Spattern matching using biometric techniques


Published on

For Documentation and Downloads Visit

1 Comment
  • Thanks for the information... I really love your blog posts... specially those onFingerprint attendance system, Biometric Time and Attendance System
    Are you sure you want to  Yes  No
    Your message goes here
  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Spattern matching using biometric techniques

  1. 1. PATTERN MATCHING USING BIOMETRIC TECHNIQUES For Documentation and Downloads Visit
  2. 2. INTRODUCTION <ul><li>Bio(Life), Metrics(Measure) </li></ul><ul><li>Biometrics can be defined as the science and technology of </li></ul><ul><li>measuring and statistically analyzing biological data. </li></ul><ul><li>Biometrics allow us to authenticate ourselves with things </li></ul><ul><li>that we carry with us wherever we may go, such as our </li></ul><ul><li>hands, eyes, voices, faces, fingerprints etc. </li></ul>
  3. 3. HISTORY <ul><li>British scientist Sir Francis Galton proposed the use of </li></ul><ul><li>fingerprints IN 19 TH Century. </li></ul><ul><li>One of the most well-known biometrics characteristics is </li></ul><ul><li>fingerprint. </li></ul><ul><li>Identification systems available from 1990’s. </li></ul>
  4. 4. BIOMETRIC SYSTEM CHARACTERISTIC <ul><li>Universal </li></ul><ul><li>Unique </li></ul><ul><li>Permanent </li></ul><ul><li>Collectable </li></ul>
  5. 5. Basic architecture of a biometric system
  6. 6. DIFFERENT METHODOLOGIES <ul><li>Finger printing recognition </li></ul><ul><li>Hand geometry </li></ul><ul><li>Iris based identification </li></ul><ul><li>Retinal pattern recognition </li></ul><ul><li>Facial recognition </li></ul><ul><li>Signature recognition </li></ul><ul><li>Speaker verification </li></ul>
  7. 7. FINGER PRINT IDENTIFICATION <ul><li>Finger print technique is the Oldest of all the Biometric Techniques. </li></ul><ul><li>It is a pattern of Ridges and Furrows on surface </li></ul><ul><li>of Finger-tip. </li></ul><ul><li>Finger prints are unique and remains </li></ul><ul><li>Unchanged. </li></ul>
  8. 8. HAND GEOMETRY Examines : hand shape, lengths and widths of the fingers, and the overall size of the hand. <ul><li>This technique is simple, </li></ul><ul><li>relatively easy to use, and inexpensive. </li></ul>
  9. 9. IRIS-BASED IDENTIFICATION <ul><li>Each Iris is Unique. </li></ul><ul><li>It is scanned by a low intensity light source. </li></ul>
  10. 10. RETINAL PATTERN RECOGNITION <ul><li>It is the innermost layer of the eye. </li></ul><ul><li>The pattern formed by veins beneath the </li></ul><ul><li>surface of the retina is unique. </li></ul><ul><li>A low-intensity beam of visible or infrared </li></ul><ul><li>light into a person’s eye </li></ul>
  11. 11. FACIAL RECOGNITION <ul><li>Facial scanning involves scanning </li></ul><ul><li>of the entire face and checking of </li></ul><ul><li>critical points. </li></ul><ul><li>Generally used in association with other </li></ul><ul><li>biometric techniques. </li></ul><ul><li>Applied for both still photographs & </li></ul><ul><li>Video tape or movies. </li></ul>
  12. 12. SIGNATURE RECOGNITION <ul><li>Two approaches, </li></ul>1.Static signature verification. (determines only geometric features) 2.Dynamic signature verification. ( determines both geometric features and dynamic features)
  13. 13. SPEAKER VERIFICATION <ul><li>Depends on the frequency, stress and </li></ul><ul><li>accent of speech. </li></ul><ul><li>The main physiological aspect of the human speech production system is the </li></ul><ul><li>vocal tract shape. </li></ul>
  14. 14. FINGER PRINT ANALYSIS <ul><li>Two categories: </li></ul><ul><li>1.Minutiae-based </li></ul><ul><li>2.Correlation based </li></ul>Fig. Finger print matching
  15. 15. FINGERPRINT PATTERN TYPES Loop Whorl . Arch
  16. 16. FACTORS CONSIDERED IN SCANNING <ul><li>Amount of pressure applied to the Fingertip . </li></ul><ul><li>The presence of any cuts or other deformities on the fingertip. </li></ul><ul><li>The dryness of the skin, edges of rides. </li></ul><ul><li>Ridge bifurcations, or branches—collectively known as minutiae </li></ul>
  17. 17. MULTIBIOMETRICS <ul><li>Integrating Faces and Fingerprints for Personal Identification. </li></ul><ul><li>A Multimodal Biometric System Using Fingerprint, Face, and Speech. </li></ul>
  18. 18. APPLICATIONS <ul><li>Prison visitor systems </li></ul>Driver’s licenses Canteen administration in a campus Benefit payment systems Border Control Voting systems Future Applications : ATM machine use Workstation and network access Travel and tourism Internet transactions Telephone transactions
  19. 19. DRAWBACKS OF BIOMETRIC METHODS <ul><li>RETINAL SCAN </li></ul><ul><li>IRIS RECOGNITION </li></ul><ul><li>FINGER IMAGING </li></ul><ul><li>HAND GEOMETRY </li></ul><ul><li>FACIAL RECOGNITION </li></ul><ul><li>VOICE RECOGNITION </li></ul><ul><li>SIGNATURE RECOGNITION </li></ul>
  20. 20. CONCLUSION <ul><li>The coming years are going to witness is giant expansion in hardware software changing conventions of speed on a much broader spectrum. </li></ul>Biometric systems are going to play a major role in coming future mostly in Security field.
  21. 21. REFERENCES <ul><li>[Bigun, 1997] Bigun, E.S., J. Bigun, Duc, B.: “Expert conciliation for multi modal person authentication systems by Bayesian statistics,” In Proc. 1st Int. Conf. On Audio Video-Based Personal Authentication </li></ul><ul><li>[Brunelli et al, 1995] R. Brunelli, and D. Falavigna, &quot;Personal identification using multiple cues,&quot; IEEE Trans. on Pattern Analysis and Machine Intelligence. </li></ul><ul><li>[Dieckmann]Dieckmann, U.Plankensteiner, P., and Wagner, T.: “SESAM: A biometric person identification system using sensor fusion,” In Pattern Recognition Letters, Vol. 18, No. 9 </li></ul>
  22. 22. THAN&quot;Q&quot; For Documentation and Downloads Visit For Documentation and Downloads Visit
  23. 23. QUERIES