Your SlideShare is downloading. ×
0
Sabu Mathew - evolving communications technologies and their application to rail and metro
Sabu Mathew - evolving communications technologies and their application to rail and metro
Sabu Mathew - evolving communications technologies and their application to rail and metro
Sabu Mathew - evolving communications technologies and their application to rail and metro
Sabu Mathew - evolving communications technologies and their application to rail and metro
Sabu Mathew - evolving communications technologies and their application to rail and metro
Sabu Mathew - evolving communications technologies and their application to rail and metro
Sabu Mathew - evolving communications technologies and their application to rail and metro
Sabu Mathew - evolving communications technologies and their application to rail and metro
Sabu Mathew - evolving communications technologies and their application to rail and metro
Sabu Mathew - evolving communications technologies and their application to rail and metro
Sabu Mathew - evolving communications technologies and their application to rail and metro
Sabu Mathew - evolving communications technologies and their application to rail and metro
Sabu Mathew - evolving communications technologies and their application to rail and metro
Sabu Mathew - evolving communications technologies and their application to rail and metro
Sabu Mathew - evolving communications technologies and their application to rail and metro
Sabu Mathew - evolving communications technologies and their application to rail and metro
Sabu Mathew - evolving communications technologies and their application to rail and metro
Sabu Mathew - evolving communications technologies and their application to rail and metro
Sabu Mathew - evolving communications technologies and their application to rail and metro
Sabu Mathew - evolving communications technologies and their application to rail and metro
Sabu Mathew - evolving communications technologies and their application to rail and metro
Sabu Mathew - evolving communications technologies and their application to rail and metro
Sabu Mathew - evolving communications technologies and their application to rail and metro
Sabu Mathew - evolving communications technologies and their application to rail and metro
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Sabu Mathew - evolving communications technologies and their application to rail and metro

538

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
538
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
11
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Meeting Your Communication Needs Locally Evolving Communications BackboneTechnologies and there Application to Rail and Metro Networks By: Sabu Mathew, CTO, 3W Networks
  • 2. Agenda1. Introduction • Rail and Metro Market for communications Systems2. Proliferation of  Communications Technologies  • Why so much technology? What’s it all about? Why so much technology?  What s it all about?  • What technology is likely to have a future and what won’t  • The Conclusion after analysis is simpler to understand.2.     The Technology will evolve, so what are the implications for  Rail/Metro • How suitable are the evolved products for Rail/Metro application3.  The Conclusion • S Some humble words of advise h bl d f d i
  • 3. 1.  Introduction 1 IntroductionRail and Metro Market for Rail and Metro Market forCommunications Systems y
  • 4. Rail and Metro Markets Metro • Easily Identifiable Projects • Long Term roll out plans ‐ years ahead of actual  build b ild • City Based not National • Gl b ll about 20 new lines constructed per year Globally ‐ b t 20 li t t d » 50% China (10 per year) » 10% All Asia Pacific (2 per Year) 10% All Asia Pacific (2 per Year) » 40% Rest of the world (8 per Year) • Average “Full Turnkey Communications Package”  Average  Full Turnkey Communications Package value $20 ‐ $30 Million USD (about $1Million USD per Station)
  • 5. Typical – Metro Line Typical Metro Line • 20km to 35km in length 20km to 35km in length • Can be: – Above ground (Light Rail) or LRT (Light Rail Transit) or  Monorail – Underground (Metro / Subway) or MRT (Metro Rail Transport) – Can be a mixed underground and above ground system • 20 to 25 Stations plus 1 DEPOT 20 to 25 Stations plus 1 DEPOT • Distances between stations typically 1km ‐ 1.5km • Typically 1 ‐4 interchange Stations • Al Almost always one Control Room per Line  l C lR Li • Can be driven or Driverless Trains • Minimum train service intervals is about 2.5 ‐ 3 minutes • Mostly dual track but can be single track working • Typical Train speed is 70 ‐ 80 km/Hr
  • 6. Rail and Metro Markets Rail • Easily Identifiable Projects • Long Term roll out plans ‐ years ahead of actual build • National networks N i l k • High Speed Trains (HST) constitutes the modern trend • Globally – about 10 new projects constructed per year Globally about 10 new projects constructed per year » 50% China (5 per year) » 10% All Asia Pacific (1 per Year) 10% All Asia Pacific (1 per Year) » 40% Rest of the world (4 per Year) • Average “Full Turnkey Communications Package” value  Average  Full Turnkey Communications Package value >$30 ‐ $40 Million USD 
  • 7. Typical – Rail Line Typical Rail Line • 50km to 1000km in length 50km to 1000km in length • Almost always above ground • 5  20 Stations plus  multiple DEPOTs (by Section) 5 ‐20 Stations plus multiple DEPOTs (by Section) • Distances between stations typically km 10km – 50km • Multiple Control Rooms per Line (by section) • Typically driven Trains • Minimum train service intervals is about 30 minutes • Mostly dual track but can be single track working • These days most likely to be a HST travelling  Th d t lik l t b HST t lli >160km/Hr
  • 8. How relevant is Rail in Telecoms world? Opt ca et o s o t e Optical Networks for the  Optical Networks for  WHOLE TRANSPORT  SEGMENT TELCO and MOBILE  GLOBAL REVENUE GLOBAL REVENUE $350 MILLION  $14 BILLION $14 BILLION Rail and Metro Transport = 2.5%
  • 9. 2. Proliferation of  Communications Technologies  Why so much technology? What’s it all about? Why so much technology? What s it all about?   What technology is likely to have a future and what won’t.   The Conclusion after analysis is simpler to understand.
  • 10. Proliferation of Communication Technologies Confused? You have a right to be! G‐MPLS MPLS‐TP DWDM CWDM SDH RPR MSPP T‐ MSTP Photonic  EPR MPLS QoS Switching g M/W PCM  Lambda  Mux Ethernet Switching MPLS OTN ATM Carrie  PDH Routers Ethernet IP IP/MPLS Access  Packet  Layer La er Networks Net orks Circuit Switching Pseudo  Emulation NGN Wire
  • 11. What’s it all about? • The Technology Drivers ‐ Mobile & Telco Networks – Bandwidth ‐ Bandwidth – Bandwidth – Network Cost Reduction [Cost per Packet transported] – QoS ,Quality and Reliability [Protection switching] – Connectivity • Driven by an explosion in bandwidth demand from Mobile and  Telco Networks; Internet Data, Video Streaming and IPTV. • SDH has been the dominant Technology for 35 years. But it can’t  handle the bandwidth demand anymore. Packet over SDH can not  handle the bandwidth demand anymore Packet over SDH can not cope due to it’s restrictions in channelization and connectivity. • The Solution is to take out the SDH Layer and go Packet only while  y g y still maintaining the inherent benefits of SDH
  • 12. 1st Reiteration MSPP/MSTP–NGN SDH• MSTP and MSPP introduced around 2004‐5 under the banner of “NGN SDH”.• The objecti e as to enhance the transport of Packet data o er SDH The objective was to enhance the transport of Packet data over SDH  networks.• In retrospect it FAILED to meet the market needs because; p ; – It did not solve the connectivity issues required of a packet network.  – Very high overheads to map packets into SDH channels impacted  capacity. – Limited packet traffic features; simple V‐ LAN tagging was all it could do.  – Still basically a point to point structure and not a multipoint network Still basically a point to point structure and not a multipoint network.• MSTP and MSPP was and still is marketed extensively to rail customers. As  was OTN a TDM solution with multipoint S‐LAN structures.  p• OTN has 40% market share, while all SDH vendors share the remaining  market
  • 13. 2nd Reiteration “RPR”• Around 2006/7 The Resilient Packet Ring (RPR) solution was launched.• It was an attempt to build a packet network overlaid onto an SDH  p p network. Where packets had there own super highway in Parallel with  the SDH network.• It l d It solved some of the packet switching and bandwidth problems in  f th k t it hi d b d idth bl i MSTP and MSPP, but only 2‐3 vendors developed it – The Majority did  not.• It FAILED because – It was only ever implemented by a few vendors and standards were  never cemented. t d• It did not stop vendors marketing this technology into Rail & Metro  customers. The total market share of RPR solutions in Rail and Metro  markets would not have reached more than 2%. Now it is NEVER SEEN.
  • 14. 3rd Reiteration “Carrier Ethernet”• Carrier Ethernet was the first all packet based solution and was introduced in 2008• It transported packets over layer 2 Ethernet channels. Steering the packets using  simple TAGS. (A simple MPLS design)• It was good, transported packets over Ethernet channels and created packet based  connectivity. But failed to deliver reliable Real Time TDM Traffic over the same  y network. QoS and delay were also POOR for Industrial real time applications using  packet transport• It FAILED because; It FAILED because; – it was 100% packet based and customers still had Real time TDM traffic they  wanted to transport.  – It would be about this same time “pseudo wire” using Circuit Emulation  methods to transport TDM channels over Packet networks evolved. But the two  had not been merged  into a single network.• Carrier Ethernet is still available, but I have never seen it in Rail / Metro networks.  Carrier Ethernet today is at great risk of being superseded by MPLS networks. 
  • 15. 4th Reiteration IP-MPLS Switch/Routers• IP‐MPLS is derived from ATM, but in an IP packet routing environment.  Merging the excellent QoS capabilities of ATM with the flexibility of IP  g g p y routing.• IP MPLS is a layer 2.5 protocol using MPLS TAGS for simple packet end to  IP MPLS is a layer 2 5 protocol using MPLS TAGS for simple packet end to end connectivity and adding sophisticated QoS techniques. • IP MPLS solutions were first offered to the Rail/ Metro market in 2008/9.  However at this time it was extremely expensive and not really practical to  implement compared to MPLS/MSPP or OTN. p p• Today the price is comparative to MPLS/MSPP and OTN. • However IP MPLS is still a switch/router network with the inherent delays  of such a topology.
  • 16. 5th Reiteration – T-MPLS MPLS-TP• This Variant of MPLS is called T‐MPLS and it uses MPLS in a  transport network concept.• T‐MPLS is being superseded by MPLS‐TP which a significantly  enhanced version for Transport networks enhanced version for Transport networks• MPLS‐TP will permit: – Ring, Mesh, and daisy chain configurations Ri M h d d i h i fi i – It will permit sophisticated traffic QoS settings – It achieves protection switching of less then 50M/s – Will carry Real time TDM and packet data over a single network – 2‐3 Rail customers have adopted the earlier version T‐MPLS• MPLS‐TP is seen as the ultimate conclusion to the original objective.  It will be available commercially in 1‐2 years.
  • 17. OTH (OTN) the future• This is more a concept rather than a practical technology.  The concept is to combine packet transport and advanced  DWDM technologies into a coherent network structure. DWDM t h l i i t h t t k t t• Advanced DWDM uses photonic switching which eliminates Advanced DWDM uses photonic switching which eliminates  the hardwire connections with “hands off” switchable  wavelengths.• This will be a future generation technology although the  concept is being promoted by the big vendors today. concept is being promoted by the big vendors today• Costs will be high for some time as photonic switching is a  very new technology with high initial costs and resulting  prices.
  • 18. Open Transport Network (OTN)• Introduced in 1996 and surprisingly been doing what every one else has  been trying to do for 15 years. • OTN has a large market share in Metro/Rail as a consequence of it  dedicated design. • It is a technology worthy of serious consideration for any Rail/Metro  application today.• OTN handles mixed packet data and TDM real time Traffics better than  MSPP/MSTP.• OTN is Simple, Reliable and Stable and is very well regarded in Rail  /Metro. • The OTN will also evolve to the MPLS‐TP standard in the next 1‐2 years..
  • 19. 4. The Technology will evolve, so what are  the implications for Rail/Metro? th i li ti f R il/M t ? How suitable are the evolved products for Rail/Metro applications?
  • 20. What a communications backbone needs toDeliver for Rail Metro Customers?• 99.9997 System Availability Make the Vendor prove System Availability with Calculations.• Product /  Vendor Reliability Seek out existing users and verify the product / vendors reliability.  Look to your future needs and future technology trends and seek out  Look to your future needs and future technology trends and seek out• Flexibility products and vendors that can meet these needs. Network expansion,  Network capacity, Network Interfaces. Latent Technology applications  and New technology applications need to run simultaneously d l d h l b ll d h Avoid Complicated Technology because it will cost you. Reduce the • Simplicity Hardware elements, reduce the software needed. Your staff have to look after a lot of technology. Select a high quality  Your staff have to look after a lot of technology Select a high quality• Quality Local Support Systems Integrator with Local presence and high product knowledge to  support you.• Stability Your Metro Rail Network must run for more than 20‐30 years. Avoid technology that has short supportable life cycles.
  • 21. How suitable are the technologies for Rail/MetroApplications pp Switch/Router  MSPP/MSTP Open Transport  TP‐ MPLSKey Criteria are: y IP MPLS IP MPLS NGN SDH NGN SDH Network MPLS‐T MPLS T OTNSystem DelayConsistency Of DelayAbility to mix Real time and Packet Traffic ffiPacket ConnectivityPacket QoS
  • 22. How suitable are the technologies for Rail/Metroapplications pp Switch/Router  MSPP/MSTP Open Transport  TP‐MPLSKey Criteria are: y IP MPLS IP MPLS NGN SDH NGN SDH Network (MPLS‐T) (MPLS T) OTNManagement SystemSimplicity Will be a Proven Reliable  Green Face in 2 Years in 2 YearsTechnologyAll in one Box for all interfacesi fStaff Expertise RequiredR i d Will be a  Green FaceRECOMMENDED in 2 Years
  • 23. 3. The ConclusionSome humble words of advise
  • 24. My Humble Advise• Seek opinion from others and Share your own experiences  with others. • In China the Telecom engineers in all Metro and Rail end users have an  annual conference just to share experiences. They know what works  and what doesn’t and who to trust and who not to as a consequence of  sharing information.   h i i f ti• Keep your mind Open • Look beyond the pure technology arguments, try and understand what  is and has been driving the technology & product development and why  and you will have a better perspective to make decisions about  Technology and products. Technology and products• Technology arrives like waves in the ocean and the art of  being a good surfer is  to pick the right wave at the right  b i d f i t i k th i ht t th i ht moment.
  • 25. Thank You!Th k Y !

×