SlideShare a Scribd company logo
1 of 13
This document is part of the ANDESITE team documentation, and its purpose is to independently serve as a
comprehensive guide to understanding, operating and rebuilding the subsystem described within. This document is the
authoritative resource for this subsystemand supersedes all other previously written documentation including presentation
slides, previously written Design Documents, and individually recorded notebook entries. This document is part of the
BUSAT NS-7 System Concept Review (SCR) documentation suite submitted to the University Nanosat Program (UNP)
March 8th, 2013.
ANDESITE (NANOSAT-8) PROGRAM
Solar Panel Test Results (Silver Board)
Document #1
Boston University
8 St Mary’s St
Boston, MA 02148
CHANGE LOG
Revision Date Submitted Authors Description Notes
v1 09.15.2014 MS RVM
Documentation
Testingisnear
completionpoint
Table 1: Change Log
RELEASE APPROVAL
Prepared
By:
Mike Schuller,ANDESITE Solar Engineer, Boston University Date
Someone, Job, Boston University Date
Someone, Job, School Name Date
Someone, Job, School Name Date
Someone, Job, School Name Date
Someone, Job, School Name Date
Approved
By:
Professor Ted Fritz, PI,Boston University Date
Steven Yee, Project Manager, Boston University Date
Joshua Mendez, Project Engineer, Georgia Tech Date
Subsystem Mentor , School Name Date
1.1 List of Acronyms
Acronym Definition
ADC Analogto Digital Converter
ADK AndroidDevelopmentKit
AMR AnisotropicMagnetoResistive
ANDESITE Ad-hocNetworkDemonstrationforExtendedSatellite Inquiriesandother
Team Endeavors
BU BostonUniversity
BUSAT BostonUniversityStudentSatellite forApplicationsandTraining
C&DH Commandand Data Handling
Co-I Co-Principal Investigator
COTS Commercial Off-The-Shelf
CSP (BostonUniversity) CenterforSpace Physics
DOF Degree-of-Freedom
Ga Tech GeorgiaInstitute of Technology
GENSO Global Educational NetworkforSatelliteOperations
I2C Inter-IntegratedCircuit
IMU Inertial MeasurementUnit
NS-7 Nanosat-7
PAVE-PAWS PrecisionAcquisitionVehicle EntryPhasedArrayWarningSystem
PCB PrintedCircuitBoard
PI Principal Investigator
RVM RequirementsVerificationMatrix
SEL Single-EventLatchup
SPI Serial Peripheral Interface Bust
TASC TriangularAdvancedSolarCell
TIME TwinImagingof the Moving Electrontrappingboundary
TRL TechnologyReadinessLevel
UART Universal Asynchronous Receiver/Transmitter
UNP UniversityNanosatProgram
USB Universal Serial Bus
WSN WirelessSensorNetwork
(THIS PAGE INTENTIONALLY LEFT BLANK.)
1. RVM Requirements
EPS Electrical PowerSubsystem
EPS-8 The solar cell mustproduce sufficientpowerforthe durationof mission.
EPS-
8.1
The solar cellswill operateatefficiency withinthe range indicatedby
manufacturer.
EPS-9 The componentsof the EPS won'tconsume more than the powergenerated.
It isexpectedthatthe solarpanelswill provide chargingtothe onboardbatteriesof the
mule andwirelesssensornodesinorderforthe batteryto powerthe componentsused.In
orderfor thisto occur, requirementshave been placedonthe solarpanelsinordertoensure
operationsof ANDESITEcan be carriedon uninterruptedforthe twoweekscience missionit
will endure.Those requirementsare asfollows:the solarcells(TASC)usedonANDESITEmust
operate withinthe indicatedefficiencyrange designatedbythe manufacturer,the solarpanels
mustconstantlycharge the batteriesata rate suitable tolastthe twoweekmissionlife,and
the componentsonboardmustnotconsume more powerina single orbitthanwhatthe solar
panelscangenerate inorderto guarantee batterylife.
Testinganddata analysiswere completedasacheck that these requirementswere
beingmet.A copy of the firstsolar panel circuitboarddesignforthe wirelesssensornode was
manufacturedtoact as a testingboard.The cellsusedwere donatedfromapreviousuniversity
satellite projectinordertoefficientlysave resourcesforthe final design.Thesecellsare TASC
and producedbySensorMetrix,the same manufacturerandcellsthatwill be usedforthe final
design.
2. Silver Board V1 Design
1.1 Update from Brass board
The redesignedsolarpanel circuitboardforthe sensornodeswasdesignedwiththe
powerbudgetof the sensornodesinmindandanchoredtowardproductionof sufficientpower
to sustainmissionlife forANDESITE.The resizingof the sensornode housingtoaccommodate
the 10Ah single cell LiPobatterychosenforthe missionprovidedmore thananacceptable
amountof surface areafor solarpanels.The increasedsurface areaincreasedthe number of
solarcellsfrom20 (Bronze board) to 48 that couldbe assembledonthe outside of the housing.
It was determinedthatprovidingattitude control onthe sensornodeswouldconsume
more powerthan couldbe reproducedbysolarpowertoremainoperational foratwo week
missionlife.Due tothiscondition,spinstabilizationof the sensornodeswill nolongerbe
incorporatedandthe nodeswill tumblefreelyafterejection. The lackof control presentedan
issue withsolarpowergeneration.Toaccountfor randomtumblinginspace,the conclusionwas
to put equivalentsolarpanelsonthe topand bottomof the housing.Modelingof thisapproach
provedthatthe power(Wh) generated inafull orbitof a tumblingnode withpanelsonboth
sidesequaledpowergenerationof acontrolled node withonlyone solarpanel.Fromthis,the
designwasapprovedfordevelopment.
1.2 Silver Board V1 Layout
The silverboarddesignmockedthe brass boardalmostentirely,the onlysubstantial
difference beingthe numberof cellsonthe boardincreasingfrom20 to 48 TASCs. The size of
the board is10.5cm x 17.5cm. The boardcontainssix stringsof cellsinparallel,eachstring
connecting8 solarcellsinseries.Eachcell iscontactedto the board withsevensurface mount
pads.A single padwouldsuffice,butwitha50g environmentandthe fragilityof TASCsseven
pads were usedtolowerthe chance of defectsoccurring.The sevenpadsundereachcell are
linkedinserieswitha.254mm trace routedintothe board.The same size trace runs fromthe
seventhpadof eachcell ina stringto an eighthsurface mountpadplacednearthe positive
contact of the nextcell inthe string.Atthe endof eachstring of cells a 1mm trace inthe board
runs to a junctionpointwhere all stringsconvergetoone.The trace size wasincreasedfrom
.254mm to 1mm to account forthe increase incurrentproducedbythe convergence.The single
trace producedbythe junctionof stringsisroutedto a thru hole neara corner of the board,
designedtobe interfacedtothe EPSfromthe bottomof the board. Thisthru hole actsthe
positive terminal forcurrentdraw to the EPS.
The firstcell of eachstringneededtobe connected ina similarfashionasthe lastcells
of eachstring,butto avoidexcessiveroutingandretainsimplicity,adifferentmethodwas
conducted.Insteadof runninga1mm trace junctionlike the otherendsof strings,the seven
pads of everyfirstcell wasexposedtothe topcopperlayerof the board.The top copperlayer
acts as the junctionwiringthe negative endof the stringstogether.A secondthruhole isalso
exposedtothe topcopperlayerand islocatednexttothe positive thruhole forEPSwiring
convenience.The secondthruhole actsas the negative terminalforthe solarpanel.Eachthru
hole is1mm indiametertofitthe junctiontrace as well assecurelyandefficientlysolderwires
fromthe solarpanel tothe EPSinside the housing.
Four thruholes,eachwith 2mm diameters,are placednearthe cornersof the board.
These thruholesare not exposedtoanylayersof the board nor have trace runningto or from
them.These holessimplyactas mountingholesfor6-32 screwsto secure the solarpanel board
to the outside of the sensornode housing. The twoholesnearthe backof the sensornode
(closesttothe mule attachment) are 8mm upfrom the back edge and3mm in fromthe sides.
The two holesnearthe frontof the sensornode are 13.5mm fromthe front edge and3mm in
fromthe sides.
3. Silver Board V1
3.1 Testing Procedure
The solar panel wasassembledinasolderinglabbymembersof ANDESITE.The method
takenwas equivalenttostandardsolderingtechniquesforsurface mountparts.The procedure
includedcoatingall surface mountpadswithsolderfluxtocleanthe padsof any impuritiesthat
may affectelectrical connection.Since the padsare locatedunderneaththe TASCs,usinga
soldergunto assemble the cellswouldnotbe feasible.Instead,solderpaste waslaidoneach
surface mountpad and the cellswere placedinthe correctgeometricorientationontopof the
solderpaste.
Once all cellswere carefullyplaced,the boardwastakentoa reflow oventosolidifythe
connectionbetweenthe cellsandthe board.A pre-designatedheatprofile wasselectedfrom
software torun the reflowprocess.Afterwards,the cellswere cleanedandcheckedfordefects.
Once it wasdeterminedall cellswere cleanandclearof anydefects,the assemblyprocesswas
continued.Lead-free solderwire andsolderinggunwere usedtocreate the electrical
connectionbetweenthe remainingsurface mountpadsandthe positive(top) sideof the cells.
The solar panel wascleanedagainasa precautionarymeasure andthenwasreadyfortesting.
The fullyassembledsolarpanel wastakentothe roof of a laboratorybuildingwitha
hand-heldmultimeter,electrical wire anda100ohm resistorforperformance testing.Testing
occurredduringa clearskyday around12:30pm to mimicorbital environmentasideallyas
possible.Itwastakenintoconsiderationthatlowertestresultscouldbe expecteddue tothe
conditions.
3.2 MeasurementMethods& Data
Poweroutputof TASC ismeasuredbydeterminationof the Open-CircuitVoltageand
Short-CircuitCurrentproducedbythe cell ata giveninstantintime.UsingOhm’sLaw allowsthe
poweroutputinwattsof each panel tobe estimatedinwatts(W). Computingthisvalue is
desirable foranalyzingthe efficiencyinwhichthe cellsoperateanddeterminingwhetherornot
theyare acceptable forapplicationonANDESITEtomeet the designrequirementsindicated.
The testingprocedure implementedonthe TASCsoughtto make thisanalysis.
An opencircuitvoltage testwasrunby attachingthe positive andnegative leadsof the
multimetertothe correspondingthru-hole pinsonthe solarpanel.The solarpanel wasoriented
to be as incidentwiththe solarilluminationashumanlypossibleandmeasurementwastaken.
Followingthat,opencircuitvoltagewasalsorecordedforeachstringof cellsbyattachingthe
negative leadof the multimetertothe bottomof the firstcell ineachstringand attachingthe
positive leadof the multimetertothe positive contactof the lastcell ineachstring.
Measurementswere takenforeachstringandrecorded.
Afterthe opencircuit voltage testswere complete,acurrenttestwasimplementedfor
each stringandthe whole solarpanel.The wholesolarpanel wastestedfirstbyattachingone
endof the 100ohm resistortothe positive thru-hole pinonthe solarpanel andthe otherendto
the positive leadof the multimeter.The negativeleadof the multimeterwasthenconnectedto
the negative thru-hole pintocomplete the circuit.Measurementwastakenandrecorded.The
same setup procedure wasdone foreach stringof cellsexceptthe endof the resistor
connectedtothe thru-hole pinonthe boardwas movedtothe positive contactof the lastcell in
each stringandthe negative leadof the multimetertothe bottomof the firstcell ineach string.
Table 1: Current and Voltage readings
(-) Leadconnection (+) Leadconnection OC Voltage (V) CC Voltage (V) *SC Currant (A)
Ground Pin Positive Pin 0 0 0
String1 Beginning String1 End 18.9 16.9 .0200
String2 Beginning String2 End 18.9 16.9 .0200
String3 Beginning String 3 End 18.9 16.9 .0200
String 4 Beginning String 4 End 20.1 18.0 .0210
String 5 Beginning String 5 End 20.1 18.0 .0210
String 6 Beginning String 6 End 19.6 17.6 .0200
String 1 Beginning Positive Pin 18.9 16.9 .0200
String 2 Beginning Positive Pin 18.9 16.9 .0200
String 3 Beginning Positive Pin 18.9 16.9 .0200
String 4 Beginning Positive Pin 20.1 18.0 .0210
String 5 Beginning Positive Pin 20.1 18.0 .0210
String 6 Beginning Positive Pin 19.6 17.6 .0200
Ground Pin String 1 End 0 0 0
Ground Pin String 2 End 0 0 0
Ground Pin String 3 End 0 0 0
Ground Pin String 4 End 0 0 0
Ground Pin String 5 End 0 0 0
Ground Pin String 6 End 0 0 0
* SC Currentwascalculatedbymeasuringthe dropinvoltage fromOpen-Circuit(OC) toClosed-
Circuit(CC) across a 100 ohmresistorload andusingOhm’sLaw to determine the currentbased
on the voltage dissipatedacrossthe resistor.
Ohm’sLaw V = IR
3.3 Data Analysis
The issue arose that none of the stringsof the solarpanel were displayingcurrentvalues
on the multimeter.Itwasdeterminedthatthe multimeter’scapabilitycouldnotreadcurrent
valuesaslowas the cell stringswouldproduce evenatmax powerproduction.Insteadof
readingcurrentvalues,voltage valueswerereadandrecorded whenaloadwas appliedtothe
circuit.It wasjustifiedthatthiscouldbe done because withthe voltagevalue readbythe
multimeter,the voltage dropacrossthe load of knownresistance couldbe determinedby
subtractingthe opencircuitvoltage recorderbefore andsubtractingthe voltage valueread
duringthe currenttest.The resultingdifference wastakenasthe voltage dropacrossthe load
and Ohm’sLaw wasusedto determine the currentthroughthe resistor,whichwouldequateto
the current producedbythe solarpanel.
Anotherissue thatoccurredduringtestingwaswhenthe whole solar panel wasbeing
analyzedasa whole.Bothtestsresultedina0V readout, implyingthatthe boardwasnot acting
as a complete circuit.The individual cellstringtestswere runtodetermineif there were defects
inthe stringassembly.Fortunately,all stringsproducedopencircuitvoltage andproduced
current.From these testresults,boththruhole were analyzedindividuallywiththe cell strings.
Withthe positive leadof the multimeterconnectedtothe positivethruhole andthe negative
leadof the multimeterconnectedtothe beginningof acell stringa voltage equivalenttothatof
the stringitself wasmeasured.Thiswasrepeatedforeachstringof the boardand the same
resultoccurredfor eachtrial.These testsindicatedthe positivethruhole isfunctioningproperly
and receivingavoltage andcurrentfromthe solar panel.However,whenthe groundthruhole
was connectedtothe negative leadof the multimeterandthe positive contactof a string
connectedtothe otherlead,again 0V readoutoccurred.Thiswas repeatedforeachstringand
indeedthe same resultoccurredacrossthe board.
In orderto analyze the powerproducedbythe solarpanel asa whole, the powerof the
individualstringswere calculated usingOhm’sLaw andsummedtoform total power
production.
Table 2: Panel Power Production
Cell String Power Output (W)**
1 0.378
2 0.378
3 0.378
4 0.4221
5 0.4221
6 0.392
***Total 2.3702 W
** PoweroutputwasanalyzedusingOhm’sLaw (P=VI),where V wasthe opencircuitvoltage readacross
the stringand I was the currentproducedbythe stringwhena 100 ohm resistorloadwasapplied.
*** This value iswhenthe panel isdirectlyincidentwiththe sun.When the angle of inclinationtothe
sunwas changed,norecordable difference involtageandcurrentoccurreduntil the panel was
shadowedfromthe sun. Thisresultmaynot translate intospace andappropriate measureswill be taken
to model the scenariowhere thisisthe case.
In orderfor the solarpanelstomeetthe designatedrequirementslaidoutinthe RVM,
the solar cellsmustoperate atan efficiencyof 27%.This isthe indicatedefficiencyrating(+- 3%) by
SensorMetrix whomanufacturersthe TASC. Aslongas the cellstestedoperate withinthe allowable
limitsdesignatedbySensorMetrix theyare suitableforuse onANDESITEand will meetthe power
requirementstoprovide properbatterychargingduringin-flightoperationforatwoweekmission.
Efficiencyof aphotovoltaicsystemhasbeenarticulatedintoasimple algebraicequation
for an approximationof aratioof the conversionfromsolarradiationtoelectrical power production.
The equationisbasedoff of several variables:the surface areathe photovoltaicsystemcovers,the solar
intensityexperiencedbythe system, andthe max poweroutputof the entire system.Since
experimental datawastakenwhenthe solarpanelswere directlyincidenttothe solarradiation,the
total poweroutputvalue calculatedabove istakenasthe maximumpoweroutputof the system.Solar
intensityatAM1.5 (i.e.earthatmosphere)isrecordedas beingbetween930– 1000 W/m2
.Giventhe
weatherconditionsinBostononthe dayof testing,the solarintensitywasclose to950 W/m2
and this
value isusedto calculate the operatingefficiency.Eachcell usedhasan area of 2.277 cm2
(indicatedby
manufacturerdatasheet) resultinginatotal areaof 0.0109 m2
of photovoltaiccoverage oneachside of
the sensornode.Withthe necessaryvariablesdetermined,efficiencycanbe estimated.
ή = Pout,max / (A*Isolar) = 2.3702 W /(0.0109 m2
* 950 W/m2
)
ή = .2289 = 22.89%
The efficiencyobtained islessthan the datasheetrange indicated.Thiswouldnormally
bringconcernTASC wouldnotbe usable forthe mission,however,the cellsusedhadbeendonatedbya
previoussatelliteprojectandwere overtwoyearsold.Ithas beenrecordedinsolarcell textbooksthat
cellsdeteriorateinproductionby5%each yearindark storage.Withthistakenin mind,the cellstested
shouldonlybe operatingata maximumof 90% theiroptimal powerconsumption.Therefore,the
efficiencyisrecalculatedtodetermine the actual optimal efficiencyof the cellstested.
0.9ήoptimal = ή
ήoptimal = 22.89%/0.9 = 25.43%
The re-calculationshowsthatthe minimumoptimal efficiencyof the testingcellsdoes
indeedfall withinthe range indicatedbySensorMetrix datasheets.Withthiscalculation,itisconfirmed
that the cellsmeetthe RVMrequirementestablished.
3.4 Onboard Power Consumption
There isno guarantee of a sun-synchronousorbitforANDESITEandthusno guarantee
of constantilluminationforthe solarpanelsforthe entiretyof the mission.The chance for
eclipse tooccur preventsthe solarpanelsfrombeingusedtopowerthe componentsonboard
throughan orbitand thereforLi-Pobatteriesare beingusedasthe mainpowersupplyfor
space operation.However,due tosize restrictionsof the CSDencasingthe satellite upon
launchand restraintsplacedonthe quantityof wirelesssensornodes, the sole use of an
optimal batteryforthe twoweekmission life isunfeasible.Inordertocombat these design
constraints,a combinationof photovoltaicandLi-Popowerwill be used.The Li-Poisusedto
powerthe onboardcomponentsduringmissionlifeandthe solarpanelswill keepthe battery
chargedlongenoughto operate for the extentof the mission.
As a safetymeasure,ithasbeenmade arequirementthatthe componentsbeing
poweredbythe Li-Pobatterieswill notconsume more powerperorbitthanthe solar panels
can produce.Thisrequirementisplacedinordertoensure the batteryoperatesatfull capacity
for the entiretyof the missionandcanguarantee uninterrupteddatacollectionandtransfer.
The componentsrequiredtoperformthe science experiment deliveredto the AirForce were
catalogedinan Excel spreadsheetandpowerconsumptionvalueswere obtainedfromthe
data sheetof eachcomponent.Forsafety,the maximumpowerconsumptionof eachdevice
was usedinthe productionof a powerbudget.
Each orbit requires atotal of 1.305066212 Wh of power,persensornode, tocomplete
itsorbital tasks.The breakdownof each powerconsumptionphase isalsorecordedinthe
powerbudgetspreadsheet.A MATLABsimulationof the solarpowergenerationforasensor
node inorbitindicatedaproductionof 2.0 Wh per orbitbythe solararray. Thissimulation
made the assumptionthatthe node tumbledaboutitsminoraxisasis predictedbyorbital drag
simulations. Itispossible the node will have minimal tumblingandmimicthe orbitof the
attitude controlledmule.Inthiscase,onlyone solarpanel wouldbe exposed tosolarradiation
and the simulationwasre-runtodetermine powerproductionduringthiscase.Again,the
simulationindicated2.0Wh wouldbe producedduringeachorbital period.Thisconsistencyis
reassuringandconfirmsthatpowerproductionwill be similaronaworst andbestcase
tumblingscenario.
The Air Force requiresa10% contingencyonpowerconsumptionestimatesandthusis
implementedtothe value obtainedalteringthe orbital powerconsumptionof eachnode to
1.43557283 Wh. Inadditiontothiscontingencyaccounting,the chargingcontrol chosenforthe
sensornodesoperatesat90% efficiencybasedonmanufacturingspecs.This10% cut fromthe
solarproductionreducespowergenerationto1.8 Wh being directedtothe batteryina single
orbit.Evenwiththese factorsaccountedfor,the sensornodesare still powerpositive by
0.36442717 Wh. Simulationsprove the powergeneratedbysolarcellsisgreaterthanpower
consumedbythe componentsusedforthe science experimentandthereforcanprovide
sufficientpowerforthe durationof the mission.Thismeetsthe otherRVMrequirements
designatedbyANDESITE.
Table 3: Orbital Power Budget for each sensor node
Note:Duty cycle is time active during one orbit Orbit
Altitude 460 km
Period 90.00 min
System
ID Description Component Power (W)
Duty
Cycle
Consumption
(Wh/orbit)
%
Power
ss_0 CDH
ATMEGA2560 0.1 100% 0.15 11.5%
ss_1 Radio
RFM228 0.2805 78% 0.33 25.1%
ss_2 Attitude
Gyroscope 0.02013 100% 0.030195 2.3%
SD Card 0.33 100% 0.50 37.9%
ADC 0.0009 100% 0.00135 0.1%
SunSensor 0.0000066 100% 0.0000099 0.0%
GPS 0.068 100% 0.102 7.8%
ss_3 Power
PIC16F1512 uC 0.000825 100% 0.000825 0.1%
3V3 LDO Regulator 0.000544 100% 0.000816 0.1%
CurrentMonitor 0.0004125 100% 0.0004125 0.0%
5V Boost Regulator 0.025 100% 0.015 1.1%
3V3 DC-DCConverter 0.06678601 100% 0.060846012 4.7%
ss_4 Magnetometer
1-AxisSensor 0.12 22% 0.04 3.1%
2-AxisSensor 0.24 22% 0.08 6.1%
Op-AmpsforSensor 0.0019305 22% 0.0006435 0.0%
Op-AmpforADC 0.002145 22% 0.000715 0.1%
ADC 0.0000099 22% 0.0000033 0.0%
Subtotal 1.25718951 1.305066212
Contingency 10% 10%
Total 1.38290846 W 1.435572833 Wh
PowerGenerated 1.8 Wh
4. Conclusion
ANDESITEindicatesthree requirementsmustbe met forthe solarpanel design
to be confirmedformanufacturing.Those requirementsare listedinthe RVM
spreadsheetasthe following:the solar cellsmustproduce sufficientpowertocharge
the batteryfor the durationof a twoweekmission,these cellsmustalsooperate within
the efficiencyvaluesdeterminedbythe manufacturer,andfinally,the electrical
componentsusedonthe sensornode and mule mustnotconsume more powerthan
the solar panelscanprovide tothe battery.Afterphysical testingandcomputer
simulation,the sensornode solarpanel designhasbeenconfirmedtomeetthe three
requirementsmentionedandcanbe put forthto manufacturingforthe final production.
A solarpanel forthe mule wasnot physicallytested,butisalsodeterminedtomeetthe
RVMrequirementsforvariousreasons.The cellsusedonthe mule are fromthe same
orderof cellsusedforthe sensornode,makingit clearthese cellsoperate withinthe
efficiencylimitsof the manufacturer.Check.The powerbudgetof the mule isposted
belowanda computersimulationof the magneticallycontrolledorbitaltrajectory
indicatessufficientpowerisbeingprovidedtothe batteryfromthe solarpanel to
continue the missionfortwoweeksandgeneratesmore powerthanthe electrical
componentsconsume.Withthese conclusionsmade,productionof final paneldesigns
can be initiatedbarringanyfurthertesting.
Table 4: Mule Power Budget
Max Value
System ID Description Component Qty Voltage (V) Current (A) Power (W) Duty Cycle Wh/orbit Comments
ss_0 CDH
Beagle Bone Black BB-BBLK-000 1 5 0.46 2.3 100% 3.45
SD Card SanDisk 4GB MicroSD Card 1 3.3 0.1 0.33 100% 0.495
ss_1 Radio
Global Star 1 12 0.0166 0.1992 78% 0.233064
HopeRF RFM228 1 3.3 0.085 0.2805 78% 0.328185
ss_2 Attitude
Texas Inst ADC1285102CIMT/NOPB 2 5 0.0038 0.038 78% 0.04446
ST Micro L9958 3 5 0.03 0.45 78% 0.5265
Allegro ACS714LLCTR-05B-T 3 5 0.016 0.24 78% 0.2808
Analog Dev AD8629ARMZ-REEL 5 5 0.0025 0.0625 78% 0.073125
ON Semi CAT24C256YI-GT3 1 5 0.0024 0.012 78% 0.01404
Texas Inst SN65HVD231QDRQ1 1 5 0.014 0.07 78% 0.0819
Beagle Bone Black BB-BBLK-000 1 5 0.46 2.3 78% 2.691
Sun Sensors S8369 6 5 0.000002 0.00006 78% 0.0000702
Torque Coils 3 5 0.066666667 1 100% 1.5
Mag +Gyro IMU ADIS164888MLZ 1 3.3 0.2 0.66 22% 0.2178
GPS Novatel 1 5 0.14 0.7 100% 1.05
ss_3 Power
EPS CS-XUEPS2-60 1 0.1 100% 0.15
Subtotal 8.74226 W 11.1359442 Wh
Contingency 10% 10%
Total Power 9.616486 W 12.24953862 Wh
Generation 22.24 W 16.68 Wh (Ideal)
Break Even 11.12 W 15.012 Wh (Accounting for charger efficiency)

More Related Content

Viewers also liked

DNA Money - when investing keep emotions at bayv- 11 Dec 2008
DNA Money - when investing keep emotions at bayv- 11 Dec 2008DNA Money - when investing keep emotions at bayv- 11 Dec 2008
DNA Money - when investing keep emotions at bayv- 11 Dec 2008Shruti Jain
 
Extraction controversies in orthodontics
Extraction controversies in orthodonticsExtraction controversies in orthodontics
Extraction controversies in orthodonticsIndian dental academy
 
5.º Estágio da Selecção AFAH Sub-14.
5.º Estágio da Selecção AFAH Sub-14.5.º Estágio da Selecção AFAH Sub-14.
5.º Estágio da Selecção AFAH Sub-14.Nuno Vieira
 
How to set realistic priorities for it budget planning it-toolkits
How to set realistic priorities for it budget planning   it-toolkitsHow to set realistic priorities for it budget planning   it-toolkits
How to set realistic priorities for it budget planning it-toolkitsIT-Toolkits.org
 
Brick campaign presentation
Brick campaign presentationBrick campaign presentation
Brick campaign presentationAlex Estes
 
HL7 Europe #6
HL7 Europe #6HL7 Europe #6
HL7 Europe #6chronaki
 
Cobb Amanda Final PPP
Cobb Amanda Final PPPCobb Amanda Final PPP
Cobb Amanda Final PPPACCobb
 
Ford wagon train 2016
Ford wagon train 2016Ford wagon train 2016
Ford wagon train 2016shar61963
 
How to recruit an it project manager it-toolkits
How to recruit an it project manager   it-toolkitsHow to recruit an it project manager   it-toolkits
How to recruit an it project manager it-toolkitsIT-Toolkits.org
 
eHealth Consumers in the Age of Hyper-Personalization
eHealth Consumers in the Age of Hyper-PersonalizationeHealth Consumers in the Age of Hyper-Personalization
eHealth Consumers in the Age of Hyper-Personalizationchronaki
 
eHealth Practice in Europe: where do we stand?
eHealth Practice in Europe: where do we stand?eHealth Practice in Europe: where do we stand?
eHealth Practice in Europe: where do we stand?chronaki
 
Historia das redes de computadores
Historia das redes de computadoresHistoria das redes de computadores
Historia das redes de computadoresAlessandro Fazenda
 

Viewers also liked (16)

DNA Money - when investing keep emotions at bayv- 11 Dec 2008
DNA Money - when investing keep emotions at bayv- 11 Dec 2008DNA Money - when investing keep emotions at bayv- 11 Dec 2008
DNA Money - when investing keep emotions at bayv- 11 Dec 2008
 
Extraction controversies in orthodontics
Extraction controversies in orthodonticsExtraction controversies in orthodontics
Extraction controversies in orthodontics
 
dxbSolutions
dxbSolutionsdxbSolutions
dxbSolutions
 
5.º Estágio da Selecção AFAH Sub-14.
5.º Estágio da Selecção AFAH Sub-14.5.º Estágio da Selecção AFAH Sub-14.
5.º Estágio da Selecção AFAH Sub-14.
 
How to set realistic priorities for it budget planning it-toolkits
How to set realistic priorities for it budget planning   it-toolkitsHow to set realistic priorities for it budget planning   it-toolkits
How to set realistic priorities for it budget planning it-toolkits
 
Brick campaign presentation
Brick campaign presentationBrick campaign presentation
Brick campaign presentation
 
HL7 Europe #6
HL7 Europe #6HL7 Europe #6
HL7 Europe #6
 
GR e health forum 2015 final
GR e health forum 2015   finalGR e health forum 2015   final
GR e health forum 2015 final
 
Cobb Amanda Final PPP
Cobb Amanda Final PPPCobb Amanda Final PPP
Cobb Amanda Final PPP
 
DODFR
DODFRDODFR
DODFR
 
Ford wagon train 2016
Ford wagon train 2016Ford wagon train 2016
Ford wagon train 2016
 
How to recruit an it project manager it-toolkits
How to recruit an it project manager   it-toolkitsHow to recruit an it project manager   it-toolkits
How to recruit an it project manager it-toolkits
 
eHealth Consumers in the Age of Hyper-Personalization
eHealth Consumers in the Age of Hyper-PersonalizationeHealth Consumers in the Age of Hyper-Personalization
eHealth Consumers in the Age of Hyper-Personalization
 
eHealth Practice in Europe: where do we stand?
eHealth Practice in Europe: where do we stand?eHealth Practice in Europe: where do we stand?
eHealth Practice in Europe: where do we stand?
 
Historia das redes de computadores
Historia das redes de computadoresHistoria das redes de computadores
Historia das redes de computadores
 
Hibridacion adn
Hibridacion adnHibridacion adn
Hibridacion adn
 

Similar to Solar RVM Documentation

Aperture by d m pozar
Aperture by d m pozarAperture by d m pozar
Aperture by d m pozarMohit Joshi
 
broadbanding technique for microstrip patch antenna
broadbanding technique for microstrip patch antennabroadbanding technique for microstrip patch antenna
broadbanding technique for microstrip patch antennaAshit Tomar
 
Please read the following IEEE Spectrum articles and answer the quest.pdf
Please read the following IEEE Spectrum articles and answer the quest.pdfPlease read the following IEEE Spectrum articles and answer the quest.pdf
Please read the following IEEE Spectrum articles and answer the quest.pdffasttrackcomputersol
 
Ground Fault in OH lines
Ground Fault in OH linesGround Fault in OH lines
Ground Fault in OH linesNaresh Raju
 
Dual-Diameter Variation –Immune CNFET-based 7T SRAM Cell
Dual-Diameter Variation –Immune CNFET-based 7T SRAM CellDual-Diameter Variation –Immune CNFET-based 7T SRAM Cell
Dual-Diameter Variation –Immune CNFET-based 7T SRAM CellWaqas Tariq
 
Compact X-Band LINAC structure design for KAERI-RTX-ISU Medical CyberKnife Pr...
Compact X-Band LINAC structure design for KAERI-RTX-ISU Medical CyberKnife Pr...Compact X-Band LINAC structure design for KAERI-RTX-ISU Medical CyberKnife Pr...
Compact X-Band LINAC structure design for KAERI-RTX-ISU Medical CyberKnife Pr...downtrev
 
Iisrt divyasri govindharajan
Iisrt divyasri govindharajanIisrt divyasri govindharajan
Iisrt divyasri govindharajanIISRT
 
Degrees of Freedom for Interference Networks with Instantaneous Relays
Degrees of Freedom for Interference Networks with Instantaneous RelaysDegrees of Freedom for Interference Networks with Instantaneous Relays
Degrees of Freedom for Interference Networks with Instantaneous Relaysamin azari
 
ESDEMC_PB2009.08 A Measurement Technique for ESD Current Spreading on A PCB u...
ESDEMC_PB2009.08 A Measurement Technique for ESD Current Spreading on A PCB u...ESDEMC_PB2009.08 A Measurement Technique for ESD Current Spreading on A PCB u...
ESDEMC_PB2009.08 A Measurement Technique for ESD Current Spreading on A PCB u...ESDEMC Technology LLC
 
Set and seu analysis of cntfet based designs in harsh environments
Set and seu analysis of cntfet based designs in harsh environmentsSet and seu analysis of cntfet based designs in harsh environments
Set and seu analysis of cntfet based designs in harsh environmentseSAT Publishing House
 
Effect of mesh grid structure in reducing hot carrier effect of nmos device s...
Effect of mesh grid structure in reducing hot carrier effect of nmos device s...Effect of mesh grid structure in reducing hot carrier effect of nmos device s...
Effect of mesh grid structure in reducing hot carrier effect of nmos device s...ijcsa
 
Design of Earthing System for 230 kV High Voltage Substation by ETAP 12.6 Sof...
Design of Earthing System for 230 kV High Voltage Substation by ETAP 12.6 Sof...Design of Earthing System for 230 kV High Voltage Substation by ETAP 12.6 Sof...
Design of Earthing System for 230 kV High Voltage Substation by ETAP 12.6 Sof...ijtsrd
 
Modelling of next zen memory cell using low power consuming high speed nano d...
Modelling of next zen memory cell using low power consuming high speed nano d...Modelling of next zen memory cell using low power consuming high speed nano d...
Modelling of next zen memory cell using low power consuming high speed nano d...eSAT Journals
 
Radiation Hardening by Design
Radiation Hardening by DesignRadiation Hardening by Design
Radiation Hardening by DesignJay Baxi
 
Robust vibration control at critical resonant modes using indirect-driven sel...
Robust vibration control at critical resonant modes using indirect-driven sel...Robust vibration control at critical resonant modes using indirect-driven sel...
Robust vibration control at critical resonant modes using indirect-driven sel...ISA Interchange
 

Similar to Solar RVM Documentation (20)

SET
SETSET
SET
 
125
125125
125
 
Aperture by d m pozar
Aperture by d m pozarAperture by d m pozar
Aperture by d m pozar
 
broadbanding technique for microstrip patch antenna
broadbanding technique for microstrip patch antennabroadbanding technique for microstrip patch antenna
broadbanding technique for microstrip patch antenna
 
Please read the following IEEE Spectrum articles and answer the quest.pdf
Please read the following IEEE Spectrum articles and answer the quest.pdfPlease read the following IEEE Spectrum articles and answer the quest.pdf
Please read the following IEEE Spectrum articles and answer the quest.pdf
 
Ground Fault in OH lines
Ground Fault in OH linesGround Fault in OH lines
Ground Fault in OH lines
 
Dual-Diameter Variation –Immune CNFET-based 7T SRAM Cell
Dual-Diameter Variation –Immune CNFET-based 7T SRAM CellDual-Diameter Variation –Immune CNFET-based 7T SRAM Cell
Dual-Diameter Variation –Immune CNFET-based 7T SRAM Cell
 
Compact X-Band LINAC structure design for KAERI-RTX-ISU Medical CyberKnife Pr...
Compact X-Band LINAC structure design for KAERI-RTX-ISU Medical CyberKnife Pr...Compact X-Band LINAC structure design for KAERI-RTX-ISU Medical CyberKnife Pr...
Compact X-Band LINAC structure design for KAERI-RTX-ISU Medical CyberKnife Pr...
 
THPSM16
THPSM16THPSM16
THPSM16
 
Iisrt divyasri govindharajan
Iisrt divyasri govindharajanIisrt divyasri govindharajan
Iisrt divyasri govindharajan
 
Degrees of Freedom for Interference Networks with Instantaneous Relays
Degrees of Freedom for Interference Networks with Instantaneous RelaysDegrees of Freedom for Interference Networks with Instantaneous Relays
Degrees of Freedom for Interference Networks with Instantaneous Relays
 
ESDEMC_PB2009.08 A Measurement Technique for ESD Current Spreading on A PCB u...
ESDEMC_PB2009.08 A Measurement Technique for ESD Current Spreading on A PCB u...ESDEMC_PB2009.08 A Measurement Technique for ESD Current Spreading on A PCB u...
ESDEMC_PB2009.08 A Measurement Technique for ESD Current Spreading on A PCB u...
 
Set and seu analysis of cntfet based designs in harsh environments
Set and seu analysis of cntfet based designs in harsh environmentsSet and seu analysis of cntfet based designs in harsh environments
Set and seu analysis of cntfet based designs in harsh environments
 
M010219295
M010219295M010219295
M010219295
 
Effect of mesh grid structure in reducing hot carrier effect of nmos device s...
Effect of mesh grid structure in reducing hot carrier effect of nmos device s...Effect of mesh grid structure in reducing hot carrier effect of nmos device s...
Effect of mesh grid structure in reducing hot carrier effect of nmos device s...
 
Design of Earthing System for 230 kV High Voltage Substation by ETAP 12.6 Sof...
Design of Earthing System for 230 kV High Voltage Substation by ETAP 12.6 Sof...Design of Earthing System for 230 kV High Voltage Substation by ETAP 12.6 Sof...
Design of Earthing System for 230 kV High Voltage Substation by ETAP 12.6 Sof...
 
Modelling of next zen memory cell using low power consuming high speed nano d...
Modelling of next zen memory cell using low power consuming high speed nano d...Modelling of next zen memory cell using low power consuming high speed nano d...
Modelling of next zen memory cell using low power consuming high speed nano d...
 
Radiation Hardening by Design
Radiation Hardening by DesignRadiation Hardening by Design
Radiation Hardening by Design
 
Robust vibration control at critical resonant modes using indirect-driven sel...
Robust vibration control at critical resonant modes using indirect-driven sel...Robust vibration control at critical resonant modes using indirect-driven sel...
Robust vibration control at critical resonant modes using indirect-driven sel...
 
W04406104107
W04406104107W04406104107
W04406104107
 

Solar RVM Documentation

  • 1. This document is part of the ANDESITE team documentation, and its purpose is to independently serve as a comprehensive guide to understanding, operating and rebuilding the subsystem described within. This document is the authoritative resource for this subsystemand supersedes all other previously written documentation including presentation slides, previously written Design Documents, and individually recorded notebook entries. This document is part of the BUSAT NS-7 System Concept Review (SCR) documentation suite submitted to the University Nanosat Program (UNP) March 8th, 2013. ANDESITE (NANOSAT-8) PROGRAM Solar Panel Test Results (Silver Board) Document #1 Boston University 8 St Mary’s St Boston, MA 02148
  • 2. CHANGE LOG Revision Date Submitted Authors Description Notes v1 09.15.2014 MS RVM Documentation Testingisnear completionpoint Table 1: Change Log RELEASE APPROVAL Prepared By: Mike Schuller,ANDESITE Solar Engineer, Boston University Date Someone, Job, Boston University Date Someone, Job, School Name Date Someone, Job, School Name Date Someone, Job, School Name Date Someone, Job, School Name Date Approved By: Professor Ted Fritz, PI,Boston University Date Steven Yee, Project Manager, Boston University Date Joshua Mendez, Project Engineer, Georgia Tech Date Subsystem Mentor , School Name Date
  • 3. 1.1 List of Acronyms Acronym Definition ADC Analogto Digital Converter ADK AndroidDevelopmentKit AMR AnisotropicMagnetoResistive ANDESITE Ad-hocNetworkDemonstrationforExtendedSatellite Inquiriesandother Team Endeavors BU BostonUniversity BUSAT BostonUniversityStudentSatellite forApplicationsandTraining C&DH Commandand Data Handling Co-I Co-Principal Investigator COTS Commercial Off-The-Shelf CSP (BostonUniversity) CenterforSpace Physics DOF Degree-of-Freedom Ga Tech GeorgiaInstitute of Technology GENSO Global Educational NetworkforSatelliteOperations I2C Inter-IntegratedCircuit IMU Inertial MeasurementUnit NS-7 Nanosat-7 PAVE-PAWS PrecisionAcquisitionVehicle EntryPhasedArrayWarningSystem PCB PrintedCircuitBoard PI Principal Investigator RVM RequirementsVerificationMatrix SEL Single-EventLatchup SPI Serial Peripheral Interface Bust TASC TriangularAdvancedSolarCell TIME TwinImagingof the Moving Electrontrappingboundary TRL TechnologyReadinessLevel UART Universal Asynchronous Receiver/Transmitter UNP UniversityNanosatProgram USB Universal Serial Bus WSN WirelessSensorNetwork
  • 5. 1. RVM Requirements EPS Electrical PowerSubsystem EPS-8 The solar cell mustproduce sufficientpowerforthe durationof mission. EPS- 8.1 The solar cellswill operateatefficiency withinthe range indicatedby manufacturer. EPS-9 The componentsof the EPS won'tconsume more than the powergenerated. It isexpectedthatthe solarpanelswill provide chargingtothe onboardbatteriesof the mule andwirelesssensornodesinorderforthe batteryto powerthe componentsused.In orderfor thisto occur, requirementshave been placedonthe solarpanelsinordertoensure operationsof ANDESITEcan be carriedon uninterruptedforthe twoweekscience missionit will endure.Those requirementsare asfollows:the solarcells(TASC)usedonANDESITEmust operate withinthe indicatedefficiencyrange designatedbythe manufacturer,the solarpanels mustconstantlycharge the batteriesata rate suitable tolastthe twoweekmissionlife,and the componentsonboardmustnotconsume more powerina single orbitthanwhatthe solar panelscangenerate inorderto guarantee batterylife. Testinganddata analysiswere completedasacheck that these requirementswere beingmet.A copy of the firstsolar panel circuitboarddesignforthe wirelesssensornode was manufacturedtoact as a testingboard.The cellsusedwere donatedfromapreviousuniversity satellite projectinordertoefficientlysave resourcesforthe final design.Thesecellsare TASC and producedbySensorMetrix,the same manufacturerandcellsthatwill be usedforthe final design. 2. Silver Board V1 Design 1.1 Update from Brass board The redesignedsolarpanel circuitboardforthe sensornodeswasdesignedwiththe powerbudgetof the sensornodesinmindandanchoredtowardproductionof sufficientpower to sustainmissionlife forANDESITE.The resizingof the sensornode housingtoaccommodate the 10Ah single cell LiPobatterychosenforthe missionprovidedmore thananacceptable amountof surface areafor solarpanels.The increasedsurface areaincreasedthe number of solarcellsfrom20 (Bronze board) to 48 that couldbe assembledonthe outside of the housing. It was determinedthatprovidingattitude control onthe sensornodeswouldconsume more powerthan couldbe reproducedbysolarpowertoremainoperational foratwo week missionlife.Due tothiscondition,spinstabilizationof the sensornodeswill nolongerbe incorporatedandthe nodeswill tumblefreelyafterejection. The lackof control presentedan issue withsolarpowergeneration.Toaccountfor randomtumblinginspace,the conclusionwas
  • 6. to put equivalentsolarpanelsonthe topand bottomof the housing.Modelingof thisapproach provedthatthe power(Wh) generated inafull orbitof a tumblingnode withpanelsonboth sidesequaledpowergenerationof acontrolled node withonlyone solarpanel.Fromthis,the designwasapprovedfordevelopment. 1.2 Silver Board V1 Layout The silverboarddesignmockedthe brass boardalmostentirely,the onlysubstantial difference beingthe numberof cellsonthe boardincreasingfrom20 to 48 TASCs. The size of the board is10.5cm x 17.5cm. The boardcontainssix stringsof cellsinparallel,eachstring connecting8 solarcellsinseries.Eachcell iscontactedto the board withsevensurface mount pads.A single padwouldsuffice,butwitha50g environmentandthe fragilityof TASCsseven pads were usedtolowerthe chance of defectsoccurring.The sevenpadsundereachcell are linkedinserieswitha.254mm trace routedintothe board.The same size trace runs fromthe seventhpadof eachcell ina stringto an eighthsurface mountpadplacednearthe positive contact of the nextcell inthe string.Atthe endof eachstring of cells a 1mm trace inthe board runs to a junctionpointwhere all stringsconvergetoone.The trace size wasincreasedfrom .254mm to 1mm to account forthe increase incurrentproducedbythe convergence.The single trace producedbythe junctionof stringsisroutedto a thru hole neara corner of the board, designedtobe interfacedtothe EPSfromthe bottomof the board. Thisthru hole actsthe positive terminal forcurrentdraw to the EPS. The firstcell of eachstringneededtobe connected ina similarfashionasthe lastcells of eachstring,butto avoidexcessiveroutingandretainsimplicity,adifferentmethodwas conducted.Insteadof runninga1mm trace junctionlike the otherendsof strings,the seven pads of everyfirstcell wasexposedtothe topcopperlayerof the board.The top copperlayer acts as the junctionwiringthe negative endof the stringstogether.A secondthruhole isalso exposedtothe topcopperlayerand islocatednexttothe positive thruhole forEPSwiring convenience.The secondthruhole actsas the negative terminalforthe solarpanel.Eachthru hole is1mm indiametertofitthe junctiontrace as well assecurelyandefficientlysolderwires fromthe solarpanel tothe EPSinside the housing. Four thruholes,eachwith 2mm diameters,are placednearthe cornersof the board. These thruholesare not exposedtoanylayersof the board nor have trace runningto or from them.These holessimplyactas mountingholesfor6-32 screwsto secure the solarpanel board to the outside of the sensornode housing. The twoholesnearthe backof the sensornode (closesttothe mule attachment) are 8mm upfrom the back edge and3mm in fromthe sides. The two holesnearthe frontof the sensornode are 13.5mm fromthe front edge and3mm in fromthe sides.
  • 7. 3. Silver Board V1 3.1 Testing Procedure The solar panel wasassembledinasolderinglabbymembersof ANDESITE.The method takenwas equivalenttostandardsolderingtechniquesforsurface mountparts.The procedure includedcoatingall surface mountpadswithsolderfluxtocleanthe padsof any impuritiesthat may affectelectrical connection.Since the padsare locatedunderneaththe TASCs,usinga soldergunto assemble the cellswouldnotbe feasible.Instead,solderpaste waslaidoneach surface mountpad and the cellswere placedinthe correctgeometricorientationontopof the solderpaste. Once all cellswere carefullyplaced,the boardwastakentoa reflow oventosolidifythe connectionbetweenthe cellsandthe board.A pre-designatedheatprofile wasselectedfrom software torun the reflowprocess.Afterwards,the cellswere cleanedandcheckedfordefects. Once it wasdeterminedall cellswere cleanandclearof anydefects,the assemblyprocesswas continued.Lead-free solderwire andsolderinggunwere usedtocreate the electrical connectionbetweenthe remainingsurface mountpadsandthe positive(top) sideof the cells. The solar panel wascleanedagainasa precautionarymeasure andthenwasreadyfortesting. The fullyassembledsolarpanel wastakentothe roof of a laboratorybuildingwitha hand-heldmultimeter,electrical wire anda100ohm resistorforperformance testing.Testing occurredduringa clearskyday around12:30pm to mimicorbital environmentasideallyas possible.Itwastakenintoconsiderationthatlowertestresultscouldbe expecteddue tothe conditions. 3.2 MeasurementMethods& Data Poweroutputof TASC ismeasuredbydeterminationof the Open-CircuitVoltageand Short-CircuitCurrentproducedbythe cell ata giveninstantintime.UsingOhm’sLaw allowsthe poweroutputinwattsof each panel tobe estimatedinwatts(W). Computingthisvalue is desirable foranalyzingthe efficiencyinwhichthe cellsoperateanddeterminingwhetherornot theyare acceptable forapplicationonANDESITEtomeet the designrequirementsindicated. The testingprocedure implementedonthe TASCsoughtto make thisanalysis. An opencircuitvoltage testwasrunby attachingthe positive andnegative leadsof the multimetertothe correspondingthru-hole pinsonthe solarpanel.The solarpanel wasoriented to be as incidentwiththe solarilluminationashumanlypossibleandmeasurementwastaken. Followingthat,opencircuitvoltagewasalsorecordedforeachstringof cellsbyattachingthe negative leadof the multimetertothe bottomof the firstcell ineachstringand attachingthe positive leadof the multimetertothe positive contactof the lastcell ineachstring. Measurementswere takenforeachstringandrecorded.
  • 8. Afterthe opencircuit voltage testswere complete,acurrenttestwasimplementedfor each stringandthe whole solarpanel.The wholesolarpanel wastestedfirstbyattachingone endof the 100ohm resistortothe positive thru-hole pinonthe solarpanel andthe otherendto the positive leadof the multimeter.The negativeleadof the multimeterwasthenconnectedto the negative thru-hole pintocomplete the circuit.Measurementwastakenandrecorded.The same setup procedure wasdone foreach stringof cellsexceptthe endof the resistor connectedtothe thru-hole pinonthe boardwas movedtothe positive contactof the lastcell in each stringandthe negative leadof the multimetertothe bottomof the firstcell ineach string. Table 1: Current and Voltage readings (-) Leadconnection (+) Leadconnection OC Voltage (V) CC Voltage (V) *SC Currant (A) Ground Pin Positive Pin 0 0 0 String1 Beginning String1 End 18.9 16.9 .0200 String2 Beginning String2 End 18.9 16.9 .0200 String3 Beginning String 3 End 18.9 16.9 .0200 String 4 Beginning String 4 End 20.1 18.0 .0210 String 5 Beginning String 5 End 20.1 18.0 .0210 String 6 Beginning String 6 End 19.6 17.6 .0200 String 1 Beginning Positive Pin 18.9 16.9 .0200 String 2 Beginning Positive Pin 18.9 16.9 .0200 String 3 Beginning Positive Pin 18.9 16.9 .0200 String 4 Beginning Positive Pin 20.1 18.0 .0210 String 5 Beginning Positive Pin 20.1 18.0 .0210 String 6 Beginning Positive Pin 19.6 17.6 .0200 Ground Pin String 1 End 0 0 0 Ground Pin String 2 End 0 0 0 Ground Pin String 3 End 0 0 0 Ground Pin String 4 End 0 0 0 Ground Pin String 5 End 0 0 0 Ground Pin String 6 End 0 0 0 * SC Currentwascalculatedbymeasuringthe dropinvoltage fromOpen-Circuit(OC) toClosed- Circuit(CC) across a 100 ohmresistorload andusingOhm’sLaw to determine the currentbased on the voltage dissipatedacrossthe resistor. Ohm’sLaw V = IR 3.3 Data Analysis
  • 9. The issue arose that none of the stringsof the solarpanel were displayingcurrentvalues on the multimeter.Itwasdeterminedthatthe multimeter’scapabilitycouldnotreadcurrent valuesaslowas the cell stringswouldproduce evenatmax powerproduction.Insteadof readingcurrentvalues,voltage valueswerereadandrecorded whenaloadwas appliedtothe circuit.It wasjustifiedthatthiscouldbe done because withthe voltagevalue readbythe multimeter,the voltage dropacrossthe load of knownresistance couldbe determinedby subtractingthe opencircuitvoltage recorderbefore andsubtractingthe voltage valueread duringthe currenttest.The resultingdifference wastakenasthe voltage dropacrossthe load and Ohm’sLaw wasusedto determine the currentthroughthe resistor,whichwouldequateto the current producedbythe solarpanel. Anotherissue thatoccurredduringtestingwaswhenthe whole solar panel wasbeing analyzedasa whole.Bothtestsresultedina0V readout, implyingthatthe boardwasnot acting as a complete circuit.The individual cellstringtestswere runtodetermineif there were defects inthe stringassembly.Fortunately,all stringsproducedopencircuitvoltage andproduced current.From these testresults,boththruhole were analyzedindividuallywiththe cell strings. Withthe positive leadof the multimeterconnectedtothe positivethruhole andthe negative leadof the multimeterconnectedtothe beginningof acell stringa voltage equivalenttothatof the stringitself wasmeasured.Thiswasrepeatedforeachstringof the boardand the same resultoccurredfor eachtrial.These testsindicatedthe positivethruhole isfunctioningproperly and receivingavoltage andcurrentfromthe solar panel.However,whenthe groundthruhole was connectedtothe negative leadof the multimeterandthe positive contactof a string connectedtothe otherlead,again 0V readoutoccurred.Thiswas repeatedforeachstringand indeedthe same resultoccurredacrossthe board. In orderto analyze the powerproducedbythe solarpanel asa whole, the powerof the individualstringswere calculated usingOhm’sLaw andsummedtoform total power production. Table 2: Panel Power Production Cell String Power Output (W)** 1 0.378 2 0.378 3 0.378 4 0.4221 5 0.4221 6 0.392 ***Total 2.3702 W ** PoweroutputwasanalyzedusingOhm’sLaw (P=VI),where V wasthe opencircuitvoltage readacross the stringand I was the currentproducedbythe stringwhena 100 ohm resistorloadwasapplied.
  • 10. *** This value iswhenthe panel isdirectlyincidentwiththe sun.When the angle of inclinationtothe sunwas changed,norecordable difference involtageandcurrentoccurreduntil the panel was shadowedfromthe sun. Thisresultmaynot translate intospace andappropriate measureswill be taken to model the scenariowhere thisisthe case. In orderfor the solarpanelstomeetthe designatedrequirementslaidoutinthe RVM, the solar cellsmustoperate atan efficiencyof 27%.This isthe indicatedefficiencyrating(+- 3%) by SensorMetrix whomanufacturersthe TASC. Aslongas the cellstestedoperate withinthe allowable limitsdesignatedbySensorMetrix theyare suitableforuse onANDESITEand will meetthe power requirementstoprovide properbatterychargingduringin-flightoperationforatwoweekmission. Efficiencyof aphotovoltaicsystemhasbeenarticulatedintoasimple algebraicequation for an approximationof aratioof the conversionfromsolarradiationtoelectrical power production. The equationisbasedoff of several variables:the surface areathe photovoltaicsystemcovers,the solar intensityexperiencedbythe system, andthe max poweroutputof the entire system.Since experimental datawastakenwhenthe solarpanelswere directlyincidenttothe solarradiation,the total poweroutputvalue calculatedabove istakenasthe maximumpoweroutputof the system.Solar intensityatAM1.5 (i.e.earthatmosphere)isrecordedas beingbetween930– 1000 W/m2 .Giventhe weatherconditionsinBostononthe dayof testing,the solarintensitywasclose to950 W/m2 and this value isusedto calculate the operatingefficiency.Eachcell usedhasan area of 2.277 cm2 (indicatedby manufacturerdatasheet) resultinginatotal areaof 0.0109 m2 of photovoltaiccoverage oneachside of the sensornode.Withthe necessaryvariablesdetermined,efficiencycanbe estimated. ή = Pout,max / (A*Isolar) = 2.3702 W /(0.0109 m2 * 950 W/m2 ) ή = .2289 = 22.89% The efficiencyobtained islessthan the datasheetrange indicated.Thiswouldnormally bringconcernTASC wouldnotbe usable forthe mission,however,the cellsusedhadbeendonatedbya previoussatelliteprojectandwere overtwoyearsold.Ithas beenrecordedinsolarcell textbooksthat cellsdeteriorateinproductionby5%each yearindark storage.Withthistakenin mind,the cellstested shouldonlybe operatingata maximumof 90% theiroptimal powerconsumption.Therefore,the efficiencyisrecalculatedtodetermine the actual optimal efficiencyof the cellstested. 0.9ήoptimal = ή ήoptimal = 22.89%/0.9 = 25.43% The re-calculationshowsthatthe minimumoptimal efficiencyof the testingcellsdoes indeedfall withinthe range indicatedbySensorMetrix datasheets.Withthiscalculation,itisconfirmed that the cellsmeetthe RVMrequirementestablished.
  • 11. 3.4 Onboard Power Consumption There isno guarantee of a sun-synchronousorbitforANDESITEandthusno guarantee of constantilluminationforthe solarpanelsforthe entiretyof the mission.The chance for eclipse tooccur preventsthe solarpanelsfrombeingusedtopowerthe componentsonboard throughan orbitand thereforLi-Pobatteriesare beingusedasthe mainpowersupplyfor space operation.However,due tosize restrictionsof the CSDencasingthe satellite upon launchand restraintsplacedonthe quantityof wirelesssensornodes, the sole use of an optimal batteryforthe twoweekmission life isunfeasible.Inordertocombat these design constraints,a combinationof photovoltaicandLi-Popowerwill be used.The Li-Poisusedto powerthe onboardcomponentsduringmissionlifeandthe solarpanelswill keepthe battery chargedlongenoughto operate for the extentof the mission. As a safetymeasure,ithasbeenmade arequirementthatthe componentsbeing poweredbythe Li-Pobatterieswill notconsume more powerperorbitthanthe solar panels can produce.Thisrequirementisplacedinordertoensure the batteryoperatesatfull capacity for the entiretyof the missionandcanguarantee uninterrupteddatacollectionandtransfer. The componentsrequiredtoperformthe science experiment deliveredto the AirForce were catalogedinan Excel spreadsheetandpowerconsumptionvalueswere obtainedfromthe data sheetof eachcomponent.Forsafety,the maximumpowerconsumptionof eachdevice was usedinthe productionof a powerbudget. Each orbit requires atotal of 1.305066212 Wh of power,persensornode, tocomplete itsorbital tasks.The breakdownof each powerconsumptionphase isalsorecordedinthe powerbudgetspreadsheet.A MATLABsimulationof the solarpowergenerationforasensor node inorbitindicatedaproductionof 2.0 Wh per orbitbythe solararray. Thissimulation made the assumptionthatthe node tumbledaboutitsminoraxisasis predictedbyorbital drag simulations. Itispossible the node will have minimal tumblingandmimicthe orbitof the attitude controlledmule.Inthiscase,onlyone solarpanel wouldbe exposed tosolarradiation and the simulationwasre-runtodetermine powerproductionduringthiscase.Again,the simulationindicated2.0Wh wouldbe producedduringeachorbital period.Thisconsistencyis reassuringandconfirmsthatpowerproductionwill be similaronaworst andbestcase tumblingscenario. The Air Force requiresa10% contingencyonpowerconsumptionestimatesandthusis implementedtothe value obtainedalteringthe orbital powerconsumptionof eachnode to 1.43557283 Wh. Inadditiontothiscontingencyaccounting,the chargingcontrol chosenforthe sensornodesoperatesat90% efficiencybasedonmanufacturingspecs.This10% cut fromthe solarproductionreducespowergenerationto1.8 Wh being directedtothe batteryina single orbit.Evenwiththese factorsaccountedfor,the sensornodesare still powerpositive by 0.36442717 Wh. Simulationsprove the powergeneratedbysolarcellsisgreaterthanpower
  • 12. consumedbythe componentsusedforthe science experimentandthereforcanprovide sufficientpowerforthe durationof the mission.Thismeetsthe otherRVMrequirements designatedbyANDESITE. Table 3: Orbital Power Budget for each sensor node Note:Duty cycle is time active during one orbit Orbit Altitude 460 km Period 90.00 min System ID Description Component Power (W) Duty Cycle Consumption (Wh/orbit) % Power ss_0 CDH ATMEGA2560 0.1 100% 0.15 11.5% ss_1 Radio RFM228 0.2805 78% 0.33 25.1% ss_2 Attitude Gyroscope 0.02013 100% 0.030195 2.3% SD Card 0.33 100% 0.50 37.9% ADC 0.0009 100% 0.00135 0.1% SunSensor 0.0000066 100% 0.0000099 0.0% GPS 0.068 100% 0.102 7.8% ss_3 Power PIC16F1512 uC 0.000825 100% 0.000825 0.1% 3V3 LDO Regulator 0.000544 100% 0.000816 0.1% CurrentMonitor 0.0004125 100% 0.0004125 0.0% 5V Boost Regulator 0.025 100% 0.015 1.1% 3V3 DC-DCConverter 0.06678601 100% 0.060846012 4.7% ss_4 Magnetometer 1-AxisSensor 0.12 22% 0.04 3.1% 2-AxisSensor 0.24 22% 0.08 6.1% Op-AmpsforSensor 0.0019305 22% 0.0006435 0.0% Op-AmpforADC 0.002145 22% 0.000715 0.1% ADC 0.0000099 22% 0.0000033 0.0% Subtotal 1.25718951 1.305066212 Contingency 10% 10% Total 1.38290846 W 1.435572833 Wh PowerGenerated 1.8 Wh
  • 13. 4. Conclusion ANDESITEindicatesthree requirementsmustbe met forthe solarpanel design to be confirmedformanufacturing.Those requirementsare listedinthe RVM spreadsheetasthe following:the solar cellsmustproduce sufficientpowertocharge the batteryfor the durationof a twoweekmission,these cellsmustalsooperate within the efficiencyvaluesdeterminedbythe manufacturer,andfinally,the electrical componentsusedonthe sensornode and mule mustnotconsume more powerthan the solar panelscanprovide tothe battery.Afterphysical testingandcomputer simulation,the sensornode solarpanel designhasbeenconfirmedtomeetthe three requirementsmentionedandcanbe put forthto manufacturingforthe final production. A solarpanel forthe mule wasnot physicallytested,butisalsodeterminedtomeetthe RVMrequirementsforvariousreasons.The cellsusedonthe mule are fromthe same orderof cellsusedforthe sensornode,makingit clearthese cellsoperate withinthe efficiencylimitsof the manufacturer.Check.The powerbudgetof the mule isposted belowanda computersimulationof the magneticallycontrolledorbitaltrajectory indicatessufficientpowerisbeingprovidedtothe batteryfromthe solarpanel to continue the missionfortwoweeksandgeneratesmore powerthanthe electrical componentsconsume.Withthese conclusionsmade,productionof final paneldesigns can be initiatedbarringanyfurthertesting. Table 4: Mule Power Budget Max Value System ID Description Component Qty Voltage (V) Current (A) Power (W) Duty Cycle Wh/orbit Comments ss_0 CDH Beagle Bone Black BB-BBLK-000 1 5 0.46 2.3 100% 3.45 SD Card SanDisk 4GB MicroSD Card 1 3.3 0.1 0.33 100% 0.495 ss_1 Radio Global Star 1 12 0.0166 0.1992 78% 0.233064 HopeRF RFM228 1 3.3 0.085 0.2805 78% 0.328185 ss_2 Attitude Texas Inst ADC1285102CIMT/NOPB 2 5 0.0038 0.038 78% 0.04446 ST Micro L9958 3 5 0.03 0.45 78% 0.5265 Allegro ACS714LLCTR-05B-T 3 5 0.016 0.24 78% 0.2808 Analog Dev AD8629ARMZ-REEL 5 5 0.0025 0.0625 78% 0.073125 ON Semi CAT24C256YI-GT3 1 5 0.0024 0.012 78% 0.01404 Texas Inst SN65HVD231QDRQ1 1 5 0.014 0.07 78% 0.0819 Beagle Bone Black BB-BBLK-000 1 5 0.46 2.3 78% 2.691 Sun Sensors S8369 6 5 0.000002 0.00006 78% 0.0000702 Torque Coils 3 5 0.066666667 1 100% 1.5 Mag +Gyro IMU ADIS164888MLZ 1 3.3 0.2 0.66 22% 0.2178 GPS Novatel 1 5 0.14 0.7 100% 1.05 ss_3 Power EPS CS-XUEPS2-60 1 0.1 100% 0.15 Subtotal 8.74226 W 11.1359442 Wh Contingency 10% 10% Total Power 9.616486 W 12.24953862 Wh Generation 22.24 W 16.68 Wh (Ideal) Break Even 11.12 W 15.012 Wh (Accounting for charger efficiency)