IGARSS2011_Lee_FinalC.pptx

455 views

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
455
On SlideShare
0
From Embeds
0
Number of Embeds
7
Actions
Shares
0
Downloads
6
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

IGARSS2011_Lee_FinalC.pptx

  1. 1. DEVELOPMENT OF INTERNALLY-CALIBRATED, MMIC-BASED MILLIMETER-WAVE RADIOMETERS OPERATING AT 130 AND 166 GHZ IN SUPPORT OF THE SWOT MISSION<br />Alexander Lee, Darrin Albers, and Steven C. Reising<br />Microwave Systems Laboratory, Colorado State University, <br />Fort Collins, CO<br />PekkaKangaslahti, Shannon T. Brown, Douglas E. Dawson, Oliver Montes, Todd C. Gaier, Daniel J. Hoppe, and BehrouzKhayatian<br />Jet Propulsion Laboratory, California Institute of Technology, <br />Pasadena, CA<br />
  2. 2. Surface Water and Ocean Topography (SWOT) Mission<br /> Accelerated Tier-2 U.S. National Research Council Earth Science Decadal Survey Mission planned for launch in 2020 (NASA/CNES partnership)<br />Oceanography Objectives:<br />Characterize ocean mesoscale and sub-mesoscale circulation at spatial resolutions of 10 km and larger (1-cm ht. precision required)<br />Kinetic energy / Heat and carbon air-sea fluxes<br />Climate change and ocean circulation<br />Coastal and internal tides<br />Hydrology Objectives:<br />To provide global height measurements of inland surface water bodies with area greater than 250 m2 and rivers with width greater than 100 m<br />To measure change in global water storage in these inland water bodies and river discharge on sub-monthly to annual time scales<br />Lee et al., FR3.T03<br />July 29, 2011 2<br />IGARSS 2011 Vancouver, B.C. Canada<br />
  3. 3. Scientific Motivation<br />Land<br />Ocean<br />Current satellite ocean altimeters include a nadir-viewing, co-located 18-37 GHz multi-channel microwave radiometer to measure wet-tropospheric path delay. Due to the large diameters of the surface instantaneous fields of view (IFOV) at these frequencies, the accuracy of wet path retrievals begins to degrade at approximately 40 km from the coasts. <br />Conventional altimeter-correcting microwave radiometers do not provide wet path delay over land.<br /><ul><li>In order to enable wet path delay measurements closer to the coastline and increase the potential for over land measurements higher-frequency microwave channels (90-170 GHz) are being considered for the SWOT mission</li></ul>Lee et al., FR3.T03<br />July 29, 2011 3<br />IGARSS 2011 Vancouver, B.C. Canada<br />
  4. 4. SWOT Mission Concept Study<br />Low frequency-only algorithm<br />Low frequency-only algorithm<br />Low and High frequency algorithm<br />Low and High frequency algorithm<br />High-resolution Weather Research and Forecasting (WRF) model results show reduced wet path-delay error using both low-frequency (18-37 GHz) and high-frequency (90-170 GHz) radiometer channels.<br />Lee et al., FR3.T03<br />July 29, 2011 4<br />IGARSS 2011 Vancouver, B.C. Canada<br />
  5. 5. SWOT ACT Objectives<br /><ul><li>Develop key radiometer components to enable additional low mass, low power, high frequency radiometers for the SWOT mission
  6. 6. Design and fabricate a tri-frequency feed horn with integrated triplexer covering 90 to 170 GHz
  7. 7. Design and fabricate PIN-diode switches and noise diodes for internal calibration from 90 to 170 GHz that can be integrated into the receiver front end
  8. 8. Integrate and test components in MMIC-based low-mass, low-power, small-volume radiometer at 92, 130 and 166 GHz with the tri-frequency feed horn</li></ul>Lee et al., FR3.T03<br />July 29, 2011 5<br />IGARSS 2011 Vancouver, B.C. Canada<br />
  9. 9. PIN-Diode Switch Design<br /><ul><li>Microwave switches were designed to cover three frequency ranges of80-105 GHz, 90-135 GHz, and 160-190 GHz
  10. 10. Monolithic microwave integrated circuits (MMIC) wererealized in microstrip and coplanar waveguide technology
  11. 11. Fabricated using Northrop Grumman’s 75-μm thick InP MMIC PIN diodeprocess
  12. 12. PIN diodes used because of low insertionloss and fast switching speeds
  13. 13. Variations of each SPDT design with PIN diode sizes ranging from 3 to 8 μm were fabricated
  14. 14. To date, 80-105 GHz and 90-135 GHz switches have been tested; 160-190 switches have not yet been tested </li></ul>Lee et al., FR3.T03<br />July 29, 2011 6<br />IGARSS 2011 Vancouver, B.C. Canada<br />
  15. 15. 80-105 GHz MMIC Switch<br /><ul><li>Microstrip design
  16. 16. SiN 2-layer MIM capacitors for bypass and DC blocking capacitors
  17. 17. NiCr thin-film process for resistors
  18. 18. Radial stubs used to provide well-defined virtual RF shorts
  19. 19. Antenna and Common legs aligned and Reference leg at a 90°angle </li></ul>Asymmetric Design<br />1.52 mm<br />Antenna Leg<br />Common Leg<br />1.37 mm<br />Measured Performance<br />Insertion Loss <br />Common Leg RL (Integrated Ref. Load Version)<br />Isolation<br />Reference Leg<br />Common Leg RL<br />Antenna Leg RL<br />Asymmetric design variation with integrated 50-Ω reference termination<br />Lee et al., FR3.T03<br />July 29, 2011 7<br />IGARSS 2011 Vancouver, B.C. Canada<br />
  20. 20. 80-105 GHz MMIC Switch<br />Post-Fabrication On-Chip Tuning of Isolation<br /><ul><li>Higher frequency measurements demonstrated isolation was optimized for higher frequency
  21. 21. By increasing effective electrical length of shunt diode radial stubs, optimal isolation was lowered to frequency range of interest </li></ul>Measured Performance<br />Isolation (Un-tuned)<br />Tuning ribbon added to shunt diode radial stub<br />Isolation (Tuned)<br />Lee et al., FR3.T03<br />July 29, 2011 8<br />IGARSS 2011 Vancouver, B.C. Canada<br />
  22. 22. 90-135 GHz MMIC Switch<br />Symmetric Design<br />Measured Performance<br />Same technology as 80-105 GHz design (microstrip, SiN 2-layer MIM capacitors, etc.)<br />Insertion Loss <br />1.52 mm<br />Isolation<br />Antenna Leg RL<br />Antenna Leg<br />Reference Leg<br />1.37 mm<br />Common Leg RL<br />Common Leg<br />Preliminary tuning of shunt diode radial stub demonstrates decrease in isolation optimal frequency<br />Lee et al., FR3.T03<br />July 29, 2011 9<br />IGARSS 2011 Vancouver, B.C. Canada<br />
  23. 23. 160-185 GHz MMIC Switch<br />Symmetric Design<br /><ul><li>Coplanar waveguide design
  24. 24. SiN 2-layer MIM capacitors for bypass and DC blocking capacitors
  25. 25. NiCr thin-film process for resistors</li></ul>1.10 mm<br />0.97 mm<br />Reference Leg<br />Antenna Leg<br />Simulated Performance<br />Insertion Loss<br />Common Leg RL<br />Common Leg<br />Isolation<br />Antenna Leg RL<br />Lee et al., FR3.T03<br />July 29, 2011 10<br />IGARSS 2011 Vancouver, B.C. Canada<br />
  26. 26. PIN Diode Switch Results<br />Lee et al., FR3.T03<br />July 29, 2011 11<br />IGARSS 2011 Vancouver, B.C. Canada<br />
  27. 27. System Block Diagram<br />92-GHz multi-chip module<br />Waveguide Components<br />MMIC Components<br />Coupler<br />Tri-Frequency Feed Horn<br />Noise Diode<br />Common radiometer<br />back end, thermal control and<br />data subsystem<br />130-GHz multi-chip module<br />Coupler<br />Noise Diode<br />Coupler<br />166-GHz multi-chip module<br />Noise Diode<br />Lee et al., FR3.T03<br />July 29, 2011 12<br />IGARSS 2011 Vancouver, B.C. Canada<br />
  28. 28. 130- and 166-GHz <br />Radiometer Design<br /><ul><li> These Dicke radiometers use four LNAs to provide sufficient signal level at the input to the detector.
  29. 29. Direct-detection architecture is the lowest power and mass solution for these high-frequency receivers. Keeping the radiometer power at a minimum is critical to fit within the overall SWOT mission constraints, including the power requirements of the radar interferometer.</li></li></ul><li>130-GHz Predicted Performance<br />Lee et al., FR3.T03<br />July 29, 2011 14<br />IGARSS 2011 Vancouver, B.C. Canada<br />
  30. 30. 130-GHz Predicted Performance<br />Lee et al., FR3.T03<br />July 29, 2011 15<br />IGARSS 2011 Vancouver, B.C. Canada<br />
  31. 31. 166-GHz Predicted Performance<br />Lee et al., FR3.T03<br />July 29, 2011 16<br />IGARSS 2011 Vancouver, B.C. Canada<br />
  32. 32. 166-GHz Predicted Performance<br />Lee et al., FR3.T03<br />July 29, 2011 17<br />IGARSS 2011 Vancouver, B.C. Canada<br />
  33. 33. 166-GHz Band Pass Filter:Return Loss<br />0.94” (2.4 mm)<br />Lee et al., FR3.T03<br />July 29, 2011 18<br />The passive high-frequency microwave components were designed and fabricated in microstrip technology on 3-mil (75 μm) thick alumina substrates.<br />IGARSS 2011 Vancouver, B.C. Canada<br />
  34. 34. 166-GHz Band Pass Filter:Insertion Loss<br />Lee et al., FR3.T03<br />July 29, 2011 19<br />IGARSS 2011 Vancouver, B.C. Canada<br />
  35. 35. 166-GHz Matched Load<br />The passive high-frequency microwave components were designed and fabricated in microstrip technology on 3-mil (75 μm) thick alumina substrates.<br />Lee et al., FR3.T03<br />July 29, 2011 20<br />IGARSS 2011 Vancouver, B.C. Canada<br />0.029” (.74 mm)<br />
  36. 36. 130-GHz Multi-Chip Module<br />50Ω<br />ATN<br />SW<br />BPF-2<br />LNA<br />LNA<br />BPF-1<br />LNA<br />LNA<br />WTM<br />0.094”<br />(2.39 mm)<br />0.077”<br />(1.96 mm)<br />WTM<br />0.8”<br />(20.3 mm)<br />1.45” (36.8 mm)<br />1.75” (44.5 mm)<br />Lee et al., FR3.T03<br />July 29, 2011 21<br />IGARSS 2011 Vancouver, B.C. Canada<br />
  37. 37. 130-GHz Multi-Chip Module<br />Lee et al., FR3.T03<br />July 29, 2011 22<br />IGARSS 2011 Vancouver, B.C. Canada<br />
  38. 38. 166-GHz Multi-Chip Module<br />0.093”<br />(2.4 mm)<br />Lee et al., FR3.T03<br />July 29, 2011 23<br />IGARSS 2011 Vancouver, B.C. Canada<br />
  39. 39. Multi-Chip Module Assembly<br />Lee et al., FR3.T03<br />July 29, 2011 24<br />IGARSS 2011 Vancouver, B.C. Canada<br />
  40. 40. Summary<br />Lee et al., FR3.T03<br />July 29, 2011 25<br /><ul><li> The addition of high frequency radiometers on ocean altimetry missions will enable wet tropospheric path delay correction closer to the coastline.
  41. 41. Key radiometer component technologies are under development to enable additional high frequency radiometers operating at 92 GHz, 130 GHz, and 166 GHz for the upcoming SWOT mission.
  42. 42. High frequency switches have been designed and fabricated for all three high frequency radiometers.
  43. 43. Switch testing has been completed on the 92 GHz and 130 GHz switches. The test results show less than 2 dB insertion loss and greater than 15 dB return loss. Additional tuning is required to optimize the isolation.
  44. 44. Prototype radiometers at 130 GHz and 166 GHz have been designed and are in the process of being fabricated.</li></ul>IGARSS 2011 Vancouver, B.C. Canada<br />
  45. 45. Backup Slides<br />Lee et al., FR3.T03<br />July 29, 2011 26<br />IGARSS 2011 Vancouver, B.C. Canada<br />
  46. 46. Move to Higher Frequency<br />22.235 GHz (H2O)<br />118 GHz (O2)<br />55-60 GHz (O2)<br />183.31 GHz (H2O)<br /> Supplement low-frequency, low-spatial resolution channels with high-frequency, high-spatial resolution channels to retrieve PD near coast<br /> High-frequency window channels sensitive to water vapor continuum<br />183 GHz channels sensitive to water vapor at different layers in atmosphere <br />Lee et al., FR3.T03<br />July 29, 2011 27<br />IGARSS 2011 Vancouver, B.C. Canada<br />
  47. 47. Design Topology<br />Series-Shunt PIN-diode SPDT Switch Implementation<br /><ul><li>Implements both series and shunt diode SPDT configurations togetherto maximize isolation
  48. 48. Eliminates the need for quarter-wave transformer (reduces size)
  49. 49. This configuration was used for SPDT switch designs being presented</li></ul>RF OUTPUT<br />RF OUTPUT<br />RF INPUT<br />Lee et al., FR3.T03<br />July 29, 2011 28<br />IGARSS 2011 Vancouver, B.C. Canada<br />
  50. 50. Design Topology<br />SPDT Switch Circuit Schematic<br />Lee et al., FR3.T03<br />July 29, 2011 29<br />IGARSS 2011 Vancouver, B.C. Canada<br />
  51. 51. 80-105 GHz MMIC Switch<br /><ul><li>Microstrip design
  52. 52. SiN 2-layer MIM capacitors for bypass and DC blocking capacitors
  53. 53. NiCr thin-film process for resistors
  54. 54. Radial stubs used to provide well-defined virtual RF shorts</li></ul>Symmetric Design<br />1.52 mm<br />Antenna Leg<br />Reference Leg<br />1.37 mm<br />Measured Performance<br />Insertion Loss <br />Common Leg<br />Isolation<br />Common Leg RL<br />Antenna Leg RL<br />Lee et al., FR3.T03<br />July 29, 2011 30<br />IGARSS 2011 Vancouver, B.C. Canada<br />
  55. 55. 80-105 GHz MMIC Switch<br />Measured Results vs. Simulated Results<br />Lee et al., FR3.T03<br />July 29, 2011 31<br />IGARSS 2011 Vancouver, B.C. Canada<br />
  56. 56. 130-GHz Low-Noise Amplifier<br /><ul><li>MMIC LNA was packaged in WR-8 and WR-10 housings for characterization over a broad bandwidth.</li></ul>Lee et al., FR3.T03<br />July 29, 2011 32<br />IGARSS 2011 Vancouver, B.C. Canada<br />
  57. 57. 166-GHz Low-Noise Amplifier<br />Low-Noise Amplifier Layout and Measured Response<br /><ul><li> 35-nm process InP HEMT
  58. 58. Three-stage design with separate gate bias for the first stage to optimize low-noise performance
  59. 59. Record low noise temperature of 300 K from 150 - 160 GHz
  60. 60. Chip area of 900 x 560 (μm)2
  61. 61. The LNA was mounted in optimized WR-08 and WR-05 waveguide housings to test over a broad bandwidth.</li></ul>Lee et al., FR3.T03<br />July 29, 2011 33<br />IGARSS 2011 Vancouver, B.C. Canada<br />
  62. 62. 130-GHz Band Pass Filter:Return Loss<br />The passive high-frequency microwave components were designed and fabricated in microstrip technology on 3-mil (75 μm) thick alumina substrates.<br />0.94” (2.4 mm)<br />Lee et al., FR3.T03<br />July 29, 2011 34<br />IGARSS 2011 Vancouver, B.C. Canada<br />
  63. 63. 130-GHz Band Pass Filter:Insertion Loss<br />Note: Correction for CPW losses included<br />Lee et al., FR3.T03<br />July 29, 2011 35<br />IGARSS 2011 Vancouver, B.C. Canada<br />

×