Dealing With Reactive Power in Islanded Micro Grid Corresponding Power Distri...
Dealing With Reactive Power in Islanded Micro Grid Corresponding Power Distri...ijtsrd
 
Application of static synchronous compensator and energy storage system for p...
Application of static synchronous compensator and energy storage system for p...Application of static synchronous compensator and energy storage system for p...
Application of static synchronous compensator and energy storage system for p...journalBEEI
 
IRJET- A Review on AC DC Microgrid System
IRJET- A Review on AC DC Microgrid SystemIRJET- A Review on AC DC Microgrid System
IRJET- A Review on AC DC Microgrid SystemIRJET Journal
 
Current Trends in Smart grid Technology
Current Trends in Smart grid TechnologyCurrent Trends in Smart grid Technology
Current Trends in Smart grid Technologyijtsrd
 
IRJET- Feed-Forward Neural Network Based Transient Stability Assessment o...
IRJET-  	  Feed-Forward Neural Network Based Transient Stability Assessment o...IRJET-  	  Feed-Forward Neural Network Based Transient Stability Assessment o...
IRJET- Feed-Forward Neural Network Based Transient Stability Assessment o...IRJET Journal
 
Transmission line loadability improvement using facts device
Transmission line loadability improvement using facts deviceTransmission line loadability improvement using facts device
Transmission line loadability improvement using facts deviceeSAT Publishing House
 
Improved Power Quality by using STATCOM Under Various Loading Conditions
Improved Power Quality by using STATCOM Under Various Loading ConditionsImproved Power Quality by using STATCOM Under Various Loading Conditions
Improved Power Quality by using STATCOM Under Various Loading ConditionsIJMTST Journal
 
Control of Hybrid AC DC Micro Grid Involving Energy Storage, Renewable Energy...
Control of Hybrid AC DC Micro Grid Involving Energy Storage, Renewable Energy...Control of Hybrid AC DC Micro Grid Involving Energy Storage, Renewable Energy...
Control of Hybrid AC DC Micro Grid Involving Energy Storage, Renewable Energy...ijtsrd
 
IRJET- Voltage Stability, Loadability and Contingency Analysis with Optimal I...
IRJET- Voltage Stability, Loadability and Contingency Analysis with Optimal I...IRJET- Voltage Stability, Loadability and Contingency Analysis with Optimal I...
IRJET- Voltage Stability, Loadability and Contingency Analysis with Optimal I...IRJET Journal
 

Similar to Benefits of power flow control (20)

Smart Power Transmission System Using FACTS Device
Smart Power Transmission System Using FACTS DeviceSmart Power Transmission System Using FACTS Device
Smart Power Transmission System Using FACTS Device
 
New solutions for optimization of the electrical distribution system availabi...
New solutions for optimization of the electrical distribution system availabi...New solutions for optimization of the electrical distribution system availabi...
New solutions for optimization of the electrical distribution system availabi...
 
H6 Handbook of Electrical Power System Dynamics Modeling, Stability and Contr...
H6 Handbook of Electrical Power System Dynamics Modeling, Stability and Contr...H6 Handbook of Electrical Power System Dynamics Modeling, Stability and Contr...
H6 Handbook of Electrical Power System Dynamics Modeling, Stability and Contr...
 
A comprehensive review on D-FACTS devices
A comprehensive review on D-FACTS devicesA comprehensive review on D-FACTS devices
A comprehensive review on D-FACTS devices
 
Improving power quality in microgrid by means of using
Improving power quality in microgrid by means of usingImproving power quality in microgrid by means of using
Improving power quality in microgrid by means of using
 
IRJET- Analysis of Demand Side Management of Distribution Systems
IRJET-  	  Analysis of Demand Side Management of Distribution SystemsIRJET-  	  Analysis of Demand Side Management of Distribution Systems
IRJET- Analysis of Demand Side Management of Distribution Systems
 
1-s2.0-S037877962100095X-main.pdf
1-s2.0-S037877962100095X-main.pdf1-s2.0-S037877962100095X-main.pdf
1-s2.0-S037877962100095X-main.pdf
 
Pc3426502658
Pc3426502658Pc3426502658
Pc3426502658
 
Smart grid management an overview
Smart grid management an overviewSmart grid management an overview
Smart grid management an overview
 
Optimal Placement of Distributed Generation on Radial Distribution System for...
Optimal Placement of Distributed Generation on Radial Distribution System for...Optimal Placement of Distributed Generation on Radial Distribution System for...
Optimal Placement of Distributed Generation on Radial Distribution System for...
 
Dealing With Reactive Power in Islanded Micro Grid Corresponding Power Distri...
Dealing With Reactive Power in Islanded Micro Grid Corresponding Power Distri...Dealing With Reactive Power in Islanded Micro Grid Corresponding Power Distri...
Dealing With Reactive Power in Islanded Micro Grid Corresponding Power Distri...
 
Application of static synchronous compensator and energy storage system for p...
Application of static synchronous compensator and energy storage system for p...Application of static synchronous compensator and energy storage system for p...
Application of static synchronous compensator and energy storage system for p...
 
06200347
0620034706200347
06200347
 
IRJET- A Review on AC DC Microgrid System
IRJET- A Review on AC DC Microgrid SystemIRJET- A Review on AC DC Microgrid System
IRJET- A Review on AC DC Microgrid System
 
Current Trends in Smart grid Technology
Current Trends in Smart grid TechnologyCurrent Trends in Smart grid Technology
Current Trends in Smart grid Technology
 
IRJET- Feed-Forward Neural Network Based Transient Stability Assessment o...
IRJET-  	  Feed-Forward Neural Network Based Transient Stability Assessment o...IRJET-  	  Feed-Forward Neural Network Based Transient Stability Assessment o...
IRJET- Feed-Forward Neural Network Based Transient Stability Assessment o...
 
Transmission line loadability improvement using facts device
Transmission line loadability improvement using facts deviceTransmission line loadability improvement using facts device
Transmission line loadability improvement using facts device
 
Improved Power Quality by using STATCOM Under Various Loading Conditions
Improved Power Quality by using STATCOM Under Various Loading ConditionsImproved Power Quality by using STATCOM Under Various Loading Conditions
Improved Power Quality by using STATCOM Under Various Loading Conditions
 
Control of Hybrid AC DC Micro Grid Involving Energy Storage, Renewable Energy...
Control of Hybrid AC DC Micro Grid Involving Energy Storage, Renewable Energy...Control of Hybrid AC DC Micro Grid Involving Energy Storage, Renewable Energy...
Control of Hybrid AC DC Micro Grid Involving Energy Storage, Renewable Energy...
 
IRJET- Voltage Stability, Loadability and Contingency Analysis with Optimal I...
IRJET- Voltage Stability, Loadability and Contingency Analysis with Optimal I...IRJET- Voltage Stability, Loadability and Contingency Analysis with Optimal I...
IRJET- Voltage Stability, Loadability and Contingency Analysis with Optimal I...
 

Recently uploaded

GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Enterprise Knowledge
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure servicePooja Nehwal
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
Developing An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilDeveloping An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilV3cube
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Paola De la Torre
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 

Recently uploaded (20)

GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
Developing An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilDeveloping An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of Brazil
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 

Benefits of power flow control

  • 1.           Advanced  Research  Projects  Agency  for  Energy,  U.S.  Department  of  Energy   Benefits  of  Power   Flow  Control   Hardware  and  Software  Technologies   Lotte  Schlegel,  Chris  Babcock  and  Josh  Gould   9/27/2013    
  • 2. Contents   Purpose  and  Scope  ......................................................................................................................................  3   Characteristics,  Capabilities  and  Technologies  of  a  Flexible  Grid  ................................................................  3   Power  Flow  Control  Technology  Defined  ................................................................................................  4   Hardware  .............................................................................................................................................  5      High  Voltage  Direct  Current  ...............................................................................................................  5      HVAC  Power  Transmission  Controllers  (PTC)  .....................................................................................  7      Software  .............................................................................................................................................  9      Topology  Control  Algorithms  (TCAs)  ..................................................................................................  9   Value  Analysis  of  Power  Flow  Control  .......................................................................................................  11   Identification  of  Value  Propositions  ......................................................................................................  12   Asset  Management  ............................................................................................................................  12   Reliability  and  Security   .......................................................................................................................  13   Congestion  Relief  ...............................................................................................................................  14      Integration  of  renewable  energy  .....................................................................................................  14      Economic  Efficiency  .........................................................................................................................  15   Summary  of  Power  Flow  Control  Technology  Value   ..............................................................................  18   Stakeholders  in  the  Transmission  Grid  Influence  Technology  Investment  Decisions  ............................  18   Conclusion/Next  steps  ...............................................................................................................................  21   References  .................................................................................................................................................  24                     2    
  • 3. Purpose  and  Scope     Electricity  is  dynamic  –  supply  must  meet  demand  that  changes  by  the  second  in  the  electric  grid.  While   electricity  markets  have  evolved  to  price  supply  dynamically  and  demand  response  systems  have   developed  to  manage  demand  on  a  dynamic  basis,  the  transmission  grid  is  inflexible.  When  the  flow  of   electrons  is  disrupted  by  a  storm,  an  accident,  or  congestion  choking  the  lines  like  cars  on  an  interstate,   it  affects  the  wallets  of  people  and  businesses.    The  electric  transmission  grid  costs  consumers  billions  in   congestion  costs,  is  difficult  and  expensive  to  upgrade,  and  does  not  respond  quickly  to  contingency   events  –  costing  $79  billion  annually  in  power  interruptions  (Hamachi  LaCommare,  2004).  Transmission   infrastructure  in  the  U.S.  is  aging  -­‐  as  of  2008,  70%  of  transmission  lines  and  transformers  are  25  years  or   older  and  60%  of  circuit  breakers  are  30  years  or  older  (DOE,  2008).     The  electric  grid  of  the  future  will  need  to  be  sufficiently  flexible,  responsive,  and  reliable  to  support   variable  generation  resources,  reduce  areas  of  transmission  congestion,  and  respond  quickly  to  system   disruptions  due  to  severe  weather  events.  The  impending  upgrades  to  infrastructure  present  an   opportunity  to  include  technologies  to  improve  resiliency  of  the  grid.  Increasing  the  flexibility  of  the   electric  transmission  grid  can  be  the  cornerstone  to  addressing  all  of  these  challenges.     ARPA-­‐E’s  Green  Electricity  Network  Integration  “GENI”  program  envisions  a  future  in  which  the   transmission  grid  can  be  controlled  to  optimize  the  use  of  cost-­‐effective,  clean  generation  resources   while  providing  high-­‐quality,  reliable  power1.  To  that  end,  ARPA-­‐E  is  funding  research  into   transformative  hardware  and  software  technologies  that  could  significantly  change  the  ability  to  control   the  flow  of  electricity  in  the  power  grid.     This  analysis  is  intended  to  add  to  the  conversation  about  the  benefits  of  a  flexible  transmission  system   achieved  through  power  flow  control  technologies.  Specifically,  it  will  describe  and  categorize  the   benefits  of  power  flow  control  technologies  and  define  the  impact  of  technologies  used  for  power  flow   control.  It  will  also  make  recommendations  for  further  studies  and  analyses  on  power  flow  control.       Characteristics,  Capabilities  and  Technologies  of  a  Flexible  Grid       Historically,  the  electric  grid  was  designed  to  be  a  passive,  one-­‐directional  system.  To  improve  the  grid’s   reliability  and  turn  intermittent  power  sources  into  major  contributors  in  the  U.S.  energy  mix,  the  grid   needs  to  be  designed  and  operated  to  be  smarter  and  more  flexible.  Power  flow  control  is  one  way  to   increase  the  flexibility  and  resiliency  of  the  electric  grid.  Power  flow  is  determined  by  the  impedance  of   a  transmission  line  and  the  difference  in  voltage  at  each  end  (M.I.T.,  2011)2.  Power  flow  control  is  the                                                                                                                           1  More  at  http://arpa-­‐e.energy.gov/?q=arpa-­‐e-­‐programs/geni      From  MIT’s  Future  of  the  Electric  Grid.  “Two  factors  determine  power  flow:  the  impedance  of  a  line  and  the   difference  in  the  instantaneous  voltages  at  its  two  ends.  Impedance  is  the  combination  of  resistance  and   reactance.  Resistance  accounts  for  energy  that  is  lost  as  heat  in  the  line.  It  is  analogous  to  the  physical  resistance   exerted  by  water  on  a  swimmer  or  wind  on  a  cyclist.  Energy  lost  in  this  way  can  never  be  recovered.  Reactance   accounts  for  energy  associated  with  the  electric  and  magnetic  fields  around  the  line.  This  energy  is  analogous  to   2 3    
  • 4. ability  to  change  the  way  that  power  flows  through  the  transmission  grid  using  hardware  and  software   to  maximize  system  value.  These  technologies  can  change  the  effective  impedance  of  the  network  or   the  sending  and  receiving  voltages  to  influence  the  path  of  electrons  flowing  through  the  transmission   grid.  This  enables  the  ability  to  hold  power  on  a  transmission  line  at  a  certain  level  or  direction.   Electrons  follow  the  path  of  least  resistance  (or  lowest  impedance),  and  the  result  of  changing  the   pathways  of  the  grid  is  to  change  the  way  that  power  flows  through  the  transmission  system.   Specifically,  power  flow  control  can  be  used  to  remove  congestion,  respond  to  contingency  events  (e.g.   loss  of  a  generator  or  transmission  line),  and  mitigate  power  quality  issues.   Power  flow  control  includes  the  faculties  to  control  the  voltage  or  impedance  on  given  major   transmission  lines,  switch  lines  on  and  off,  direct  power  from  one  line  to  another  to  increase  the   capacity  of  a  transmission  route,  provide  voltage  support,  transport  power  efficiently  over  long   distances,  and  quickly  reverse  the  direction  of  power  flow  from  one  area  to  another  in  response  to   contingencies.  A  system  planner  can  optimize  power  flow  on  a  system  by  choosing  among  technologies   to  enable  each  of  these  capabilities  as  appropriate.  In  order  to  fully  integrate  power  flow  control  at  the   system  level,  information  systems,  hardware  technology,  and  human  operators  at  ISOs/RTOs,   generators,  and  transmission  and  distribution  companies  coordinate  to  match  system  supply  and   demand  at  every  moment.  For  instance,  information  (such  as  forecasting  of  weather,  supply  and   demand),  sensors,  communication  devices,  and  control  technology  work  together  to  enable  physical   changes  to  the  transmission  grid.  As  power  flow  control  hardware  technologies  are  added  to  the  system,   coordinated  control  of  the  transmission  grid  will  maximize  the  efficacy  of  power  flow  control  and  ensure   reliability  across  the  system.  Changes  are  likely  required  to  optimize  the  coordination  of  the  grid  with   the  addition  of  power  flow  control  technologies  -­‐  for  instance,  as  variables  and  options  are  added  to  the   system,  either  a  central  operator  with  sufficient  computational  power  to  respond  to  dynamic  grid   conditions  or  coordinated  distributed  control  will  be  necessary  to  ensure  system  optimization.     Power  flow  control  can  increase  reliability  and  resiliency,  optimize  transmission  asset  efficiency  and  help   prioritize  new  transmission  construction  by  increasing  the  capacity  of  the  transmission  grid,  reduce  cost   to  electric  consumers,  facilitate  grid-­‐interconnection  of  generation,  storage,  demand  response,  and   detect  and  minimize  the  impact  of  unforeseen  disruption  events  such  as  extreme  weather.  The   following  sections  will  describe  the  technologies  that  enable  power  flow  control  and  the  value  that   power  flow  control  capabilities  afford  to  different  stakeholders  in  the  electric  grid.     Power  Flow  Control  Technology  Defined     Both  hardware  and  software  technologies  have  power  flow  control  applications.  This  analysis  will  focus   on  two  types  of  hardware  technologies  –  High  Voltage  Direct  Current  (HVDC)  transmission  cables  and                                                                                                                                                                                                                                                                                                                                                                                                 the  potential  energy  stored  when  riding  a  bicycle  up  a  hill.  It  is  recovered  (in  the  ideal  case)  when  going  down  the   other  side.  In  an  AC  line  in  the  U.S.,  this  energy  is  stored  and  recovered  120  times  per  second,  and  thus  is  quite   different  from  the  behavior  of  energy  stored  in  devices  such  as  batteries.  The  resistance  of  a  line  is  determined  by   the  material  properties,  length,  and  cross-­‐section  of  the  conductor,  while  reactance  is  determined  by  geometric   properties  (the  position  of  conductors  relative  to  each  other  and  ground).  In  practical  transmission  lines,  resistance   is  small  compared  to  reactance,  and  thus  reactance  has  more  influence  on  power  flow  than  resistance.”   4    
  • 5. substation  equipment;  and  High  Voltage  Alternating  Current  (HVAC)  power  transmission  controllers  that   use  power  electronics  to  augment  the  existing  AC  grid.  In  addition,  the  capabilities  enabled  by  software   control  algorithms  such  as  topology  control  are  discussed.     Hardware   Hardware  can  efficiently  direct  the  flow  of  power  on  the  grid,  help  stem  energy  losses,  and  enable  the   grid  to  be  more  responsive  and  resilient.  Advances  in  materials  and  engineering  are  decreasing  the  costs   of  power  flow  hardware;  many  of  the  concepts  of  which  have  been  around  for  a  long  time.  The   descriptions  below  include  power  flow  control  technologies  that  already  exist  and  are  in  wide  spread   use  in  the  grid  today,  as  well  as  emerging  technologies  not  yet  in  use  that  show  tremendous  promise  for   power  flow  control  applications.     High  Voltage  Direct  Current  transmission  systems  are  composed  of  one  or  more  DC  transmission   lines  or  cables  between  a  converter  (combined  rectifier  and  inverter),  which  converts  AC  to  DC  or  vice   versa.  The  DC  lines/cables  in  concert  with  the  most  recent  voltage  source  converter  (VSC)  technology   enable  rapid  control  of  the  direction  of  power  flow.  Both  voltage  and  current  source  converters  can   invert  DC  to  a  matching  AC  frequency  of  an  interconnected  AC  grid,  which  affords  HVDC  the  ability  to   connect  two  asynchronous  AC  systems.  DC  poses  fewer  technical  challenges  compared  to  AC  because  it   is  not  necessary  to  match  frequency,  phase  or  voltage.  DC  can  be  configured  as  a  monopolar  (one  cable)   or  bipolar  (two  cable)  system  which  offers  cost  savings  over  tripolar  AC  designs  which  require  one  cable   for  each  of  the  three  phases.  Because  of  this  and  the  lower  line  losses  (30-­‐50%  lower  as  compared  to   AC),  HVDC  transmission  lines  are  the  least  expensive  option  for  transmitting  power  over  long  distances   (Reed,  2012).  HVDC  transformers  have  been  more  expensive  relative  to  HVAC.  The  distance  at  which  a   given  HVDC  line  becomes  more  cost  effective  than  HVAC  at  a  given  voltage  is  the  difference  between   line  and  terminal  costs  including  the  difference  between  losses  (see  Figure  1).  Also,  when  connected   with  an  AC  grid,  HVDC  can  mitigate  power  factor  issues  (current  lagging/leading  voltage)  by  providing   reactive  power  support,  and  can  provide  black  start  capabilities3  with  VSCs.     HVDC  transmission  systems  are  used  to  transport  power  over  long  distances  and  sub-­‐sea.  HVDC  lines   with  VSCs  allow  for  bi-­‐directional  control  of  power  flow  and  can  be  directly  scheduled  and  dispatched.   Bi-­‐directionality  allows  for  the  export  of  energy  from  control  area  A  to  control  area  B  under  certain   conditions,  and  re-­‐dispatch  for  import  of  energy  from  area  B  to  area  A  in  other  scenarios.  One  example   of  bi-­‐directional  flow  is  the  HVDC  cross  channel  2,000  MW  link  that  imports  electricity  to  Britain  from   France  during  much  of  the  year,  but  exports  power  to  France  during  the  summer  when  demand  is  high   or  to  meet  load  during  scheduled  outages.  The  Cross  Sound  Cable  between  Connecticut  and  Long  Island   is  also  bi-­‐directional,  although  power  flows  from  Connecticut  to  Long  Island  for  most  hours  of  the  year.                                                                                                                           3  Black  start  is  the  process  of  restoring  power  to  a  power  plant,  normally  without  relying  on  the  power  of  the   transmission  grid.  Typically  in  the  case  of  a  wider  grid  outage,  black  start  is  provided  in  a  sequence:  a  portable   generator  is  used  to  start  one  power  plant,  the  proximal  transmission  lines  are  energized  and  the  power  used  to   start  the  next  base  load  generator,  and  so  on.  Voltage  Source  Converters  can  be  used  for  black  start  as  they  can   synthesize  a  balanced  set  of  three  phase  voltages.       5    
  • 6.   Fig.  1.  Breakeven   distance  for  HVDC   transmission  lines   HVDC  becomes  cost   competitive  with  HVAC   over  a  distance  at  which   line  losses  at  a  given   voltage  are  lower  than  a   comparable  HVAC  line.                     Source:  Pike  Research,     2012     HVDC  technology  has  gained  popularity  since  the  mid-­‐20th  century.  Historically,  the  limitations  to  its   practical  use  have  been  the  high  cost  of  the  power  electronics  required  for  the  converter.  Recent   technical  breakthroughs  have  reduced  the  cost  of  power  electronics  and  increased  their  application.   HVDC  is  now  being  deployed  globally,  with  dozens  of  projects  in  the  global  pipeline,  and  is  of  particular   importance  to  integrating  distant,  renewable  energy  generators  such  as  offshore  wind  farms.  When   considering  new  transmission  corridors,  HVDC  is  more  favorable  to  HVAC  because  of  the  smaller   footprint  of  the  transmission  towers.  HVDC  proponents  envision  a  future  in  which  DC  cables  are   embedded  within  the  existing  AC  grid  and  multi-­‐terminal  HVDC  allows  for  a  superimposed  HVDC   network  that  will  help  to  integrate  remote  resources,  improve  system  stability  and  reliability  via  AC-­‐DC   interties,  and  increase  control  of  power  flows  through  the  system.  HVDC  technologies  are  being   developed  by  numerous  vendors,  including  General  Electric  with  funding  from  the  ARPA-­‐E  GENI   program.     GE  Global  Research  is  developing  two  ARPA-­‐E  funded  projects  to     improve  HVDC  technology  –  multi-­‐terminal  HVDC  and  improved  cable   insulation.       The  multi-­‐terminal  HVDC  Networks  with  High-­‐Voltage  High-­‐   Frequency  Electronics  project  is  developing  multi-­‐terminal  HVDC-­‐ compatible  converters  to  improve  the  ability  to  network  HVDC  and     integrate  renewable  energy  into  the  grid.         Nanoclay  Reinforced  Ethylene-­‐Propylene-­‐Rubber  for  Low-­‐Cost  HVDC     Cabling  project  is  developing  low-­‐cost  insulation  for  HVDC   transmission  cables.  Cables  will  be  less  expensive  and  suppress  excess     charge  accumulation,  which  will  protect  the  insulation.           6    
  • 7. HVAC  Power  Transmission  Controllers  (PTC)  can  control  impedance,  voltage  and  phase  and  hold   power  at  a  desired  level  and  direction  of  flow.  PTC  devices  use  a  combination  of  solid  state  power   electronics  and  other  static  equipment  to  modulate  the  state  of  a  given  AC  transmission  line  by  injecting   and  removing  voltage  and  impedance.  These  coordinated  actions  result  in  controllable  voltage/current   phase  shift  to  manage  real  and  reactive  power  flows,  controllable  line  impedance  to  increase  or   decrease  current,  and  the  ability  to  balance  the  current  phase  between  the  three  phases  of  an  AC   transmission  system.     Historically,  these  capabilities  were  accomplished  by  Flexible  Alternating  Current  Transmission  Systems   (FACTS),  which  employed  similar  power  electronic  devices  in  substations  and  were  typically  large  and   capital  intensive.  Today,  advances  in  technology  are  decreasing  the  cost  and  footprint,  and  increasing   the  reliability  and  operability  of  these  devices,  making  HVAC  PTC  viable  solutions  for  power  flow  control   applications.  Such  devices  are  being  developed  by  several  ARPA-­‐E  GENI  teams,  including  Smart  Wire   Grid,  Varentec,  Oak  Ridge  National  Laboratory,  and  Michigan  State  University.       Phase  Shifting  Transformers   Phase  shifting  transformers  change  the  voltage  phase  angle  between  primary  and  secondary  windings,   changing  the  input  and  output  voltages  of  a  line  and  thereby  controlling  the  active  power  that  can  flow   in  the  line.  Effectively,  they  inject  a  voltage  in  series  with  the  line.  This  enables  control  of  power  flow   between  two  power  systems,  balances  loading,  and  improves  system  stability.       Dynamic  Power  Flow  Controller   Varentec  is  developing  low  cost  transmission  controllers  to   dynamically  control  voltage  and  power  flow  with  ARPA-­‐E  funding.  The   technology  would  enable  early  detection  and  fail-­‐safe  protection  of   the  transmission  grid  to  maintain  its  operating  state.       Magnetic  Amplifier  for  Power  Flow  Control   Oak  Ridge  National  Laboratory  is  developing  an  electromagnet-­‐based   amplifier-­‐like  device  that  will  allow  for  complete  control  over  the  flow   of  power.  The  prototype  device  is  a  low  cost  iron-­‐based  magnetic   amplifier.           Distributed  Series  Reactor   The  Distributed  Series  Reactor  (DSR)  is  a  technology  being  developed  by  Smart  Wire  Grid,  a  startup   based  in  Oakland,  California.  DSRs  are  small,  single-­‐turn  transformers  that  inject  inductance  onto  a   transmission  line.  The  level  of  inductance  is  tunable  to  alter  the  overall  line  impedance  and  thus  the  flow   of  current.  DSRs  are  distributed  along  transmission  lines,  in  all  3  phases,  and  can  communicate  with  each   other  to  form  a  variable  impedance  system.  They  can  also  operate  autonomously  to  alter  flows  at  a   specific  point  on  the  line.  As  such,  the  technology  can  help  to  reduce  congestion  and  balance  power  flow   within  a  system.   7    
  • 8. Shunt  Compensators     Shunt  devices  are  used  to  control  transmission  voltage,  reduce  reactive  losses,  dampen  power   oscillations  and  are  connected  in  shunt  to  a  transmission  line.  A  Static  Synchronous  Compensator   (STATCOM)  is  a  VSC  usually  connected  to  the  grid  through  a  shunt  transformer.  STATCOMs  do  not   require  the  bulk  capacitors  and  inductors  that  are  used  in  the  thyristor-­‐based  Static  Var  Compensators   (SVCs)  which  are  still  in  widespread  use  today.  Instead,  the  STATCOM  generates  reactive  power  entirely   electronically  and  can  act  as  either  a  source  or  sink  of  reactive  power.  The  STATCOM  can  also  exchange   real  power  between  the  grid  and  an  energy  storage  device  connected  at  its  DC  terminals.  VSCs  based  on   Insulated-­‐gate  bipolar  transistor  (IGBT)  technology4  have  much  faster  switching  times  than  other   compensator  technologies,  which  makes  them  particularly  useful  for  dynamic  voltage  support  and   power  factor  correction.       A  STATCOM  does  not  affect  power  flow  on  a  transmission  line  directly.  However,  by  using  local  shunt   reactive  power  injection  to  change  the  voltage  profile  of  a  transmission  line  (e.g.  support  voltage  at  the   midpoint  of  a  long  line),  it  can  enable  a  line  to  be  loaded  more  heavily  (e.g.  to  thermal  limits)  without   exceeding  steady  state  stability  margins  or  voltage  drop  limits.  In  contracts,  a  power  flow  controller  is   connected  in  series  with  a  transmission  line  and  has  the  ability  to  force  a  change  in  power  flow  on  the   line,  essentially  by  introducing  a  controllable  voltage  in  series  with  the  line.   Series  Compensators   A  Static  Series  Synchronous  Compensator  (SSSC)  is  a  VSC  connected  in  series  with  a  transmission  line.  It   has  the  ability  to  raise,  lower,  or  even  reverse  the  power  flow  on  the  line  by  injecting  a  relatively  small   voltage  in  series.  For  a  wide  range  of  power  flow  control,  only  reactive  power  output  from  the  VSC  is   needed.  However,  additional  control  capabilities  such  as  independent  control  of  real  and  reactive  power   flow,  can  be  obtained  if  a  source/sink  of  real  power  is  connected  to  the  DC  terminals  of  the  VSC.   Currently,  there  are  no  examples  of  SSSC  installations  in  transmission  grids  except  those  installed  as  part   of  the  three  Unified  Power  Flow  Controller  demonstration  projects.       A  stand-­‐alone  SSSC  is  a  more  versatile  (and  potentially  lower-­‐cost)  power  flow  controller  than  a   Thyristor-­‐Controlled  Phase  Angle  Regulating  Transformer  with  a  similar  MVA  rating,  which  is  the  closest   comparable  device.  At  present,  back-­‐to-­‐back  HVDC  is  being  considered  in  some  places  to  solve  loop   flows  and  other  transmission  problems,  but  requires  two  converters  rated  for  full  transmitted  power.  In   most  cases  the  problem  could  be  solved  with  a  single  fractionally  rated  SSSC.                                                                                                                           4  IGBT  technology  is  a  power  semiconductor  device  that  forms  an  electronic  switch.  They  are  high  efficiency,  fast   switching  and  can  handle  high  voltages  and  current  when  many  devices  are  stacked  in  parallel.     8    
  • 9. Thyristor  Controlled  Series  Capacitors  (TCSC)  are  a  family  of  equipment  that  provides  a  controllable   capacitance  (or  in  some  cases,  an  inductance)  connected  in  series  with  a  transmission  line  to  reduce  (or   increase)  the  total  reactance  of  the  line.     Unified  Power  Flow  Controllers  (UPFCs)   UPFCs  provide  the  functionality  of  both  shunt  and  series  compensators.  They  control  real  and  reactive   power  flow  and  provide  voltage  support  for  the  connecting  bus5.  Historically,  UPFCs  have  taken  up   significant  space,  been  very  expensive,  and  required  the  construction  of  large  transformers.  There  are   only  three  operational  UPFCs  in  the  world,  each  of  which  was  tailored  to  meet  a  particular  utility’s   problem.  However,  grid  operators  are  largely  uncomfortable  with  the  series  compensation  capabilities   of  UPFCs,  and  as  a  result  these  operating  modes  are  rarely  used,  leaving  the  UPFCs  to  operate  largely  as   a  STATCOM  (for  more,  see  Marcy  UPFC  case  study  in  this  document).  Moreover,  the  company  that  built   the  UPFCs  –  Westinghouse  –  was  acquired  by  Siemens,  which  no  longer  sells  or  supports  the  devices.  An   ARPA-­‐E  team  from  Michigan  State  University  is  building  a  transformer-­‐less  UPFC  which  addresses  these   issues  and  can  control  power  flows  from  intermittent  resources  including  wind  and  solar  resources.       Transformer-­‐Less  Unified  Power  Flow  Controller     Michigan  State  University  is  developing  a  power  flow  controller  to     improve  the  routing  of  electricity  from  renewable  sources  through  existing   power  lines.  The  UPFC  will  eliminate  the  need  for  a  transformer  and     construction  of  new  transmission  lines.  It  will  optimize  energy  transmission       and  h elp  reduce  transmission  congestion.     Software   Advancements  in  computing  and  data  communications  can  optimize  grid  operations,  match  power   delivery  to  real-­‐time  demand,  and  find  effective  ways  to  manage  sporadically  available  renewable  power   sources  and  grid-­‐level  power  storage.     Topology  Control  Algorithms  (TCAs)  are  a  network  solution  to  optimally  activate  (close)  and   deactivate  (open)  transmission  lines  to  decrease  the  cost  of  the  transmission  system.  This  is  based  on   the  counter-­‐intuitive,  but  demonstrated,  phenomenon  that  closing  a  congested  pathway  improves  the   overall  system  flow6.  TCAs  are  integrated  into  software  that  controls  the  grid’s  hardware  infrastructure,                                                                                                                           5  Real  power  is  power  delivered  to  the  end  user  to  do  work  (measured  in  watts).  Reactive  power  is  current   energizing  the  system  components  (measured  in  volt-­‐amperes  reactive-­‐  VAR).     6  Closing  a  congested  pathway  can  open  the  electric  flow  at  the  system  level.  This  has  been  demonstrated  by  ISOs   and  researchers,  including  the  Brattle  Group,  Argonne  National  Labs,  and  a  team  from  Texas  A&M.  To  illustrate   this  concept  a  team  from  Texas  A&M  showed  that  when  a  50MW  line  was  dropped  in  a  3-­‐line,  3-­‐generator  system,   the  feasible  cost  to  serve  load  dropped.  This  concept  is  demonstrated  in  the  diagrams  below:   9    
  • 10. and  change  the  shape  of  the  grid  by  actuating  line  switching  hardware  or  by  controlling  the  HVAC  PTC   devices  listed  above.  The  net  effect  of  changing  the  shape  of  the  grid  is  to  change  the  way  that  power   flows  through  the  transmission  system.     TCAs  are  not  a  new  concept;  they  have  been  employed  by  operators  of  wireless  ad-­‐hoc  networks  for   radios  (since  1970’s)  and  computers  (since  1990’s)  by  optimizing  the  transmission  power  of  each  node   to  improve  signal  flow  in  the  network.  For  the  electric  power  industry,  recent  advances  such  as  phasor   measurement  units  (PMUs),  low-­‐latency  communication  systems,  and  the  reduced  cost  and  improved   speed  of  computer  processors  allow  for  TCAs  to  be  an  effective  solution  for  power  flow  in  the   transmission  grid.  TCAs  are  being  developed  through  the  ARPA-­‐E  GENI  program  by  Texas  A&M  and   Boston  University.     Automated  Grid  Disruption  Response  System   Texas  A&M  is  developing  a  Robust  Adaptive  Topology  Control  (RATC)     system  designed  to  detect,  classify,  and  respond  to  grid  disturbances   by  reconfiguring  the  grid  to  maintain  economically  efficient,  reliable     operations.  The  system  would  help  to  prevent  outages  and  minimize   the  time  it  takes  for  the  grid  to  respond  to  interruptions,  and  make  it     easier  to  integrate  renewable  resources  into  the  grid.                 Transmission  Topology  Control  for  Infrastructure  Resilience  to  the   Integration  of  Renewable  Generation   Boston  University  is  developing  a  technology  that  helps  grid  operators   manage  power  flows  and  integrates  renewable  resources  by  optimizing  the   transmission  system.  The  system  would  have  the  capability  of  turning  power   lines  on  and  off  to  manage  transmission  congestion,  increase  use  of   renewable  resources,  and  improve  system  reliability.  The  fast  optimization     algorithms  would  enable  near  real-­‐time  change  in  the  grid.                                                                                                                                                                                                                                                                                                                                                                                                     10    
  • 11. Value  Analysis  of  Power  Flow  Control     Power  flow  control  benefits  the  entire  transmission  system  as  well  as  transmission  owners,  generators,   operators,  planners,  regulators,  and  consumers.  Transmission  benefits  can  be  numerous  and  diverse,   including:   • • • • • • • • Reduce  energy  transmission  losses   Mitigate  transmission  outages   Defer  and  prioritize  transmission  investments   Increase  transfer  capability  from  one  part  of  the  system  to  another   Reduce  cycling  of  base  load  generators  to  increase  asset  efficiency   Increase  wheeling  of  power  in  and  out     Reduce  loop  flows   Meet  public  policy  goals   Any  one  of  the  technologies  described  above  can  help  to  achieve  these  benefits.  However,  to  maximize   the  benefits  of  power  flow  control  and  to  maintain  system  reliability,  some  system  coordination  is   required  in  order  to  understand  the  system-­‐level  effect  of  the  installation  of  power  flow  control   technologies,  to  plan  for  future  asset  mix,  and  to  optimize  operations  of  the  physical  grid  and  electricity   markets.  Power  flow  control  is  achieved  when  software  technologies  in  concert  with  well-­‐placed   hardware  work  together  to  optimize  the  transmission  system.  Ultimately,  planners,  operators  and   regulators  may  need  to  consider  several  additional  factors  to  realize  the  full  potential  and  system   benefits  of  power  flow  control  technologies,  including:   • • • Market/regulatory  structure  for  wide  area  control  –  to  make  sure  that  market  structure  and   technical  capabilities  are  aligned  to  properly  value  the  benefits  of  power  flow  control  technologies   Software  –  synchronous  access  to  cloud  resources  for  optimized  coordinated  control   Sensors  –  accurate,  real-­‐time,  dispersed  estimation  sensors  to  measure  and  communicate  the   conditions  of  the  electric  grid  in  real  time  and  ensure   This  analysis  does  not  consider  the  many  complementary  technologies  that  would  help  to  maximize   flexibility  and  control  including  PMUs,  advanced  metering  infrastructure  or  distribution-­‐level   technologies,  or  incentives  and  market  structures  that  could  enable  power  flow  control.  The  analysis  is   solely  focused  on  the  high-­‐voltage  transmission  technologies  and  software  applications  described  above.   One  can  think  of  the  value  of  power  flow  control  technologies  in  terms  of  the  total  costs  and  benefits  of   a  transmission  grid  with  power  flow  control  capabilities  as  compared  to  the  total  cost  and  benefits  of   the  system  without  these  capabilities.  However,  one  of  the  difficulties  in  quantifying  the  value  of  power   flow  control  capabilities  is  that  system  optimization  requires  that  there  be  short-­‐term  beneficiaries  of  a   change  in  power  flow,  and  corresponding  entities  that  might  see  a  drop  in  revenue  in  the  short-­‐term,  as   any  change  to  the  physical  constraints  of  the  electric  grid  can  affect  the  price  that  generators  or   transmission  owners  are  paid  for  electricity.  This  analysis  explores  five  distinct  value  streams  of  power   11    
  • 12. flow  control,  defines  the  associated  benefits  and  costs,  and  identifies  the  stakeholders  and  how  they   might  be  affected  at  a  system  level.   Identification  of  Value  Propositions   Asset  Management     Transmission  infrastructure  in  the  United  States  is  built  to  meet  peak  demand,  which  leads  to  sub-­‐ optimal  utilization  outcomes  at  a  system  level  during  non-­‐peak  periods.  Reliability  standards  and   favorable  FERC-­‐established  rates  of  return  provide  incentives  for  transmission  investment.  At  the  same   time,  much  of  the  existing  transmission  infrastructure  is  reaching  the  end  of  its  useful  life,  and  new   transmission  is  difficult,  expensive,  time-­‐consuming,  and  highly  litigious  to  build.  Transmission  owners   are  also  faced  with  competing  calls  for  capital  to  meet  reliability  and  environmental  priorities.  Research   from  the  Edison  Electric  Institute  shows  that  its  shareholder-­‐owned  utility  members  increased  their   investment  in  transmission  infrastructure,  investing  $11.1  billion  in  2011  and  planning  to  spend  $54.6   billion  through  2015  (Edison  Electric  Institute).  Several  power  flow  control  technologies  could  increase   the  capacity  of  existing  transmission  lines  and  defer  new  investment  in  construction  or  help  prioritize   construction  of  new  lines  to  optimize  the  use  of  the  transmission  grid.  While  increasing  the  capacity  of   transmission  lines  would  produce  system-­‐level  benefits,  ultimately  some  transmission  owners  and   electricity  generators  would  see  lower  revenues  in  cases  where  they  currently  benefit  from  congestion.     HVDC   In  some  scenarios,  power  flow  control  technologies  could  decrease  transmission  losses  and  increase   transmission  utilization.  Most  notably,  HVDC  lines  have  lower  losses  in  transporting  power  over  long   distances,  and  technological  advances  in  insulation  could  increase  this  benefit  further.  For  instance,  GE   Global  Research  is  developing  a  nanoclay  reinforced  ethylene-­‐propylene-­‐rubber  for  low-­‐cost  HVDC   cabling  that  could  bring  down  the  cost  of  HVDC  cable  by  as  much  as  80%.  Such  a  decrease  in  the  cost  of   HVDC  would  lower  the  distance  at  which  HVDC  is  cost  competitive  with  HVAC,  and  increase  its   affordability  as  an  option  for  integration  into  the  AC  grid.     HVDC  requires  smaller  transmission  right  of  ways,  so  new  construction  or  reconductoring  of   transmission  lines  can  be  easier  to  achieve.    This  is  particularly  important  in  heavily  populated  areas,   which  often  suffer  from  transmission  congestion.  In  these  cases,  transmission  planners  may  consider   using  existing  transmission  right  of  ways  to  install  buried  HVDC  cable  to  increase  transmission  capacity   without  permitting  a  completely  new  transmission  pathway.     Power  Transmission  Controllers  and  Topology  Control  Algorithms   HVAC  PTCs  such  as  DSRs  and  STATCOMs  can  increase  the  capacity  of  AC  transmission  infrastructure  and   reduce  the  need  for  a  new  transmission  line,  to  optimize  the  existing  AC  transmission.  Because   repowering  existing  assets  could  be  less  costly,  a  transmission  owner  could  prioritize  capital   expenditures  and  deploy  resources  for  new  transmission  lines  in  parts  of  the  system  where  it  would   12    
  • 13. make  the  most  difference.  In  addition,  they  can  increase  the  flexibility  and  adaptability  for  grid   operators  to  use  existing  AC  lines.     Topology  control  allows  for  line  switching  to  optimize  economic  efficiency  and  minimize  congestion.  In   some  cases,  employing  topology  control  alone  would  increase  the  utilization  of  transmission  lines  and   defer  the  need  for  new  transmission  construction.  One  common  concern  about  topology  control  is  that   it  might  increase  circuit  breaker  operations  and  maintenance  expenses.  Under  a  scenario  with  topology   control,  circuits  will  be  switched  more  frequently,  but  in  non-­‐fault  conditions  with  much  less  current.   Circuit  breakers  have  a  robust  design  to  deal  with  fault  conditions  are  expected  to  operate  will  in  a   topology  control  case.  However,  equipment  manufacturers  will  need  to  validate  and  support  this  new   use  case.  Circuit  breakers  that  are  old  and  past  warranty  may  be  of  greater  concern  in  than  newer   devices.  While  it  is  thus  possible  that  line  switching  could  increase  the  need  for  maintenance  on   breakers  that  are  used  more  frequently  in  switching  than  static  scenarios,  the  system-­‐level  benefits   should  outweigh  the  costs.     Reliability  and  Security     Where  power  systems  are  designed  to  meet  one  or  two  contingency  extreme  events,  power  flow   control  capabilities  could  help  to  mitigate  the  impact  of  one  or  two  outages  by  providing  alternate   power  flow  paths  to  continue  to  serve  load.  The  economic  impact  of  the  infamous  northeastern  August   2003  blackout  was  estimated  to  be  $4  to  $10  billion  in  the  United  States,  highlighting  the  importance  of   the  electric  grid  in  today’s  economy  (U.S.-­‐Canada  Task  Force,  2004).  Reliability  is  top  of  mind  for  system   operators,  regulators,  policy  makers,  and  businesses  in  the  U.S.  today,  as  reflected  in  the  regional   implementation  of  North  American  Electric  Reliability  Corporation  (NERC)  standards.  Power  flow  control   technology  could  increase  the  flexibility  and  responsiveness  of  the  grid.       HVDC   HVDC  technology  provides  several  reliability  benefits.  Specifically,  a  DC  circuit  breaker  with   instantaneous  response  time  will  allow  for  quick  fault  detection  and  response,  which,  in  conjunction   with  other  power  flow  control  technologies,  can  prevent  a  system-­‐level  problem  and  re-­‐route  power  to   enable  continual,  uninterrupted  service.  Similarly,  directional  switching  of  power  flow  enables  routing   options  post-­‐contingency.  The  ability  to  reverse  power  flow  in  response  to  a  contingency  can  decrease   generation  capacity  requirements  for  ancillary  services.     In  the  case  of  an  HVDC  intertie  between  two  asynchronous  grids,  VSCs  can  provide  black  start  service   from  one  grid  to  another,  significantly  decreasing  response  time  without  the  need  for  reserve   installations  that  would  otherwise  be  idle  much  of  the  year.      Power  Transmission  Controllers  and  Topology  Control  Algorithms   DSRs,  STATCOMs,  and  TCAs  each  provide  reliability  benefits.  DSRs  can  control  potential  transmission   overload  and  bypass  congested  lines,  increasing  transmission  utilization,  decreasing  congestion,  and   thereby  increasing  dispatch  options.  The  built  in  device-­‐to-­‐device  communication  system  in  DSRs   13    
  • 14. enables  dynamic,  autonomous  response  and  eliminates  risks  associated  with  other  central-­‐control   communications  devices.  The  AC  regulation  function  of  STATCOMs  can  automatically  control   transmission  contingency  conditions  and  prevent  problems  or  decrease  recovery  time.  TCAs  will   optimize  transmission  line  switching  under  normal  and  contingency  conditions  –  bypassing  congested   lines  and  finding  the  optimal  path  to  serve  load.     In  order  to  quantify  the  specific  benefits  of  power  flow  control  technologies  on  a  particular  system,  it   would  be  necessary  to  model  the  grid  response  under  contingency  conditions  using  reliability  software,   and  then  again  with  power  flow  control  technologies  built  in  and  estimating  the  economic  value  of  the   reduction  in  load  loss  (Budhraja,  Mobasheri,  Ballance,  Dyer,  Silverstein,  &  Eto,  2009).       Congestion  Relief     Transmission  congestion  happens  whenever  preferable  or  low  cost  generation  is  unable  to  serve  electric   load  due  to  a  physical  limit  on  the  transmission  system.  Market  efficiency  is  based  on  optimal  economic   operation  of  the  grid  by  dispatching  the  lowest-­‐cost  generation.  Congestion  disrupts  this  process  and   leads  to  dispatch  of  higher  cost  generation  to  meet  demand  in  the  importing  location,  and  exerts   downward  pressure  on  prices  in  exporting  areas.  Reducing  congestion  on  the  transmission  grid  will   reduce  congestion  pricing  for  energy  and  ancillary  services  and  allow  for  economic  dispatch  of   generation  while  balancing  transmission  lines.  At  a  system  level,  the  cost  of  constructing  new   transmission  lines  or  adding  power  flow  control  technologies  must  be  weighed  against  the  benefits  of   doing  so.  Congestion  is  often  a  problem  in  or  around  densely  populated  areas,  where  permitting  new   transmission  lines  can  be  particularly  difficult.  In  these  cases,  there  may  be  a  clear  system-­‐level  benefit   to  power  flow  control  technologies.  Congestion  relief  brings  multiple  benefits  in  terms  of  integration  of   renewable  energy  and  economic  efficiency  of  energy  markets.   Integration  of  renewable  energy   Multiple  renewable  integration  studies  have  validated  the  substantial  system  level  and  societal  benefits   of  increased  renewable  energy  penetration.  Wind  and  solar  energy  generators  reduce  the  system   operating  costs  by  displacing  fuel  expenses  and  deferring  upgrades  to  existing  conventional  generators;   in  addition  to  lowering  generation  fleet  carbon  emissions.  In  the  Western  Wind  and  Solar   Interconnection  Study  (WWSIS),  it  was  found  that  by  tapping  the  large  solar  and  wind  resource  in  the   Western  Connection,  up  to  35%  of  the  required  energy  could  be  delivered  by  renewables  (GE  Energy,   2010).  This  results  in  a  40%  reduction  in  the  annual  system  OPEX.  In  the  Eastern  Wind  Integration  and   Transmission  Study  (EWITS),  a  10%  reduction  in  annual  system  OPEX  was  achieved  by  incorporating  30%   of  the  energy  requirement  from  wind  in  the  Eastern  Connection  (EnerNex  Corporation,  2011).  EWITS   also  calculated  an  18%  reduction  in  CO2  emissions.   The  challenge  to  incorporating  variable,  uncertain  renewable  energy  is  that  the  current  system   infrastructure  and  operational  practices  were  designed  for  dispatch-­‐able  and  predictable  generation   supplies.  However,  renewable  energy  generators,  such  as  wind  and  solar,  are  variable  and  uncertain   (non-­‐perfectly  predictable)  due  to  the  nature  of  wind  and  cloud  coverage.  This  variability  and   14    
  • 15. uncertainty  has  the  potential  to  exacerbate  transmission  congestion  as  the  penetration  of  renewable   generation  increases.  Conversely,  there  might  be  an  under  supply  of  energy  or  system  frequency   disruption  if  the  renewable  generators  slow  or  stop  production  (due  to  ramping).     To  mitigate  these  challenges,  system  operators  can  require  additional  reserve  capacity  to  supplement   renewables  and  come  online  quickly  to  stabilize  system  frequency  in  the  event  of  ramping  of  the  energy   resource.  Other  generators  must  perform  load  following  to  match  their  output  to  any  changes  in  the   energy  supply-­‐demand  balance.  Furthermore,  local  generators  are  called  upon  in  instances  when   congestion  prevents  renewable  energy  from  serving  the  load.  In  this  case,  current  practice  empowers   grid  operators  to  curtail  renewable  generators  if  their  supply  cannot  be  reliably  transmitted  due  to   congestion  elsewhere  in  the  system.  In  all  these  cases,  the  operation  of  reserve  generators  is  generally   higher  cost  than  the  renewable  generators.  Some  system  operators  have  begun  to  utilize  forecasts  of   renewable  energy  regions  to  aid  in  more  economic  reserve  scheduling  and  transmission  system   operation.  However,  the  accuracy  of  these  forecasts  at  present  is  marginally  better  than  assuming   persistence.  Poor  information  leads  to  inefficient  dispatching  and  un-­‐necessary  cycling  of  conventional   generators  which  is  a  less  efficient  operational  method  that  outputs  greater  emissions  and  more  wear   and  tear  on  the  asset.     These  additional  operational  requirements  of  renewables  are  manageable,  but  lessen  the  total   achievable  system  benefits  due  to  the  increased  demand  for  real-­‐time  reserves  and  inefficiencies  in  the   near-­‐term  asset  scheduling  and  curtailment  practices.  For  example,  the  integration  of  wind  energy  in   ERCOT  is  estimated  to  cost  an  additional  $0.66/MWh  due  to  deployment/operation  of  reserves,  the  cost   of  base  load  cycling,  and  transmission  congestion  (Ahlstrom,  2013).  In  terms  of  capital  outlay  for  reserve   capacity,  it  is  estimated  that  PJM  spends  $3  per  each  additional  MW  of  wind  power  capacity  (The  Brattle   Group,  2013).   The  renewable  integration  studies  have  found  that  these  practices  and  associated  costs  can  be  largely   avoided  if  the  grid  were  flexible  to  compensate  for  the  variable,  uncertain  supply.  Power  flow  control   technologies  can  achieve  sufficient  transmission  system  flexibility  to  lower  renewable  integration  costs,   reduce  congestion,  and  allow  for  even  further  economic  utilization  of  renewable  energy  by  minimizing   curtailment.  In  addition,  a  more  interconnected  and  controllable  transmission  system  will  facilitate  the   network  benefits  of  geographic  averaging  of  renewable  resources  and  more  accurate  wind  and  solar   forecasts.   Economic  Efficiency   Power  flow  control  technologies  can  increase  the  economic  efficiency  of  the  electric  grid  through  lower   losses  and  by  enabling  economic  dispatch  of  transmission  and  generation  assets.  HVDC  devices,  DSRs   and  TCAs  can  be  installed  on  the  existing  transmission  grid  to  allow  for  the  necessary  flexibility  to  lower   integration  costs  through  the  mitigation  of  curtailment-­‐causing  system  bottlenecks  and  congestion.     HVDC   Long-­‐distance  HVDC  installations  improve  market  access  to  remote  resources.  When  congestion  is   appropriately  managed,  HVDC  facilitates  lower  energy  prices.  Lower  line  losses  of  HVDC  can  further   15    
  • 16. reduce  the  overall  cost  to  serve  remote  load  by  30-­‐50%.  The  most  economic  generation,  including   renewable  generation  resources,  are  often  not  located  in  close  proximity  to  major  load  centers.  To  tap   these  resources,  a  transmission  system  must  be  developed.  For  long  distance  connection,  HVDC   conductors  offer  the  most  value  because  of  5-­‐10%  less  line  loss  than  similar  capacity  AC  conductors   (Bahrman,  2009).  Along  with  the  advantages  of  smaller  transmission  towers  and  no  need  for   intermediate  substations,  lower  line  loss  equates  to  lower  overall  system  cost.  For  a  1000  mile  system   rated  for  6000MW  an  800  kV  HVDC  system  is  $670/MW-­‐mi  less  expensive  than  a  765  kV  AC  system   (Bahrman,  2009).     HVDC  can  be  used  to  route  power  around  a  congested  area  of  the  AC  grid,  bringing  less  expensive  power   or  renewable  generation  situated  at  a  distance  to  market  in  an  area  of  higher  demand.  For  example,  the   Trans  Bay  Cable  delivers  power  from  Pittsburg,  California  to  San  Francisco,  providing  an  alternate  route   for  generation  to  serve  40%  of  the  city’s  peak  energy  needs.  Similarly,  the  Neptune  HVDC  cable  running   from  New  Jersey  to  Long  Island  enables  power  flow  directly  to  Long  Island,  skirting  areas  of  transmission   congestion  in  New  Jersey  and  New  York  and  serving  30%  of  electric  needs  of  Long  Island.     The  bi-­‐directional  flow  capabilities  of  many  HVDC  installations  could  allow  for  the  change  of  flow  to   address  particular  points  of  congestion  where  congestion  stress  points  shift  with  changing  supply  and   load  patterns.  For  example,  the  Cross  Sound  Cable,  a  merchant  transmission  line  between  CT  and  Long   Island,  largely  sends  power  from  CT  to  Long  Island  but  on  occasion  sends  power  the  other  way  in   response  to  changing  conditions.   Back-­‐to-­‐back  HVDC  –AC  intertie  capabilities  enable  ties  between  asynchronous  grids  and  can  thereby   increase  transfer  capacity,  allowing  for  access  to  supply  from  a  contiguous  grid  system  and  decreasing   the  cost  of  reliability  services.  HVDC  that  is  multi-­‐terminal  or  bi-­‐polar  with  bi-­‐driectional  capabilities  will   increase  the  interconnection  further  and  allow  for  economic  dispatch  in  multiple  directions.  For   example,  the  Cross  Sound  Cable  can  send  power  from  Connecticut  to  Long  Island  or  from  Long  Island  to   New  York  depending  on  system  conditions.     With  greater  HVDC  connectivity  of  disparate  renewable  generators  and  loads,  the  negative  system   effects  of  renewable  intermittency  are  largely  displaced.  Using  multi-­‐terminal  HVDC  transmission   systems  with  VSCs  that  allow  bi-­‐directional  power  flow,  system  operators  can  take  advantage  of  varying   geographical  resource  profiles.  For  example,  the  proposed  Clean  Line  Energy  transmission  projects   leverage  periods  of  excess  wind  energy  in  the  SPP  to  deliver  power  to  MISO  or  PJM  (Galli,  2012).  When   SPP  is  not  producing  wind  energy,  MISO  might  be,  or  likewise  PJM  might  be  producing  solar  energy.  By   connecting  large  geographical  areas,  the  average  amount  of  energy  available  to  serve  loads  is  higher  and   more  predictable  than  an  individual  resource  area  alone;  and  HVDC  systems  are  the  most  cost-­‐efficient   manner  to  create  the  connection.  The  geographical  averaging  effect  improves  energy  forecasts  (as   forecast  error  is  smaller  for  larger  geographies),  reduces  the  system  impact  of  ramp  events,  and  thus   reduces  base  load  cycling  and  the  use  of/need  for  reserve  capacity.  Additionally,  a  more  interconnected   transmission  system  allows  for  reserve  capacity  sharing  between  balancing  areas,  which  reduces  the   total  reserves  required  below  that  which  any  single  balancing  area  would  need  to  carry  to  meet  load  and   frequency  regulation  requirements.   16    
  • 17. HVDC  collection  systems  enable  a  new  design  paradigm  for  renewable  energy  generation  stations.  With   AC  collection  systems,  solar  PV  electricity  is  collected  as  DC  at  each  panel  and  then  converted  to   synchronous  AC  electricity.  For  wind,  generators  produce  asynchronous  AC  electricity,  which  is   converted  to  DC  and  then  to  synchronous  AC  electricity.  If  renewable  generators  were  designed  to   connect  to  an  HVDC  collection  system,  PV  panels  would  not  need  an  inverter  and  wind  turbine-­‐side   converters  would  be  reduced  in  complexity  to  output  DC.  This  not  only  reduces  the  costs  of  developing   renewable  generator  stations  -­‐  by  7%  for  solar  (Goodrich,  2012)  -­‐  it  also  lowers  the  collection  losses   when  there  are  long  feeder  lines  connecting  the  generators  to  the  transmission  system.  Vestas   estimates  a  30%  improvement  in  reducing  energy  losses  for  wind  farms  developed  for  HVDC  collection   instead  of  AC  (Manjrekar).    Power  Transmission  Controllers  and  Topology  Control  Algorithms   DSRs  and  topology  control  algorithms  could  increase  the  flexibility  of  the  transmission  grid  and  thereby   increase  the  economic  efficiency  of  generation  dispatch.  DSRs  allow  operators  to  bypass  congested  lines   by  increasing  capacity  and  distributing  power  flow  among  portions  of  the  AC  grid,  thereby  increasing   transmission  utilization,  decreasing  congestion,  and  allowing  for  economic  dispatch  of  generation.  For   instance,  variable  impedance  devices  such  as  Smart  Wire  Grid’s  DSRs  can  increase  AC  transmission   system  utilization.  A  Smart  Wire  Grid  simulation  of  3,000  modules  on  six  transmission  lines  in  an  eastern   RTO  reduced  the  average  bus  marginal  cost  by  over  6%  in  a  summer  peak  scenario  (Smart  Wire  Grid,   2013).  DSRs  balance  the  load  being  transmitted  across  each  phase  and  allow  for  the  increase  in   transmission  capacity.     Power  flow  control  technologies  designed  to  alleviate  congestion  can  have  a  great  advantage  to  easing   the  integration  of  renewables.  Smart  Wire  Grid’s  DSRs  have  been  demonstrated  to  create  a  variable   impedance  transmission  network  that  allows  power  flow  to  bypass  congested  lines.  A  simulated  study  in   the  Pacific  North  West  found  that  with  an  investment  of  $58  million  (~3000  devices),  the  variable   impedance  system  created  was  able  to  unlock  and  additional  2.8GW  of  wind  energy  by  reducing   congestion  (Smart  Wire  Grid,  2013).  This  benefit  would  be  achieved  without  adding  any  additional   transmission  lines,  and  thus  deferred  significant  investment  for  the  transmission  owners.       Likewise,  this  same  effect  can  be  accomplished  by  optimally  switching  transmission  lines  to  change  the   impedance  characteristics  of  the  transmission  system.  TCAs  can  be  deployed  by  system  operators  to   optimize  their  switching  decisions  based  on  real-­‐time  events  on  the  grid.  TCA  simulations  in  power  flow   modeling  software  has  shown  a  reduction  in  wind  curtailment  instances  from  33%  to  14%  by  switching   lines  (Qiu,  2013).  A  simulation  of  the  impact  of  TCA  using  historical  PJM  data  demonstrated  over  $100M   in  annual  savings  from  congestion  relief  (The  Brattle  Group,  2013).  Again,  these  benefits  were  gained   with  very  little  capital  investment  which  allows  transmission  owners  to  invest  elsewhere  in  their  system.     Other  HVAC  PTC  devices  that  can  provide  voltage  and  frequency  support,  such  as  STATCOMs  and  phase-­‐ shifting  transformers,  have  been  used  to  improve  the  integration  of  wind  and  solar  generators.  These   devices,  which  also  allow  for  power  flow  control,  provide  dynamic  response  to  fluctuations  in  the  power   quality  of  renewable  generators.   17    
  • 18. Summary  of  Power  Flow  Control  Technology  Value     One  power  flow  control  technology  can  have  multiple  benefits  depending  on  its  application  in  the  grid.   To  understand  the  possibility  of  various  power  flow  control  technologies  at  a  glance,  see  Table  1.   Technical  capabilities  alone  are  not  sufficient  to  achieve  economic  efficiency  of  the  system  with  the   deployment  of  a  power  flow  control  technology.  Market  and  regulatory  barriers  can  prevent  use  of  the   technical  capabilities  even  when  it  would  be  economic,  highlighting  the  need  for  clear  understanding   among  transmission  owners,  system  operators,  and  regulators  of  both  technical  capabilities  and  benefits   of  technology  at  the  system  level.     Table  1.  Power  Flow  Control  Technology  Value  Categories.  Power  flow  control  technologies   can  have  different  or  multiple  benefits  depending  on  their  position  and  application  in  the   electric  grid  –  asset  management,  renewable  integration,  congestion  relief,  economic   efficiency,  and  reliability  and  security.  Classes  of  technologies  that  are  represented  by  one  or   more  of  ARPA-­‐e’s  GENI  technology  teams  are  represented  in  bold  font.     GENI Technology Value Categories X HVDC LCC X X X X X TCSC X X X X X X X X X X X UPFC Real Time X Dispatch & planning X Reduce curtailment X X HVDC VSC Improve Contingency Reliability & Security Ancillary Economic Efficiency Energy Congestion Relief Black start Renewable Integration Improve inter – connection Prioritize or defer new investment Value Asset Management Improve Utilization Power Flow Control Technology Non-GENI Shunt -STATCOM Series - SSSC X X X X X X X X X X PhaseShifting Transformer X X X X DSR X X X X TCA X X X X X X X X X 22   Stakeholders  in  the  Transmission  Grid  Influence  Technology  Investment   Decisions     As  previously  discussed,  quantifying  the  benefits  of  power  flow  control  capabilities  is  particularly   difficult  due  to  the  dynamic  nature  of  the  electric  transmission  grid  and  the  differences  in  benefits  to   individual  stakeholders  as  compared  to  the  overall  system  benefits.  At  the  same  time,  multiple   18    
  • 19. stakeholders  are  often  involved  in  technology  investment  decisions,  and  a  level  of  agreement  among   them  is  necessary  in  order  to  optimize  system  efficiency.     Differences  in  regulatory  structure  among  federal  power  authorities,  investor  owned  utilities,  merchant   transmission  owners,  municipal  utilities,  and  rural  electric  co-­‐ops  lead  to  substantial  differences  in  the   way  certain  groups  assess  power  flow  control  technologies,  even  within  similar  stakeholder  categories.   As  technology  vendors  consider  the  best  value  proposition  and  business  model  for  their  power  flow   control  technologies,  they  should  bear  the  regulatory  environment  and  degree  of  restructuring  of  the   electric  market  in  mind.  For  an  overview  of  influencers  in  the  electric  grid,  see  Figure  2.     Numerous influences on Transmission Owner’s investment and siting decisions ISO/RTO NERC/ coordinating councils $ Tech Transmission Owner Decreasing influence on investment decisions Transmission CAPEX, OPEX, rate recovery FERC PUC Regulatory industry groups Other regulators, NGOs 16   Figure  2.  Overview  of  influencers  in  the  transmission  grid.  A  utility  or   transmission  owner  investing  in  technology  must  be  mindful  and  responsive  to   the  interests  of  multiple  stakeholders  in  the  grid:  the  ISO/RTO  that  dispatches   assets  and  determines  set  points  for  power  flow  control  technologies,  the   regulators  overseeing  investment  and  siting  decisions,  the  bodies  responsible  for   overall  reliability  of  the  electric  grid,  and  other  interested  parties  who  may   intervene  in  a  transmission  case.       The  benefits  of  power  flow  control  technology  to  each  stakeholder  will  vary  by  their  business  model  and   geographic  and  regulatory  situation.  To  better  understand  the  business  models  and  motivations  of   various  stakeholders  in  the  electric  transmission  grid,  see  Table  2.     For  the  most  part,  power  flow  control  will  have  positive  economic  outcomes,  with  the  exception  of   those  stakeholders  who  currently  benefit  from  transmission  congestion  such  as  reserve  generators  and   to  a  slightly  lesser  extent  base  load  generators,  renewable  energy  generators,  and  transmission  owners.   19    
  • 20. The  beneficiaries  of  a  change  in  power  flow  control  will  often  be  temporary  and  largely  situation-­‐ dependent,  as  market  conditions  will  remain  dynamic  in  a  world  with  power  flow  control.  An  overview   of  how  each  stakeholder’s  situation  might  change  as  compared  to  current  conditions  is  presented  in   Table  3.   Table  2.  Motivations  of  stakeholders  in  the  electric  transmission  grid.  This  table  demonstrates   the  motivations  of  each  stakeholder  involved  in  the  electric  transmission  grid,  including  their   motivations,  inherent  conflicts  and  considerations,  and  a  brief  description  of  their  revenue   model.  While  every  effort  was  made  to  provide  a  comprehensive  overview,  the  differences  in   regulatory  structure  among  federal  power  authorities,  investor  owned  utilities,  merchant   transmission  owners,  municipal  utilities,  and  rural  electric  coops  should  be  considered  when   assessing  the  position  of  each  stakeholder. Stakeholder How do they Conflictsmakeinterest related to of or recover $ Motivation Conflicts & Considerations PFR investment Transmission Owner § Rate of return (~13%) for transmission investment § FERC technology incentive rate § ~11.5% distribution investment § Projects that will be approved or financed –leads to incremental build out of system (relatively short time horizon for utilities dependent on regulated rate of return) § Invest in what they know (wires) rather than new technology § Profit § Incentive towards construction to meet peak - of new transmission lines rather than investment in technology to remove congestion etc. § Regulated: certainty of public benefit case (to rate-base) § Merchant transmission need 20 year, low-risk opportunity ISO/RTO Fees charged to: § Generators § Transmission owners (allocated to states and recovered in rate base) § Reliability (& compliance with standards) § Reduced congestion § Reserve margin § Economic efficiency § Known solutions Split in priority/focus : § Reliability § Economic dispatch § Capacity margins Renewable Generator § Contracts (PPA, tariff) § Bankability § Off-take certainty § Reduced curtailment Base Load Generator § Dispatch § Regulated return (where applicable) § Bankability § Increase utilization § Compliance with regulations § Risk change schedule/dispatch § No compensation for cycling & wear & tear for slow ramping Reserve /peak Generator § Dispatch § Ancillary services § Regulated return (where applicable) § Increase utilization § Ability to access ancillary services revenue streams (where applicable) § Compliance with regulations Risk lowering utilization by removing ancillary service functions FERC § Congressional approval § Recovered from regulated industries § Economic efficiency § Reliability § Policy implementation TO needs to approach FERC with new technology to receive favorable return for new tech solution. Theoretically could change incentive for transmission technology investment over new wires. PUC § Budget set at state level § Recovered from rate payers. § Customer rates § Economic efficiency § Reliability § Policy implementation §Transmission investment on economic benefits accruing to their state rate base vs everyone else in market area § Public perception § Re-election (where applicable) ARPA-E Template   19           20    
  • 21. Table  3.  Overview  of  beneficiaries  as  a  result  of  power  flow  control  improvements  in  the   electric  grid.   Power flow control technology beneficiaries Benefit is dependent on situation Revenue losses likely in current system Black start Reliability & Security Improve Contingency Ancillary Economic Efficiency Energy Real Time Congestion Relief Dispatch & planning Reduce curtailment Renewable Integration Improve inter –connection Prioritize or defer new investment Value Asset Management Improve Utilization Stakeholders Likely benefit (financial or operational) Transmission Owner ISO/RTO Renewable Generator Base Load Generator Reserve Generator FERC PUC Consumer PFC generally produces beneficiaries…except in cases where stakeholders currently profit off of system inefficiencies   Conclusion/Next  steps       This  document  defined  power  flow  control  and  identified  and  described  technologies  that  enable  power   flow  control.  It  identified  the  benefits  of  power  flow  control  and  how  these  benefits  accrue  to  various   stakeholders  involved  in  the  electric  grid.  It  did  not  perform  a  detailed  analysis  of  system-­‐level  benefits   or  provide  case  studies  quantifying  the  impact  of  power  flow  control  technologies.     As  power  flow  control  technologies  become  more  common  on  the  electric  grid,  further  analysis  will  be   required  to  optimize  their  use  at  a  system  level.  This  should  include:       Technology  case  studies  and  models   • Power  flow  control  technology  case  studies  and  data  sharing  to  document  lessons  learned     For  the  existing  cases  where  power  flow  control  technologies  are  installed  and  operated,  in-­‐ depth  analyses  will  advance  the  understanding  of  the  technical  capabilities,  costs,  and  benefits   of  the  technology.  Where  possible,  case  studies  should  include  quantitative  analysis  of  the   21    
  • 22. • • • effects  of  the  technology.  Data  sharing  at  a  high-­‐level  will  enable  deeper  understanding  of  the   applications  of  power  flow  control  technologies.  Possible  case  studies  include   o HVDC:      Trans  Bay  Cable  and  its  use  and  effects  on  transmission  congestion    Bi-­‐polar  HVDC  applications  such  as  Cross  Sound  Cable  between  Connecticut  and   Long  Island,  Cross  Chanel  Cable  between  the  UK  and  France   o UPFC:    Marcy  station  UPFC  in  New  York.  What  was  the  economic  (market)  response  to   its  operating  mode  set  points,  before  and  after  installation   o DSR:    Case  study  on  the  Tennessee  Valley  Authority  pilot  installation   Further  describe  and  quantify  the  benefits  of  power  flow  control  technology  to  a  particular   stakeholder   Interested  parties  will  seek  more  information  on  how  the  benefits  of  power  flow  control   technologies  change  the  economics  of  the  system,  particularly  for  cases  where  the  benefits  of  a   power  flow  control  vary  (e.g.,  those  situation  identified  as  “yellow”  in  Table  3–  in  what   situations  are  these  green  and  red?)   Develop  or  identify  a  uniform  model  for  analyzing  transmission  technologies                                       Numerous  stakeholders  expressed  interest  in  a  uniform  grid  model  of  sufficient  size  to  model   system-­‐level  effects  of  combinations  of  technological  installations.   Add  power  flow  control  technology  specifications  to  existing  grid  modeling  software               Recent  modeling  exercises  may  have  been  limited  by  the  technical  specifications  available  to   modelers.  To  the  extent  that  these  set  points  can  be  added  rather  than  programmed  for  each   specific  hypothetical  or  actual  installation,  decision  makers  would  have  more  accurate  models   and  understanding  of  the  effects  of  technological  installations.     System  level  technical  and  market  analyses   • • • Technological  analysis  of  what  is  required  to  enable  power  flow  control  at  a  system  operator   level   Analysis  may  include  modeling  of  optimal  physical  positioning  of  devices  in  the  grid,  reliability   modeling,  and  economic  modeling  of  the  impact  of  increased  transmission  capabilities  and  the   increased  fluidity  of  changing  grid  topologies.   Define  level  of  coordination  and  control  required  within  an  RTO  and  among  regions.                                 In  order  to  increase  the  flexibility  of  the  transmission  and  distribution  grid  and  meet  goals   around  reliability,  integration  of  renewable  electricity  at  the  utility  and  distributed  scale,  energy   efficiency  and  demand  response  capabilities,  we  will  need  some  centralized  control  and   centrally  coordinated  distributed  control.  This  will  provide  quick,  responsive  voltage  support  and   meet  the  changing  needs  of  the  electric  grid.   Consideration  of  market  design  for  a  flexible  transmission  grid                                                                                                                                                           Changing  grid  topologies  can  change  the  economics  of  generator  and  transmission  positioning   22