The current formulation in AERMOD/PRIME is prone to downwash overestimations as documented by Petersen et al. Some of these overpredictions can be minimized by conducting a wind tunnel study to refine the building inputs used in AERMOD/PRIME for critical stacks and wind directions. Most of the wind tunnel studies conducted to date involve taller building structures of at least 20 meters in height. However, a recent wind tunnel study was conducted for the Basic American Foods, Blackfoot, Idaho facility, which has extremely short buildings (7 to 12 meters in height) with very long and wide footprints and many exhaust stacks which are less than 25 meters above ground
The wind tunnel study confirmed that AERMOD was vastly overstating downwash effects for certain critical wind directions. In some cases, AERMOD-predicted concentrations were almost four times higher without the wind tunnel refinements. This study indicates that the previously identified tendency of AERMOD to overpredict downwash using the traditional BPIP-derived building inputs also applies to sites with shorter buildings. Because shorter buildings with shorter stacks are common in many sources subject to the minor New Source Review program (such as most food and beverage and manufacturing facilities), AERMOD’s overpredictions may be causing significantly higher predicted concentrations for many industrial sources.
This paper describes the wind tunnel study performed for this site, presents the benefits obtained from these building input refinements, and reviews comments received on the project from regulatory agencies.