Your SlideShare is downloading. ×
0
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate change

648

Published on

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
648
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
22
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. CIAT’sexperience in climatemodeling; <br />Scenarios of futureclimatechange<br />Carlos Navarro, Julián Ramírez, Andy Jarvis<br />
  • 2. Intro<br />Climate Data<br />Why do youneed?<br />Whoneedsthem?<br />Disadvantages?<br />Problems<br />Limitedknowledge<br />Complexity of theclimatesystem<br />Unsuitablemodelresolutions<br />Data provide fine-scalefutureclimate<br />Uncertainties<br />
  • 3. Weknow.. <br />Any agroecosystem respond to changes of:<br /> Anthropogenic factors (socials), <br />biotics (pest, diseases)<br />abiotics (weather, soilss)<br />Weather and climate predictability is fairly limited. <br />The climate will change.<br />Each system is an specific case. <br />
  • 4. Wedon’tknow<br />What are theconditions in 30, 50, 100 años?<br />>> UNCERTAINTIES<br /><ul><li>Howoursystemrespondtotheseconditions?
  • 5. When,where and whattype of change requiere toadapt?
  • 6. Whoshould plan? Whoshould leads theprocess? Who should run?</li></li></ul><li>Climate & Agriculture<br />Agriculture demands:<br />Multiple variables<br />Very high spatial resolution<br />Mid-high temporal (i.e. monthly, daily) resolution<br />Accurate weather forecasts and climate projections<br />High certainty<br />Both for present and future<br />
  • 7. Predictingimpacts of climatechange<br />Scenariosfrompopulation, energy, economicsmodels<br />Emissions<br />Concentrations<br />Carboncycle and chemistrymodels<br />Global ClimateChange<br />Global Climatemodels<br />Regional Detail<br />Regional climatemodels<br />Impacts<br />Impactmodels<br />
  • 8. Emissionscenarios<br />Economic<br />PESSIMIST<br />Regional<br />Global<br />Almost Unreal<br />OPTIMIST<br />Environmental<br />Emissionsscenarios are plausible representations of futureemissions of substancesthat are radiatively active (Jones 2004)<br />
  • 9. PredictionModelsGCMs<br />They are calibrate front the past (using time series CRU-UEA), and proyected future<br />GCMs are theonlymeanswehavetopredictfutureclimates…<br />
  • 10. GCMs y Resoluciones<br />Mainfeatures<br /><ul><li> Horizontal resolution 100 to 300 km
  • 11. 18 and 56 vertical levels</li></ul>Global scale<br />Regional or local scale <br />
  • 12. GCMs y Resolutions<br />Uncertainties!<br />
  • 13. Dificulties<br />First, they differ on resolution<br />
  • 14. Dificulties<br />Second: they differ in availability (via IPCC)<br />
  • 15. Dificulties<br />Third: limited ability to represent present climates<br />
  • 16. Options<br />Downscaling<br /><ul><li>Even the most precise GCM is too coarse (~100km)
  • 17. To increase resolution, uniformise, provide high resolution and contextualised data
  • 18. Different methods exist… from interpolation to neural networks and RCMs
  • 19. DELTA (empirical-statistical)
  • 20. DELTA-VAR (empirical-statistical)
  • 21. DELTA-STATION (empirical-statistical)
  • 22. RCMs (dynamical)
  • 23. …</li></li></ul><li>StatisticalDownscaling<br />The delta method<br /><ul><li>Use anomalies and discard baselines in GCMs
  • 24. Climate baseline: WorldClim
  • 25. Used in the majority of studies
  • 26. Takes original GCM timeseries
  • 27. Calculates averages over a baseline and future periods (i.e. 2020s, 2050s)
  • 28. Compute anomalies
  • 29. Spline interpolation of anomalies
  • 30. Sum anomalies to WorldClim</li></li></ul><li>The delta method<br />
  • 31. StatisticalDownscaling<br />Delta- Station<br /><ul><li>Most similar to original methods in WorldClim(Saenz-Romero et al. 2009)
  • 32. Climate baseline: weather stations
  • 33. Calculate anomalies over specific periods (i.e. 2020s, 2050s) in coarse GCM cells
  • 34. “Update” weather station values using GCM cell anomalies within a neighborhood (400 km)
  • 35. Inverse distance weighted
  • 36. Use thin plate smoothing splines with LAT,LON,ALT as covariates for interpolation</li></li></ul><li>StatisticalDownscaling<br />Delta- Var<br />Delta-VAR (Mitchell et al. 2005<br /><ul><li>AKA pattern scaling
  • 37. Climate baseline: CRU
  • 38. Provided by Tyndall Centre (UK)
  • 39. Use captured variability in GCMs (MAGICC) and anomalies
  • 40. Run a new GCM pattern at a higher resolution (CLIMGEN)
  • 41. Calculate averages over specific periods using the GCM scaled time-series</li></li></ul><li>StatisticalDownscaling<br />Disaggregation<br /><ul><li>Similar to the delta method, but does not use interpolation
  • 42. Climate baseline: CRU, WorldClim
  • 43. Calculate anomalies over periods in GCM cells
  • 44. Sum anomalies to climate baseline</li></li></ul><li>DynamicalDownscaling<br />RCMs PRECIS<br /><ul><li>RCMs (Giorgi 1990)
  • 45. Climate baseline: GCM boundary conditions
  • 46. Develop complex numerical models to simulate climate behaviour
  • 47. “Nest” the RCM into a coarse resolution model (GCM) and apply equations to re-model processes in a limited geographic domain
  • 48. Resolution varies between 25-50km
  • 49. Takes several months to process
  • 50. Requires a new validation (on top of the GCM validation)</li></li></ul><li>Whichoneisthebest?<br />
  • 51. CIAT Experience<br />
  • 52. OurDatabases<br />Empiricallydownscaled, disaggregatedforthewholeglobe at 1km to 20km<br />Dinamicallydownscaled (PRECIS) for South America<br />20 GCM for 2050, 9 for 2020 (Stanford data) downscaled a 20km, 5km, 1km<br />7 GCMswithinformationTyndall<br />
  • 53. Allwillbe at our portal (soon) http://ccafs-climate.org<br />
  • 54. Reachingusersglobally<br /> http://ccafs-climate.org <br />
  • 55. Capabilities and limitations<br />Our in-house capacity:<br />Four 8-core processing servers in a blade array under Windows (empirical downscaling)<br />Two 24-core and 1-8core processing servers in a blade array under Linux (PRECIS)<br />~100TB storage<br />Compresing and publishing data is a lengthy process and requires massive storage and network capacity (esp. 1km global datasets)<br />
  • 56. In process..<br />Downscaling<br />Downscaled GCMs <br />7 periods for 63 models (≈ 20 GCMs x 3 scenarios) <br />Downscaled 30 seg= 100% <br />Resample 2.5min, 5min, 10min = 100%<br />Convert to ascii and compress 30 seg = 30 % (19/63)<br />Convert to ascii and compress resampled = 100%<br />Compress grids resampled = 100%<br />Publising compressed asciis and grids = 0% <br />Dissagregated GCMs <br />7 periods for 63 models (≈ 20 GCMs x 3 scenarios) <br />Downscaled 30 seg= 100% <br />Resample 2.5min, 5min, 10min = 100%<br />Convert to ascii and compress 30 seg = 33 % (21/63)<br />Convert to ascii and compress resampled = 100%<br />Compress grids Resamples = 100%<br />Publising compressed asciis and grids = 0% <br />
  • 57. In process..<br />PRECIS<br /><ul><li> Region: Andes
  • 58. Resolution 50 km
  • 59. Grid : 151 x 153</li></li></ul><li>In process..<br />A quickcomparison<br />1 PRECIS run (10 year) <br />= 2 weeks<br />1 interpolation (37 steps) <br />x 15 periods<br />= 1 week<br />x 1 GCM <br />x 7 periods <br />x 1 scenario<br />x 20 GCMs <br /> 30 weeks<br />x 3 scenarios<br />÷ 2 processes<br /> 210 weeks<br />÷ 3 servers<br />÷ 4 processes<br />= 5 weeks<br />÷ 4 servers<br />x 20 GCM s<br />Hypothetically..<br />= 26 weeks<br />x 3 scenarios<br />= 6 months!!<br />= 300 weeks<br />= 6 years!!<br />
  • 60. In process..<br />
  • 61. What´snext? ValidationGCMs<br />Ethiopia<br />TEMP. (JJA)<br />RAINFALL (JJA)<br />
  • 62. What´snext? ValidationGCMs<br />GCM vs Stations<br />Post-processing<br />Formatconversion<br />HistogramsR2, RMSQ, RMSE, slope<br />R2 Vs. <br />Lat / Alt<br />Comparisonwithin situ data<br />Averages/<br />sums, monthly/<br />annual<br />RMSQ vs. Lat / Alt<br />RMSQ vs. <br />Lat / Alt<br />Cell maps<br />
  • 63. What’snext?<br />Seiler 2009<br />
  • 64. BaselineAverage 1961 – 1990 Total Precipitation (mm/yr)<br />ECHAM5 HadCM3Q0 HadCM3Q16<br />Máx: 4151.01<br />Mín: 3.454<br />Máx: 4724.028<br />Mín: 1.1344<br />Máx: 4796.844<br />Mín: 1.1839<br />BaselineAverageAnnual Mean Temperature (°C)<br />ECHAM5 HadCM3Q0 HadCM3Q16<br />Máx: 28.8573<br />Mín: -8.3415<br />Máx: 28.99<br />Mín: -9.22<br />Máx: 30.541<br />Mín: -7.413<br />
  • 65. What’snext?<br />MRI Validation<br />
  • 66. MRI<br />What’snext?<br />
  • 67. What’snext?<br />CCAFS Climate data strategy<br />Improve baseline data and metadata<br />Gather and process AR5 projections<br />Downscale with desired methods<br />Evaluate and assess uncertainties<br />Publish all datasets and results<br />Use the AMKN platform to link climate data, and modelling outputs<br />
  • 68. In summary<br />CIAT and CCAFS data to be one single product (other datasets are being added)<br />Downscaling is inevitable, so we are aiming to report caveats on the methods<br />Continuous improvements are being done<br />Strong focus on uncertainty analysis and improvement of baseline data<br />Reports and publications to be pursued… grounding with climate science<br />
  • 69. Gracias!<br />j.r.villegas@cgiar.org<br />c.e.navarro@cgiar.org<br />a.jarvis@cgiar.org<br />

×