SlideShare a Scribd company logo
1 of 7
Download to read offline
IOSR Journal of Mathematics (IOSR-JM)
e-ISSN: 2278-5728,p-ISSN: 2319-765X, Volume 6, Issue 4 (May. - Jun. 2013), PP 59-65
www.iosrjournals.org
www.iosrjournals.org 59 | Page
Strongly Unique Best Simultaneous Coapproximation
in Linear 2-Normed Spaces
R.Vijayaragavan
School of Advanced Sciences V I T University Vellore-632014, Tamilnadu, India.
Abstract: This paper deals with some fundamental properties of the set of strongly unique best
simultaneous coapproximation in a linear 2-normed space.
AMS Subject classification: 41A50,41A52,41A99, 41A28.
Keywords: Linear 2-normed space, strongly unique best coapproximation, best
Simultaneous coapproximation and strongly unique best simultaneous coapproximation.
I. Introduction
The problem of simultaneous approximation was studied by several authors. Diaz and
Mclaughlin [2,3], Dunham [4] and Ling, et al. [12] have discussed the simultaneous approximation
of two real-valued functions defined on a closed interval. Many results on best simultaneous
approximation in the context of normed linear space under different norms were obtained by Goel, et
al. [9,10], Phillips, et al. [16], Dunham [4], Ling, et al. [12] and Geetha S. Rao, et al. [5,6,7].
Strongly unique best simultaneous approximation are investigated by Laurent, et al. [11]. D.V.Pai, et
al. [13,14] studied the characterization and unicity of strongly unique best simultaneous approximation
in normed linear spaces. The problem of best simultaneous coapproximation in a normed linear space
was introduced by Geetha S.Rao, et al. [8]. The notion of strongly unique best simultaneous
coapproximation in the context of linear 2-normed space is introduced in this paper. Section 2 provides
some important definitions and results that are used in the sequel. Some fundamental properties of the
set of strongly unique best simultaneous coapproximation with respect to 2-norm are established in
Section 3.
II. Preliminaries
Definition 2.1. [1] Let X be a linear space over real numbers with dimension greater than one and let
║k ., . k║ be a real-valued function on X × X satisfying the following properties for every x, y, z in
X .
(i) ║x, y║= 0 if and only if x and y are linearly dependent, (ii) ║ x, y║=║ y, x ║,
(iii) ║ αx, y ║= |α| ║ x, y ║ , where α is a real number,
(iv) ║ x, y + z ║≤║ x, y ║ + ║ x, z ║ .
Then ║., . ║ is called a 2-norm and the linear space X equipped with the 2-norm is called a linear 2-
normed space. It is clear that 2-norm is non negative.
The following important property of 2-norm was established by Cho [ 1 ].
Theorem 2.2. [ 1 ] For any points a, b ∈ X and any α ∈ R , ║ a, b ║=║ a, b + αa ║ .
Definition 2.3. Let G be a non-empty subset of a linear 2-normed space X . An element g0 ∈ G is
called a strongly unique best coapproximation to x ∈ X from G, if there exists a constant t > 0 such
that for every g ∈ G ,
║ g − g0, k ║≤║ x − g, k ║ −t ║ x − g0, k ║, for every k ∈ X  [G, x].
Definition 2.4. Let G be a non-empty subset of a linear 2-normed space X . An element g0 ∈ G is
called a best simultaneous coapproximation to x1 , · · · , xn ∈ X from G, if for every g ∈ G ,
║ g − g0 , k ║≤ max {║ x1 − g, k ║, · · · , ║ xn − g, k ║} , for every k ∈ X  [G, x1 , · · · , xn].
The definition of strongly unique best simultaneous coapproximation in the context of linear
Strongly Unique Best Simultaneous Coapproximation In Linear 2-Normed Space
www.iosrjournals.org 60 | Page
2-normed space is introduced for the first time as follows:
Definition 2.5. Let G be a non-empty subset of a linear 2-normed space X . An element g0 ∈ G is
called a strongly unique best simultaneous coapproximation to x1 , · · · , xn ∈ X from G, if there
exists a constant t > 0 such that for every g ∈ G ,
║ g − g0, k ║≤ max {║ x1 − g, k ║,· · · , ║ xn − g, k ║} − t max{║ x1 − g0, k ║,
║ xn − g0 , k ║}, for every k ∈ X  [G, x1 , · · · , xn],
where [G, x1 , · · · , xn ] represents a linear space spanned by elements of G and x1 , · · · , xn . The set
of all elements of strongly unique best simultaneous coapproximations to x1 , · · · , xn ∈ X
from G is denoted by WG (x1 , · · · , xn) .
The subset G is called an existence set if WG (x1 , · · · , xn ) contains at least one element for
every x ∈ X . G is called a uniqueness set if WG (x1 , · · · , xn ) contains at most one element
for every x ∈ X . G is called an existence and uniqueness set if WG (x1 , · · · , xn ) contains
exactly one element for every x ∈ X .
For the sake of brevity, the terminology subspace is used instead of a linear 2-normed subspace. Unless
otherwise stated all linear 2-normed spaces considered in this paper are real linear 2-normed spaces
and all subsets and subspaces considered in this paper are existence subsets and existence subspaces
with respect to strongly unique best simultaneous coapproximation.
III. Some Fundamental Properties Of Wg (X1 , · · · , Xn)
Some basic pr operties of strongly unique b e s t simultaneous coapproximation are
obtained in the following Theorems.
Theorem 3.1. Let G b e a subset of a linear 2-normed space X and x1 , · · · , xn ∈ X . Then the
following statements hold.
(i) WG (x1 , · · · , xn) is closed if G is closed. (ii) WG (x1 , · · · , xn) is convex if G is convex. (iii)
WG (x1 , · · · , xn) is bounded.
Proof. (i). Let G b e closed.
Let { gm} be a sequence in WG (x1 , · · · , xn) such that gm → g˜ .
To show that WG (x1 , · · · , xn) is closed, it is sufficient to show that
WG (x1 , · · · , xn) .
g˜ ∈Since G is closed, {gm} ∈ G and gm →
g˜ , we haveg˜ ∈ G. Since {gm} ∈
WG (x1 , · · · , xn) , we have for all k ∈ X [G, x1 , · · · , xn] , g ∈ G and for some t > 0 that
║ g − gm, k ║≤ max {║ x1 − g, k ║,· · · , ║ xn − g, k ║}
−t max{║ x1 − gm, k ║,· · · , ║ xn − gm, k ║}
⇒ ║ g − g˜, k ║ − ║ gm − g˜, k ║≤ max {║ x1 − g, k ║, · · · , ║ xn − g, k ║}
−t max{║ x1 − g˜, k ║ − ║ gm − g˜, k ║,· · · , ║ xn − g˜, k ║ − ║ gm − g˜, k ║}. (3.1)
Since gm → g˜ , gm − g˜ → 0 . So ║gm − g˜, k ║→ 0, as 0 and k ar e linearly dependent.
Therefore, it follows from (3.1) that
Strongly Unique Best Simultaneous Coapproximation In Linear 2-Normed Space
www.iosrjournals.org 61 | Page
1 + t
║ g − g˜, k ║≤ max {║ x1 − g, k ║, · · · , ║ xn − g, k ║}
−t max{║ x1 − g˜, k ║, · · · , ║ xn − g˜, k ║},
for all g ∈ G , k ∈ X [G, x1 , · · · , xn] and for some t > 0 , when m → ∞ . Thus
g˜ ∈ WG (x1 , · · · , xn) . Hence WG (x1 , · · · , xn) is closed.
(ii). Let G b e a convex set, g1 , g2 ∈ WG (x1 , · · · , xn) and α ∈ (0, 1) .
To show that αg1 + (1 − α)g2 ∈ WG (x1 , · · · , xn) , let k ∈ X  [G, x1 , · · · , xn] . Then
║ g − (αg1 + (1 − α)g2), k ║
≤ α ║ g − g1, k ║ +(1 − α) ║ g − g2, k ║
≤ α (max {║ x1 − g, k ║,· · · , ║ xn − g, k ║}
−t max{║ x1 − g1, k ║,· · · , ║ xn − g1, k ║})
+(1 − α) max {║ x1 − g, k ║, · · · , ║ xn − g, k ║}
−t max{║ x1 − g2, k ║,· · · , ║ xn − g2, k ║})
= max {║ x1 − g, k ║,· · · , ║xn − g, k ║}
−t max{║ αx1 − αg1 , k ║ · · · ║ αxn − αg1 , k ║}
+ max {║ (1 − α)x1 − (1 − α)g2 , k ║,· · · , ║ (1 − α)xn − (1 − α)g2 , k║})
= max {║ x1 − g, k ║,· · · , ║ xn − g, k ║}
−t max{║ x1 − (αg1 + (1 − α)g2 ), k ║,· · · , ║ xn − (αg1 + (1 − α)g2 , k ║} .
Thus αg1 + (1 − α)g2 ∈ WG (x1 , · · · , xn) . Hence WG (x1 , · · · , xn) is convex.
(iii). To show that WG (x1 , · · · , xn) is bounded, it is sufficient to show for arbitrary g0, g˜0 ∈
WG (x1 , · · · , xn) that ║ g0 − g˜0, k ║< c for some c > 0 , since ║ g0 − g˜0, k ║< c implies
that sup
g0 ,g˜0 ∈WG (x1 ,··· ,xn )
finite.║ g0 − g˜0, k ║ is finite and hence the diameter of WG (x1 , · · · , xn ) is
Let g0, g˜0 ∈ WG (x1 , · · · , xn) . Then there exists a constant t > 0 such that for every
g ∈ G and k ∈ X  [G, x1 , · · · , xn],
║ g − g0, k ║≤ max{║ x1 − g, k ║,· · · , ║ xn − g, k ║}
−t max{║ x1 − g0, k ║,· · · , ║ xn − g0, k ║}
and
║ g − g˜0, k ║≤ max{║ x1 − g, k ║,· · · , ║xn − g, k ║}
−t max{║ x1 − g˜0, k ║,· · · , ║ xn − g˜0, k ║}.
Now,
║ x1 − g0, k ║ ≤ ║ x1 − g, k ║ + ║ g − g0, k ║
≤ 2 max {║ x1 − g, k ║,· · · , ║ xn − g, k ║}
−t max {║ x1 − g0, k ║,· · · , ║ xn − g0, k ║}.
2
Strongly Unique Best Simultaneous Coapproximation In Linear 2-Normed Space
www.iosrjournals.org 62 | Page
⇒║ x1 − g0, k ║ ≤
max {║ x1 − g, k ║, · · · , ║ xn − g, k ║} , for all g ∈ G.
Hence ║ x1 − g0, k
║
≤
1 + t
d,
where d = inf max {║ x1 − g, k ║,· · · , ║ xn − g, k ║} .
g∈G
2
Similarly,
║
x1 − g˜0, k
║
≤
1 + t
d .
Therefore, it follows that
║ g0 − g˜0, k ║ ≤ ║ g0 − x1 , k ║ + ║ x1 − g˜0, k ║
4
≤
1 + t
d
= C .
Whence WG (x1 , · · · , xn) is bounded.
Let X be a linear2-normed space, x ∈ X and [x] denote the set of all scalar multiplications of
x .
i.e., [x] = {αx : α ∈ R} .
Theorem 3.2. Let G be a subset of a linear 2-normed space X, x1 , · · · , xn ∈ X and
k ∈ X  [G, x1 , · · · , xn] . Then the following statements are equivalent for every y ∈ [k].
(i) g0 ∈ WG (x1 , · · · , xn) .
(ii) g0 ∈ WG (x1 + y, · · · , xn + y) . (iii) g0 ∈ WG (x1 − y, · · · , xn − y) .
(iv) g0 + y ∈ WG (x1 + y, · · · , xn + y) . (v) g0 + y ∈ WG (x1 − y, · · · , xn − y) . (vi) g0 − y ∈ WG
(x1 + y, · · · , xn + y) . (vii) g0 − y ∈ WG (x1 − y, · · · , xn − y) . (viii) g0 + y ∈ WG (x1 , · · · , xn) .
(ix) g0 − y ∈ WG (x1 , · · · , xn ) .
Proof. The proof follows immediately by using Theorem 2.2.
Theorem 3.3. Let G be a subspace of a linear 2-normed space X , x1 , · · · , xn ∈ X and
k ∈ X  [G, x1 , · · · , xn] . Then
g0 ∈ WG (x1 , · · · , xn ) ⇔ g0 ∈ WG (αmx1 + (1 − αm)g0 , · · · , αmxn + (1 − αm)g0 ),
for all α ∈ R and m = 0, 1, 2, · · · .
Proof. Claim:
g0 ∈ WG (x1 , · · · , xn ) ⇔ g0 ∈ WG (αx1 + (1 − α)g0 , · · · , αxn + (1 − α)g0 ), for all α ∈ R.
Let g0 ∈ WG (x1 , · · · , xn) . Then
║g − g0, k ║≤ max {║ x1 − g, k ║,· · · , ║ xn − g, k ║} − t max{║ x1 − g0, k ║,· · · , k║xn − g0, k ║},
for all g ∈ G and for some t > 0 .
Strongly Unique Best Simultaneous Coapproximation In Linear 2-Normed Space
www.iosrjournals.org 63 | Page
⇒ ║ αg − αg0 , k ║≤ max {║ αx1 − αg, k ║,· · · , ║ αxn − αg, k ║}
−t max{║ αx1 − αg0 , k║,· · · , ║ αxn − αg0 , k ║}, for every g ∈ G.
0
0
( 1)
,
g g
g k

 

  
  
 
0 0
1
( 1) ( 1)
max , ,..., ,n
g g g g
x k x k
 
   
 
       
      
    
−t max{║ αx1 − αg0 , k ║,· · · , ║ αxn − αg0 , k ║},
(α − 1)g0 + g
for all g ∈ G and α = 0, since
α
∈ G.
⇒ ║ g − g0 , k ║≤ max {║ αx1 + (1 − α)g0 − g, k ║,· · · , ║αxn + (1 − α)g0 − g, k ║}
−t max{║ αx1 + (1 − α)g0 − g0, k ║,· · · , ║ αxn + (1 − α)g0 − g0, k ║}
⇒ g0 ∈ WG (αx1 + (1 − α)g0 , · · · , αxn + (1 − α)g0 ), when α ≠ 0.
If α = 0 , then it is clear that g0 ∈ WG (αx1 + (1 − α)g0 , · · · , αxn + (1 − α)g0 ) .
The converse is obvious by taking α = 1 . Hence the claim is true. By repeated application of the
claim the result follows.
Corollary 3.4. Let G be a subspace of a linear 2-normed space X, x1 , · · · , xn ∈ X
and k ∈ X  [G, x1 , · · · , xn] . Then t h e foll owin g statements are equivalent for every
y ∈ [k], α ∈ R and m = 0, 1, 2, · · ·
(i) g0 ∈ WG (x1 , · · · , xn) .
(ii) g0 ∈ WG (αmx1 + (1 − αm )g0 + y, · · · , αmxn + (1 − αm)g0 + y) . (iii) g0 ∈ WG (αmx1 +
(1 − αm)g0 − y, · · · , αmxn + (1 − αm)g0 − y) .
(iv) g0 + y ∈ WG (αm x1 + (1 − αm )g0 + y, · · · , αm xn + (1 − αm )g0 + y) . (v) g0 + y ∈ WG
(αm x1 + (1 − αm )g0 − y, · · · , αm xn + (1 − αm )g0 − y) . (vi) g0 − y ∈ WG (αm x1 + (1 − αm
)g0 + y, · · · , αm xn + (1 − αm )g0 + y) . (vii) g0 − y ∈ WG (αm x1 + (1 − αm )g0 − y, · · · , αm xn
+ (1 − αm)g0 − y) . (viii) g0 + y ∈ WG (αmx1 + (1 − αm )g0 , · · · , αmxn + (1 − αm)g0 ) .
(ix) g0 − y ∈ WG (αmx1 + (1 − αm)g0 , · · · , αmxn + (1 − αm)g0 ) .
Proof. The proof follows from simple application of Theorem 2.2 and the Theorem 3.3.
Theorem 3.5. Let G b e a subset of a linear 2-normed space X, x1 , · · · , xn ∈ X and
k ∈ X  [G, x1 , · · · , xn] . Then
g0 ∈ WG (x1 , · · · , xn ) ⇔ g0 ∈ WG+[k](x1 , · · · , xn).
Proof. The proof follows from simple application of Theorem 3.2.
A corollary similar to that of Corollary 3.4 is established next as follows:
Corollary 3.6. Let G be a subspace of a linear 2-normed space X, x1 , · · · , xn ∈ X and k ∈
Strongly Unique Best Simultaneous Coapproximation In Linear 2-Normed Space
www.iosrjournals.org 64 | Page
X  [G, x1 , · · · , xn ] . Then t h e foll owin g statements are equivalent for every y ∈ [k], α ∈ R and
m = 0, 1, 2, · · ·
(i) g0 ∈ WG+[k](x1 , · · · , xn) .
(ii) g0 ∈ WG+[k](αm x1 + (1 − αm)g0 + y, · · · , αmxn + (1 − αm)g0 + y) . (iii) g0 ∈ WG+[k]
(αm x1 + (1 − αm)g0 − y, · · · , αm xn + (1 − αm)g0 − y) .
(iv) g0 + y ∈ WG+[k] (αm x1 + (1 − αm )g0 + y, · · · , αm xn + (1 − αm )g0 + y) . (v) g0 + y ∈
WG+[k](αm x1 + (1 − αm)g0 − y, · · · , αm xn + (1 − αm )g0 − y) . (vi) g0 − y ∈ WG+[k](αm x1
+ (1 − αm )g0 + y, · · · , αm xn + (1 − αm )g0 + y) . (vii) g0 − y ∈ WG+[k] (αm x1 + (1 − αm )g0
− y, · · · , αm xn + (1 − αm )g0 − y) . (viii) g0 + y ∈ WG+[k](αm x1 + (1 − αm )g0 , · · · , αm xn +
(1 − αm)g0 ) .
(ix) g0 − y ∈ WG+[k](αm x1 + (1 − αm)g0 , · · · , αmxn + (1 − αm)g0 ) .
Proof. The proof easily follows from Theorem 3.5 and Corollary 3.4.
Proposition 3.7. Let G be a subset of a linear 2-normed space X, x1 , · · · , xn ∈ X and k ∈ X 
[G, x1 , · · · , xn] and 0 ∈ G . If g0 ∈ WG (x1 , · · · , xn), then there exists a constant t > 0 such that
║ g0 , k ║≤ max {║ x1 , k ║,· · · , ║ xn, k ║} − t max{║ x1 − g0, k ║,· · · , ║ xn − g0, k ║}.
Proof. The proof is obvious.
Proposition 3.8. Let G be a subset of a linear 2-normed space X, x1 , · · · , xn ∈ X and k ∈ X 
[G, x1 , · · · , xn] . If g0 ∈ WG (x1 , · · · , xn ) , then there exists a constant t > 0 such that for every g
∈ G,
||xi − g0, k|| ≤ 2 max{||x1 − g, k||, · · · , ||xn − g, k||} − t max{║x1 − g0, k ║,· · · ,
║ xn − g0 , k ║}, for i = 1, 2, · · · , n.
Proof. The proof is obvious.
Theorem 3.9. Let G be a subspace of a linear 2-normed space X and x1 , · · · , xn ∈ X . Then the
following statements hold.
(i) WG (x1 + g, · · · , xn + g) = WG (x1 , · · · , xn) + g, for every g ∈ G . (ii) WG (αx1, · · · , αxn) =
αWG (x1 , · · · , xn), for every α ∈ R .
Proof. (i). Let
g˜ be an arbitrary but fixed element of G .
Let g0 ∈ WG (x1 , · · · , xn ) . It is clear that g0 + g˜ ∈ WG (x1 , · · · , xn) + g˜ .
To show that WG (x1 , · · · , xn) + g˜ ⊆ WG (x1 + g˜, · · · , xn + g˜) , it is sufficient to show that g0 + g˜
∈ WG (x1 + g˜, · · · , xn + g˜) .
Now,
║ g − g0, k ║≤ max {║ x1 − g, k ║,· · · , ║ xn − g, k ║}
−t max{║ x1 − g0, k ║,· · · , ║ xn − g0, k ║}
for every g ∈ G and for some t > 0.
⇒ ║ g − (g0 + g˜), k ║≤ max {║ x1 + g˜ − g, k ║, · · · , ║ xn + g˜ − g, k ║}
Strongly Unique Best Simultaneous Coapproximation In Linear 2-Normed Space
www.iosrjournals.org 65 | Page
−t max{║ x1 + g˜ − (g0 + g˜), k ║,· · · , ║ xn + g˜ − (g0 + g˜), k ║},
for every g ∈ G and for some t > 0, since g − g˜ ∈ G.
Thus g0 + g˜ ∈ WG (x1 + g˜, · · · , xn + g˜).
Conversely, let g0 + g˜ ∈ WG (x1 + g˜,· · · , xn + g˜) . To show that
WG (x1 + g˜, · · · , xn + g˜) ⊆ WG (x1 , · · · , xn) + g˜,
it is sufficient to show that g0 ∈ WG (x1 , · · · , xn) . Let k ∈ X  [G, x1 , · · · , xn] . Then
║ g − g0, k ║ = ║ g + g˜ − (g0 + g˜), k ║
≤ max {║ x1 + g˜ − (g + g˜), k ║,· · · , ║ xn + g˜ − (g + g˜), k ║}
−t max{║ x1 + g˜ − (g0 + g˜), k ║,· · · , ║ xn + g˜ − (g0 + g˜), k ║},
for all g ∈ G and for some t > 0, since g + g˜ ∈ G.
⇒ g0 ∈ WG (x1 , · · · , xn). Thus the result follows. (ii). The proof is similar to that of (i).
Remark 3.10. Theorem 3.9 can be restated as
WG (αx1 + g, · · · , αxn + g) = αWG (x1 , · · · , xn) + g, for all g ∈ G.
References
[1] Y.J.Cho, “Theory of 2-inner product spaces”, Nova Science Publications, New York, 1994.
[2] J.B.Diaz and H.W.McLaughlin, On simultaneous Chebyshev approximation of a set of bounded complex-valued
functions, J.Approx Theory, 2 (1969), 419-432.
[3] J.B.Diaz and H.W.McLaughlin, On simultaneous Chebyshev approximation and Chebyshev approximation with an
additive weight function, J. Approx. Theory, 6 (1972), 68-72.
[4] C.B.Dunham, Simultaneous Chebyshev a p p r o x i ma t i o n of functions on interval, Proc.Amer.Math.Soc., 18 (1967),
472-477.
[5] Geetha S.Rao, Best coapproximation in normed linear spaces in Approximation Theory, V.C.K.Chui,
L.L.Schumaker and J.D.Ward (eds.), Academic Press, New York, 1986,535-538.
[6] Geetha S.Rao and K.R.Chandrasekaran, Best coapproximation in normed linear spaces with property (Λ) ,
Math. Today, 2 (1984), 33-40.
[7] Geetha S.Rao and K.R.Chandrasekaran, Characterizations of elements of best coapproximation in normed linear
spaces, Pure Appl. Math. Sci., 26(1987), 139-147.
[8] Geetha S.Rao and R.Sa ra va na n, Best simultaneous coapproximation, Indian J. Math., 40 No.3, (1998), 353-362.
[9] D.S.Goel, A.S.B.Holland, C.Nasim and B.N.Sahney, On best simultaneous approximation in normed linear
spaces. Canad. Math. Bull., 17 (No. 4) (1974), 523-527.
[10] D.S.Goel, A.S.B.Holland, C.Nasim, and B.N.Sahney, Characterization of an element of best Lp -simultaneous
approximation, S.R.Ramanujan memorial volume, Madras, 1974, 10-14.
[11] P.J.Laurent and D.V.Pai, Simultaneous approximation of vector valued functions, Research Report, MRR03-97,
Department of Mathematics, IIT, Bombay, 1997.
[12] W.H.Ling, H.W.McLaughlin a n d M.L.Smith, Approximation of random functions, AMS Notices, 22
(1975), A-161.
[13] D.V.Pai, Characterization of strong uniqueness of best simultaneous approximation, in “Proceedings of the Fifth Annual
Conference of Indian Society of Industrial and Applied Mathematics (ISIAM)”, Bhopal, 1998.
[14] D.V.Pai a n d K.Indira, Strong unicity in simultaneous approximation, in v“Proceedings of the Conference
on Analysis, Wavelets and Applications”, Feb. 12-14, 2000, being edited by H.P.Dikshit.
[15] P.L.Papini and I. Singer, Best coapproximation in normed linear spaces, Mh. Math.88 (1979), 27-44.
[16] G.H.Phillips and B.N.Sahney, Best simultaneous approximation in the L1 and L2 norms, in “Proceeding of
conference on theory of Approximation at University of Calgary (1975),” Academic Press, New York.

More Related Content

What's hot

Dominación y extensiones óptimas de operadores con rango esencial compacto en...
Dominación y extensiones óptimas de operadores con rango esencial compacto en...Dominación y extensiones óptimas de operadores con rango esencial compacto en...
Dominación y extensiones óptimas de operadores con rango esencial compacto en...
esasancpe
 
Solving the energy problem of helium final report
Solving the energy problem of helium final reportSolving the energy problem of helium final report
Solving the energy problem of helium final report
JamesMa54
 
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
JamesMa54
 
Iterative Compression
Iterative CompressionIterative Compression
Iterative Compression
ASPAK2014
 
Bidimensionality
BidimensionalityBidimensionality
Bidimensionality
ASPAK2014
 
Important Cuts
Important CutsImportant Cuts
Important Cuts
ASPAK2014
 
Important Cuts and (p,q)-clustering
Important Cuts and (p,q)-clusteringImportant Cuts and (p,q)-clustering
Important Cuts and (p,q)-clustering
ASPAK2014
 

What's hot (19)

Dominación y extensiones óptimas de operadores con rango esencial compacto en...
Dominación y extensiones óptimas de operadores con rango esencial compacto en...Dominación y extensiones óptimas de operadores con rango esencial compacto en...
Dominación y extensiones óptimas de operadores con rango esencial compacto en...
 
Double integration
Double integrationDouble integration
Double integration
 
Solving the energy problem of helium final report
Solving the energy problem of helium final reportSolving the energy problem of helium final report
Solving the energy problem of helium final report
 
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
 
draft5
draft5draft5
draft5
 
Iterative Compression
Iterative CompressionIterative Compression
Iterative Compression
 
Bidimensionality
BidimensionalityBidimensionality
Bidimensionality
 
Fixed point theorem in fuzzy metric space with e.a property
Fixed point theorem in fuzzy metric space with e.a propertyFixed point theorem in fuzzy metric space with e.a property
Fixed point theorem in fuzzy metric space with e.a property
 
Important Cuts
Important CutsImportant Cuts
Important Cuts
 
The Gaussian Hardy-Littlewood Maximal Function
The Gaussian Hardy-Littlewood Maximal FunctionThe Gaussian Hardy-Littlewood Maximal Function
The Gaussian Hardy-Littlewood Maximal Function
 
Prof. Rob Leigh (University of Illinois)
Prof. Rob Leigh (University of Illinois)Prof. Rob Leigh (University of Illinois)
Prof. Rob Leigh (University of Illinois)
 
Solovay Kitaev theorem
Solovay Kitaev theoremSolovay Kitaev theorem
Solovay Kitaev theorem
 
Common fixed point theorem for occasionally weakly compatible mapping in q fu...
Common fixed point theorem for occasionally weakly compatible mapping in q fu...Common fixed point theorem for occasionally weakly compatible mapping in q fu...
Common fixed point theorem for occasionally weakly compatible mapping in q fu...
 
Formulas
FormulasFormulas
Formulas
 
Important Cuts and (p,q)-clustering
Important Cuts and (p,q)-clusteringImportant Cuts and (p,q)-clustering
Important Cuts and (p,q)-clustering
 
Lesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of CalculusLesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of Calculus
 
Applications of Hoffman Algebra for the Multiple Gamma Functions
Applications of Hoffman Algebra for the Multiple Gamma FunctionsApplications of Hoffman Algebra for the Multiple Gamma Functions
Applications of Hoffman Algebra for the Multiple Gamma Functions
 
Hidden gates in universe: Wormholes UCEN 2017 by Dr. Ali Övgün
Hidden gates in universe: Wormholes UCEN 2017 by Dr. Ali ÖvgünHidden gates in universe: Wormholes UCEN 2017 by Dr. Ali Övgün
Hidden gates in universe: Wormholes UCEN 2017 by Dr. Ali Övgün
 
Bayesian Criteria based on Universal Measures
Bayesian Criteria based on Universal MeasuresBayesian Criteria based on Universal Measures
Bayesian Criteria based on Universal Measures
 

Viewers also liked

A preliminary study on the toxic potentials of shea butter effluent using Cla...
A preliminary study on the toxic potentials of shea butter effluent using Cla...A preliminary study on the toxic potentials of shea butter effluent using Cla...
A preliminary study on the toxic potentials of shea butter effluent using Cla...
IOSR Journals
 
A Comparative Study on Recovery Pulse Rate after 12 Minute Run and Walk Test
A Comparative Study on Recovery Pulse Rate after 12 Minute Run and Walk TestA Comparative Study on Recovery Pulse Rate after 12 Minute Run and Walk Test
A Comparative Study on Recovery Pulse Rate after 12 Minute Run and Walk Test
IOSR Journals
 
Self-Medication of Anti-Biotics amongst University Students of Islamabad: Pre...
Self-Medication of Anti-Biotics amongst University Students of Islamabad: Pre...Self-Medication of Anti-Biotics amongst University Students of Islamabad: Pre...
Self-Medication of Anti-Biotics amongst University Students of Islamabad: Pre...
IOSR Journals
 
Energy Efficient Data Mining in Multi-Feature Sensor Networks Using Improved...
Energy Efficient Data Mining in Multi-Feature Sensor Networks  Using Improved...Energy Efficient Data Mining in Multi-Feature Sensor Networks  Using Improved...
Energy Efficient Data Mining in Multi-Feature Sensor Networks Using Improved...
IOSR Journals
 

Viewers also liked (20)

C0431923
C0431923C0431923
C0431923
 
A preliminary study on the toxic potentials of shea butter effluent using Cla...
A preliminary study on the toxic potentials of shea butter effluent using Cla...A preliminary study on the toxic potentials of shea butter effluent using Cla...
A preliminary study on the toxic potentials of shea butter effluent using Cla...
 
B0220609
B0220609B0220609
B0220609
 
G0444246
G0444246G0444246
G0444246
 
I0557277
I0557277I0557277
I0557277
 
A Comparative Study on Recovery Pulse Rate after 12 Minute Run and Walk Test
A Comparative Study on Recovery Pulse Rate after 12 Minute Run and Walk TestA Comparative Study on Recovery Pulse Rate after 12 Minute Run and Walk Test
A Comparative Study on Recovery Pulse Rate after 12 Minute Run and Walk Test
 
Low Power FPGA Based Elliptical Curve Cryptography
Low Power FPGA Based Elliptical Curve CryptographyLow Power FPGA Based Elliptical Curve Cryptography
Low Power FPGA Based Elliptical Curve Cryptography
 
Self-Medication of Anti-Biotics amongst University Students of Islamabad: Pre...
Self-Medication of Anti-Biotics amongst University Students of Islamabad: Pre...Self-Medication of Anti-Biotics amongst University Students of Islamabad: Pre...
Self-Medication of Anti-Biotics amongst University Students of Islamabad: Pre...
 
D0321624
D0321624D0321624
D0321624
 
Hepatoprotective Activity of Chara Parpam in Ccl4 Induced Rats
Hepatoprotective Activity of Chara Parpam in Ccl4 Induced RatsHepatoprotective Activity of Chara Parpam in Ccl4 Induced Rats
Hepatoprotective Activity of Chara Parpam in Ccl4 Induced Rats
 
Energy Efficient Data Mining in Multi-Feature Sensor Networks Using Improved...
Energy Efficient Data Mining in Multi-Feature Sensor Networks  Using Improved...Energy Efficient Data Mining in Multi-Feature Sensor Networks  Using Improved...
Energy Efficient Data Mining in Multi-Feature Sensor Networks Using Improved...
 
A Comparative Study of Certain Administrative and Academic Aspects of Minorit...
A Comparative Study of Certain Administrative and Academic Aspects of Minorit...A Comparative Study of Certain Administrative and Academic Aspects of Minorit...
A Comparative Study of Certain Administrative and Academic Aspects of Minorit...
 
The Advantages of Two Dimensional Techniques (2D) in Pituitary Adenoma Treatment
The Advantages of Two Dimensional Techniques (2D) in Pituitary Adenoma TreatmentThe Advantages of Two Dimensional Techniques (2D) in Pituitary Adenoma Treatment
The Advantages of Two Dimensional Techniques (2D) in Pituitary Adenoma Treatment
 
An Overview on Security Issues in Cloud Computing
An Overview on Security Issues in Cloud ComputingAn Overview on Security Issues in Cloud Computing
An Overview on Security Issues in Cloud Computing
 
A Primer on Cointegration: Application to Nigerian Gross Domestic Product and...
A Primer on Cointegration: Application to Nigerian Gross Domestic Product and...A Primer on Cointegration: Application to Nigerian Gross Domestic Product and...
A Primer on Cointegration: Application to Nigerian Gross Domestic Product and...
 
Estimation of G6pd Status in the Rajbangshi Population of Sushrutanagar
Estimation of G6pd Status in the Rajbangshi Population of SushrutanagarEstimation of G6pd Status in the Rajbangshi Population of Sushrutanagar
Estimation of G6pd Status in the Rajbangshi Population of Sushrutanagar
 
The Evaluation of p-type doping in ZnO taking Co as dopant
The Evaluation of p-type doping in ZnO taking Co as dopantThe Evaluation of p-type doping in ZnO taking Co as dopant
The Evaluation of p-type doping in ZnO taking Co as dopant
 
A Survey of Fuzzy Logic Based Congestion Estimation Techniques in Wireless S...
A Survey of Fuzzy Logic Based Congestion Estimation  Techniques in Wireless S...A Survey of Fuzzy Logic Based Congestion Estimation  Techniques in Wireless S...
A Survey of Fuzzy Logic Based Congestion Estimation Techniques in Wireless S...
 
Implementation of error correcting methods to the asynchronous Delay Insensit...
Implementation of error correcting methods to the asynchronous Delay Insensit...Implementation of error correcting methods to the asynchronous Delay Insensit...
Implementation of error correcting methods to the asynchronous Delay Insensit...
 
Energy saving in P2P oriented Wireless Sensor Network (WSN) using the approac...
Energy saving in P2P oriented Wireless Sensor Network (WSN) using the approac...Energy saving in P2P oriented Wireless Sensor Network (WSN) using the approac...
Energy saving in P2P oriented Wireless Sensor Network (WSN) using the approac...
 

Similar to Strongly Unique Best Simultaneous Coapproximation in Linear 2-Normed Spaces

D242228
D242228D242228
D242228
irjes
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 
Some Fixed Point Theorems in b G -cone Metric Space
Some Fixed Point Theorems in b G -cone Metric Space Some Fixed Point Theorems in b G -cone Metric Space
Some Fixed Point Theorems in b G -cone Metric Space
Komal Goyal
 
Applications of Integrations
Applications of IntegrationsApplications of Integrations
Applications of Integrations
itutor
 
10.11648.j.pamj.20170601.11
10.11648.j.pamj.20170601.1110.11648.j.pamj.20170601.11
10.11648.j.pamj.20170601.11
DAVID GIKUNJU
 

Similar to Strongly Unique Best Simultaneous Coapproximation in Linear 2-Normed Spaces (20)

Best Approximation in Real Linear 2-Normed Spaces
Best Approximation in Real Linear 2-Normed SpacesBest Approximation in Real Linear 2-Normed Spaces
Best Approximation in Real Linear 2-Normed Spaces
 
A common fixed point theorem for six mappings in g banach space with weak-com...
A common fixed point theorem for six mappings in g banach space with weak-com...A common fixed point theorem for six mappings in g banach space with weak-com...
A common fixed point theorem for six mappings in g banach space with weak-com...
 
D242228
D242228D242228
D242228
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
Stochastic Gravity in Conformally-flat Spacetimes
Stochastic Gravity in Conformally-flat SpacetimesStochastic Gravity in Conformally-flat Spacetimes
Stochastic Gravity in Conformally-flat Spacetimes
 
Pmath 351 note
Pmath 351 notePmath 351 note
Pmath 351 note
 
On uniformly continuous uniform space
On uniformly continuous uniform spaceOn uniformly continuous uniform space
On uniformly continuous uniform space
 
Some Fixed Point Theorems in b G -cone Metric Space
Some Fixed Point Theorems in b G -cone Metric Space Some Fixed Point Theorems in b G -cone Metric Space
Some Fixed Point Theorems in b G -cone Metric Space
 
Bayesian regression models and treed Gaussian process models
Bayesian regression models and treed Gaussian process modelsBayesian regression models and treed Gaussian process models
Bayesian regression models and treed Gaussian process models
 
Convexity in the Theory of the Gamma Function.pdf
Convexity in the Theory of the Gamma Function.pdfConvexity in the Theory of the Gamma Function.pdf
Convexity in the Theory of the Gamma Function.pdf
 
Mathsclass xii (exampler problems)
Mathsclass xii (exampler problems)Mathsclass xii (exampler problems)
Mathsclass xii (exampler problems)
 
Rosser's theorem
Rosser's theoremRosser's theorem
Rosser's theorem
 
Nies cuny describing_finite_groups
Nies cuny describing_finite_groupsNies cuny describing_finite_groups
Nies cuny describing_finite_groups
 
Applications of Integrations
Applications of IntegrationsApplications of Integrations
Applications of Integrations
 
On the Family of Concept Forming Operators in Polyadic FCA
On the Family of Concept Forming Operators in Polyadic FCAOn the Family of Concept Forming Operators in Polyadic FCA
On the Family of Concept Forming Operators in Polyadic FCA
 
QMC: Operator Splitting Workshop, Boundedness of the Sequence if Iterates Gen...
QMC: Operator Splitting Workshop, Boundedness of the Sequence if Iterates Gen...QMC: Operator Splitting Workshop, Boundedness of the Sequence if Iterates Gen...
QMC: Operator Splitting Workshop, Boundedness of the Sequence if Iterates Gen...
 
1452 86301000013 m
1452 86301000013 m1452 86301000013 m
1452 86301000013 m
 
10.11648.j.pamj.20170601.11
10.11648.j.pamj.20170601.1110.11648.j.pamj.20170601.11
10.11648.j.pamj.20170601.11
 
1531 fourier series- integrals and trans
1531 fourier series- integrals and trans1531 fourier series- integrals and trans
1531 fourier series- integrals and trans
 

More from IOSR Journals

More from IOSR Journals (20)

A011140104
A011140104A011140104
A011140104
 
M0111397100
M0111397100M0111397100
M0111397100
 
L011138596
L011138596L011138596
L011138596
 
K011138084
K011138084K011138084
K011138084
 
J011137479
J011137479J011137479
J011137479
 
I011136673
I011136673I011136673
I011136673
 
G011134454
G011134454G011134454
G011134454
 
H011135565
H011135565H011135565
H011135565
 
F011134043
F011134043F011134043
F011134043
 
E011133639
E011133639E011133639
E011133639
 
D011132635
D011132635D011132635
D011132635
 
C011131925
C011131925C011131925
C011131925
 
B011130918
B011130918B011130918
B011130918
 
A011130108
A011130108A011130108
A011130108
 
I011125160
I011125160I011125160
I011125160
 
H011124050
H011124050H011124050
H011124050
 
G011123539
G011123539G011123539
G011123539
 
F011123134
F011123134F011123134
F011123134
 
E011122530
E011122530E011122530
E011122530
 
D011121524
D011121524D011121524
D011121524
 

Recently uploaded

Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Lokesh Kothari
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
anilsa9823
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
University of Hertfordshire
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Sérgio Sacani
 
DIFFERENCE IN BACK CROSS AND TEST CROSS
DIFFERENCE IN  BACK CROSS AND TEST CROSSDIFFERENCE IN  BACK CROSS AND TEST CROSS
DIFFERENCE IN BACK CROSS AND TEST CROSS
LeenakshiTyagi
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
Sérgio Sacani
 

Recently uploaded (20)

Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
fundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomologyfundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomology
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
DIFFERENCE IN BACK CROSS AND TEST CROSS
DIFFERENCE IN  BACK CROSS AND TEST CROSSDIFFERENCE IN  BACK CROSS AND TEST CROSS
DIFFERENCE IN BACK CROSS AND TEST CROSS
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdf
 
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINChromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 

Strongly Unique Best Simultaneous Coapproximation in Linear 2-Normed Spaces

  • 1. IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728,p-ISSN: 2319-765X, Volume 6, Issue 4 (May. - Jun. 2013), PP 59-65 www.iosrjournals.org www.iosrjournals.org 59 | Page Strongly Unique Best Simultaneous Coapproximation in Linear 2-Normed Spaces R.Vijayaragavan School of Advanced Sciences V I T University Vellore-632014, Tamilnadu, India. Abstract: This paper deals with some fundamental properties of the set of strongly unique best simultaneous coapproximation in a linear 2-normed space. AMS Subject classification: 41A50,41A52,41A99, 41A28. Keywords: Linear 2-normed space, strongly unique best coapproximation, best Simultaneous coapproximation and strongly unique best simultaneous coapproximation. I. Introduction The problem of simultaneous approximation was studied by several authors. Diaz and Mclaughlin [2,3], Dunham [4] and Ling, et al. [12] have discussed the simultaneous approximation of two real-valued functions defined on a closed interval. Many results on best simultaneous approximation in the context of normed linear space under different norms were obtained by Goel, et al. [9,10], Phillips, et al. [16], Dunham [4], Ling, et al. [12] and Geetha S. Rao, et al. [5,6,7]. Strongly unique best simultaneous approximation are investigated by Laurent, et al. [11]. D.V.Pai, et al. [13,14] studied the characterization and unicity of strongly unique best simultaneous approximation in normed linear spaces. The problem of best simultaneous coapproximation in a normed linear space was introduced by Geetha S.Rao, et al. [8]. The notion of strongly unique best simultaneous coapproximation in the context of linear 2-normed space is introduced in this paper. Section 2 provides some important definitions and results that are used in the sequel. Some fundamental properties of the set of strongly unique best simultaneous coapproximation with respect to 2-norm are established in Section 3. II. Preliminaries Definition 2.1. [1] Let X be a linear space over real numbers with dimension greater than one and let ║k ., . k║ be a real-valued function on X × X satisfying the following properties for every x, y, z in X . (i) ║x, y║= 0 if and only if x and y are linearly dependent, (ii) ║ x, y║=║ y, x ║, (iii) ║ αx, y ║= |α| ║ x, y ║ , where α is a real number, (iv) ║ x, y + z ║≤║ x, y ║ + ║ x, z ║ . Then ║., . ║ is called a 2-norm and the linear space X equipped with the 2-norm is called a linear 2- normed space. It is clear that 2-norm is non negative. The following important property of 2-norm was established by Cho [ 1 ]. Theorem 2.2. [ 1 ] For any points a, b ∈ X and any α ∈ R , ║ a, b ║=║ a, b + αa ║ . Definition 2.3. Let G be a non-empty subset of a linear 2-normed space X . An element g0 ∈ G is called a strongly unique best coapproximation to x ∈ X from G, if there exists a constant t > 0 such that for every g ∈ G , ║ g − g0, k ║≤║ x − g, k ║ −t ║ x − g0, k ║, for every k ∈ X [G, x]. Definition 2.4. Let G be a non-empty subset of a linear 2-normed space X . An element g0 ∈ G is called a best simultaneous coapproximation to x1 , · · · , xn ∈ X from G, if for every g ∈ G , ║ g − g0 , k ║≤ max {║ x1 − g, k ║, · · · , ║ xn − g, k ║} , for every k ∈ X [G, x1 , · · · , xn]. The definition of strongly unique best simultaneous coapproximation in the context of linear
  • 2. Strongly Unique Best Simultaneous Coapproximation In Linear 2-Normed Space www.iosrjournals.org 60 | Page 2-normed space is introduced for the first time as follows: Definition 2.5. Let G be a non-empty subset of a linear 2-normed space X . An element g0 ∈ G is called a strongly unique best simultaneous coapproximation to x1 , · · · , xn ∈ X from G, if there exists a constant t > 0 such that for every g ∈ G , ║ g − g0, k ║≤ max {║ x1 − g, k ║,· · · , ║ xn − g, k ║} − t max{║ x1 − g0, k ║, ║ xn − g0 , k ║}, for every k ∈ X [G, x1 , · · · , xn], where [G, x1 , · · · , xn ] represents a linear space spanned by elements of G and x1 , · · · , xn . The set of all elements of strongly unique best simultaneous coapproximations to x1 , · · · , xn ∈ X from G is denoted by WG (x1 , · · · , xn) . The subset G is called an existence set if WG (x1 , · · · , xn ) contains at least one element for every x ∈ X . G is called a uniqueness set if WG (x1 , · · · , xn ) contains at most one element for every x ∈ X . G is called an existence and uniqueness set if WG (x1 , · · · , xn ) contains exactly one element for every x ∈ X . For the sake of brevity, the terminology subspace is used instead of a linear 2-normed subspace. Unless otherwise stated all linear 2-normed spaces considered in this paper are real linear 2-normed spaces and all subsets and subspaces considered in this paper are existence subsets and existence subspaces with respect to strongly unique best simultaneous coapproximation. III. Some Fundamental Properties Of Wg (X1 , · · · , Xn) Some basic pr operties of strongly unique b e s t simultaneous coapproximation are obtained in the following Theorems. Theorem 3.1. Let G b e a subset of a linear 2-normed space X and x1 , · · · , xn ∈ X . Then the following statements hold. (i) WG (x1 , · · · , xn) is closed if G is closed. (ii) WG (x1 , · · · , xn) is convex if G is convex. (iii) WG (x1 , · · · , xn) is bounded. Proof. (i). Let G b e closed. Let { gm} be a sequence in WG (x1 , · · · , xn) such that gm → g˜ . To show that WG (x1 , · · · , xn) is closed, it is sufficient to show that WG (x1 , · · · , xn) . g˜ ∈Since G is closed, {gm} ∈ G and gm → g˜ , we haveg˜ ∈ G. Since {gm} ∈ WG (x1 , · · · , xn) , we have for all k ∈ X [G, x1 , · · · , xn] , g ∈ G and for some t > 0 that ║ g − gm, k ║≤ max {║ x1 − g, k ║,· · · , ║ xn − g, k ║} −t max{║ x1 − gm, k ║,· · · , ║ xn − gm, k ║} ⇒ ║ g − g˜, k ║ − ║ gm − g˜, k ║≤ max {║ x1 − g, k ║, · · · , ║ xn − g, k ║} −t max{║ x1 − g˜, k ║ − ║ gm − g˜, k ║,· · · , ║ xn − g˜, k ║ − ║ gm − g˜, k ║}. (3.1) Since gm → g˜ , gm − g˜ → 0 . So ║gm − g˜, k ║→ 0, as 0 and k ar e linearly dependent. Therefore, it follows from (3.1) that
  • 3. Strongly Unique Best Simultaneous Coapproximation In Linear 2-Normed Space www.iosrjournals.org 61 | Page 1 + t ║ g − g˜, k ║≤ max {║ x1 − g, k ║, · · · , ║ xn − g, k ║} −t max{║ x1 − g˜, k ║, · · · , ║ xn − g˜, k ║}, for all g ∈ G , k ∈ X [G, x1 , · · · , xn] and for some t > 0 , when m → ∞ . Thus g˜ ∈ WG (x1 , · · · , xn) . Hence WG (x1 , · · · , xn) is closed. (ii). Let G b e a convex set, g1 , g2 ∈ WG (x1 , · · · , xn) and α ∈ (0, 1) . To show that αg1 + (1 − α)g2 ∈ WG (x1 , · · · , xn) , let k ∈ X [G, x1 , · · · , xn] . Then ║ g − (αg1 + (1 − α)g2), k ║ ≤ α ║ g − g1, k ║ +(1 − α) ║ g − g2, k ║ ≤ α (max {║ x1 − g, k ║,· · · , ║ xn − g, k ║} −t max{║ x1 − g1, k ║,· · · , ║ xn − g1, k ║}) +(1 − α) max {║ x1 − g, k ║, · · · , ║ xn − g, k ║} −t max{║ x1 − g2, k ║,· · · , ║ xn − g2, k ║}) = max {║ x1 − g, k ║,· · · , ║xn − g, k ║} −t max{║ αx1 − αg1 , k ║ · · · ║ αxn − αg1 , k ║} + max {║ (1 − α)x1 − (1 − α)g2 , k ║,· · · , ║ (1 − α)xn − (1 − α)g2 , k║}) = max {║ x1 − g, k ║,· · · , ║ xn − g, k ║} −t max{║ x1 − (αg1 + (1 − α)g2 ), k ║,· · · , ║ xn − (αg1 + (1 − α)g2 , k ║} . Thus αg1 + (1 − α)g2 ∈ WG (x1 , · · · , xn) . Hence WG (x1 , · · · , xn) is convex. (iii). To show that WG (x1 , · · · , xn) is bounded, it is sufficient to show for arbitrary g0, g˜0 ∈ WG (x1 , · · · , xn) that ║ g0 − g˜0, k ║< c for some c > 0 , since ║ g0 − g˜0, k ║< c implies that sup g0 ,g˜0 ∈WG (x1 ,··· ,xn ) finite.║ g0 − g˜0, k ║ is finite and hence the diameter of WG (x1 , · · · , xn ) is Let g0, g˜0 ∈ WG (x1 , · · · , xn) . Then there exists a constant t > 0 such that for every g ∈ G and k ∈ X [G, x1 , · · · , xn], ║ g − g0, k ║≤ max{║ x1 − g, k ║,· · · , ║ xn − g, k ║} −t max{║ x1 − g0, k ║,· · · , ║ xn − g0, k ║} and ║ g − g˜0, k ║≤ max{║ x1 − g, k ║,· · · , ║xn − g, k ║} −t max{║ x1 − g˜0, k ║,· · · , ║ xn − g˜0, k ║}. Now, ║ x1 − g0, k ║ ≤ ║ x1 − g, k ║ + ║ g − g0, k ║ ≤ 2 max {║ x1 − g, k ║,· · · , ║ xn − g, k ║} −t max {║ x1 − g0, k ║,· · · , ║ xn − g0, k ║}. 2
  • 4. Strongly Unique Best Simultaneous Coapproximation In Linear 2-Normed Space www.iosrjournals.org 62 | Page ⇒║ x1 − g0, k ║ ≤ max {║ x1 − g, k ║, · · · , ║ xn − g, k ║} , for all g ∈ G. Hence ║ x1 − g0, k ║ ≤ 1 + t d, where d = inf max {║ x1 − g, k ║,· · · , ║ xn − g, k ║} . g∈G 2 Similarly, ║ x1 − g˜0, k ║ ≤ 1 + t d . Therefore, it follows that ║ g0 − g˜0, k ║ ≤ ║ g0 − x1 , k ║ + ║ x1 − g˜0, k ║ 4 ≤ 1 + t d = C . Whence WG (x1 , · · · , xn) is bounded. Let X be a linear2-normed space, x ∈ X and [x] denote the set of all scalar multiplications of x . i.e., [x] = {αx : α ∈ R} . Theorem 3.2. Let G be a subset of a linear 2-normed space X, x1 , · · · , xn ∈ X and k ∈ X [G, x1 , · · · , xn] . Then the following statements are equivalent for every y ∈ [k]. (i) g0 ∈ WG (x1 , · · · , xn) . (ii) g0 ∈ WG (x1 + y, · · · , xn + y) . (iii) g0 ∈ WG (x1 − y, · · · , xn − y) . (iv) g0 + y ∈ WG (x1 + y, · · · , xn + y) . (v) g0 + y ∈ WG (x1 − y, · · · , xn − y) . (vi) g0 − y ∈ WG (x1 + y, · · · , xn + y) . (vii) g0 − y ∈ WG (x1 − y, · · · , xn − y) . (viii) g0 + y ∈ WG (x1 , · · · , xn) . (ix) g0 − y ∈ WG (x1 , · · · , xn ) . Proof. The proof follows immediately by using Theorem 2.2. Theorem 3.3. Let G be a subspace of a linear 2-normed space X , x1 , · · · , xn ∈ X and k ∈ X [G, x1 , · · · , xn] . Then g0 ∈ WG (x1 , · · · , xn ) ⇔ g0 ∈ WG (αmx1 + (1 − αm)g0 , · · · , αmxn + (1 − αm)g0 ), for all α ∈ R and m = 0, 1, 2, · · · . Proof. Claim: g0 ∈ WG (x1 , · · · , xn ) ⇔ g0 ∈ WG (αx1 + (1 − α)g0 , · · · , αxn + (1 − α)g0 ), for all α ∈ R. Let g0 ∈ WG (x1 , · · · , xn) . Then ║g − g0, k ║≤ max {║ x1 − g, k ║,· · · , ║ xn − g, k ║} − t max{║ x1 − g0, k ║,· · · , k║xn − g0, k ║}, for all g ∈ G and for some t > 0 .
  • 5. Strongly Unique Best Simultaneous Coapproximation In Linear 2-Normed Space www.iosrjournals.org 63 | Page ⇒ ║ αg − αg0 , k ║≤ max {║ αx1 − αg, k ║,· · · , ║ αxn − αg, k ║} −t max{║ αx1 − αg0 , k║,· · · , ║ αxn − αg0 , k ║}, for every g ∈ G. 0 0 ( 1) , g g g k             0 0 1 ( 1) ( 1) max , ,..., ,n g g g g x k x k                             −t max{║ αx1 − αg0 , k ║,· · · , ║ αxn − αg0 , k ║}, (α − 1)g0 + g for all g ∈ G and α = 0, since α ∈ G. ⇒ ║ g − g0 , k ║≤ max {║ αx1 + (1 − α)g0 − g, k ║,· · · , ║αxn + (1 − α)g0 − g, k ║} −t max{║ αx1 + (1 − α)g0 − g0, k ║,· · · , ║ αxn + (1 − α)g0 − g0, k ║} ⇒ g0 ∈ WG (αx1 + (1 − α)g0 , · · · , αxn + (1 − α)g0 ), when α ≠ 0. If α = 0 , then it is clear that g0 ∈ WG (αx1 + (1 − α)g0 , · · · , αxn + (1 − α)g0 ) . The converse is obvious by taking α = 1 . Hence the claim is true. By repeated application of the claim the result follows. Corollary 3.4. Let G be a subspace of a linear 2-normed space X, x1 , · · · , xn ∈ X and k ∈ X [G, x1 , · · · , xn] . Then t h e foll owin g statements are equivalent for every y ∈ [k], α ∈ R and m = 0, 1, 2, · · · (i) g0 ∈ WG (x1 , · · · , xn) . (ii) g0 ∈ WG (αmx1 + (1 − αm )g0 + y, · · · , αmxn + (1 − αm)g0 + y) . (iii) g0 ∈ WG (αmx1 + (1 − αm)g0 − y, · · · , αmxn + (1 − αm)g0 − y) . (iv) g0 + y ∈ WG (αm x1 + (1 − αm )g0 + y, · · · , αm xn + (1 − αm )g0 + y) . (v) g0 + y ∈ WG (αm x1 + (1 − αm )g0 − y, · · · , αm xn + (1 − αm )g0 − y) . (vi) g0 − y ∈ WG (αm x1 + (1 − αm )g0 + y, · · · , αm xn + (1 − αm )g0 + y) . (vii) g0 − y ∈ WG (αm x1 + (1 − αm )g0 − y, · · · , αm xn + (1 − αm)g0 − y) . (viii) g0 + y ∈ WG (αmx1 + (1 − αm )g0 , · · · , αmxn + (1 − αm)g0 ) . (ix) g0 − y ∈ WG (αmx1 + (1 − αm)g0 , · · · , αmxn + (1 − αm)g0 ) . Proof. The proof follows from simple application of Theorem 2.2 and the Theorem 3.3. Theorem 3.5. Let G b e a subset of a linear 2-normed space X, x1 , · · · , xn ∈ X and k ∈ X [G, x1 , · · · , xn] . Then g0 ∈ WG (x1 , · · · , xn ) ⇔ g0 ∈ WG+[k](x1 , · · · , xn). Proof. The proof follows from simple application of Theorem 3.2. A corollary similar to that of Corollary 3.4 is established next as follows: Corollary 3.6. Let G be a subspace of a linear 2-normed space X, x1 , · · · , xn ∈ X and k ∈
  • 6. Strongly Unique Best Simultaneous Coapproximation In Linear 2-Normed Space www.iosrjournals.org 64 | Page X [G, x1 , · · · , xn ] . Then t h e foll owin g statements are equivalent for every y ∈ [k], α ∈ R and m = 0, 1, 2, · · · (i) g0 ∈ WG+[k](x1 , · · · , xn) . (ii) g0 ∈ WG+[k](αm x1 + (1 − αm)g0 + y, · · · , αmxn + (1 − αm)g0 + y) . (iii) g0 ∈ WG+[k] (αm x1 + (1 − αm)g0 − y, · · · , αm xn + (1 − αm)g0 − y) . (iv) g0 + y ∈ WG+[k] (αm x1 + (1 − αm )g0 + y, · · · , αm xn + (1 − αm )g0 + y) . (v) g0 + y ∈ WG+[k](αm x1 + (1 − αm)g0 − y, · · · , αm xn + (1 − αm )g0 − y) . (vi) g0 − y ∈ WG+[k](αm x1 + (1 − αm )g0 + y, · · · , αm xn + (1 − αm )g0 + y) . (vii) g0 − y ∈ WG+[k] (αm x1 + (1 − αm )g0 − y, · · · , αm xn + (1 − αm )g0 − y) . (viii) g0 + y ∈ WG+[k](αm x1 + (1 − αm )g0 , · · · , αm xn + (1 − αm)g0 ) . (ix) g0 − y ∈ WG+[k](αm x1 + (1 − αm)g0 , · · · , αmxn + (1 − αm)g0 ) . Proof. The proof easily follows from Theorem 3.5 and Corollary 3.4. Proposition 3.7. Let G be a subset of a linear 2-normed space X, x1 , · · · , xn ∈ X and k ∈ X [G, x1 , · · · , xn] and 0 ∈ G . If g0 ∈ WG (x1 , · · · , xn), then there exists a constant t > 0 such that ║ g0 , k ║≤ max {║ x1 , k ║,· · · , ║ xn, k ║} − t max{║ x1 − g0, k ║,· · · , ║ xn − g0, k ║}. Proof. The proof is obvious. Proposition 3.8. Let G be a subset of a linear 2-normed space X, x1 , · · · , xn ∈ X and k ∈ X [G, x1 , · · · , xn] . If g0 ∈ WG (x1 , · · · , xn ) , then there exists a constant t > 0 such that for every g ∈ G, ||xi − g0, k|| ≤ 2 max{||x1 − g, k||, · · · , ||xn − g, k||} − t max{║x1 − g0, k ║,· · · , ║ xn − g0 , k ║}, for i = 1, 2, · · · , n. Proof. The proof is obvious. Theorem 3.9. Let G be a subspace of a linear 2-normed space X and x1 , · · · , xn ∈ X . Then the following statements hold. (i) WG (x1 + g, · · · , xn + g) = WG (x1 , · · · , xn) + g, for every g ∈ G . (ii) WG (αx1, · · · , αxn) = αWG (x1 , · · · , xn), for every α ∈ R . Proof. (i). Let g˜ be an arbitrary but fixed element of G . Let g0 ∈ WG (x1 , · · · , xn ) . It is clear that g0 + g˜ ∈ WG (x1 , · · · , xn) + g˜ . To show that WG (x1 , · · · , xn) + g˜ ⊆ WG (x1 + g˜, · · · , xn + g˜) , it is sufficient to show that g0 + g˜ ∈ WG (x1 + g˜, · · · , xn + g˜) . Now, ║ g − g0, k ║≤ max {║ x1 − g, k ║,· · · , ║ xn − g, k ║} −t max{║ x1 − g0, k ║,· · · , ║ xn − g0, k ║} for every g ∈ G and for some t > 0. ⇒ ║ g − (g0 + g˜), k ║≤ max {║ x1 + g˜ − g, k ║, · · · , ║ xn + g˜ − g, k ║}
  • 7. Strongly Unique Best Simultaneous Coapproximation In Linear 2-Normed Space www.iosrjournals.org 65 | Page −t max{║ x1 + g˜ − (g0 + g˜), k ║,· · · , ║ xn + g˜ − (g0 + g˜), k ║}, for every g ∈ G and for some t > 0, since g − g˜ ∈ G. Thus g0 + g˜ ∈ WG (x1 + g˜, · · · , xn + g˜). Conversely, let g0 + g˜ ∈ WG (x1 + g˜,· · · , xn + g˜) . To show that WG (x1 + g˜, · · · , xn + g˜) ⊆ WG (x1 , · · · , xn) + g˜, it is sufficient to show that g0 ∈ WG (x1 , · · · , xn) . Let k ∈ X [G, x1 , · · · , xn] . Then ║ g − g0, k ║ = ║ g + g˜ − (g0 + g˜), k ║ ≤ max {║ x1 + g˜ − (g + g˜), k ║,· · · , ║ xn + g˜ − (g + g˜), k ║} −t max{║ x1 + g˜ − (g0 + g˜), k ║,· · · , ║ xn + g˜ − (g0 + g˜), k ║}, for all g ∈ G and for some t > 0, since g + g˜ ∈ G. ⇒ g0 ∈ WG (x1 , · · · , xn). Thus the result follows. (ii). The proof is similar to that of (i). Remark 3.10. Theorem 3.9 can be restated as WG (αx1 + g, · · · , αxn + g) = αWG (x1 , · · · , xn) + g, for all g ∈ G. References [1] Y.J.Cho, “Theory of 2-inner product spaces”, Nova Science Publications, New York, 1994. [2] J.B.Diaz and H.W.McLaughlin, On simultaneous Chebyshev approximation of a set of bounded complex-valued functions, J.Approx Theory, 2 (1969), 419-432. [3] J.B.Diaz and H.W.McLaughlin, On simultaneous Chebyshev approximation and Chebyshev approximation with an additive weight function, J. Approx. Theory, 6 (1972), 68-72. [4] C.B.Dunham, Simultaneous Chebyshev a p p r o x i ma t i o n of functions on interval, Proc.Amer.Math.Soc., 18 (1967), 472-477. [5] Geetha S.Rao, Best coapproximation in normed linear spaces in Approximation Theory, V.C.K.Chui, L.L.Schumaker and J.D.Ward (eds.), Academic Press, New York, 1986,535-538. [6] Geetha S.Rao and K.R.Chandrasekaran, Best coapproximation in normed linear spaces with property (Λ) , Math. Today, 2 (1984), 33-40. [7] Geetha S.Rao and K.R.Chandrasekaran, Characterizations of elements of best coapproximation in normed linear spaces, Pure Appl. Math. Sci., 26(1987), 139-147. [8] Geetha S.Rao and R.Sa ra va na n, Best simultaneous coapproximation, Indian J. Math., 40 No.3, (1998), 353-362. [9] D.S.Goel, A.S.B.Holland, C.Nasim and B.N.Sahney, On best simultaneous approximation in normed linear spaces. Canad. Math. Bull., 17 (No. 4) (1974), 523-527. [10] D.S.Goel, A.S.B.Holland, C.Nasim, and B.N.Sahney, Characterization of an element of best Lp -simultaneous approximation, S.R.Ramanujan memorial volume, Madras, 1974, 10-14. [11] P.J.Laurent and D.V.Pai, Simultaneous approximation of vector valued functions, Research Report, MRR03-97, Department of Mathematics, IIT, Bombay, 1997. [12] W.H.Ling, H.W.McLaughlin a n d M.L.Smith, Approximation of random functions, AMS Notices, 22 (1975), A-161. [13] D.V.Pai, Characterization of strong uniqueness of best simultaneous approximation, in “Proceedings of the Fifth Annual Conference of Indian Society of Industrial and Applied Mathematics (ISIAM)”, Bhopal, 1998. [14] D.V.Pai a n d K.Indira, Strong unicity in simultaneous approximation, in v“Proceedings of the Conference on Analysis, Wavelets and Applications”, Feb. 12-14, 2000, being edited by H.P.Dikshit. [15] P.L.Papini and I. Singer, Best coapproximation in normed linear spaces, Mh. Math.88 (1979), 27-44. [16] G.H.Phillips and B.N.Sahney, Best simultaneous approximation in the L1 and L2 norms, in “Proceeding of conference on theory of Approximation at University of Calgary (1975),” Academic Press, New York.