SlideShare a Scribd company logo
1 of 45
Download to read offline
Wang-Landau Monte Carlo
simulation
Aleš Vítek
IT4I, VP3
PART 1
Classical Monte Carlo Methods
Outline
1. Statistical thermodynamics, ensembles
2. Numerical evaluation of integrals, crude Monte Carlo (MC)
3. MC methods for statistical thermodynamics, Markov chains
4. Variants of MC methods
Statistical thermodynamics
microscopic description
(positions, momenta, interactions)
Statistical thermodynamics
microscopic description
(positions, momenta, interactions)
macroscopic description
(pressure, density, temperature)
Statistical thermodynamics
microscopic description
(positions, momenta, interactions)
macroscopic description
(pressure, density, temperature)
Statistical Thermodynamics
Statistical thermodynamics
time averages  Molecular Dynamics methods


 
 
0
0
1
lim ( ( ), ( )) d
t
K K
t
B b b r t p t t
Statistical thermodynamics
ensemble averages  Monte Carlo methods
 
 
 
 


1
1
1
( , ) ( , ; , , ) d
, ,
( , ; , , ) d
K K K K n
n
K K n
b r p r p A A
B A A b
r p A A
Statistical thermodynamics
Statistical (Gibbs) ensembles
 microstate (m-state): positions and momenta
 macrostate (m-state): macroscopic variables (A1, … )
 1 m-state = many m-states  Gibbs ensemble
 probability distribution in system’s phase space,  1( , ; , , )K K nr p A A
Statistical thermodynamics
Examples of statistical (Gibbs) ensembles
 micro-canonical: N, V, E
 canonical: N, V, T
 grand-canonical: m, V, T
 isobaric-isothermic: N, P, T
 etc.
Statistical thermodynamics
 
 
  
 B
( , ; )
, ; , , exp N K K
K K
H r p V
r p N V T
k T
Canonical Gibbs ensemble

 
2
1
( , ; ) ( ; )
2
N
K
N K K K
K K
p
H r p V W r V
M
Statistical thermodynamics
 
 
 
 


1
1
1
( , ) ( , ; , , ) d
, ,
( , ; , , ) d
K K K K n
n
K K n
b r p r p A A
B A A b
r p A A
Statistical thermodynamics as a mathematical
problem
 3 3 3 3
1 13
1
d d d ...d d
!h N NN
r p r p
N
Statistical thermodynamics
 

 



con con 1 1
1 kin
con 1 1
( ) ( ; , , ) d d
, ,
( ; , , ) d d
K K n N
n
K n N
b r r A A r r
B A A B
r A A r r
Statistical thermodynamics as a mathematical
problem
Canonical ensemble
 
 
  
 
con
B
( ; )
; , , exp N K
K
W r V
r N V T
k T
Numerical evaluation of integrals
 
  
     1 1
( ) d ( ) ( )
b n n
j
j ja
b a b a b a
f x x f a j f x
n n n
1D – rectangular, trapezoid, Simpsonian, …
Numerical evaluation of integrals
 
  
     1 1
( ) d ( ) ( )
b n n
j
j ja
b a b a b a
f x x f a j f x
n n n
1D – rectangular, trapezoid, Simpsonian, …
1D – crude Monte Carlo


  1
( ) d ( )
b n
j
ja
b a
f x x f x
n
xj randomly distributed over [a,b]
Numerical evaluation of integrals

0
sin dx xExample
Numerical evaluation of integrals
Localized functions
 ( ) ( )d
b
a
f x x x
Numerical evaluation of integrals
Localized functions
 ( ) ( )d
b
a
f x x x
Solution: Sampling from (x).
Numerical evaluation of integrals
Localized functions
 ( ) ( )d
b
a
f x x x
Solution: Sampling from (x).
How? Markov chains.
Markov chains
 (e) (e)
1 , , n
Simplified example – finite number of microstates
 microstates: s1, …, sn
 probability distribution: 1 = (s1), …, n = (sn)
 equilibrium PD:
Markov chains
Simplified example – finite number of microstates
 Markov chain: s(1)  s(2)  …  s(N)  …
s(K) is from {s1, …, sn}
 transition probabilities: ik = ik
(stochastic matrix)
1
0 1
1
ik
n
ik
k 
  
 
Markov chains


   ( 1) ( )
1
n
N N
k i ik
j
Simplified example – finite number of microstates
 PD function evolution:

   ( 1) ( )N N
 equilibrium PD function:

   (e) (e)
1
n
k i ik
j
    (e) (e)
Markov chains
Simplified example – finite number of microstates
Theorem:
Let s(1), s(2), …, s(N), … be an infinite Markov chain of microstates generated using a
stochastic matrix ik . Then the generated microstates are distributed over the state
space of the system in congruence with the equilibrium PD function of the used
stochastic matrix.
Remarks:
The Markov chain does not represent any physical time evolution.
From the statistical thermodynamics point of view, only the equilibrium PD function
is physically relevant. (Not, e. g., the stochastic matrix.)
Markov chains
Construction of an appropriate stochastic matrix
(e) (e)
1 1
, 1
n n
k j jk jk
j k 
      
Mathematically
 2n linear algebraic equations for n2 variables
 many (infinite number of) solutions
Markov chains
Construction of an appropriate stochastic matrix
(e) (e)
1 1
, 1
n n
k j jk jk
j k 
      
Mathematically
 2n linear algebraic equations for n2 variables
 many (infinite number of) solutions
Detailed balance
(e) (e)
k kj j jk    
Markov chains
Decomposition of the stochastic matrix
 ik ik ikp a
pik … probability of proposing a particular transition
aik … probability of accepting the proposed transition
Metropolis solution [1]

  
      
  
  
  
  
(e)
(e) (e)
(e
(e)
(e))
mi min 1, ,n 1
ki ikp p
k ki
k ki ki i ik ik ik
ik
k
ik
ii
p
p
ap a p a a
[1] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, J. Chem. Phys. 21 (1953) 1087.
Markov chains
Decomposition of the stochastic matrix
 ik ik ikp a
pik … probability of proposing a particular transition
aik … probability of accepting the proposed transition
Metropolis solution [1]

  
      
  
  
  
  
(e)
(e) (e)
(e
(e)
(e))
mi min 1, ,n 1
ki ikp p
k ki
k ki ki i ik ik ik
ik
k
ik
ii
p
p
ap a p a a
[1] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, J. Chem. Phys. 21 (1953) 1087.
Notice that the PD function need not be normalized!
Metropolis algorithm
… for evaluating configuration integrals of statistical
thermodynamics (canonical ensemble)


 


B
B
( )
con 1
kin ( )
1
( )e d d
e d d
K
K
W r
k T
K N
W r
k T
N
b r r r
B B
r r
and, consequently,
   
   
    

( ) ( )( ) ( )( )
B B B B
( ) (e)
(e)
(e)
e e e e
k ii i ki
K
W WW WW r
k T k T k T k Tk
i
i
Metropolis algorithm
 from the configuration generated in the preceding step,
r(i), generate a new one using an algorithm obeying
that the probability for old  new is the same as for
new  old (usually isotropic translation and/or
rotation)
 if W (new)<W (i) then r (i+1) = r (new)
 if W (new)>W (i) then
 r (i+1) = r (new) with probability
 r (i+1) = r (i) with probability
 repeat until “infinity” (convergence)

 ( new)
B/
e
i
W k T



( new)
B/
1 e
i
W k T
Metropolis algorithm
Then

 

 

B
B
( )
con 1 ( )
con( )
1
1
( )e d d 1
lim ( )
e d d
K
K
W r
k T
n
K N i
KW r n
ik T
N
b r r r
b r
n
r r
Metropolis algorithm
Then

 

 

B
B
( )
con 1 ( )
con( )
1
1
( )e d d 1
lim ( )
e d d
K
K
W r
k T
n
K N i
KW r n
ik T
N
b r r r
b r
n
r r
Canonical (or NVT or isochoric-isothermic)
Monte Carlo
A general sketch of an MC simulation
 propose an initial configuration
 employ the Metropolis algorithm to generate as many as
possible further configurations
 collect necessary data along the MC path to evaluate
ensemble averages
 calculate the averages as simple arithmetic means of the
collected data
Troublesomes
Periodic boundary conditions - example
Literature
M. LEWERENZ, Monte Carlo Methods: Overview and Basics, in NIC Series Volume 10:
Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, NIC Juelich 2002
(http://www.fz-juelich.de/nic-series/volume10/volume10.html)
M. P. ALLEN, P. J. TILDESLEY, Computer Simulation of Liquids, Oxford University Press,
Oxford 1987.
D. P. LANDAU, K. BINDER, A Guide to Monte Carlo Simulations in Statistical
Physics, Cambridge University Press, Cambridge 2000 and 2005.
Appendix
Simulated annealing [1] and basin hopping [2]
MC simulation at a high temperature
equilibrium structure for T = 0 K
T0K
simulatedannealing
gradientoptimization
basinhopping[1] S. Kirckpatrick, C. D. Gellat, M. P. Vecchi, Science 220 (1983) 671; [2] D. J. Wales, H. A. Scheraga, Science 285
(1999) 1368.
Example 2
Simulated annealing of small water clusters.
PART 2
Wang-Landau algorithm
Problem: low temperatures
Simulation at low temperatures – combination of
integration and optimization
Molecular clusters, biomolecules:
Complicated energy landscapes
A lot of minims separated by large energy
barriers
 

 



con con 1 1
1 kin
con 1 1
( ) ( ; , , ) d d
, ,
( ; , , ) d d
K K n N
n
K n N
b r r A A r r
B A A B
r A A r r
IF , then mean value of B can be expressed as
a 1D integral
where is classical density of states
How to calculate ? Wang-Landau algorithm
 con( ) ( )K Kb r b W r
Mean value of variable B
 


 
 
 


min
min
con con 1
1 kin
con 1
( ) ( ; , , ) ( )d
, ,
( ; , , ) ( )d
nW
n
nW
b W W A A W W
B A A B
W A A W W
( )W
 
  


1 1
1
1
, , ; ( , , ) ,
0
1
, ,
1 d d
( ) lim
1 d d
N N
N
N
r r W r r W W W
W
N
r r
r r
W
r r
( )W
Calculation of Ω Wang-Landau algorithm – basic idea
- Completaly random walk in configuration space => energy
histogram h(W)~Ω(W), but low energy configurations will not be
visited
- Metropolis algorithm: configurations are sampled by ρ(Ei(r), =>
energy histogram h(W)~Ω(W) x ρ(W(r))
- If we use ρ(Wi(r)) = 1/(Ω(W)), then energy histogram will be
constant function
Wang-Landau algorithm – calculation of density of states
- Start of simulation: Ω(W) is unknown, we start with constant Ω(W) = 1
and from random initial configuration r
- Following configuration r2 created by small random change of foregoing
configuration r1 is accepted with probability
- Visiting of energy Wi: change of Ω(Wi) → Ω(Wi) x k0,where modification
factor k0 >1.
- e. g., k0 =2, big k → big statistical errors, small k → long simulation
- After reaching of flat energy histogram h(W), modification factor is
changed e.g. by rule , energy histogram is deleted (density of
states isn‘t deleted!) and we start a new simulation
- Computations is finished, when k reaches predeterminated value (e. g.
1,000 001)
  
  
 
 
min 1, 1,
new new old
newold old
W r W
WW r


      
   
  
1j jk k 
Wang-Landau algorithm – accuracy of results depends on:
- Final value of modification factor kfinal
- Softness of deals of energy
- Criterion of flatness of histogram
- Complexity of simulated system
- Details of implemented algorithm
Wangův-Landau algorithm: parallelization
- MPI, each core has one own walker, all cores share actual density
of states and actual energy histogram
W-L algorithm-example:
THE JOURNAL OF CHEMICAL PHYSICS 134, 024109 (2012)
Thank you for your attention

More Related Content

What's hot

ベイズ統計入門
ベイズ統計入門ベイズ統計入門
ベイズ統計入門
Miyoshi Yuya
 
3.3節 変分近似法(前半)
3.3節 変分近似法(前半)3.3節 変分近似法(前半)
3.3節 変分近似法(前半)
tn1031
 

What's hot (20)

第6回 配信講義 計算科学技術特論A(2021)
第6回 配信講義 計算科学技術特論A(2021)第6回 配信講義 計算科学技術特論A(2021)
第6回 配信講義 計算科学技術特論A(2021)
 
Cs231n 2017 lecture13 Generative Model
Cs231n 2017 lecture13 Generative ModelCs231n 2017 lecture13 Generative Model
Cs231n 2017 lecture13 Generative Model
 
ベイズ統計入門
ベイズ統計入門ベイズ統計入門
ベイズ統計入門
 
計算論的学習理論入門 -PAC学習とかVC次元とか-
計算論的学習理論入門 -PAC学習とかVC次元とか-計算論的学習理論入門 -PAC学習とかVC次元とか-
計算論的学習理論入門 -PAC学習とかVC次元とか-
 
クラシックな機械学習入門:付録:よく使う線形代数の公式
クラシックな機械学習入門:付録:よく使う線形代数の公式クラシックな機械学習入門:付録:よく使う線形代数の公式
クラシックな機械学習入門:付録:よく使う線形代数の公式
 
Chapter4 1 takmin
Chapter4 1 takminChapter4 1 takmin
Chapter4 1 takmin
 
制限ボルツマンマシン入門
制限ボルツマンマシン入門制限ボルツマンマシン入門
制限ボルツマンマシン入門
 
Matlantisで実現する不均一系理論触媒科学3.0: Ru/La0.5Ce0.5O1.75-xにおける強い金属・担体相互作用の解明と展望_PFCCウェ...
Matlantisで実現する不均一系理論触媒科学3.0: Ru/La0.5Ce0.5O1.75-xにおける強い金属・担体相互作用の解明と展望_PFCCウェ...Matlantisで実現する不均一系理論触媒科学3.0: Ru/La0.5Ce0.5O1.75-xにおける強い金属・担体相互作用の解明と展望_PFCCウェ...
Matlantisで実現する不均一系理論触媒科学3.0: Ru/La0.5Ce0.5O1.75-xにおける強い金属・担体相互作用の解明と展望_PFCCウェ...
 
Introduction to optimization Problems
Introduction to optimization ProblemsIntroduction to optimization Problems
Introduction to optimization Problems
 
RoFormer: Enhanced Transformer with Rotary Position Embedding
RoFormer: Enhanced Transformer with Rotary Position EmbeddingRoFormer: Enhanced Transformer with Rotary Position Embedding
RoFormer: Enhanced Transformer with Rotary Position Embedding
 
第7回 配信講義 計算科学技術特論B(2022)
第7回 配信講義 計算科学技術特論B(2022)第7回 配信講義 計算科学技術特論B(2022)
第7回 配信講義 計算科学技術特論B(2022)
 
PRML11章
PRML11章PRML11章
PRML11章
 
Thin film gas sensor
Thin film gas sensorThin film gas sensor
Thin film gas sensor
 
第3回 配信講義 計算科学技術特論B(2022)
第3回 配信講義 計算科学技術特論B(2022)第3回 配信講義 計算科学技術特論B(2022)
第3回 配信講義 計算科学技術特論B(2022)
 
Piezoelectric Polymer and applications
Piezoelectric Polymer and applicationsPiezoelectric Polymer and applications
Piezoelectric Polymer and applications
 
3.3節 変分近似法(前半)
3.3節 変分近似法(前半)3.3節 変分近似法(前半)
3.3節 変分近似法(前半)
 
モンテカルロサンプリング
モンテカルロサンプリングモンテカルロサンプリング
モンテカルロサンプリング
 
深層学習 勉強会第5回 ボルツマンマシン
深層学習 勉強会第5回 ボルツマンマシン深層学習 勉強会第5回 ボルツマンマシン
深層学習 勉強会第5回 ボルツマンマシン
 
量子コンピュータの量子化学計算への応用の現状と展望
量子コンピュータの量子化学計算への応用の現状と展望量子コンピュータの量子化学計算への応用の現状と展望
量子コンピュータの量子化学計算への応用の現状と展望
 
機械学習によるハイスループット 第一原理計算の代替の可能性_日本化学会_20230323
機械学習によるハイスループット 第一原理計算の代替の可能性_日本化学会_20230323機械学習によるハイスループット 第一原理計算の代替の可能性_日本化学会_20230323
機械学習によるハイスループット 第一原理計算の代替の可能性_日本化学会_20230323
 

Viewers also liked

Operators n dirac in qm
Operators n dirac in qmOperators n dirac in qm
Operators n dirac in qm
Anda Tywabi
 
Lecture 7 8 statistical thermodynamics - introduction
Lecture 7 8 statistical thermodynamics - introductionLecture 7 8 statistical thermodynamics - introduction
Lecture 7 8 statistical thermodynamics - introduction
Viraj Dande
 
[G4]image deblurring, seeing the invisible
[G4]image deblurring, seeing the invisible[G4]image deblurring, seeing the invisible
[G4]image deblurring, seeing the invisible
NAVER D2
 
Deblurring of Digital Image PPT
Deblurring of Digital Image PPTDeblurring of Digital Image PPT
Deblurring of Digital Image PPT
Syed Atif Naseem
 
Coulometric method of analysis
Coulometric method of analysisCoulometric method of analysis
Coulometric method of analysis
Siham Abdallaha
 
The monte carlo method
The monte carlo methodThe monte carlo method
The monte carlo method
Saurabh Sood
 

Viewers also liked (15)

Operators n dirac in qm
Operators n dirac in qmOperators n dirac in qm
Operators n dirac in qm
 
4 theory of multiphase flows
4 theory of multiphase flows4 theory of multiphase flows
4 theory of multiphase flows
 
Lecture 7 8 statistical thermodynamics - introduction
Lecture 7 8 statistical thermodynamics - introductionLecture 7 8 statistical thermodynamics - introduction
Lecture 7 8 statistical thermodynamics - introduction
 
Key ex eg cou
Key ex eg couKey ex eg cou
Key ex eg cou
 
Potentiometry
PotentiometryPotentiometry
Potentiometry
 
Radon Transform - image analysis
Radon Transform - image analysisRadon Transform - image analysis
Radon Transform - image analysis
 
[G4]image deblurring, seeing the invisible
[G4]image deblurring, seeing the invisible[G4]image deblurring, seeing the invisible
[G4]image deblurring, seeing the invisible
 
Deblurring of Digital Image PPT
Deblurring of Digital Image PPTDeblurring of Digital Image PPT
Deblurring of Digital Image PPT
 
Coulometric method of analysis
Coulometric method of analysisCoulometric method of analysis
Coulometric method of analysis
 
The monte carlo method
The monte carlo methodThe monte carlo method
The monte carlo method
 
Webinar: Moving to Office 365? What You Need to Know!
Webinar: Moving to Office 365? What You Need to Know!Webinar: Moving to Office 365? What You Need to Know!
Webinar: Moving to Office 365? What You Need to Know!
 
Graph Kernelpdf
Graph KernelpdfGraph Kernelpdf
Graph Kernelpdf
 
5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
 
Number plate recognition system using matlab.
Number plate recognition system using matlab.Number plate recognition system using matlab.
Number plate recognition system using matlab.
 
Slideshare ppt
Slideshare pptSlideshare ppt
Slideshare ppt
 

Similar to Metodo Monte Carlo -Wang Landau

chapter-2.ppt control system slide for students
chapter-2.ppt control system slide for studentschapter-2.ppt control system slide for students
chapter-2.ppt control system slide for students
lipsa91
 
KAUST_talk_short.pdf
KAUST_talk_short.pdfKAUST_talk_short.pdf
KAUST_talk_short.pdf
Chiheb Ben Hammouda
 

Similar to Metodo Monte Carlo -Wang Landau (20)

Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
 
Electromagnetic theory EMT lecture 1
Electromagnetic theory EMT lecture 1Electromagnetic theory EMT lecture 1
Electromagnetic theory EMT lecture 1
 
Spike sorting: What is it? Why do we need it? Where does it come from? How is...
Spike sorting: What is it? Why do we need it? Where does it come from? How is...Spike sorting: What is it? Why do we need it? Where does it come from? How is...
Spike sorting: What is it? Why do we need it? Where does it come from? How is...
 
Notions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systemsNotions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systems
 
Quantum Annealing for Dirichlet Process Mixture Models with Applications to N...
Quantum Annealing for Dirichlet Process Mixture Models with Applications to N...Quantum Annealing for Dirichlet Process Mixture Models with Applications to N...
Quantum Annealing for Dirichlet Process Mixture Models with Applications to N...
 
Markov chain Monte Carlo methods and some attempts at parallelizing them
Markov chain Monte Carlo methods and some attempts at parallelizing themMarkov chain Monte Carlo methods and some attempts at parallelizing them
Markov chain Monte Carlo methods and some attempts at parallelizing them
 
MolecularDynamics.ppt
MolecularDynamics.pptMolecularDynamics.ppt
MolecularDynamics.ppt
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
 
Lecture 3 sapienza 2017
Lecture 3 sapienza 2017Lecture 3 sapienza 2017
Lecture 3 sapienza 2017
 
Lecture -Earthquake Engineering (2).pdf
Lecture -Earthquake Engineering (2).pdfLecture -Earthquake Engineering (2).pdf
Lecture -Earthquake Engineering (2).pdf
 
chapter-2.ppt control system slide for students
chapter-2.ppt control system slide for studentschapter-2.ppt control system slide for students
chapter-2.ppt control system slide for students
 
Maneuvering target track prediction model
Maneuvering target track prediction modelManeuvering target track prediction model
Maneuvering target track prediction model
 
Unbiased MCMC with couplings
Unbiased MCMC with couplingsUnbiased MCMC with couplings
Unbiased MCMC with couplings
 
Unit 3
Unit 3Unit 3
Unit 3
 
Unit 3
Unit 3Unit 3
Unit 3
 
EXACT SOLUTIONS OF SCHRÖDINGER EQUATION WITH SOLVABLE POTENTIALS FOR NON PT/P...
EXACT SOLUTIONS OF SCHRÖDINGER EQUATION WITH SOLVABLE POTENTIALS FOR NON PT/P...EXACT SOLUTIONS OF SCHRÖDINGER EQUATION WITH SOLVABLE POTENTIALS FOR NON PT/P...
EXACT SOLUTIONS OF SCHRÖDINGER EQUATION WITH SOLVABLE POTENTIALS FOR NON PT/P...
 
KAUST_talk_short.pdf
KAUST_talk_short.pdfKAUST_talk_short.pdf
KAUST_talk_short.pdf
 
2 classical field theories
2 classical field theories2 classical field theories
2 classical field theories
 

Recently uploaded

No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...
No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...
No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...
Sheetaleventcompany
 
Bring back lost lover in USA, Canada ,Uk ,Australia ,London Lost Love Spell C...
Bring back lost lover in USA, Canada ,Uk ,Australia ,London Lost Love Spell C...Bring back lost lover in USA, Canada ,Uk ,Australia ,London Lost Love Spell C...
Bring back lost lover in USA, Canada ,Uk ,Australia ,London Lost Love Spell C...
amilabibi1
 
Uncommon Grace The Autobiography of Isaac Folorunso
Uncommon Grace The Autobiography of Isaac FolorunsoUncommon Grace The Autobiography of Isaac Folorunso
Uncommon Grace The Autobiography of Isaac Folorunso
Kayode Fayemi
 
Chiulli_Aurora_Oman_Raffaele_Beowulf.pptx
Chiulli_Aurora_Oman_Raffaele_Beowulf.pptxChiulli_Aurora_Oman_Raffaele_Beowulf.pptx
Chiulli_Aurora_Oman_Raffaele_Beowulf.pptx
raffaeleoman
 
If this Giant Must Walk: A Manifesto for a New Nigeria
If this Giant Must Walk: A Manifesto for a New NigeriaIf this Giant Must Walk: A Manifesto for a New Nigeria
If this Giant Must Walk: A Manifesto for a New Nigeria
Kayode Fayemi
 

Recently uploaded (20)

ICT role in 21st century education and it's challenges.pdf
ICT role in 21st century education and it's challenges.pdfICT role in 21st century education and it's challenges.pdf
ICT role in 21st century education and it's challenges.pdf
 
My Presentation "In Your Hands" by Halle Bailey
My Presentation "In Your Hands" by Halle BaileyMy Presentation "In Your Hands" by Halle Bailey
My Presentation "In Your Hands" by Halle Bailey
 
Causes of poverty in France presentation.pptx
Causes of poverty in France presentation.pptxCauses of poverty in France presentation.pptx
Causes of poverty in France presentation.pptx
 
Aesthetic Colaba Mumbai Cst Call girls 📞 7738631006 Grant road Call Girls ❤️-...
Aesthetic Colaba Mumbai Cst Call girls 📞 7738631006 Grant road Call Girls ❤️-...Aesthetic Colaba Mumbai Cst Call girls 📞 7738631006 Grant road Call Girls ❤️-...
Aesthetic Colaba Mumbai Cst Call girls 📞 7738631006 Grant road Call Girls ❤️-...
 
Report Writing Webinar Training
Report Writing Webinar TrainingReport Writing Webinar Training
Report Writing Webinar Training
 
Introduction to Prompt Engineering (Focusing on ChatGPT)
Introduction to Prompt Engineering (Focusing on ChatGPT)Introduction to Prompt Engineering (Focusing on ChatGPT)
Introduction to Prompt Engineering (Focusing on ChatGPT)
 
Air breathing and respiratory adaptations in diver animals
Air breathing and respiratory adaptations in diver animalsAir breathing and respiratory adaptations in diver animals
Air breathing and respiratory adaptations in diver animals
 
No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...
No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...
No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...
 
Sector 62, Noida Call girls :8448380779 Noida Escorts | 100% verified
Sector 62, Noida Call girls :8448380779 Noida Escorts | 100% verifiedSector 62, Noida Call girls :8448380779 Noida Escorts | 100% verified
Sector 62, Noida Call girls :8448380779 Noida Escorts | 100% verified
 
Busty Desi⚡Call Girls in Sector 51 Noida Escorts >༒8448380779 Escort Service-...
Busty Desi⚡Call Girls in Sector 51 Noida Escorts >༒8448380779 Escort Service-...Busty Desi⚡Call Girls in Sector 51 Noida Escorts >༒8448380779 Escort Service-...
Busty Desi⚡Call Girls in Sector 51 Noida Escorts >༒8448380779 Escort Service-...
 
Bring back lost lover in USA, Canada ,Uk ,Australia ,London Lost Love Spell C...
Bring back lost lover in USA, Canada ,Uk ,Australia ,London Lost Love Spell C...Bring back lost lover in USA, Canada ,Uk ,Australia ,London Lost Love Spell C...
Bring back lost lover in USA, Canada ,Uk ,Australia ,London Lost Love Spell C...
 
BDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort Service
BDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort ServiceBDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort Service
BDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort Service
 
Uncommon Grace The Autobiography of Isaac Folorunso
Uncommon Grace The Autobiography of Isaac FolorunsoUncommon Grace The Autobiography of Isaac Folorunso
Uncommon Grace The Autobiography of Isaac Folorunso
 
BDSM⚡Call Girls in Sector 97 Noida Escorts >༒8448380779 Escort Service
BDSM⚡Call Girls in Sector 97 Noida Escorts >༒8448380779 Escort ServiceBDSM⚡Call Girls in Sector 97 Noida Escorts >༒8448380779 Escort Service
BDSM⚡Call Girls in Sector 97 Noida Escorts >༒8448380779 Escort Service
 
Dreaming Music Video Treatment _ Project & Portfolio III
Dreaming Music Video Treatment _ Project & Portfolio IIIDreaming Music Video Treatment _ Project & Portfolio III
Dreaming Music Video Treatment _ Project & Portfolio III
 
Chiulli_Aurora_Oman_Raffaele_Beowulf.pptx
Chiulli_Aurora_Oman_Raffaele_Beowulf.pptxChiulli_Aurora_Oman_Raffaele_Beowulf.pptx
Chiulli_Aurora_Oman_Raffaele_Beowulf.pptx
 
Presentation on Engagement in Book Clubs
Presentation on Engagement in Book ClubsPresentation on Engagement in Book Clubs
Presentation on Engagement in Book Clubs
 
If this Giant Must Walk: A Manifesto for a New Nigeria
If this Giant Must Walk: A Manifesto for a New NigeriaIf this Giant Must Walk: A Manifesto for a New Nigeria
If this Giant Must Walk: A Manifesto for a New Nigeria
 
Thirunelveli call girls Tamil escorts 7877702510
Thirunelveli call girls Tamil escorts 7877702510Thirunelveli call girls Tamil escorts 7877702510
Thirunelveli call girls Tamil escorts 7877702510
 
AWS Data Engineer Associate (DEA-C01) Exam Dumps 2024.pdf
AWS Data Engineer Associate (DEA-C01) Exam Dumps 2024.pdfAWS Data Engineer Associate (DEA-C01) Exam Dumps 2024.pdf
AWS Data Engineer Associate (DEA-C01) Exam Dumps 2024.pdf
 

Metodo Monte Carlo -Wang Landau

  • 2. PART 1 Classical Monte Carlo Methods
  • 3. Outline 1. Statistical thermodynamics, ensembles 2. Numerical evaluation of integrals, crude Monte Carlo (MC) 3. MC methods for statistical thermodynamics, Markov chains 4. Variants of MC methods
  • 5. Statistical thermodynamics microscopic description (positions, momenta, interactions) macroscopic description (pressure, density, temperature)
  • 6. Statistical thermodynamics microscopic description (positions, momenta, interactions) macroscopic description (pressure, density, temperature) Statistical Thermodynamics
  • 7. Statistical thermodynamics time averages  Molecular Dynamics methods       0 0 1 lim ( ( ), ( )) d t K K t B b b r t p t t
  • 8. Statistical thermodynamics ensemble averages  Monte Carlo methods           1 1 1 ( , ) ( , ; , , ) d , , ( , ; , , ) d K K K K n n K K n b r p r p A A B A A b r p A A
  • 9. Statistical thermodynamics Statistical (Gibbs) ensembles  microstate (m-state): positions and momenta  macrostate (m-state): macroscopic variables (A1, … )  1 m-state = many m-states  Gibbs ensemble  probability distribution in system’s phase space,  1( , ; , , )K K nr p A A
  • 10. Statistical thermodynamics Examples of statistical (Gibbs) ensembles  micro-canonical: N, V, E  canonical: N, V, T  grand-canonical: m, V, T  isobaric-isothermic: N, P, T  etc.
  • 11. Statistical thermodynamics         B ( , ; ) , ; , , exp N K K K K H r p V r p N V T k T Canonical Gibbs ensemble    2 1 ( , ; ) ( ; ) 2 N K N K K K K K p H r p V W r V M
  • 12. Statistical thermodynamics           1 1 1 ( , ) ( , ; , , ) d , , ( , ; , , ) d K K K K n n K K n b r p r p A A B A A b r p A A Statistical thermodynamics as a mathematical problem  3 3 3 3 1 13 1 d d d ...d d !h N NN r p r p N
  • 13. Statistical thermodynamics         con con 1 1 1 kin con 1 1 ( ) ( ; , , ) d d , , ( ; , , ) d d K K n N n K n N b r r A A r r B A A B r A A r r Statistical thermodynamics as a mathematical problem Canonical ensemble          con B ( ; ) ; , , exp N K K W r V r N V T k T
  • 14. Numerical evaluation of integrals           1 1 ( ) d ( ) ( ) b n n j j ja b a b a b a f x x f a j f x n n n 1D – rectangular, trapezoid, Simpsonian, …
  • 15. Numerical evaluation of integrals           1 1 ( ) d ( ) ( ) b n n j j ja b a b a b a f x x f a j f x n n n 1D – rectangular, trapezoid, Simpsonian, … 1D – crude Monte Carlo     1 ( ) d ( ) b n j ja b a f x x f x n xj randomly distributed over [a,b]
  • 16. Numerical evaluation of integrals  0 sin dx xExample
  • 17. Numerical evaluation of integrals Localized functions  ( ) ( )d b a f x x x
  • 18. Numerical evaluation of integrals Localized functions  ( ) ( )d b a f x x x Solution: Sampling from (x).
  • 19. Numerical evaluation of integrals Localized functions  ( ) ( )d b a f x x x Solution: Sampling from (x). How? Markov chains.
  • 20. Markov chains  (e) (e) 1 , , n Simplified example – finite number of microstates  microstates: s1, …, sn  probability distribution: 1 = (s1), …, n = (sn)  equilibrium PD:
  • 21. Markov chains Simplified example – finite number of microstates  Markov chain: s(1)  s(2)  …  s(N)  … s(K) is from {s1, …, sn}  transition probabilities: ik = ik (stochastic matrix) 1 0 1 1 ik n ik k      
  • 22. Markov chains      ( 1) ( ) 1 n N N k i ik j Simplified example – finite number of microstates  PD function evolution:     ( 1) ( )N N  equilibrium PD function:     (e) (e) 1 n k i ik j     (e) (e)
  • 23. Markov chains Simplified example – finite number of microstates Theorem: Let s(1), s(2), …, s(N), … be an infinite Markov chain of microstates generated using a stochastic matrix ik . Then the generated microstates are distributed over the state space of the system in congruence with the equilibrium PD function of the used stochastic matrix. Remarks: The Markov chain does not represent any physical time evolution. From the statistical thermodynamics point of view, only the equilibrium PD function is physically relevant. (Not, e. g., the stochastic matrix.)
  • 24. Markov chains Construction of an appropriate stochastic matrix (e) (e) 1 1 , 1 n n k j jk jk j k         Mathematically  2n linear algebraic equations for n2 variables  many (infinite number of) solutions
  • 25. Markov chains Construction of an appropriate stochastic matrix (e) (e) 1 1 , 1 n n k j jk jk j k         Mathematically  2n linear algebraic equations for n2 variables  many (infinite number of) solutions Detailed balance (e) (e) k kj j jk    
  • 26. Markov chains Decomposition of the stochastic matrix  ik ik ikp a pik … probability of proposing a particular transition aik … probability of accepting the proposed transition Metropolis solution [1]                        (e) (e) (e) (e (e) (e)) mi min 1, ,n 1 ki ikp p k ki k ki ki i ik ik ik ik k ik ii p p ap a p a a [1] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, J. Chem. Phys. 21 (1953) 1087.
  • 27. Markov chains Decomposition of the stochastic matrix  ik ik ikp a pik … probability of proposing a particular transition aik … probability of accepting the proposed transition Metropolis solution [1]                        (e) (e) (e) (e (e) (e)) mi min 1, ,n 1 ki ikp p k ki k ki ki i ik ik ik ik k ik ii p p ap a p a a [1] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, J. Chem. Phys. 21 (1953) 1087. Notice that the PD function need not be normalized!
  • 28. Metropolis algorithm … for evaluating configuration integrals of statistical thermodynamics (canonical ensemble)       B B ( ) con 1 kin ( ) 1 ( )e d d e d d K K W r k T K N W r k T N b r r r B B r r and, consequently,               ( ) ( )( ) ( )( ) B B B B ( ) (e) (e) (e) e e e e k ii i ki K W WW WW r k T k T k T k Tk i i
  • 29. Metropolis algorithm  from the configuration generated in the preceding step, r(i), generate a new one using an algorithm obeying that the probability for old  new is the same as for new  old (usually isotropic translation and/or rotation)  if W (new)<W (i) then r (i+1) = r (new)  if W (new)>W (i) then  r (i+1) = r (new) with probability  r (i+1) = r (i) with probability  repeat until “infinity” (convergence)   ( new) B/ e i W k T    ( new) B/ 1 e i W k T
  • 30. Metropolis algorithm Then        B B ( ) con 1 ( ) con( ) 1 1 ( )e d d 1 lim ( ) e d d K K W r k T n K N i KW r n ik T N b r r r b r n r r
  • 31. Metropolis algorithm Then        B B ( ) con 1 ( ) con( ) 1 1 ( )e d d 1 lim ( ) e d d K K W r k T n K N i KW r n ik T N b r r r b r n r r Canonical (or NVT or isochoric-isothermic) Monte Carlo
  • 32. A general sketch of an MC simulation  propose an initial configuration  employ the Metropolis algorithm to generate as many as possible further configurations  collect necessary data along the MC path to evaluate ensemble averages  calculate the averages as simple arithmetic means of the collected data
  • 34. Literature M. LEWERENZ, Monte Carlo Methods: Overview and Basics, in NIC Series Volume 10: Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, NIC Juelich 2002 (http://www.fz-juelich.de/nic-series/volume10/volume10.html) M. P. ALLEN, P. J. TILDESLEY, Computer Simulation of Liquids, Oxford University Press, Oxford 1987. D. P. LANDAU, K. BINDER, A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge University Press, Cambridge 2000 and 2005.
  • 35. Appendix Simulated annealing [1] and basin hopping [2] MC simulation at a high temperature equilibrium structure for T = 0 K T0K simulatedannealing gradientoptimization basinhopping[1] S. Kirckpatrick, C. D. Gellat, M. P. Vecchi, Science 220 (1983) 671; [2] D. J. Wales, H. A. Scheraga, Science 285 (1999) 1368.
  • 36. Example 2 Simulated annealing of small water clusters.
  • 38. Problem: low temperatures Simulation at low temperatures – combination of integration and optimization Molecular clusters, biomolecules: Complicated energy landscapes A lot of minims separated by large energy barriers
  • 39.         con con 1 1 1 kin con 1 1 ( ) ( ; , , ) d d , , ( ; , , ) d d K K n N n K n N b r r A A r r B A A B r A A r r IF , then mean value of B can be expressed as a 1D integral where is classical density of states How to calculate ? Wang-Landau algorithm  con( ) ( )K Kb r b W r Mean value of variable B             min min con con 1 1 kin con 1 ( ) ( ; , , ) ( )d , , ( ; , , ) ( )d nW n nW b W W A A W W B A A B W A A W W ( )W        1 1 1 1 , , ; ( , , ) , 0 1 , , 1 d d ( ) lim 1 d d N N N N r r W r r W W W W N r r r r W r r ( )W
  • 40. Calculation of Ω Wang-Landau algorithm – basic idea - Completaly random walk in configuration space => energy histogram h(W)~Ω(W), but low energy configurations will not be visited - Metropolis algorithm: configurations are sampled by ρ(Ei(r), => energy histogram h(W)~Ω(W) x ρ(W(r)) - If we use ρ(Wi(r)) = 1/(Ω(W)), then energy histogram will be constant function
  • 41. Wang-Landau algorithm – calculation of density of states - Start of simulation: Ω(W) is unknown, we start with constant Ω(W) = 1 and from random initial configuration r - Following configuration r2 created by small random change of foregoing configuration r1 is accepted with probability - Visiting of energy Wi: change of Ω(Wi) → Ω(Wi) x k0,where modification factor k0 >1. - e. g., k0 =2, big k → big statistical errors, small k → long simulation - After reaching of flat energy histogram h(W), modification factor is changed e.g. by rule , energy histogram is deleted (density of states isn‘t deleted!) and we start a new simulation - Computations is finished, when k reaches predeterminated value (e. g. 1,000 001)           min 1, 1, new new old newold old W r W WW r                 1j jk k 
  • 42. Wang-Landau algorithm – accuracy of results depends on: - Final value of modification factor kfinal - Softness of deals of energy - Criterion of flatness of histogram - Complexity of simulated system - Details of implemented algorithm
  • 43. Wangův-Landau algorithm: parallelization - MPI, each core has one own walker, all cores share actual density of states and actual energy histogram
  • 44. W-L algorithm-example: THE JOURNAL OF CHEMICAL PHYSICS 134, 024109 (2012)
  • 45. Thank you for your attention