SlideShare a Scribd company logo
1 of 9
Download to read offline
TELE3113 Analogue and Digital
          Communications – PCM


                                        Wei Zhang
                                    w.zhang@unsw.edu.au



                   School of Electrical Engineering and Telecommunications
                              The University of New South Wales


TELE3113 - PCM   16 Sept. 2009                                               p. -1
Analog-to-Digital Conversion (PCM)
    Goal: To transmit the analog signals by digital means              better performance

                 convert the analog signal into digital format (Pulse-Code Modulation)

     Analog           sampler           Quantizer          Encoder                              Digital
     signal                                                                                     signal
                                                             1111111
                                                             1111110
                                                             1111101
                                                             1111100    1111101 1111001 1111001 1111011 1111101 1111110 1111101 1111001
                                                             1111011
                                                             1111010      c8      c7      c6      c5      c4     c3      c2      c1
              x(t)                                           1111001
                                                             1111000

                                                                                                               time

                                 time               time



       Sampling:         a continuous-time signal is sampled by measuring its
                         amplitude at discrete time instants.
       Quantizing: represents the sampled values of the amplitude by a finite set
                   of levels
       Encoding:         designates each quantized level by a digital code

TELE3113 - PCM   16 Sept. 2009                                                                                   p. -2
Sampling

      Consider an analog signal x(t) which is bandlimited to B (Hz), that is:
                                 X ( f ) = 0 for | f |≥ B
      The sampling theorem states that x(t) can be sampled at intervals as
      large as 1/(2B) such that the it is possible to reconstruct x(t) from its
      samples, or the sampling rate fs=1/Ts can be as low as 2B.


                         x(t)                                                        1
                                                               f s ≥ 2B   or Ts ≤
                                                                                    2B
     Sampling rate fs=1/Ts

                                                            time
                          Sampling period   Ts

      Minimum required sampling rate=2B (Nyquist rate) i.e. 2B samples per second

      Sampling rate should be equal or greater than twice the highest frequency in
      the baseband signal.
TELE3113 - PCM   16 Sept. 2009                                                      p. -3
Quantization
        After the sampling process, the sampled points will be transformed into a
        set of predefined levels (quantized level) Quantization
        Assume the signal amplitude of x(t) lies within [-Vmax ,+Vmax], we divide the
        total peak-to-peak range (2Vmax) into L levels in which the quantized
        levels mi (i=0,…,(L-1)) are defined as their respective mid-ways.
         Vmax                              xq(t)        x(t)
                                                                                                     Output
         m7                                                              ∆7
                                                                                                    m7= 7∆/2
         m6                                                              ∆6




                                                                                         uniform
                                                                                                    m6= 5∆/2
         m5                                                              ∆5                         m5= 3∆/2
         m4                                                              ∆4                         m4= ∆/2
         m3                                                              ∆3 time        −4∆ −3∆ −2∆ −∆         ∆ 2∆ 3∆ 4∆ Input
         m2                                                              ∆2
                                                                                                       −3∆/2
                                                                                                                uniform
         m1                                                              ∆1                            −5∆/2
         m0                                                              ∆0                            −7∆/2
         -Vmax
                                 Sampling time
                                                                                                   Uniform quantizer
                                                                                2Vmax              (midrise type)
        For uniform quantization,                ∆ i ( i =0 ,L,( L −1)) = ∆ =
                                                                                  L                                       p. -4
TELE3113 - PCM   16 Sept. 2009
PCM - Encoding
           Each quantized level is translated into a binary code (digital).
           For L (=2n) quantized levels, number of bits per code is n (=log2L).
           The binary code is then converted into a sequential string of pulses for
           transmission   Pulse code modulation (PCM)
                          Code       Code Quantized
                                    number  level
                                                    4              x(t)
                           111        7        3.5
                                                    3
                           110        6        2.5
                                                    2
                           101        5        1.5
                                                    1
                           100        4        0.5
                                                    0
                           011        3       -0.5                                             time
                                                   -1
                           010        2       -1.5
                                                   -2
                           001        1       -2.5
                                                   -3
                           000        0       -3.5
                                                   -4

              Sampler            Sampled value     -0.25    3.3   1.2     -2.8   -3.8   -2.1
              Quantizer          Quantized value -0.5       3.5   1.5     -2.5   -3.5   -2.5
                                 Code number            3    7     5        1      0      1
              Encoder
                                 Binary code       011      111   101     001    000    001
               Parallel to-serial converter
TELE3113 - PCM 16 Sept. 2009                                                                      p. -5
                                                    011 111 101 001 000 001
PCM Signal - Demodulation
      At the receiver, the received pulses are distorted, need regeneration to
      restore the ideal pulse (rectangular).
                                                                                Regenerated
                                                               Decision            signal
                                                              threshold


          Distorted and    time                                time              Re-shaped,       time
         noise corrupted                    Sampling time                       Re-amplified,
                                                                                 (Re-timed)
                                            Regeneration
     The regenerated pulse stream will be separated into codes using serial-to-
     parallel converter.                                000
                                                                          011
                       000011001011111001                                 001
                                                      3-bit               011
                                                     codes                111
                                                                          001
     The recovered codes are translated back into respective quantized levels.
     The quantized levels are interpolated using low-pass filter to form the
     recovered signal.
TELE3113 - PCM   16 Sept. 2009                                                                  p. -6
PCM Signal - Sampling Rate
       For L (=2n) quantized levels, each sample point of the message signal is
       quantized into n bits. Then, n (=log2L) binary pulses must be transmitted for
       each sample point of the message signal.
       If the message bandwidth is B and the sampling rate is fs (≥2B), then nfs
       binary pulses must be transmitted per second as each sample point will be
       translated into a n-bit code.

                 minimum sampling rate for the PCM signal is R=nfs
                                                                              1 Ts
             (at least one sampling point for each bit or pulse, bit period=     =  )
                                                                             nf s n
                 minimum bandwidth for PCM signal = nfs /2 ≥ nB


        Minimum required bandwidth for PCM is proportional to the message
        signal bandwidth, B, and the number of bits per code (symbol), n.




TELE3113 - PCM    16 Sept. 2009                                                  p. -7
PCM Signal – SNR Analysis
                                                                         2
                                                                       Vmax   
                                                                             
        With L =2n, average SNRx (dB) = 4.77 + 20 log L − 10 log             
                                                                      x 2 (t )
                                                                              
                                                                      Vmax 
                                                                          2
                                     = 4.77 + 20 log 2 − 10 log
                                                      n                       
                                                                      x (t ) 
                                                                        2
                                                                             
                                                                   V2       
                         average SNRx (dB) = 4.77 + 6.02n − 10 log 2max     
                                                                   x (t )   
                                                                                                    2
                                                                                                     Vmax
       If x(t) is a full-scale sinusoidal signal, i.e. x(t)=Vmaxcosωt , then       x (t ) = x (t ) =
                                                                                    2        2

                                                                                                      2
       Thus,
                        average SNRx (dB) = 1.76 + 20 log L = (1.76 + 6.02n ) dB

       If x(t) is uniformly distributed in the range [-Vmax,+Vmax], then pdf f(x)=1/(2Vmax),
       Thus,             average SNRx (dB) = 20 log L = 6.02n dB

       The SNR can be improved by 6dB when one more bit is used in the code, but
       the bandwidth required for the PCM signal will be getting larger (as minimum
       bandwidth for PCM signal is nB where B is the message signal bandwidth).
TELE3113 - PCM   16 Sept. 2009                                                                   p. -8
PCM - Applications

        Telephone System:
         Voice bandwidth ~ 4kHz         minimum sampling rate: 8kHz
                                        8000 samples per second
         8-bit PCM is used       8 bits per sample    8x8000 =64kbits per second
         For modem application, only 7 bits are for data, the other is an overhead bit
             56kbit/s

        Compact Disk (CD) Audio:

        Each of the two stereo signals is sampled at 44.1kHz
        16-bit PCM is used       16x44.1k = 0.7056Mbits per second per stereo channel
        100% overhead (error correction code)        1.411Mbit/s per stereo channel
        One CD can record 1 hour music, total number of bits (for 2 stereo channels)
        = 1.411M x 2 x 3600 = 10.16Gbits

TELE3113 - PCM   16 Sept. 2009                                                  p. -9

More Related Content

What's hot

Tele4653 l2
Tele4653 l2Tele4653 l2
Tele4653 l2
Vin Voro
 
Course 10 example application of random signals - oversampling and noise sh...
Course 10   example application of random signals - oversampling and noise sh...Course 10   example application of random signals - oversampling and noise sh...
Course 10 example application of random signals - oversampling and noise sh...
wtyru1989
 
Correlative level coding
Correlative level codingCorrelative level coding
Correlative level coding
srkrishna341
 
101 Tips for a Successful Automation Career Appendix F
101 Tips for a Successful Automation Career Appendix F101 Tips for a Successful Automation Career Appendix F
101 Tips for a Successful Automation Career Appendix F
ISA Interchange
 

What's hot (19)

Sem1 plt xp_02
Sem1 plt xp_02Sem1 plt xp_02
Sem1 plt xp_02
 
Tele4653 l2
Tele4653 l2Tele4653 l2
Tele4653 l2
 
Sampling
SamplingSampling
Sampling
 
Nyquist criterion for distortion less baseband binary channel
Nyquist criterion for distortion less baseband binary channelNyquist criterion for distortion less baseband binary channel
Nyquist criterion for distortion less baseband binary channel
 
An Optimized Transform for ECG Signal Compression
An Optimized Transform for ECG Signal CompressionAn Optimized Transform for ECG Signal Compression
An Optimized Transform for ECG Signal Compression
 
alamouti
alamoutialamouti
alamouti
 
Solved problems
Solved problemsSolved problems
Solved problems
 
Course 10 example application of random signals - oversampling and noise sh...
Course 10   example application of random signals - oversampling and noise sh...Course 10   example application of random signals - oversampling and noise sh...
Course 10 example application of random signals - oversampling and noise sh...
 
Cb25464467
Cb25464467Cb25464467
Cb25464467
 
21 5 ztransform
21 5 ztransform21 5 ztransform
21 5 ztransform
 
Signal Processing Course : Approximation
Signal Processing Course : ApproximationSignal Processing Course : Approximation
Signal Processing Course : Approximation
 
Decimation in time and frequency
Decimation in time and frequencyDecimation in time and frequency
Decimation in time and frequency
 
Dsp U Lec09 Iir Filter Design
Dsp U   Lec09 Iir Filter DesignDsp U   Lec09 Iir Filter Design
Dsp U Lec09 Iir Filter Design
 
Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processingDsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
 
Correlative level coding
Correlative level codingCorrelative level coding
Correlative level coding
 
Non newtonian models
Non newtonian modelsNon newtonian models
Non newtonian models
 
21 2 ztransform
21 2 ztransform21 2 ztransform
21 2 ztransform
 
101 Tips for a Successful Automation Career Appendix F
101 Tips for a Successful Automation Career Appendix F101 Tips for a Successful Automation Career Appendix F
101 Tips for a Successful Automation Career Appendix F
 
Dsp iit workshop
Dsp iit workshopDsp iit workshop
Dsp iit workshop
 

Viewers also liked

Tele3113 wk7wed
Tele3113 wk7wedTele3113 wk7wed
Tele3113 wk7wed
Vin Voro
 
Social Media and 2010 Olympic Winter Games
Social Media and 2010 Olympic Winter GamesSocial Media and 2010 Olympic Winter Games
Social Media and 2010 Olympic Winter Games
Ashley Spilak
 
dMT SPC Presentation Cranes & other-engl.
dMT SPC Presentation Cranes & other-engl.dMT SPC Presentation Cranes & other-engl.
dMT SPC Presentation Cranes & other-engl.
dmtgms
 
Rollup presentation
Rollup presentationRollup presentation
Rollup presentation
memco-int
 

Viewers also liked (20)

Intro
IntroIntro
Intro
 
Slides2 The Communication System midterm Slides
Slides2  The Communication System midterm SlidesSlides2  The Communication System midterm Slides
Slides2 The Communication System midterm Slides
 
Mp3 player working by digital signal processing
Mp3 player working by digital signal processingMp3 player working by digital signal processing
Mp3 player working by digital signal processing
 
EEP306: Delta modulation
EEP306: Delta modulationEEP306: Delta modulation
EEP306: Delta modulation
 
PULSE CODE MODULATION (PCM)
PULSE CODE MODULATION (PCM)PULSE CODE MODULATION (PCM)
PULSE CODE MODULATION (PCM)
 
Tele3113 wk7wed
Tele3113 wk7wedTele3113 wk7wed
Tele3113 wk7wed
 
Leermiddelen
LeermiddelenLeermiddelen
Leermiddelen
 
Extlect01
Extlect01Extlect01
Extlect01
 
хүн орчин
хүн орчинхүн орчин
хүн орчин
 
soledades
soledadessoledades
soledades
 
JAXB
JAXBJAXB
JAXB
 
Anna col
Anna colAnna col
Anna col
 
General Applications Info.-E
General Applications Info.-EGeneral Applications Info.-E
General Applications Info.-E
 
Wynn presentation 01 06-11 1540 hrs
Wynn presentation 01 06-11 1540 hrsWynn presentation 01 06-11 1540 hrs
Wynn presentation 01 06-11 1540 hrs
 
Social Media and 2010 Olympic Winter Games
Social Media and 2010 Olympic Winter GamesSocial Media and 2010 Olympic Winter Games
Social Media and 2010 Olympic Winter Games
 
dMT SPC Presentation Cranes & other-engl.
dMT SPC Presentation Cranes & other-engl.dMT SPC Presentation Cranes & other-engl.
dMT SPC Presentation Cranes & other-engl.
 
Sebastian ingles
Sebastian inglesSebastian ingles
Sebastian ingles
 
Rollup presentation
Rollup presentationRollup presentation
Rollup presentation
 
Onderzoek naar het werkelijk gebruik van de ELO in het VO
Onderzoek naar het werkelijk gebruik van de ELO in het VOOnderzoek naar het werkelijk gebruik van de ELO in het VO
Onderzoek naar het werkelijk gebruik van de ELO in het VO
 
Digital Marketing & Social Media Opportunities - Japan
Digital Marketing & Social Media Opportunities - JapanDigital Marketing & Social Media Opportunities - Japan
Digital Marketing & Social Media Opportunities - Japan
 

Similar to Tele3113 wk8wed

Tele3113 wk7wed
Tele3113 wk7wedTele3113 wk7wed
Tele3113 wk7wed
Vin Voro
 
Tele4653 l8
Tele4653 l8Tele4653 l8
Tele4653 l8
Vin Voro
 
Speech signal time frequency representation
Speech signal time frequency representationSpeech signal time frequency representation
Speech signal time frequency representation
Nikolay Karpov
 
Cluster-cluster aggregation with (complete) collisional fragmentation
Cluster-cluster aggregation with (complete) collisional fragmentationCluster-cluster aggregation with (complete) collisional fragmentation
Cluster-cluster aggregation with (complete) collisional fragmentation
Colm Connaughton
 
Tele3113 tut2
Tele3113 tut2Tele3113 tut2
Tele3113 tut2
Vin Voro
 
Using Vector Clocks to Visualize Communication Flow
Using Vector Clocks to Visualize Communication FlowUsing Vector Clocks to Visualize Communication Flow
Using Vector Clocks to Visualize Communication Flow
Martin Harrigan
 
Matlab 2
Matlab 2Matlab 2
Matlab 2
asguna
 

Similar to Tele3113 wk8wed (20)

Tele3113 wk7wed
Tele3113 wk7wedTele3113 wk7wed
Tele3113 wk7wed
 
Analog to-digital conversion
Analog to-digital conversionAnalog to-digital conversion
Analog to-digital conversion
 
Tele4653 l8
Tele4653 l8Tele4653 l8
Tele4653 l8
 
The inverse droplet coagulation problem
The inverse droplet coagulation problemThe inverse droplet coagulation problem
The inverse droplet coagulation problem
 
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
 
2006 devmodel
2006 devmodel2006 devmodel
2006 devmodel
 
Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...
Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...
Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...
 
Speech signal time frequency representation
Speech signal time frequency representationSpeech signal time frequency representation
Speech signal time frequency representation
 
1568973267 effect of multi-tone
1568973267 effect of multi-tone1568973267 effect of multi-tone
1568973267 effect of multi-tone
 
Cluster-cluster aggregation with (complete) collisional fragmentation
Cluster-cluster aggregation with (complete) collisional fragmentationCluster-cluster aggregation with (complete) collisional fragmentation
Cluster-cluster aggregation with (complete) collisional fragmentation
 
Tele3113 tut2
Tele3113 tut2Tele3113 tut2
Tele3113 tut2
 
Dsp3
Dsp3Dsp3
Dsp3
 
Digital Signal Processing[ECEG-3171]-Ch1_L05
Digital Signal Processing[ECEG-3171]-Ch1_L05Digital Signal Processing[ECEG-3171]-Ch1_L05
Digital Signal Processing[ECEG-3171]-Ch1_L05
 
Using Vector Clocks to Visualize Communication Flow
Using Vector Clocks to Visualize Communication FlowUsing Vector Clocks to Visualize Communication Flow
Using Vector Clocks to Visualize Communication Flow
 
Basic concepts
Basic conceptsBasic concepts
Basic concepts
 
Fft
FftFft
Fft
 
DSP Lab 1-6.pdf
DSP Lab 1-6.pdfDSP Lab 1-6.pdf
DSP Lab 1-6.pdf
 
Matlab 2
Matlab 2Matlab 2
Matlab 2
 
Moment closure inference for stochastic kinetic models
Moment closure inference for stochastic kinetic modelsMoment closure inference for stochastic kinetic models
Moment closure inference for stochastic kinetic models
 
Fast Fourier Transform (FFT) Algorithms in DSP
Fast Fourier Transform (FFT) Algorithms in DSPFast Fourier Transform (FFT) Algorithms in DSP
Fast Fourier Transform (FFT) Algorithms in DSP
 

More from Vin Voro

Tele3113 tut6
Tele3113 tut6Tele3113 tut6
Tele3113 tut6
Vin Voro
 
Tele3113 tut5
Tele3113 tut5Tele3113 tut5
Tele3113 tut5
Vin Voro
 
Tele3113 tut4
Tele3113 tut4Tele3113 tut4
Tele3113 tut4
Vin Voro
 
Tele3113 tut1
Tele3113 tut1Tele3113 tut1
Tele3113 tut1
Vin Voro
 
Tele3113 tut3
Tele3113 tut3Tele3113 tut3
Tele3113 tut3
Vin Voro
 
Tele3113 wk11tue
Tele3113 wk11tueTele3113 wk11tue
Tele3113 wk11tue
Vin Voro
 
Tele3113 wk10wed
Tele3113 wk10wedTele3113 wk10wed
Tele3113 wk10wed
Vin Voro
 
Tele3113 wk10tue
Tele3113 wk10tueTele3113 wk10tue
Tele3113 wk10tue
Vin Voro
 
Tele3113 wk11wed
Tele3113 wk11wedTele3113 wk11wed
Tele3113 wk11wed
Vin Voro
 
Tele3113 wk9tue
Tele3113 wk9tueTele3113 wk9tue
Tele3113 wk9tue
Vin Voro
 
Tele3113 wk7tue
Tele3113 wk7tueTele3113 wk7tue
Tele3113 wk7tue
Vin Voro
 
Tele3113 wk6wed
Tele3113 wk6wedTele3113 wk6wed
Tele3113 wk6wed
Vin Voro
 
Tele3113 wk6tue
Tele3113 wk6tueTele3113 wk6tue
Tele3113 wk6tue
Vin Voro
 
Tele3113 wk5tue
Tele3113 wk5tueTele3113 wk5tue
Tele3113 wk5tue
Vin Voro
 
Tele3113 wk4wed
Tele3113 wk4wedTele3113 wk4wed
Tele3113 wk4wed
Vin Voro
 
Tele3113 wk4tue
Tele3113 wk4tueTele3113 wk4tue
Tele3113 wk4tue
Vin Voro
 
Tele3113 wk5wed
Tele3113 wk5wedTele3113 wk5wed
Tele3113 wk5wed
Vin Voro
 
Tele3113 wk2tue
Tele3113 wk2tueTele3113 wk2tue
Tele3113 wk2tue
Vin Voro
 
Tele3113 wk1tue
Tele3113 wk1tueTele3113 wk1tue
Tele3113 wk1tue
Vin Voro
 
Tele3113 wk2tue
Tele3113 wk2tueTele3113 wk2tue
Tele3113 wk2tue
Vin Voro
 

More from Vin Voro (20)

Tele3113 tut6
Tele3113 tut6Tele3113 tut6
Tele3113 tut6
 
Tele3113 tut5
Tele3113 tut5Tele3113 tut5
Tele3113 tut5
 
Tele3113 tut4
Tele3113 tut4Tele3113 tut4
Tele3113 tut4
 
Tele3113 tut1
Tele3113 tut1Tele3113 tut1
Tele3113 tut1
 
Tele3113 tut3
Tele3113 tut3Tele3113 tut3
Tele3113 tut3
 
Tele3113 wk11tue
Tele3113 wk11tueTele3113 wk11tue
Tele3113 wk11tue
 
Tele3113 wk10wed
Tele3113 wk10wedTele3113 wk10wed
Tele3113 wk10wed
 
Tele3113 wk10tue
Tele3113 wk10tueTele3113 wk10tue
Tele3113 wk10tue
 
Tele3113 wk11wed
Tele3113 wk11wedTele3113 wk11wed
Tele3113 wk11wed
 
Tele3113 wk9tue
Tele3113 wk9tueTele3113 wk9tue
Tele3113 wk9tue
 
Tele3113 wk7tue
Tele3113 wk7tueTele3113 wk7tue
Tele3113 wk7tue
 
Tele3113 wk6wed
Tele3113 wk6wedTele3113 wk6wed
Tele3113 wk6wed
 
Tele3113 wk6tue
Tele3113 wk6tueTele3113 wk6tue
Tele3113 wk6tue
 
Tele3113 wk5tue
Tele3113 wk5tueTele3113 wk5tue
Tele3113 wk5tue
 
Tele3113 wk4wed
Tele3113 wk4wedTele3113 wk4wed
Tele3113 wk4wed
 
Tele3113 wk4tue
Tele3113 wk4tueTele3113 wk4tue
Tele3113 wk4tue
 
Tele3113 wk5wed
Tele3113 wk5wedTele3113 wk5wed
Tele3113 wk5wed
 
Tele3113 wk2tue
Tele3113 wk2tueTele3113 wk2tue
Tele3113 wk2tue
 
Tele3113 wk1tue
Tele3113 wk1tueTele3113 wk1tue
Tele3113 wk1tue
 
Tele3113 wk2tue
Tele3113 wk2tueTele3113 wk2tue
Tele3113 wk2tue
 

Tele3113 wk8wed

  • 1. TELE3113 Analogue and Digital Communications – PCM Wei Zhang w.zhang@unsw.edu.au School of Electrical Engineering and Telecommunications The University of New South Wales TELE3113 - PCM 16 Sept. 2009 p. -1
  • 2. Analog-to-Digital Conversion (PCM) Goal: To transmit the analog signals by digital means better performance convert the analog signal into digital format (Pulse-Code Modulation) Analog sampler Quantizer Encoder Digital signal signal 1111111 1111110 1111101 1111100 1111101 1111001 1111001 1111011 1111101 1111110 1111101 1111001 1111011 1111010 c8 c7 c6 c5 c4 c3 c2 c1 x(t) 1111001 1111000 time time time Sampling: a continuous-time signal is sampled by measuring its amplitude at discrete time instants. Quantizing: represents the sampled values of the amplitude by a finite set of levels Encoding: designates each quantized level by a digital code TELE3113 - PCM 16 Sept. 2009 p. -2
  • 3. Sampling Consider an analog signal x(t) which is bandlimited to B (Hz), that is: X ( f ) = 0 for | f |≥ B The sampling theorem states that x(t) can be sampled at intervals as large as 1/(2B) such that the it is possible to reconstruct x(t) from its samples, or the sampling rate fs=1/Ts can be as low as 2B. x(t) 1 f s ≥ 2B or Ts ≤ 2B Sampling rate fs=1/Ts time Sampling period Ts Minimum required sampling rate=2B (Nyquist rate) i.e. 2B samples per second Sampling rate should be equal or greater than twice the highest frequency in the baseband signal. TELE3113 - PCM 16 Sept. 2009 p. -3
  • 4. Quantization After the sampling process, the sampled points will be transformed into a set of predefined levels (quantized level) Quantization Assume the signal amplitude of x(t) lies within [-Vmax ,+Vmax], we divide the total peak-to-peak range (2Vmax) into L levels in which the quantized levels mi (i=0,…,(L-1)) are defined as their respective mid-ways. Vmax xq(t) x(t) Output m7 ∆7 m7= 7∆/2 m6 ∆6 uniform m6= 5∆/2 m5 ∆5 m5= 3∆/2 m4 ∆4 m4= ∆/2 m3 ∆3 time −4∆ −3∆ −2∆ −∆ ∆ 2∆ 3∆ 4∆ Input m2 ∆2 −3∆/2 uniform m1 ∆1 −5∆/2 m0 ∆0 −7∆/2 -Vmax Sampling time Uniform quantizer 2Vmax (midrise type) For uniform quantization, ∆ i ( i =0 ,L,( L −1)) = ∆ = L p. -4 TELE3113 - PCM 16 Sept. 2009
  • 5. PCM - Encoding Each quantized level is translated into a binary code (digital). For L (=2n) quantized levels, number of bits per code is n (=log2L). The binary code is then converted into a sequential string of pulses for transmission Pulse code modulation (PCM) Code Code Quantized number level 4 x(t) 111 7 3.5 3 110 6 2.5 2 101 5 1.5 1 100 4 0.5 0 011 3 -0.5 time -1 010 2 -1.5 -2 001 1 -2.5 -3 000 0 -3.5 -4 Sampler Sampled value -0.25 3.3 1.2 -2.8 -3.8 -2.1 Quantizer Quantized value -0.5 3.5 1.5 -2.5 -3.5 -2.5 Code number 3 7 5 1 0 1 Encoder Binary code 011 111 101 001 000 001 Parallel to-serial converter TELE3113 - PCM 16 Sept. 2009 p. -5 011 111 101 001 000 001
  • 6. PCM Signal - Demodulation At the receiver, the received pulses are distorted, need regeneration to restore the ideal pulse (rectangular). Regenerated Decision signal threshold Distorted and time time Re-shaped, time noise corrupted Sampling time Re-amplified, (Re-timed) Regeneration The regenerated pulse stream will be separated into codes using serial-to- parallel converter. 000 011 000011001011111001 001 3-bit 011 codes 111 001 The recovered codes are translated back into respective quantized levels. The quantized levels are interpolated using low-pass filter to form the recovered signal. TELE3113 - PCM 16 Sept. 2009 p. -6
  • 7. PCM Signal - Sampling Rate For L (=2n) quantized levels, each sample point of the message signal is quantized into n bits. Then, n (=log2L) binary pulses must be transmitted for each sample point of the message signal. If the message bandwidth is B and the sampling rate is fs (≥2B), then nfs binary pulses must be transmitted per second as each sample point will be translated into a n-bit code. minimum sampling rate for the PCM signal is R=nfs 1 Ts (at least one sampling point for each bit or pulse, bit period= = ) nf s n minimum bandwidth for PCM signal = nfs /2 ≥ nB Minimum required bandwidth for PCM is proportional to the message signal bandwidth, B, and the number of bits per code (symbol), n. TELE3113 - PCM 16 Sept. 2009 p. -7
  • 8. PCM Signal – SNR Analysis  2 Vmax    With L =2n, average SNRx (dB) = 4.77 + 20 log L − 10 log   x 2 (t )   Vmax  2 = 4.77 + 20 log 2 − 10 log n   x (t )  2    V2  average SNRx (dB) = 4.77 + 6.02n − 10 log 2max   x (t )    2 Vmax If x(t) is a full-scale sinusoidal signal, i.e. x(t)=Vmaxcosωt , then x (t ) = x (t ) = 2 2 2 Thus, average SNRx (dB) = 1.76 + 20 log L = (1.76 + 6.02n ) dB If x(t) is uniformly distributed in the range [-Vmax,+Vmax], then pdf f(x)=1/(2Vmax), Thus, average SNRx (dB) = 20 log L = 6.02n dB The SNR can be improved by 6dB when one more bit is used in the code, but the bandwidth required for the PCM signal will be getting larger (as minimum bandwidth for PCM signal is nB where B is the message signal bandwidth). TELE3113 - PCM 16 Sept. 2009 p. -8
  • 9. PCM - Applications Telephone System: Voice bandwidth ~ 4kHz minimum sampling rate: 8kHz 8000 samples per second 8-bit PCM is used 8 bits per sample 8x8000 =64kbits per second For modem application, only 7 bits are for data, the other is an overhead bit 56kbit/s Compact Disk (CD) Audio: Each of the two stereo signals is sampled at 44.1kHz 16-bit PCM is used 16x44.1k = 0.7056Mbits per second per stereo channel 100% overhead (error correction code) 1.411Mbit/s per stereo channel One CD can record 1 hour music, total number of bits (for 2 stereo channels) = 1.411M x 2 x 3600 = 10.16Gbits TELE3113 - PCM 16 Sept. 2009 p. -9