Your SlideShare is downloading. ×
  • Like
Propositional logic
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Now you can save presentations on your phone or tablet

Available for both IPhone and Android

Text the download link to your phone

Standard text messaging rates apply

Propositional logic

  • 1,531 views
Published

Discrete Structures

Discrete Structures

Published in Education , Technology , Spiritual
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
1,531
On SlideShare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
52
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. PREPOSITIONal LOGIC
  • 2. A statement is a declaratory sentence which is true orfalse but not both. In other words , a statement is adeclarative sentence which has a definate truth table.
  • 3. Logical connectives or sentenceconnectives These are the words or symbols used to combine two sentence to form a compound statement. logic Name rank ~ Negation 1 ^ Conjunction 2 V Disjunction 3 => Conditional 4  Biconditional 5
  • 4. A B ^ V ~A =>  NOR NAND XOR EX- NORT T T T F T T F F F TT F F T F F F F T T FF T F T T T F F T T FF F F F T T T T T F T
  • 5. TAUTOLOGYi. A TAUTOLOGY IS A PREPOSITION WHICH IS TRUE FOR ALL TRUTH VALUES OF ITS SUB- PREPOSITIONS OR COMPONENTS.ii. A TAUTOLOGY IS ALSO CALLED LOGICALLY VALID OR LOGICALLY TRUE.iii. ALL ENTRIES IN THE COLUMN OF TAUTOLOGY ARE TRUE.
  • 6. For example: p^q=>qP q p^q q p^q=> qT T T T TT F F F TF T F T TF F F F T
  • 7. Contradiction CONTRADICTION IS A PREPOSITION WHICH IS ALWAYS FALSE FOR ALL TRUTH VALUES OF ITS SUB-PREPOSITIONS OR COMPONENTS. A CONTRADICTION IS ALSO CALLED LOGICALLY INVALID OR LOGICALLY FALSE ALL ENTRIES IN THE COLUMN OF CONTRADICTION ARE FALSE.
  • 8. FOR EXAMPLE (P v Q)^(~P)^(~Q)P Q PVQ ~P ~Q (P v Q)^(~P)^(~Q)T T T F F FT F T F T FF T T T F FF F F T T F
  • 9. Contingency It is a preposition which is either true orfalse depending on the truth value of its components or preposition..
  • 10. FOR EXAMPLE ~p ^ ~qp q ~p ~q ~p ^ ~qT T F F FT F F T FF T T F FF F T T T
  • 11. Logical equivalenceTwo statements are called logically equivalent if the truthvalues of both the statements are always identical.. For example: If we take two statements p=>q and ~q =>~p , then theretruth table values must be equal to satisfy the condition oflogical equivalence..
  • 12. p q ~p ~q p=>q ~q=>~p T T F F T T T F F T F F F T T F T T F F T T T T SINCE,THE TRUTH TABLE VALUES OF BOTH STATEMENTS IS SAME. THUS, THE TWOSTATEMENTS ARE LOGICALLY EQUIVALENT..
  • 13. LOGICAL IMPLICATIONS DIRECT IMPLICATION (p=>q) CONVERSE IMPLICATION (q=>p) INVERSE OR OPPOSITE IMPLICATION (~p=>~q) CONTRAPOSITIVE IMPLICATION (~q=>~p)
  • 14. Algebra of preposition1) Commutative law2) Associative law3) Distributive law4) De Morgan’s law5) Idempotent law6) Identity law
  • 15. Idempotent law 1. pVpp 2. p^ppp p pvp p v pp p^p p^ ppT T T T T TF F F F F F
  • 16. Commutative law • pvq=qvp • p^q=q^pp q pvq qvp p^q q^pT T T T T TT F T T F FF T T T F FF F F F F F
  • 17. Associative law• (p v q) v r  p v (q v r)• (p ^ q) ^ r  p ^ (q ^ r) p q r pvq ( p v q) v r qVr p v (q v r) T T T T T T T T T F T T T T T F T T T T T T F F T T F T F T T T T T T F T F T T T T F F T F T T T F F F F F F F
  • 18. Distributive law• p ^ (q v r)  (p ^ q) v (p ^ r)• p ^ (q v r)  (p ^ q) v (p ^ r) p q r qvr p^(q v r) p^q p^r (p^q)v(p^r) T T T T T T T T T T F T T T F T T F T T T F T T T F F F F F F F F T T T F F F F F T F T F F F F F F T T F F F F F F F F F F F F
  • 19. De Morgan’s law• ~(p v q)  ~p ^ ~q• ~(p ^ q)  ~p v ~q p q (p v q) ~(p v q) ~p ~q ~p ^ ~q T T T F F F F T F T F F T F F T T F T F F F F F T T T T
  • 20. Identity law1) p ^ T  p 2) T ^ p  p3) p v F  p 4) F v p  pP T P^T P F P v FT T T T F TF T F F F F
  • 21. TRANSITIVE RULE pq qr -------------- prRule of detachment P Pq ---------- q
  • 22. EXAMPLE TEST THE VALIDITY OF THE FOLLOWING ARGUMENT…. IF A MAN IS A BACHELOR,HE IS WORRIED(A PREMISE) IF A MAN IS WORRIED,HE DIES YOUNG(A PREMISE)----------------------------------------------------------------------------------------------------- BACHELORS DIE YOUNG(CONCLUSION) P: A man is a bachelor Q:he is worried R: he dies young
  • 23. The given argument in symbolic form can bewritten as: pq (a premise) qr (a premise) -------------------- pr (conclusion) The given argument is true by law ofsyllogism(law of transitive)…
  • 24. p q r pq qr pr pq ^ qr (pq) ^ (qr) => prT T T T T T T TT T F T F F F TT F T F T T F TT F F F T F F TF T T T T T T TF T F T F T F TF F T T T T T TF F F T T T T T
  • 25. PRESENTATION BY : ASHWINI VIPAT