SlideShare a Scribd company logo
1 of 27
1
STRUCTURAL DESIGN OF 350KL
OVERHEAD WATER TANK AT INDIRA
GANDHI NATIONAL OPEN
UNIVERSITY, TELIBAGH LUCKNOW
2
DATA
1. Type of Tank: Intze Tank
2. Capacityof the tank: 350KL
3. Type of staging: Column& Brace type
4. Depthof foundation: 2.5m
5. Safe BearingCapacityof Soil: 100KN/m2
6. Type of foundation: CircularRing&Raft foundation
7. Grade of Concrete: M-25
8. Grade of Steel: Fe-415
9. Heightof staging: 25m
10. Type of soil: SoftClay
11. Heightof BuildinguptoTerrace: 15.6m
12. No.of floorsinBuilding: G+3
13. Basic WindPressure: 1500N/m2
14. SesmicZone of Lucknow: Zone 3
15. No.of studentinCollege: 2000
16. Water consumptionrate
(Percapitademandinlitresperdayper head): 45
17. Designperiodfortank: 30 years
18. No.of studentinhostels: 1600
3
OBJECTIVE
1:- To make a studyaboutthe analysisanddesignof watertank
2:- To make a studyaboutthe guidelinesforthe designof liquidretainingstructure accordingto
IS Code
IS: 3370 part 2-2009
IS: 456:2000
3:- To knowabout the designphilosophyforthe safe andeconomical designof watertank
4:- To estimate the overall costformakingthe Intze Tank
4
WATER QUANTITY ESTIMATION IN COLLEGE CAMPUS
Populationorthe numberof studentstobe servedin2014 = 2000
Let populationtobe increasedatrate of 10% per decade
Numberof students(2014) = 2000
Numberof studentsin2024 = 2200
Numberof studentsin2034 = 2420
Numberof studentsin2044 = 2662
Quantity = per capitademand× Population
= 45 × 2662
= 1,19,790 litres
= 120 KL (assume)
5
FLUCTUATION IN RATE OF DEMAND
Average dailypercapitademandincollege campus = 45 lpcd
If this average suppliedatall the timesitwill notbe sufficienttomeetthe fluctuation.
HOURLY VARIATION
(1) Duringthe entryof college from8to 9 inthe morning.
(2) Duringthe lunchfrom12 to 1 in the afternoon.
6
WATER CONSUMPTION IN HOSTEL
Average dailypercapitademandinhostels=135 lpcd.
Quantity = 136 × 1600
= 216 KL
Total quantity = 216 + 130
= 346 KL
͌ 350 KL
7
DESIGN REQUIREMENTOFTANK
* Concrete mix weakerthanM-20 isnot usedbecause of highergrade lesserporosityof
concrete.
* Minimumquantityof cementinconcrete shall be notlessthan30 KN/m3
.
* Use of small size bars.
* Coefficientof expansiondue totemperature=11×10-6
/˚C
* Coefficientof shrinkage maybe taken= 450 × 10-6
forinitial and200 × 10-6
fordrying
shrinkage.
* Minimumcovertoall reinforcementshouldbe 20 mmor the diameterof mainbarwhichever
isgreater.
* Anoverheadliquidretainingstructure isdesignusingworkingstressmethodavoidingthe
cracking inthe tank and to preventthe leakage andthe componentof tankcanbe designusing
LIMIT STATE METHOD
(example:-column,foundation,bracing,stairsetc.).
* Code usingIS:3370-PART 2-2009
IS: 456:2000
* The leakage ismore withhigherliquidheadandithas beenobservedthadwaterheadupto
15m doesnotcause leakage problem.
* Inorder to minimizecrackingdue toshrinkage andtemperature,minimumreinforcementis
recommendedas-
(i) For thickness≤100 mm = 0.3%
(ii) Forthickness≥450 mm = 0.2%
For thicknessbetween100mm to 450 mm= varieslinearlyfrom0.3% to0.2%
* For concrete thickness≥225 mm, twolayerof reinforcementbe placedone nearwaterface
and otherawayfrom waterface.
8
FROM IS -3370
(i) For loadcombinationwaterloadtreatedasdeadload.
(ii) Cracking– The maximumcalculatedsurface widthof concrete fordirecttensionandflexure
or restrainedtemperatureandmoisture effectshall notexceed0.2mmwithspecified cover.
(iii) Shrinkagecoefficientmaybe assumed= 300 × 10-6
.
(iv) Bar spacingshouldgenerallynotexceedthan300 mm or the thicknessof the section
whicheverisless.
9
DETERMINATION OFFOUNDATION
ℎ =
ℎ
ℎ
(
1 − ℎℎℎℎ
1 + ℎℎℎℎ
)
=
100
17
(
1−ℎℎℎ12
1+ℎℎℎ12
)
-Fromtestingof soil sample
For clay ∅=12˚
r = densityof soil
= 1.76 gm/cm3
= 17.6 KN/m3
p = 100 KN/m3
ℎ = 2.52 ℎ
10
9. DETERMINATION OFHEIGHTOFSTAGGING
We knowturbulentflow occursina pipe
So Re > 4000
f =
0.079
ℎℎ
1/4
L = lengthof pipe,
v = meanvelocityinpipe of flow
d = diameterof pipe
ℎd=
4ℎℎℎ2
2ℎℎ
ℎ =
ℎℎ
2
The kinematicviscosityof water(ℎ) =0.01×10-4
m2
/s
Assume diameterof pipe = 15 cm
ℎ = ℎℎ
ℎ =
ℎ
4
× 0.15
2
= 0..176ℎ2
=
Volume (V) =350 m3
Onlyforone hour maximumvelocityoccursinthe pipe sothe discharge duringthatperiod
ℎ =
ℎ
ℎ
=
350
60×60
= 0.097
ℎ3
ℎ
ℎ = ℎℎ
0.097= 0.0176 × ℎ
ℎ = 5.52 m/sec.
Maximumvelocity=5.52 m/sec.
ℎℎ =
ℎℎ
ℎ
=
5.52×0.15
0.01×10−4 = 8.2 × 105
(O.K.)
ℎ =
0.079
(8.2 × 105
)
1
4
= 2.61 × 10−3
11
Minimumlengthof pipe requirement
= 2 × heightof buildingupto3 storeysfromthe level +lateral distance uptothe centre of tank
= 2 × 15.6 + 18
= 49.2 m
≈ 50 m
Headloss ℎℎ =
4×2.61×10−3
×50×5.522
2×9.81×0.15
= 5.40 m
HEIGHT OF STAGGING
Total hydrostaticpressure ontank P = ρgh
Total head=
ℎ
ℎ
+
ℎ2
2ℎ
+ ℎ + ℎℎ+ ℎℎℎℎℎ ℎℎℎℎℎℎ
Minor loss(assume) =1 m.
=
ℎℎ
ℎ
+
ℎ2
2ℎ
+ ℎ+ ℎℎ+ 1
= 4.5 +
5.522
2×9.81
+ 15.6+ 5.4 + 1
= 28.08 ℎ
Usingtotal head= 29.5
Heightof stagging= 29.5 – 4.5
= 25 m
12
DESIGN OF TOP DOME
Assume thicknessof topdome =100 mm.
Meridional thrustatedges ℎ1 =
ℎℎ1
1+ℎℎℎℎ1
Deadload of top dome = 0.100 × 25 = 2.5 KN/m2
Live loadon topdome = 0.75 KN/m2
(assume)
Total load P = 3.25 KN/m2
ℎ1 =
3.25 × 103
× 18.5
1 + ℎℎℎ 18.92
= 30897.15 N/m
Meridional stress=
30897.15
100×100
= 0.308MPa < 5 MPa (OK)
Maximumhoopstressoccurs at the centre and itsmagnitude
ℎℎ1
2ℎ1
=
3.25×103
×18.5
2×0.100
=0.30 N/mm2
=0.3 MPa < 5MPa (OK)
Provide nominal reinforcementof 0.24%.
ℎℎℎ =
0.24×100×1000
100
= 240ℎℎ2
Use 8 mmbars.
ℎℎ = 50 ℎℎ2
Spacing =
1000×50
240
= 208.33
= 205 mm c/c.
Provide 8 mmbars @ 205 mm c/c radiallyandcircumtentiallyasshowninfigure.
The 205 mm c/c for radial bar isprovidedatthe springingof the dome.
At the crown the spacingreducestozero.
Hence the curtailmentof radial barsmay be carriedout at the appropriate distance.
13
14
DIMENSION OF TANK
Innerdiameterof cylindrical portion D= 12 m
Rise of top dome h1 = 1 m
Rise of bottomdome h2 = D/8 = 1.5 m (centre)
Free board= 0.15 m
Diameterof ringbeamDo = 5/8 D = 7.5 = 8 m
Rise of bottomdome (side) ho = 3/16 × D
= 2.25 m
= 2.5 m
Capacityof tank:-
ℎ =
ℎℎ2
ℎ
4
+
ℎℎℎ
12
(ℎ2
+ ℎℎ
2
+ ℎℎℎ)−
ℎℎ2
2
(3ℎ2−ℎ2)
3
Radiusof bottomcircular dome:-
1.5 × (2R2 – 1.5) = 42
2R2 – 1.5 = 10.67
R2 =6 m
SinƟ2 =
4
6
Ɵ2 = 41.8o
ℎ =
ℎℎ2
ℎ
4
+
ℎℎℎ
12
(ℎ2
+ ℎℎ
2
+ ℎℎℎ) −
ℎℎ2
2
(3ℎ2−ℎ2)
3
350 =
ℎ×122
×ℎ
4
+
ℎ×2
12
(122
+ 82
+ 12 × 8) −
ℎ×1.52
(3×6−1.5)
3
350 = 113ℎ + 160− 38.87
ℎ = 2 ℎ
Radiusof top circulardome:-
1 × (2R1-1) = 6 × 6
R1 = 18.5 m
15
SinƟ1 = 6/18.5
Ɵ1 = 18.92o
Designof top ringbeam:-
A ringbeamis providedatthe junctionof topdome and the vertical wall toresisthooptension
inducedbythe top dome.
Horizontal componentof meridional thrust P1 = T1 cos Ɵ1
= 30897.15 cos 18.92o
= 29227.8 N/m.
Total hoop tension tending to rupture of beam =
ℎ1×ℎ
2
=
29227.8×12
2
= 175366.8ℎ
Permissible stress in HYSD bars = 150 N/m2
Ash = 175366.8/150 = 1170 mm2
Provide 20 mm bars (314.15) as hoop.
Number of 12 mm bars = 1170 / 314.15
= 3.72
= 4
Actual Ash = 4 × ℎ/4 × 202
= 1256.63 mm2
= 1257 mm2
Provide 4-20 mm ø hoop and 8 mm bars tie @ 205 mm c/c.
Hence the cross sectional area of concrete
1.3=
175366.8
ℎ+1257×8
Ac = 124841.53
Provide ring beam of 320 mm × 400 mm.
16
Designof cylindrical wall:-
In the membrane analysisthe tankwall isassumedtobe free attop andbottom maximumhoop
tensionoccursat the base of the wall and itsmagnitude:-
=
ℎℎℎℎ
2
=
9800×ℎ×12
2
= 58800 ℎ
Hoop tensionatanydepthx fromthe top
X (m) Hoop tension(N/m)
0 0
1 58800
2 117600
Minimumthicknessof cylindrical wall =3 H + 5
= 3 × 2 + 5
= 11 cm.
Provide 20 cm at the bottomand taperit to12 cm at top.
At x = 1 m.
Areaof steel Ash = 58800/150
= 392 mm2
Provide 8 mmbars.
Aø = 50.26 mm2
Spacing= (1000 × 50.26) / 392
= 130 mm c/c.
At x = 2 m.
Areaof steel Ash = 117600/150
= 784 mm2
Provide 10 mm bars.
Aø = 78.53 mm2
Spacing= (1000 × 78.53) / 784
= 100 mm c/c.
17
The hoop steel maybe curtailedaccordingtohooptensionatdifferentheightalongthe wall
provided0.24%of minimumvertical reinforcement.
Average thicknessof wall =(120+200) / 2 = 160 mm.
Ash =
0.24×160×1000
100
= 384 mm2
Provide 8 mmø.
Aø = 50.26 mm2
Spacing=
50.26×1000
384
= 130mm c/c.
Designof ringbeamB3:-
Thickness=100 mm
Rise = 1.5 m (centre)
Base dia.= 8 m
Raidusof curvature = 6 m
Cos 41.8o
= 0.745
The ring beamconnectthe tank wall withinconical dome.The vertical loadatthe junctionof the
wall withconical dome istransferredtothe ringbeamB3 by horizontal thrust.Inthe conical dome
the horizontal componentof thrustcauseshooptensionatthe junction.
W = Load transferredthroughthe tankwall atthe topof conical dome /unitlength.
Øo = Inclinationof conical dome.
T = Meridional thrustinconical dome at the junction.
tan Øo = 2/2.5
18
Øo = 38.65
19
= 30897.15 sin18.92
= 10018.32 N/m
(ii) Loaddue to ringbeamB1 = 320 mmdepth
= 400 mm width
= 0.32×(0.4-0.1)×1×25000
= 2400 N/m
(iii) Loaddue totank wall = 2 × (
0.12+0.2
2
)× 1 × 25000
= 8000 N/m
(iv) Seif loadof beamB3 (1m× 0.6m say)
=(1-0.3) ×0.6×25000
= 10500 N/m
Total W = 10018.32 + 2400 + 8000 + 10500
= 30918.32 N/m
SinØo = sin38.65 = 0.62 , cos 38.65 = 0.78
Force Pw due to load Pw1 = W tan Øo
= 30918.32 tan 38.65
= 24725.97 N/m
Force Pw causeddue to waterpressure attop of conical dome
Pw2 = rw × hd3
h = depthof wateruptocentre of ringbeam
d3 = depthof ringbeam
Pw2 = 9800 × 2 × 0.6
= 11760 N/m
Hence hooptensioninthe ringbeamis givenby:-
P = (
ℎℎ1+ℎℎ2
2
) × ℎ
=(
24725.97+11760
2
)× 12 = 218915.82 ℎ
Thisis to be resistedbysteel hoopsthe areaof whichis
20
Ash =
218915.82
150
= 1460 mm2
Use 20 mm bars = 314.15
Numberof 20 mm bars =
1460
314.15
= 4.64
= 5 bars
Hence provide 5 ringof 20 mm diabars.
Actual area As= π/4 × 20 × 5
= 1570 mm2
Stressinequivalentsection=
218915.82
(1000×600)+10×1570
= 0.35 N/mm2
<1.2 N/mm2
(SAFE) (OK)
The 10 mmdiameterdistributionbara(vertical bars) providedinthe wall@100 mmc/c shouldbe
takenroundthe above ring to act as stirrups.
Designof conical dome :-
(a)Meridionalthrust:-
21
Ww = Total weightof wateron the conical dome
W = Weightof top dom,cylindrical wall etc.
Ws = Self weightof conical dome
Ww = ℎℎ[
ℎ
4
(ℎ2
+ ℎℎ
2
)+
ℎ
12
(ℎ2
+ ℎℎℎ
2
+ ℎℎℎ)−
ℎ
4
ℎℎ
2
× ℎℎ]
=9800[
ℎ
4
(122
+ 82
) +
ℎ
12
× 2.5(122
+ 82
+ 12× 8) −
ℎ
4
82
× 2.5]
=9800[326.72+ 198.96− 125.67]
=3920098 N
Let the thicknessof conical slab= 400 mm
Ww = [ℎ(
ℎ+ℎℎ
2
) × ℎ× ℎ0] × ℎℎ
l = √2.5
2
+ 22
= 3.2 m
Ws = 25000ℎ(
12+8
2
)× 3.2 × 0.4
= 1005309.649 N
WeightW at B3 = 30918.32 N/m.
Hence vertical loadW2 per metre runis givenby
W2 =
ℎℎℎ+ℎℎ+ℎℎ
ℎℎℎ
=
ℎ×12×30918.32+3920098 +1005309.64
ℎ×8
=242353.22 N/m
Meridional thrustTo in the conical dome
To = W2 / cos Øo
= 242353.22 / cos 38.65
= 310321.06 N/m.
Meridional stress =310321.06 / (1000×400)
= 0.775 N/mm2
< 5 N/mm2
(Safe).
(b) Hoop stress
22
Diameterof conical dome at anyheighth’above base is
D’ = 8 + (12-8)/2 × h’= 8 + 2h’
Intensityof waterpressure P = [(4+2)-h’]×9800
= [6-h’]9800 N/mm2
Self weight q = 0.4 × 25000
= 10000 N/mm2
Hoop tension ℎℎ
′
= (
ℎ
ℎℎℎØℎ
+ ℎ ℎℎℎØℎ )
ℎ′
2
= (
(6−ℎ′)9800
ℎℎℎ38.65
+ 1000 ℎℎℎ38.65 )
(8+2ℎ′)
2
Po’= 333150.48 + 12548.4 h’2
+ 12548.4h’2
h’ Hoop Tension
0 333150.48 N
1 353695.41 N
2 349144.86 N
2.5 337457.95 N
For maximum
ℎℎℎ′
ℎℎ′ = 0
33093.99 – 25096.8 h’= 0
h’= 1.31 m.
Maximum Po’= 354969.2977 N
(c) Designof walls:-
23
Meridional stress=0.775 N/mm2
Maximumhoopstress= 354969.29 N
Whichis to be resistedbysteel
As = 354969.29/150
= 2366.46 mm2
Areaof eachface = 1183.23 mm2
Spacingof 16 mmdia bars = (1000 × 201)/1183.23
= 170 mm c/c
Hence provide 16 mm diahoops@170 mm c/c on eachface.
Actual As = (1000 × 201)/170
= 1182 mm2
Maximumtensile stressincomposite section=
354969.29
(400×1000)+(2×1182×10)
=0.83 N/mm2
< 1.2 N/mm2
(Safe) (OK)
In the meridional directionthe reinforcement=
.21×400×1000
100
= 840 mm2
Or 420 mm2 on eachface
Use 10mm diameterbarsAℎ = 78.53 mm2
Spacing=
1000×78.53
420
= 180 mmc/c
Hence provide 10 mm bars @ 180 mm c/c on eachface witha clearcover20 mm
DESIGN OFBOTTOM DOME
R2= 6 m
Ɵ2= 41.8
Weightof wateron w0 onthe dome isgivenby
W0=[
ℎ
4
× ℎ0
2
ℎ0 –
ℎℎ2
2
3
(3ℎ2 − ℎ2)]ϒw
D0=8,H0 =2.5 ,R2=6,h2=1.5,
W0=850471.35N
Let the thicknessof bottomdome =250mm
Self WeightWs =2πR2h2t2×25000
24
R2=6, h2=1.5, t2=0.25
Ws=353429.17N
Total Weight=1203900.52N
Meridional thurst=T2=
1203900.52
ℎℎℎℎℎℎ41.8
D0=8
T2=71866.98N/m
Meridional Stress=
718866.98
250
× 1000
=0.287N/mm2
<5N/mm2
safe o.k.
Intensityof loadperunitarea
P2=
1203900.52
2ℎℎ2ℎ2
R2 =6,h2=1.5
P2=21289.63N/m2
Max hoopstressat centre of dome
ℎ2ℎ2
2ℎ2
=
(21289.63×6)
2×.25
=255475.625N/mm2
=0.25N/mm2
<5MPa O.K.
Areaof minsteel=0.26× 250 ×
1000
100
=650 mm2
ineachdirection
Use 10 mm Ɵbars
Spacing=1000×
78.5
650
=120mm
Hence provide 10mm ᶲ bars @ 120mm c/c inbothdirectionalsoprovide 16mmø meridoinal bars
@170mm c/c nearwaterface.
Designof bottomcircularBeam B2
Inwardthrustfrom conical dome =T0Sinøo
=310321.06 Sin38.65
=193814.5 N/m
25
Outwardthrustfrombottomdam=T2cosƟ2
=7866.98cos41.8
=56126.36N/m
Netinwardthrust=137688.14N/m
Hoop compressioninbeam=137688.14×8/2
=550752.56N
Vertical loadonbeam,permeterrun=T0Cosø0+T2SinƟ2
=310321.06 Cos38.6 +71866.98 Sin41.8
=290423.93 N/m
Self weightof beam=0.6×1.2×25000
=18000N/m
Total loadonbeam=290423.93+18000=308423.90N/m
Let ussupportthe beamon 8 equallyspacedcolumnata meandia 8m
Mean radiusof curvedbeamR=4m
For support8:-coefficientof B.H.&twistingmomentincircularbeam
2Ɵ=45o
C1=0.066,C2=0.030,C3=0.005
Øm=9.5o
,Ɵ=π/4=22.5=π/8 Radius
wR2
Ɵ=308423.9×42
×π/4
=3875769.4
Max –ve B.M.at supportM0=C1wR2
2Ɵ
=255800.78N.m
Max +ve B.M. at supportMc=C2wR2
2Ɵ
=116273.08N.m
Max torsional moment ℎℎ
ℎ
=C3 wR2
2Ɵ
=19378.84Nm
For σcbc=8.5
26
Hysd bars σst=150 N/mm2
Neuteral axisdepthfactor(K)
K=
ℎℎℎℎℎ
ℎℎℎℎℎ+ℎℎℎ
m=
280
3ℎℎℎℎ
=
280
3×8.5
=10.98
=10.98 ×
8.5
10.98×8.5+150
=0.383
LeverArm
J=1-K/3=0.872
R=1/2×σcbc×J×k=1/2×8.5×0.872×0.383
1.41
Mr=Rbd2
Reqeff.Depth(d)-
255800.78=1.41×600×d2
d=550mm
Howeverkeeptotal depth=700mm fromshearpointof view.
Max shearforce at support Fo=WRƟ
=308423.9×4×π/8
=484471.12N
S.F.at any pointF=WR(Ɵ-φ)
=308423.9×4×(22.5-9.5) ×π/180
=279916.6N
B.M. at the pointyof max torssional momentφm=9.50
Mφ=WR2
(ƟSinφ+ƟCosƟCosφ-1) sagging
=308423.9×42
×(π/8×sin9.5+π/8×cot22.5×cos9.5-1)
=4934.78Nm sagging
The torsionmomentat any point-
Mpt
=WR2
[Ɵcosφ-Ɵcosφsinφ-(Ɵ-φ)]
27
At the support φ=0 M0
t
=WR2
(Ɵ-φ)=0
At the midspan φ=Ɵ=22.5=π/8 radian
Mφ
t
= WR2
[ƟcosƟ]-[
Ɵℎℎℎøℎℎℎø
ℎℎℎø
]=0
Hence we have the followingcombinationof B.M.& torsional moment:-
(a)atthe support
M0 =255800.78 NM(hoggingornegative)
M0
t
=0

More Related Content

What's hot

Design of purlins
Design of purlinsDesign of purlins
Design of purlins
beqs
 
Design of reinforced flat slabs to bs 8110 (ciria 110)
Design of reinforced flat slabs to bs 8110 (ciria 110)Design of reinforced flat slabs to bs 8110 (ciria 110)
Design of reinforced flat slabs to bs 8110 (ciria 110)
bmxforu
 
6 portal frames
6 portal frames6 portal frames
6 portal frames
Prabhu mk
 
Project report on multi storied building expertcivil
Project report on multi storied building expertcivilProject report on multi storied building expertcivil
Project report on multi storied building expertcivil
Mumairbuttg
 

What's hot (20)

ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8 ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
 
Design of purlins
Design of purlinsDesign of purlins
Design of purlins
 
Koppolu abishek prying action
Koppolu abishek   prying actionKoppolu abishek   prying action
Koppolu abishek prying action
 
Design of reinforced flat slabs to bs 8110 (ciria 110)
Design of reinforced flat slabs to bs 8110 (ciria 110)Design of reinforced flat slabs to bs 8110 (ciria 110)
Design of reinforced flat slabs to bs 8110 (ciria 110)
 
Intze tank design
Intze tank designIntze tank design
Intze tank design
 
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
 
Wind load on pv system
Wind load on pv systemWind load on pv system
Wind load on pv system
 
Bs8110 design notes
Bs8110 design notesBs8110 design notes
Bs8110 design notes
 
Design of two-way slab
Design of two-way slabDesign of two-way slab
Design of two-way slab
 
Prestressed Concrete
Prestressed ConcretePrestressed Concrete
Prestressed Concrete
 
Steel warehouse design report
Steel warehouse design reportSteel warehouse design report
Steel warehouse design report
 
DESIGN OF STEEL STRUCTURE
DESIGN OF STEEL STRUCTUREDESIGN OF STEEL STRUCTURE
DESIGN OF STEEL STRUCTURE
 
Wind loading
Wind loadingWind loading
Wind loading
 
Types of column failure
Types of column failureTypes of column failure
Types of column failure
 
Eccentric Loading In Welded Connections
Eccentric Loading In Welded ConnectionsEccentric Loading In Welded Connections
Eccentric Loading In Welded Connections
 
6 portal frames
6 portal frames6 portal frames
6 portal frames
 
Project report on multi storied building expertcivil
Project report on multi storied building expertcivilProject report on multi storied building expertcivil
Project report on multi storied building expertcivil
 
Design of silo
Design of siloDesign of silo
Design of silo
 
Prestressed Concrete Design
Prestressed Concrete DesignPrestressed Concrete Design
Prestressed Concrete Design
 
Classification of cross section
Classification of cross sectionClassification of cross section
Classification of cross section
 

Viewers also liked

Water tank-lecture
Water tank-lectureWater tank-lecture
Water tank-lecture
Adnan Lazem
 
aci-350-3-06-seismic-desing-of-liquid-containing-concrete-structures-and-come...
aci-350-3-06-seismic-desing-of-liquid-containing-concrete-structures-and-come...aci-350-3-06-seismic-desing-of-liquid-containing-concrete-structures-and-come...
aci-350-3-06-seismic-desing-of-liquid-containing-concrete-structures-and-come...
Oscar Llasa Funes
 
Storage tanks basic training (rev 2)
Storage tanks basic training (rev 2)Storage tanks basic training (rev 2)
Storage tanks basic training (rev 2)
ledzung
 

Viewers also liked (20)

Complete design of r.c.c over head tank & boq estimate
Complete design of r.c.c over head tank & boq estimateComplete design of r.c.c over head tank & boq estimate
Complete design of r.c.c over head tank & boq estimate
 
Design of overhead RCC rectangular water tank
Design of overhead RCC rectangular water tankDesign of overhead RCC rectangular water tank
Design of overhead RCC rectangular water tank
 
Intze ppt
Intze pptIntze ppt
Intze ppt
 
Design of a storage tank using staad
Design of a storage tank using staadDesign of a storage tank using staad
Design of a storage tank using staad
 
water tank analysis
water tank analysiswater tank analysis
water tank analysis
 
Tank Training
Tank TrainingTank Training
Tank Training
 
Water tank-lecture
Water tank-lectureWater tank-lecture
Water tank-lecture
 
Flat bottom Overhead Water tank
Flat bottom Overhead Water tankFlat bottom Overhead Water tank
Flat bottom Overhead Water tank
 
Seismic design of_elevated_tanks
Seismic design of_elevated_tanksSeismic design of_elevated_tanks
Seismic design of_elevated_tanks
 
aci-350-3-06-seismic-desing-of-liquid-containing-concrete-structures-and-come...
aci-350-3-06-seismic-desing-of-liquid-containing-concrete-structures-and-come...aci-350-3-06-seismic-desing-of-liquid-containing-concrete-structures-and-come...
aci-350-3-06-seismic-desing-of-liquid-containing-concrete-structures-and-come...
 
Earthquake Resistant Design Techniques
Earthquake Resistant Design TechniquesEarthquake Resistant Design Techniques
Earthquake Resistant Design Techniques
 
Ppt
PptPpt
Ppt
 
Under Ground water tank design including estimation and costing
Under Ground  water tank design including estimation and costingUnder Ground  water tank design including estimation and costing
Under Ground water tank design including estimation and costing
 
143137557 storage-tanks
143137557 storage-tanks143137557 storage-tanks
143137557 storage-tanks
 
Introduction & under ground water tank problem
Introduction & under ground water tank problemIntroduction & under ground water tank problem
Introduction & under ground water tank problem
 
Tank design - word
Tank design - wordTank design - word
Tank design - word
 
Watertank
WatertankWatertank
Watertank
 
Tank design - powerpoint slides
Tank design - powerpoint slidesTank design - powerpoint slides
Tank design - powerpoint slides
 
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
 
Storage tanks basic training (rev 2)
Storage tanks basic training (rev 2)Storage tanks basic training (rev 2)
Storage tanks basic training (rev 2)
 

Similar to Structural design of 350 kl overhead water tank at telibagh,lucknow

Design ppt
Design pptDesign ppt
Design ppt
tishu001
 
Foundation Reinforcement Calcs & Connection Calcs
Foundation Reinforcement Calcs & Connection CalcsFoundation Reinforcement Calcs & Connection Calcs
Foundation Reinforcement Calcs & Connection Calcs
Magdel Kotze
 
final internship ppt.pptx
final internship ppt.pptxfinal internship ppt.pptx
final internship ppt.pptx
KiranKr32
 

Similar to Structural design of 350 kl overhead water tank at telibagh,lucknow (20)

Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
Intze Tank.ppt
Intze Tank.pptIntze Tank.ppt
Intze Tank.ppt
 
Intze Tankd s sad sa das dsjkj kkk kds s kkksk
Intze Tankd s sad sa das dsjkj kkk kds s kkkskIntze Tankd s sad sa das dsjkj kkk kds s kkksk
Intze Tankd s sad sa das dsjkj kkk kds s kkksk
 
Jury Presenatation.pptx
Jury Presenatation.pptxJury Presenatation.pptx
Jury Presenatation.pptx
 
Design of RCC Lintel
Design of RCC LintelDesign of RCC Lintel
Design of RCC Lintel
 
Design ppt
Design pptDesign ppt
Design ppt
 
Structural Design
Structural DesignStructural Design
Structural Design
 
Chap-5-T-Girder Example-1.pdf
Chap-5-T-Girder Example-1.pdfChap-5-T-Girder Example-1.pdf
Chap-5-T-Girder Example-1.pdf
 
Design of Steel Grillage Foundation for an Auditorium
Design of Steel Grillage Foundation for an AuditoriumDesign of Steel Grillage Foundation for an Auditorium
Design of Steel Grillage Foundation for an Auditorium
 
Foundation Reinforcement Calcs & Connection Calcs
Foundation Reinforcement Calcs & Connection CalcsFoundation Reinforcement Calcs & Connection Calcs
Foundation Reinforcement Calcs & Connection Calcs
 
onw way slab design
onw way slab designonw way slab design
onw way slab design
 
Planing,designing and analysis of HI TECH SHOPPING MALL
Planing,designing and analysis of HI TECH SHOPPING MALLPlaning,designing and analysis of HI TECH SHOPPING MALL
Planing,designing and analysis of HI TECH SHOPPING MALL
 
IRJET - Design and Analysis of Residential Institute Building
IRJET - Design and Analysis of Residential Institute BuildingIRJET - Design and Analysis of Residential Institute Building
IRJET - Design and Analysis of Residential Institute Building
 
final internship ppt.pptx
final internship ppt.pptxfinal internship ppt.pptx
final internship ppt.pptx
 
22564 emd 1.2 numericals
22564 emd 1.2 numericals22564 emd 1.2 numericals
22564 emd 1.2 numericals
 
Chimney design
Chimney designChimney design
Chimney design
 
C09 m-403032016 som
C09 m-403032016 somC09 m-403032016 som
C09 m-403032016 som
 
Harshal
HarshalHarshal
Harshal
 
post tensioning slabs
post tensioning slabspost tensioning slabs
post tensioning slabs
 
bridge final ppt.pptx
bridge final ppt.pptxbridge final ppt.pptx
bridge final ppt.pptx
 

Recently uploaded

Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
Chris Hunter
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 

Recently uploaded (20)

Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 

Structural design of 350 kl overhead water tank at telibagh,lucknow

  • 1. 1 STRUCTURAL DESIGN OF 350KL OVERHEAD WATER TANK AT INDIRA GANDHI NATIONAL OPEN UNIVERSITY, TELIBAGH LUCKNOW
  • 2. 2 DATA 1. Type of Tank: Intze Tank 2. Capacityof the tank: 350KL 3. Type of staging: Column& Brace type 4. Depthof foundation: 2.5m 5. Safe BearingCapacityof Soil: 100KN/m2 6. Type of foundation: CircularRing&Raft foundation 7. Grade of Concrete: M-25 8. Grade of Steel: Fe-415 9. Heightof staging: 25m 10. Type of soil: SoftClay 11. Heightof BuildinguptoTerrace: 15.6m 12. No.of floorsinBuilding: G+3 13. Basic WindPressure: 1500N/m2 14. SesmicZone of Lucknow: Zone 3 15. No.of studentinCollege: 2000 16. Water consumptionrate (Percapitademandinlitresperdayper head): 45 17. Designperiodfortank: 30 years 18. No.of studentinhostels: 1600
  • 3. 3 OBJECTIVE 1:- To make a studyaboutthe analysisanddesignof watertank 2:- To make a studyaboutthe guidelinesforthe designof liquidretainingstructure accordingto IS Code IS: 3370 part 2-2009 IS: 456:2000 3:- To knowabout the designphilosophyforthe safe andeconomical designof watertank 4:- To estimate the overall costformakingthe Intze Tank
  • 4. 4 WATER QUANTITY ESTIMATION IN COLLEGE CAMPUS Populationorthe numberof studentstobe servedin2014 = 2000 Let populationtobe increasedatrate of 10% per decade Numberof students(2014) = 2000 Numberof studentsin2024 = 2200 Numberof studentsin2034 = 2420 Numberof studentsin2044 = 2662 Quantity = per capitademand× Population = 45 × 2662 = 1,19,790 litres = 120 KL (assume)
  • 5. 5 FLUCTUATION IN RATE OF DEMAND Average dailypercapitademandincollege campus = 45 lpcd If this average suppliedatall the timesitwill notbe sufficienttomeetthe fluctuation. HOURLY VARIATION (1) Duringthe entryof college from8to 9 inthe morning. (2) Duringthe lunchfrom12 to 1 in the afternoon.
  • 6. 6 WATER CONSUMPTION IN HOSTEL Average dailypercapitademandinhostels=135 lpcd. Quantity = 136 × 1600 = 216 KL Total quantity = 216 + 130 = 346 KL ͌ 350 KL
  • 7. 7 DESIGN REQUIREMENTOFTANK * Concrete mix weakerthanM-20 isnot usedbecause of highergrade lesserporosityof concrete. * Minimumquantityof cementinconcrete shall be notlessthan30 KN/m3 . * Use of small size bars. * Coefficientof expansiondue totemperature=11×10-6 /˚C * Coefficientof shrinkage maybe taken= 450 × 10-6 forinitial and200 × 10-6 fordrying shrinkage. * Minimumcovertoall reinforcementshouldbe 20 mmor the diameterof mainbarwhichever isgreater. * Anoverheadliquidretainingstructure isdesignusingworkingstressmethodavoidingthe cracking inthe tank and to preventthe leakage andthe componentof tankcanbe designusing LIMIT STATE METHOD (example:-column,foundation,bracing,stairsetc.). * Code usingIS:3370-PART 2-2009 IS: 456:2000 * The leakage ismore withhigherliquidheadandithas beenobservedthadwaterheadupto 15m doesnotcause leakage problem. * Inorder to minimizecrackingdue toshrinkage andtemperature,minimumreinforcementis recommendedas- (i) For thickness≤100 mm = 0.3% (ii) Forthickness≥450 mm = 0.2% For thicknessbetween100mm to 450 mm= varieslinearlyfrom0.3% to0.2% * For concrete thickness≥225 mm, twolayerof reinforcementbe placedone nearwaterface and otherawayfrom waterface.
  • 8. 8 FROM IS -3370 (i) For loadcombinationwaterloadtreatedasdeadload. (ii) Cracking– The maximumcalculatedsurface widthof concrete fordirecttensionandflexure or restrainedtemperatureandmoisture effectshall notexceed0.2mmwithspecified cover. (iii) Shrinkagecoefficientmaybe assumed= 300 × 10-6 . (iv) Bar spacingshouldgenerallynotexceedthan300 mm or the thicknessof the section whicheverisless.
  • 9. 9 DETERMINATION OFFOUNDATION ℎ = ℎ ℎ ( 1 − ℎℎℎℎ 1 + ℎℎℎℎ ) = 100 17 ( 1−ℎℎℎ12 1+ℎℎℎ12 ) -Fromtestingof soil sample For clay ∅=12˚ r = densityof soil = 1.76 gm/cm3 = 17.6 KN/m3 p = 100 KN/m3 ℎ = 2.52 ℎ
  • 10. 10 9. DETERMINATION OFHEIGHTOFSTAGGING We knowturbulentflow occursina pipe So Re > 4000 f = 0.079 ℎℎ 1/4 L = lengthof pipe, v = meanvelocityinpipe of flow d = diameterof pipe ℎd= 4ℎℎℎ2 2ℎℎ ℎ = ℎℎ 2 The kinematicviscosityof water(ℎ) =0.01×10-4 m2 /s Assume diameterof pipe = 15 cm ℎ = ℎℎ ℎ = ℎ 4 × 0.15 2 = 0..176ℎ2 = Volume (V) =350 m3 Onlyforone hour maximumvelocityoccursinthe pipe sothe discharge duringthatperiod ℎ = ℎ ℎ = 350 60×60 = 0.097 ℎ3 ℎ ℎ = ℎℎ 0.097= 0.0176 × ℎ ℎ = 5.52 m/sec. Maximumvelocity=5.52 m/sec. ℎℎ = ℎℎ ℎ = 5.52×0.15 0.01×10−4 = 8.2 × 105 (O.K.) ℎ = 0.079 (8.2 × 105 ) 1 4 = 2.61 × 10−3
  • 11. 11 Minimumlengthof pipe requirement = 2 × heightof buildingupto3 storeysfromthe level +lateral distance uptothe centre of tank = 2 × 15.6 + 18 = 49.2 m ≈ 50 m Headloss ℎℎ = 4×2.61×10−3 ×50×5.522 2×9.81×0.15 = 5.40 m HEIGHT OF STAGGING Total hydrostaticpressure ontank P = ρgh Total head= ℎ ℎ + ℎ2 2ℎ + ℎ + ℎℎ+ ℎℎℎℎℎ ℎℎℎℎℎℎ Minor loss(assume) =1 m. = ℎℎ ℎ + ℎ2 2ℎ + ℎ+ ℎℎ+ 1 = 4.5 + 5.522 2×9.81 + 15.6+ 5.4 + 1 = 28.08 ℎ Usingtotal head= 29.5 Heightof stagging= 29.5 – 4.5 = 25 m
  • 12. 12 DESIGN OF TOP DOME Assume thicknessof topdome =100 mm. Meridional thrustatedges ℎ1 = ℎℎ1 1+ℎℎℎℎ1 Deadload of top dome = 0.100 × 25 = 2.5 KN/m2 Live loadon topdome = 0.75 KN/m2 (assume) Total load P = 3.25 KN/m2 ℎ1 = 3.25 × 103 × 18.5 1 + ℎℎℎ 18.92 = 30897.15 N/m Meridional stress= 30897.15 100×100 = 0.308MPa < 5 MPa (OK) Maximumhoopstressoccurs at the centre and itsmagnitude ℎℎ1 2ℎ1 = 3.25×103 ×18.5 2×0.100 =0.30 N/mm2 =0.3 MPa < 5MPa (OK) Provide nominal reinforcementof 0.24%. ℎℎℎ = 0.24×100×1000 100 = 240ℎℎ2 Use 8 mmbars. ℎℎ = 50 ℎℎ2 Spacing = 1000×50 240 = 208.33 = 205 mm c/c. Provide 8 mmbars @ 205 mm c/c radiallyandcircumtentiallyasshowninfigure. The 205 mm c/c for radial bar isprovidedatthe springingof the dome. At the crown the spacingreducestozero. Hence the curtailmentof radial barsmay be carriedout at the appropriate distance.
  • 13. 13
  • 14. 14 DIMENSION OF TANK Innerdiameterof cylindrical portion D= 12 m Rise of top dome h1 = 1 m Rise of bottomdome h2 = D/8 = 1.5 m (centre) Free board= 0.15 m Diameterof ringbeamDo = 5/8 D = 7.5 = 8 m Rise of bottomdome (side) ho = 3/16 × D = 2.25 m = 2.5 m Capacityof tank:- ℎ = ℎℎ2 ℎ 4 + ℎℎℎ 12 (ℎ2 + ℎℎ 2 + ℎℎℎ)− ℎℎ2 2 (3ℎ2−ℎ2) 3 Radiusof bottomcircular dome:- 1.5 × (2R2 – 1.5) = 42 2R2 – 1.5 = 10.67 R2 =6 m SinƟ2 = 4 6 Ɵ2 = 41.8o ℎ = ℎℎ2 ℎ 4 + ℎℎℎ 12 (ℎ2 + ℎℎ 2 + ℎℎℎ) − ℎℎ2 2 (3ℎ2−ℎ2) 3 350 = ℎ×122 ×ℎ 4 + ℎ×2 12 (122 + 82 + 12 × 8) − ℎ×1.52 (3×6−1.5) 3 350 = 113ℎ + 160− 38.87 ℎ = 2 ℎ Radiusof top circulardome:- 1 × (2R1-1) = 6 × 6 R1 = 18.5 m
  • 15. 15 SinƟ1 = 6/18.5 Ɵ1 = 18.92o Designof top ringbeam:- A ringbeamis providedatthe junctionof topdome and the vertical wall toresisthooptension inducedbythe top dome. Horizontal componentof meridional thrust P1 = T1 cos Ɵ1 = 30897.15 cos 18.92o = 29227.8 N/m. Total hoop tension tending to rupture of beam = ℎ1×ℎ 2 = 29227.8×12 2 = 175366.8ℎ Permissible stress in HYSD bars = 150 N/m2 Ash = 175366.8/150 = 1170 mm2 Provide 20 mm bars (314.15) as hoop. Number of 12 mm bars = 1170 / 314.15 = 3.72 = 4 Actual Ash = 4 × ℎ/4 × 202 = 1256.63 mm2 = 1257 mm2 Provide 4-20 mm ø hoop and 8 mm bars tie @ 205 mm c/c. Hence the cross sectional area of concrete 1.3= 175366.8 ℎ+1257×8 Ac = 124841.53 Provide ring beam of 320 mm × 400 mm.
  • 16. 16 Designof cylindrical wall:- In the membrane analysisthe tankwall isassumedtobe free attop andbottom maximumhoop tensionoccursat the base of the wall and itsmagnitude:- = ℎℎℎℎ 2 = 9800×ℎ×12 2 = 58800 ℎ Hoop tensionatanydepthx fromthe top X (m) Hoop tension(N/m) 0 0 1 58800 2 117600 Minimumthicknessof cylindrical wall =3 H + 5 = 3 × 2 + 5 = 11 cm. Provide 20 cm at the bottomand taperit to12 cm at top. At x = 1 m. Areaof steel Ash = 58800/150 = 392 mm2 Provide 8 mmbars. Aø = 50.26 mm2 Spacing= (1000 × 50.26) / 392 = 130 mm c/c. At x = 2 m. Areaof steel Ash = 117600/150 = 784 mm2 Provide 10 mm bars. Aø = 78.53 mm2 Spacing= (1000 × 78.53) / 784 = 100 mm c/c.
  • 17. 17 The hoop steel maybe curtailedaccordingtohooptensionatdifferentheightalongthe wall provided0.24%of minimumvertical reinforcement. Average thicknessof wall =(120+200) / 2 = 160 mm. Ash = 0.24×160×1000 100 = 384 mm2 Provide 8 mmø. Aø = 50.26 mm2 Spacing= 50.26×1000 384 = 130mm c/c. Designof ringbeamB3:- Thickness=100 mm Rise = 1.5 m (centre) Base dia.= 8 m Raidusof curvature = 6 m Cos 41.8o = 0.745 The ring beamconnectthe tank wall withinconical dome.The vertical loadatthe junctionof the wall withconical dome istransferredtothe ringbeamB3 by horizontal thrust.Inthe conical dome the horizontal componentof thrustcauseshooptensionatthe junction. W = Load transferredthroughthe tankwall atthe topof conical dome /unitlength. Øo = Inclinationof conical dome. T = Meridional thrustinconical dome at the junction. tan Øo = 2/2.5
  • 19. 19 = 30897.15 sin18.92 = 10018.32 N/m (ii) Loaddue to ringbeamB1 = 320 mmdepth = 400 mm width = 0.32×(0.4-0.1)×1×25000 = 2400 N/m (iii) Loaddue totank wall = 2 × ( 0.12+0.2 2 )× 1 × 25000 = 8000 N/m (iv) Seif loadof beamB3 (1m× 0.6m say) =(1-0.3) ×0.6×25000 = 10500 N/m Total W = 10018.32 + 2400 + 8000 + 10500 = 30918.32 N/m SinØo = sin38.65 = 0.62 , cos 38.65 = 0.78 Force Pw due to load Pw1 = W tan Øo = 30918.32 tan 38.65 = 24725.97 N/m Force Pw causeddue to waterpressure attop of conical dome Pw2 = rw × hd3 h = depthof wateruptocentre of ringbeam d3 = depthof ringbeam Pw2 = 9800 × 2 × 0.6 = 11760 N/m Hence hooptensioninthe ringbeamis givenby:- P = ( ℎℎ1+ℎℎ2 2 ) × ℎ =( 24725.97+11760 2 )× 12 = 218915.82 ℎ Thisis to be resistedbysteel hoopsthe areaof whichis
  • 20. 20 Ash = 218915.82 150 = 1460 mm2 Use 20 mm bars = 314.15 Numberof 20 mm bars = 1460 314.15 = 4.64 = 5 bars Hence provide 5 ringof 20 mm diabars. Actual area As= π/4 × 20 × 5 = 1570 mm2 Stressinequivalentsection= 218915.82 (1000×600)+10×1570 = 0.35 N/mm2 <1.2 N/mm2 (SAFE) (OK) The 10 mmdiameterdistributionbara(vertical bars) providedinthe wall@100 mmc/c shouldbe takenroundthe above ring to act as stirrups. Designof conical dome :- (a)Meridionalthrust:-
  • 21. 21 Ww = Total weightof wateron the conical dome W = Weightof top dom,cylindrical wall etc. Ws = Self weightof conical dome Ww = ℎℎ[ ℎ 4 (ℎ2 + ℎℎ 2 )+ ℎ 12 (ℎ2 + ℎℎℎ 2 + ℎℎℎ)− ℎ 4 ℎℎ 2 × ℎℎ] =9800[ ℎ 4 (122 + 82 ) + ℎ 12 × 2.5(122 + 82 + 12× 8) − ℎ 4 82 × 2.5] =9800[326.72+ 198.96− 125.67] =3920098 N Let the thicknessof conical slab= 400 mm Ww = [ℎ( ℎ+ℎℎ 2 ) × ℎ× ℎ0] × ℎℎ l = √2.5 2 + 22 = 3.2 m Ws = 25000ℎ( 12+8 2 )× 3.2 × 0.4 = 1005309.649 N WeightW at B3 = 30918.32 N/m. Hence vertical loadW2 per metre runis givenby W2 = ℎℎℎ+ℎℎ+ℎℎ ℎℎℎ = ℎ×12×30918.32+3920098 +1005309.64 ℎ×8 =242353.22 N/m Meridional thrustTo in the conical dome To = W2 / cos Øo = 242353.22 / cos 38.65 = 310321.06 N/m. Meridional stress =310321.06 / (1000×400) = 0.775 N/mm2 < 5 N/mm2 (Safe). (b) Hoop stress
  • 22. 22 Diameterof conical dome at anyheighth’above base is D’ = 8 + (12-8)/2 × h’= 8 + 2h’ Intensityof waterpressure P = [(4+2)-h’]×9800 = [6-h’]9800 N/mm2 Self weight q = 0.4 × 25000 = 10000 N/mm2 Hoop tension ℎℎ ′ = ( ℎ ℎℎℎØℎ + ℎ ℎℎℎØℎ ) ℎ′ 2 = ( (6−ℎ′)9800 ℎℎℎ38.65 + 1000 ℎℎℎ38.65 ) (8+2ℎ′) 2 Po’= 333150.48 + 12548.4 h’2 + 12548.4h’2 h’ Hoop Tension 0 333150.48 N 1 353695.41 N 2 349144.86 N 2.5 337457.95 N For maximum ℎℎℎ′ ℎℎ′ = 0 33093.99 – 25096.8 h’= 0 h’= 1.31 m. Maximum Po’= 354969.2977 N (c) Designof walls:-
  • 23. 23 Meridional stress=0.775 N/mm2 Maximumhoopstress= 354969.29 N Whichis to be resistedbysteel As = 354969.29/150 = 2366.46 mm2 Areaof eachface = 1183.23 mm2 Spacingof 16 mmdia bars = (1000 × 201)/1183.23 = 170 mm c/c Hence provide 16 mm diahoops@170 mm c/c on eachface. Actual As = (1000 × 201)/170 = 1182 mm2 Maximumtensile stressincomposite section= 354969.29 (400×1000)+(2×1182×10) =0.83 N/mm2 < 1.2 N/mm2 (Safe) (OK) In the meridional directionthe reinforcement= .21×400×1000 100 = 840 mm2 Or 420 mm2 on eachface Use 10mm diameterbarsAℎ = 78.53 mm2 Spacing= 1000×78.53 420 = 180 mmc/c Hence provide 10 mm bars @ 180 mm c/c on eachface witha clearcover20 mm DESIGN OFBOTTOM DOME R2= 6 m Ɵ2= 41.8 Weightof wateron w0 onthe dome isgivenby W0=[ ℎ 4 × ℎ0 2 ℎ0 – ℎℎ2 2 3 (3ℎ2 − ℎ2)]ϒw D0=8,H0 =2.5 ,R2=6,h2=1.5, W0=850471.35N Let the thicknessof bottomdome =250mm Self WeightWs =2πR2h2t2×25000
  • 24. 24 R2=6, h2=1.5, t2=0.25 Ws=353429.17N Total Weight=1203900.52N Meridional thurst=T2= 1203900.52 ℎℎℎℎℎℎ41.8 D0=8 T2=71866.98N/m Meridional Stress= 718866.98 250 × 1000 =0.287N/mm2 <5N/mm2 safe o.k. Intensityof loadperunitarea P2= 1203900.52 2ℎℎ2ℎ2 R2 =6,h2=1.5 P2=21289.63N/m2 Max hoopstressat centre of dome ℎ2ℎ2 2ℎ2 = (21289.63×6) 2×.25 =255475.625N/mm2 =0.25N/mm2 <5MPa O.K. Areaof minsteel=0.26× 250 × 1000 100 =650 mm2 ineachdirection Use 10 mm Ɵbars Spacing=1000× 78.5 650 =120mm Hence provide 10mm ᶲ bars @ 120mm c/c inbothdirectionalsoprovide 16mmø meridoinal bars @170mm c/c nearwaterface. Designof bottomcircularBeam B2 Inwardthrustfrom conical dome =T0Sinøo =310321.06 Sin38.65 =193814.5 N/m
  • 25. 25 Outwardthrustfrombottomdam=T2cosƟ2 =7866.98cos41.8 =56126.36N/m Netinwardthrust=137688.14N/m Hoop compressioninbeam=137688.14×8/2 =550752.56N Vertical loadonbeam,permeterrun=T0Cosø0+T2SinƟ2 =310321.06 Cos38.6 +71866.98 Sin41.8 =290423.93 N/m Self weightof beam=0.6×1.2×25000 =18000N/m Total loadonbeam=290423.93+18000=308423.90N/m Let ussupportthe beamon 8 equallyspacedcolumnata meandia 8m Mean radiusof curvedbeamR=4m For support8:-coefficientof B.H.&twistingmomentincircularbeam 2Ɵ=45o C1=0.066,C2=0.030,C3=0.005 Øm=9.5o ,Ɵ=π/4=22.5=π/8 Radius wR2 Ɵ=308423.9×42 ×π/4 =3875769.4 Max –ve B.M.at supportM0=C1wR2 2Ɵ =255800.78N.m Max +ve B.M. at supportMc=C2wR2 2Ɵ =116273.08N.m Max torsional moment ℎℎ ℎ =C3 wR2 2Ɵ =19378.84Nm For σcbc=8.5
  • 26. 26 Hysd bars σst=150 N/mm2 Neuteral axisdepthfactor(K) K= ℎℎℎℎℎ ℎℎℎℎℎ+ℎℎℎ m= 280 3ℎℎℎℎ = 280 3×8.5 =10.98 =10.98 × 8.5 10.98×8.5+150 =0.383 LeverArm J=1-K/3=0.872 R=1/2×σcbc×J×k=1/2×8.5×0.872×0.383 1.41 Mr=Rbd2 Reqeff.Depth(d)- 255800.78=1.41×600×d2 d=550mm Howeverkeeptotal depth=700mm fromshearpointof view. Max shearforce at support Fo=WRƟ =308423.9×4×π/8 =484471.12N S.F.at any pointF=WR(Ɵ-φ) =308423.9×4×(22.5-9.5) ×π/180 =279916.6N B.M. at the pointyof max torssional momentφm=9.50 Mφ=WR2 (ƟSinφ+ƟCosƟCosφ-1) sagging =308423.9×42 ×(π/8×sin9.5+π/8×cot22.5×cos9.5-1) =4934.78Nm sagging The torsionmomentat any point- Mpt =WR2 [Ɵcosφ-Ɵcosφsinφ-(Ɵ-φ)]
  • 27. 27 At the support φ=0 M0 t =WR2 (Ɵ-φ)=0 At the midspan φ=Ɵ=22.5=π/8 radian Mφ t = WR2 [ƟcosƟ]-[ Ɵℎℎℎøℎℎℎø ℎℎℎø ]=0 Hence we have the followingcombinationof B.M.& torsional moment:- (a)atthe support M0 =255800.78 NM(hoggingornegative) M0 t =0