SlideShare a Scribd company logo
1 of 13
Download to read offline
JOURNAL OF OPERATIONS MANAGEMENT--SPECIAL COMBINED ISSUE
Vol. 6, No. 4, August 1986
Exponentially Smoothed Regression
Analysis for Demand Forecasting
GARY M. ROODMAN*
EXECUTIVE SUMMARY
This article proposes a new technique for estimating trend and multiplicative scasonality in time
series data. The technique is computationally quite straightforward and gives better forecasts (in a
sense described below) than other commonly used methods. Like many other methods, the one
presented here is basically a decomposition technique, that is, it attempts to isolate and estimate
the several subcomponents in the time series. It draws primarily on regression analysis for its
power and has some of the computational advantages of exponential smoothing. In particular, old
estimates of base, trend, and seasonality may be smoothed with new data as they occur. The basic
technique was developed originally as a way to generate initial parameter values for a Winters
exponential smoothing model [4], but it proved to be a useful forecasting method in itself.
The objective in all decomposition methods is to separate somehow the effects of trend and
seasonahty in the data, so that the two may be estimated independently. When seasonality is
modeled with an additive form (Datum = Base + Trend + Seasonal Factor), techniques such as
regression analysis with dummy variables or ratio-to-moving-average techniques accomplish this
task well. It is more common, however, to model seasonality as a multiplicative form (as in the
Winters model, for example, where Datum = [Base + Trend] * Seasonal Factor). In this case, it
can be shown that neither of the techniques above achieves a proper separation of the trend and
seasonal effects, and in some instances may give highly misleading results. The technique described
in this article attempts to deal properly with multiplicative seasonality, while remaining computa-
tionally tractable.
The technique is built on a set of simple regression models, one for each period in the seasonal
cycle. These models are used to estimate individual seasonal effects and then pooled to estimate
the base and trend. As new data occur, they are smoothed into the least-squares formulas with
computations that are quite similar to those used in ordinary exponential smoothing. Thus, the
full least-squares computations are done only once, when the forecasting process is first initiated.
Although the technique is demonstrated here under the assumption that trend is linear, the trend
may, in fact, assume any form for which the curve-fitting tools are available (exponential,
polynomial, etc.).
The method has proved to be easy to program and execute, and computational experience has
been quite favorable. It is faster than the RTMA method or regression with dummy variables
(which requires a multiple regression routine), and it is competitive with, although a bit slower
than, ordinary triple exponential smoothing.
* State University of New York, Binghamton, New York.
Journal of Operations Management 485
INTRODUmION
This article proposes a new technique for estimating trend and multiplicative seasonality
in time series data. The technique is computationally quite straightfonvard and gives better
estimates (in a sense described below) than other commonly used methods. The technique
is basically a decomposition method, that is, it attempts to isolate and estimate the several
subcomponents in a time series. It draws primarily on regression analysis for its power,
however, and has some of the computational advantages of exponential smoothing methods.
In particular, old estimates may be smoothed with new data as they occur. The basic tech-
nique was developed originally as a way to generate initial parameter values for a Winters
exponential smoothing model [4], but it has proved to be a useful forecasting method in
itself.
The first section below briefly examines a few commonly used forecasting techniques to
establish the contribution that the new procedure can make. Then, the new procedure is
stated in its simplest form in the second section, followed by the full exponentially smoothed
regression model in the third section. The article concludes with a brief discussion of several
possible extensions. The appendix to the article contains a set of examples. Several of these
simply demonstrate the application of the technique to small data sets, and one applies the
method to a larger body of real data.
SOME STANDARD TECHNIQUES
The object in all decomposition methods is to separate somehow the effects of trend and
seasonality in the data, so that the two components can be estimated independently. To do
this, a transformation is performed on the data to deseasonalize it (thereby isolating the
trend) or detrend it (to get at the seasonality).
In ratio-to-moving averages techniques, for example, it is necessary to compute for each
period a moving average that is intended to average away the seasonality in the data, along
with some of the randomness. These moving averages then provide the base from which
seasonal variations are measured and the trend is estimated (see Makridakis, Wheelwright,
and McGee [2]). Regression analysis with dummy variables is another approach to achieving
similar ends. In this case, the dummy variables serve to model the differences among seasons
(as reflected in the intercept coefficient) and the slope coefficient is a measure of the trend.
These two techniques, and others that have been proposed for the same purpose, work
well as long as the seasonality in the data can properly be modelled as an additive form
(i.e., Datum = Base + Trend + Seasonal Factor). When seasonality is multiplicative, however
(Datum = [Base + Trend] *Seasonal Factor), it can be shown that neither one achieves a
complete separation of the trend and seasonal effects (see Roodman [3]). In the case of the
RTMA technique, the moving averages do not truly average away the seasonality when it
has a multiplicative form; indeed they would not, even if there were no randomness in the
data. In regression analysis with dummy variables, the problem arises because both base
(intercept) and trend (slope) vary with the seasons for multiplicative seasonality, a fact that
the dummy variable mechanism cannot capture.
The technique that is now described attempts to deal properly with the case of multipli-
cative seasonality, while retaining most of the computational tractability that typically char-
acterizes decomposition methods.
466 APICS
BASIC ESTIMATION PROCEDURE
The procedure will be stated here assuming that trend has a linear form, although it
would also be valid if trend were nonlinear. For simplicity of exposition, the periods in the
seasonal cycle will be referred to as “quarters,” although it will be clear that they could as
well be “months,” “weeks,” etc.
Let n be the number of data points in the initial time series and Q the number of periods
(quarters) in one seasonal cycle. Then define the sets
x,= {tit= 1,. . . ,nandtmodQ=q} q= 1,. . . ,Q
As defined, X, is the set of all t-indices for quarter q.
The process that generates the data for all periods t that fall in quarter q is given by
Yt=(/3+7*t)*cq+e tEX, (1)
where
Y, = the datum for period t
,6 = base demand at the beginning of the time series horizon
T = the linear trend per quarter
uq = the multiplicative seasonal factor for quarter q,
e = a disturbance term
This will be the model used throughout the article.
A four-step procedure is proposed for estimating /3,~, and (TV,q = 1, . . . , Q. The procedure
is stated below in its simplest form, together with the motivation for each step.
MODEL EACH QUARTER. Using simple regression analysis, model each quarter
in the seasonal cycle separately. Let
Y,=a,+b,*t tEX, (2)
denote the least-squares line for quarter q, q = 1, * - - Q. The seasonal variation in
the data may be inputed from this set of Q models. If (1) is rewritten as
Y,=[/3*aq]+[7*flq]*t+e
it is clear that a, is an estimator of [p * cq] and b, is an estimator of [T* uq]. Consequently,
the ratio of cq to gI may be estimated from the ratio %,/a,. It may also be estimated
from b,/b,, or from any ratio of the form [as + b,*t]/[a, + b1 *t] for specified t.
ESTIMATE SEASONALITY. Let S, denote the estimate of uq, q = 1, . . . , Q. Select
one quarter, say, Quarter 1, as the “base” quarter and set S, = 1. Then compute S,,
q = 2, . . . , Q as
”
S, = [a, + b,*A]/[ar + br *A]
where A = C t/n. The choice of A here, among all possible values oft, is based on
t=I
the fact that the variance of the estimators in both the numerator and denominator
of the ratio are smallest in the neighborhood of the mean oft (Johnston [ 11).
DESEASONALIZE THE DATA. Deseasonalize the data by dividing each Y, by the
appropriate seasonal factor, generating a new time series, Zr , . . . , Z,.
ESTIMATE TREND AND BASE. Let B and T denote estimates of /3 and T, respec-
tively. Compute B and T by fitting a least-squares regression line to the deseasonalized
data,
Zt=B+T*t
Journal of Operations Management 487
There are several computational shortcuts that can be taken here. Much of the calculation
for Steps 1 and 4, for example, can be combined. This is demonstrated for the more general
case in the next section.
Example 1 in the Appendix is a demonstration of this procedure.
EXPONENTIALLY SMOOTHED REGRESSION
This section describes two modifications of the technique presented in the previous section.
Both modifications are motivated by a desire to gain some of the advantages of exponential
smoothing methods, while retaining the power of regression analysis. Although a distinction
is usually drawn between smoothing methods on the one hand, and regression-based tech-
niques on the other, the two can be usefully combined, as will now be demonstrated.
Two characteristics of exponential smoothing methods are of interest here:
1. Exponential smoothing provides a convenient way to apply decreasing weights to the
data as they become older and older. The procedure in the previous section places
equal weights on all of the data.
2. Exponentially smoothed forecasts are generated recursively (i.e., in terms of the current
datum and the last forecast) without referring to the entire historical record each time.
In the previous section, all data in the time series are used whenever a new forecast is
required.
Both of these features may be incorporated into the earlier technique. Two cases will be
examined.
Case I: Trend/No Seasonality
Assume first that there is trend in the data but no seasonality. For this special case, simple
regression analysis can properly be used to do the estimation. (In effect, the procedure in
the previous section degenerates to Step 4.)
It is necessary first to replace the usual (unweighted) least-squares criterion with a criterion
of the form
n
Mi@&ze: E= c {w&Y,-B-T*t]‘}
t=1
where wl, . . . , w, are weights to be attached to the squared error terms. Weighting the
errors in this way is similar to a technique often used in econometrics to transform data in
order to remove heteroscedasticity. In that case, however, the weights are applied directly
to the data points rather than to the squared errors as in (3) (Johnston [ 11).
There are many ways that the weights in (3) might be chosen. For example, they might
all be made equal, that is, w, = l/n, t = 1, . . . , n (ordinary least-squares); or they might be
chosen to decrease linearly back through time, i.e., w, = t/{ 5 r), t = 1, . . . , n. Any set of
r=l
weights such that w1 < w2 < - - - < w, will yield estimates of base and trend that place
relatively more emphasis on recent errors than on earlier ones, as is consistent with the
smoothing concept.
It may be assumed without loss of generality that g {wt} = 1. Given this assumption,
t=l
the criterion in (3) will be minimized by selecting B and T as
488 APICS
T=[WSl-WS3*WS4]
[ws2 - ws47
B=[WS3-T*WS4]
(4)
(5)
where
WSl = i {w,*t*YJ
t=1
ws2 = f: {w,*t*t}
t=1
ws3 = E {w,*Y,}
t=I
”
ws4 = 2 {w,*t}
t=1
In the framework of exponential smoothing, B and T may now be viewed as initial
estimates of base and trend as reflected in the first n data points in the time series. In keeping
with this perspective, a “time” subscript should now be added to all of the constructs that
were previously defined. Thus, B and T would become B, and T,, and the four weighted
sums above would become WS 1n, WS2,, WS3,, and WS4,, respectively. To keep the no-
tation as simple as possible, however, the time subscript will be used below only to specify
the smoothing computations, where it is necessary to distinguish between estimates at times
nandn+ 1.
Given initial estimates, B, and T, , when datum Y,,, occurs in period n + 1, it may be
smoothed into the estimation process with the recursive computations
WSl,,, = a*[(n+ l)*Y,+J+(l -cY)*WSI,
ws2,+, = a*[(n+ l)*(n+ l)]+(l -a)*WS2,
WS3,+,=a*Y”+~+(1-a)*WS3,
ws4,,, = a!*(n+ I)+(1 -cx)*WS~,
where (Y,0 ~5 (Y5 1, is the appropriate smoothing constant. These, in turn, yield new
estimates T,+, and B,+l from (4) and (5). With these few computations, then, the regres-
sion model is updated and new forecasts may be generated that take cognizance of the
new datum.
An example for this case is given in the Appendix.
Case II: The General Model
To incorporate seasonality into this smoothed regression technique, it is necessary
to partition each of the weighted sums above into its quarterly components. For each q,
q= l,...,Q,let
Journal of Operations Management 499
and define
WSl,= 2 {wt*t*Y,)
tExq
ws2,= 2 {w,*t*t}
tEXq
ws3,= 2 {wt*Yt}
tEhq
ws4,= 2 {w,*t}
tEXq
The four-step procedure in the second section may now be restated in terms of these
quarterly weighted sums:
1. MODEL EACH QUARTER. The regression model for quarter q may be estimated
from
b, = [Kg *WS 1, - WS3, *WS4,]/[& *WS2, - WS4q2]
a, = WS3,/K, - bq *WS4,&
2. ESTIMATE SEASONALITY. Set S, = 1 and estimate S,, q = 2, . . . , Q as
S, = [a, + b,* WS4]/[al + bl *WS4]
Q
(7)
(8)
(9)
where WS4 = C {WS4,). Note that WS4 is, in fact, the weighted mean oft.
q=l
3, 4. DESEASONALIZE THE DATA AND ESTIMATE TREND AND BASE. Pool
the deseasonalized weighted sums for the quarters by computing
WSl = 2 {ws1,/s,}
q=1
ws2 = 2 {WS2,)
q=l
and again
ws3 = 5 {WS3,/S,)
q=l
ws4 = 5 {WS4,)
q=l
and estimate trend and base, T and B, from (4) and (5) as before.
Note that the weighted sums computed in Step 1 are also used in Steps 3 and 4, so that
there is a great deal of economy in doing the necessary least-squares computations.
If the weighted sums above are again viewed as initial estimates, then when datum
Y,,, occurs in period n + 1, it may be easily smoothed into the estimation process. Let
* = (n + 1) mod Q (the quarter in which period n + 1 occurs). Then, Xq*,n+l = (Xq*,n,
?n + l)} and
WSl q*,n+1=a*(n+ l)*Y,+l+(l --(~)*Wsl~*,~
ws2 q*,n+l =a*(n+ l)*(n+ l)+(l -a)*WS2,*,,
APES
ws3 q*,n+ 1 = a*Y,+, + ( 1 - CX)* ws3,*,,
WS4,*,,+, =a*(n+ l)+(l -cx)*WS~~*,~
&f,n+l =o+(l -(Y)*I(q*,n
And for all q # q*, Xq,*+r = X,,, and
WSl,,lI+r =(l -a)*WSl,,,
WS2,lH I =(l -a)*WS2,,
WS3,,,+, =(l -a)*WS3,,,
WS4,,“, I =(l -a)*WS4,,,
I(4 ,n+, =(1 -a)*&,n
Now, repeating the four-step estimation procedure with these updated sums will yield new
estimates of base, trend, and the seasonal factors, B,+, , T,+r , and Sq,n+l, q = 1, . . . , Q.
Example 3 in the Appendix demonstrates the application of this procedure.
EXTENSIONS
This final section briefly outlines several useful extensions of the techniques that have
been proposed.
1. Note first that measures of absolute and relative errors may be defined in this method
as they are defined in any other technique based on exponential smoothing. Thus, a
tracking signal may be used to monitor errors and the smoothing itself may be done
adaptively, that is, the smoothing constant may be adjusted in response to prior errors.
2. The method as described in the third section uses the same smoothing constant for
both trend and seasonality. In fact, it is possible to use one smoothing constant to
construct the quarterly models and estimate seasonality (Steps 1 and 2) and another
for estimating the base and trend (Steps 3 and 4). Since this makes it necessary to
carry two sets of weighted sums, however, the computational burden is increased.
3. Finally, it will be noted that the proposed method of decomposition is valid for any
data generating process of the form
Y,=f(t)*a,+e tEX,
In earlier sections, f(t) = p + 7 * t. If the trend were nonlinear, however, then f(t) might
be a higher-order polynomial or any other functional form for which the curve-fitting
tools are available.
REFERENCES
I. Johnston, J. Econometric Methods. New York: Seasonality Is Multiplicative.” Working Paper Series.
McGraw-Hill, 1963. State University of New York, Binghamton, New
2. Makridakis, S., S.C. Wheelwright, and V.E. McGee. York. February 1984. (Available from the author.)
Forecasting: Methods and Applications. 2d ed. New 4. Winters, P. R. “Forecasting Sales by Exponentially
York: John Wiley and Sons, 1983. Weighted Moving Averages.” Management Science,
3. Roodman, G. “Decomposition Methods When Vol. 6 (1960), pp. 324-342.
Journal of Operations Management 491
APPENDIX
The data for the first three examples in this appendix were generated by a model that has
the form of (1) in our second section, with a base of 100, linear trend of 3/quarter, seasonal
factors 1.0, 1.5, 2.0, and 1.0, and an error term that has a normal distribution with mean
of 0 and standard deviation of 5. The data on motorcycle registrations used in the last
example are taken from Makridakis, Wheelwright, and McGee [2, pp. 138-391.
Example 1
This first example demonstrates the basic procedure, using the data in Table la.
1.
2.
3.
4.
Step 1 yields regression lines for Quarters 1, 2, 3, and 4, respectively.
Y,= 101.93+3.07*t tEX,
Y,= 151.70+4.45*t tEh*
Yt= 196.03+6.12*t tEX3
Y,= 100.60+2.85*t tEX‘$
In Step 2, compute A = 10.5 and
s, = 1.00
SZ=(151.70+4.45*10.5)/(101.93+3.07*10.5)= 1.48
S3=(196.03+6.12*10.5)/(101.93+3.07*10.5)= 1.94
S~=(100.60+2.85*10.5)/(101.93+3.07*10.5)= .97
Using the resealed factors from Step 2, the de-seasonalized data in Table lb can be
generated.
Finally, fitting a simple regression line to the data in Table 1b yields the line
z, = 102.24 + 3.04*t
TABLE la
Period 1979 1980 1981 1982 1983
1 105 116 134 137 156
2 159 177 204 209 232
3 214 237 266 290 310
4 115 120 135 144 160
TABLE lb
Period 1979 1980 1981 1982 1983
1 105 116 134 137 156
2 108 120 138 141 157
3 110 122 137 150 160
4 118 123 139 148 165
492 APES
TABLE 2
Period 1979 1980 1981 1982 1983
1 105 116 134 137 156
2 106 118 139 138 155
3 105 116 133 145 153
4 115 120 135 144 160
Thus, the estimate of trend is 3.04, and base is 102.24. The forecast for period 2 1 is (102.24
+ 21*3.04)* 1 = 166.1.
Example 2
This example deals with Case A in our third section, where the data are assumed to show
a trend but no seasonality. Consider the data in Table 2. Letting w, = l/20, t = 1, . . . , 20,
TABLE 3a
Period K WSl ws2 ws3 ws4
1 0.25 316.20 28.25 32.40 2.25
2 0.25 526.10 33.00 49.05 2.50
3 0.25 773.35 38.25 65.85 2.15
4 0.25 427.20 44.00 33.70 3.00
Total 10.5
TABLE 3b
Period B T
Seasonal
Factors
1 101.93 3.07 1.oo
2 151.70 4.45 1.48
3 196.03 6.12 1.94
4 100.60 2.85 0.97
TABLE 3c
Period WSl ws2 ws3 ws4
1 316.20 28.25 32.40 2.25
2 355.85 33.00 33.18 2.50
3 398.69 38.25 33.95 2.75
4 439.27 44.00 34.65 3.00
Totals I510.00 143.50 134.18 10.50
Journal of Operations Management 493
TABLE 4a
Period K WSl ws2 ws3 ws4
1 0.40 920.16 110.80 57.72 6.00
2 0.20 420.88 26.40 39.24 2.00
3 0.20 618.68 30.60 52.68 2.20
4 0.20 341.76 35.20 26.96 2.40
Total 12.60
TABLE 4b
B T Seasonal
104.67 2.64 1.00
151.70 4.45 1.51
196.03 6.13 1.98
100.60 2.85 0.99
TABLE 4c
Period WSI ws2 ws3 ws4
1 920.76 110.80 57.12 6.00
2 279.46 26.40 26.06 2.00
3 312.42 30.60 26.60 2.20
4 345.39 35.20 27.25 2.40
Totals 1858.03 203.00 137.62 12.60
one may verify that
WSI = 1478.6
ws2 = 143.5
ws3 = 131.5
ws4 = 10.5
which in turn yields the least-squares regression line
P = 100.6 + 2.94 *t
Thus, 100.6 and 2.94 stand as the initial estimates of base and trend, respectively. The
forecast for Period 21 is then 162.3.
Let (Y= .2. If the actual datum in Period 21 is 159, then the smoothed weighted sums
will be
WS12,=.2*21*159+.8*1478.6=1850.68
WS2*, = .2*21*21 + .8* 143.5 = 203.00
WS32,=.2*159+.8*131.5 = 137.00
WS42, = .2*21 + .8* 10.5 = 12.60
and the new base and trend estimates will be 10 1.55 and 2.8 1, respectively.
494 APES
TABLE 5
1971 1972 1973 1974 1975 1976
1 894 931 900 983 1105 960
2 667 874 859 757 931 954
3 858 937 927 950 1033 996
4 865 952 1038 1056 912 1194
5 989 997 1058 1213 1154 1401
6 1093 1178 1397 1329 1271 1328
7 1191 1404 1476 1476 1539 1760
8 1159 1327 1393 1473 1575 1588
9 1046 1247 1316 1368 1325 1461
10 1191 1302 1353 1419 1423 1640
11 1203 1205 1267 1493 1492 1439
12 1121 1234 1300 1123 1327 1491
Example 3
This third example concerns Case B in our third section. Reconsider the data in Table
la. Ifwe again take w, = l/20, t = 1, - - - 20, the weighted sums for this data will be as
given in Table 3a. The resulting quarterly models are then summarized in Table 3b, together
with the associated seasonal factors. Finally, in Table 3c the sums of the deseasonalized
weighted sums are computed. The least-squares regression model based upon them is
Yt= 102.24+3.04*t
Thus, the initial estimates of base and trend are 102.24 and 3.04, respectively, and the
estimated seasonal factors are 1, 1.48, 1.94, and .97. As would be expected, these results
are exactly the same as the ones in Example 1.
TABLE 6
Initial Estimates
a b Seasonal
1 905.08 0.25 1.oo
2 688.00 8.00 0.92
3 864.21 2.88 1.01
4 836.33 7.2 1 1.07
5 965.79 2.87 1.12
6 994.67 12.67 1.35
7 1131.37 11.88 1.49
8 1098.00 9.75 1.41
9 966.75 11.25 1.29
10 1133.50 6.75 1.38
11 1163.67 2.67 1.33
12 1039.33 7.46 I.29
Base = 810.80
Trend = 5.43
Journal of Operations Management 495
TABLE7
3e
s9
60
61
b2
4s
64
48s
b‘
b?
‘a
I”:7‘
72
non.
e
9
10
‘1
I2
:
3
:.
‘
7
m
9
10
‘1
12
‘2‘3
‘S29
147b
,473
,368
1419
I49S
1123
“OS
931
,033
9‘2
,154
1271
1x9
157s
IS25
1423
1492
1327
960
9H
99b
1‘94
1401
152m
1760
1see
I4bl
lb40
,439
1491
..b(1,(2)
.-_______-
ems.572.421.0000.90%
762.93O.Sl1.000O.SZ
073.532.031.000@.02S
0bS.074.901.0000.021
910.037.201.0000.819
1085.78b.161.000o.ai?
lzl:.B9b.371.0000.8‘4
‘126.017.951.0000.813
1026.597.711.0000.811
‘148.665.911.0000.BO9
1032.449.S?1.0000.007
1225.90-1.871.0000.00s
037.995.151.000O.?(r4
baa.724.431.0000.829
04L.523.601.0000.029
994.31-1.021.0000.830
1001.653.22L.0000.0SO
1194.971.711.0000.830
1234.xlS.601.0000.ES0
1124.‘aa.041.0000.830
1160.2b3.2‘1.0000.030
1217.903.661.0000.03,
1147.31b.Ob1.0000.831
97s.b7t.421.0000.831
992.79-0.OS1.0000.91b
697.034.171.000O.91b
909.as1.541.0000.920
724.006.74L.0000.925
793.01a.931.0000.929
1176.50-2.261.0000.93s
1044.6410.371.0000.9S8
123‘.155.341.0000.942
104b.bSS.851.0000.947
967.469.311.0000.951
L371.901.191.0000.955
7b1.909.911.0000.960
3.9(?7
0.VBB
0.978
0.977
0.977
0.976
0.976
0.975
0.973
0.974
0.974
0.974
0.925
0.922
0.946
0.945
0.943
0.942
0.941
0.939
0.930
0.937
0.936
0.935
1.029
1.033
0.999
1.000
1.002
1.004
1.005
1.007
1.009
1.010
1.0‘2
1.014
_.--__
1.0501.096
1.0681.096
1.0651.096
1.0421.097
1.0461.154
1.0491.160
1.053l*lbb
1.0561.172
1.0%1.170
1.0621.183
1.0661.109
1.0691,.194
1.0191.140
1.0101.141
1.0181.143
0.9171.144
0.91‘1.082
0.9051.079
0.a99L.077
0.8931.073
0.8071.072
0.0811.070
0.0761.Ot.S
0.0701.065
0.9ZS1.172
0.9521.173
0.9911.179
i.00a1.102
1.0951.203
1.LO21.293
1,1091.302
1.1161.112
1.12’31.321
1.1311.330
1.1381.340
1.1411.349
(61(7)
____-_
1.33,1.466
1.3521.479
1.3661.492
1.3001.305
1.3941.517
1.3171.520
1.3211.4b2
L.3251.466
1.3291.470
1.3331.473
1.33,1.477
1.3401.400
I.2781.411
1.2771.410
1.2771.409
I.2761.408
1.2761.407
1,2011.406
t.2011.393
1.1971.391
1.1921.390
l.lB01.300
1.1841.307
1.1791.385
1.2951.525
1.2971.531
1.2991.53,
1.3011.543
1.3031.549
1.313‘.3X
1.3131.&S?
1.3181.648
1.3201.659
1.3231.670
1.3211.600
1.32,l.L91
SO.901
(9)
1.385
1.395
1.405
i.414
I.424
1.433
1.441
1.424
1.430
1.436
1.441
1.447
1.381
1.302
1.303
1.304
1.30%
1.385
1.306
1.389
1.309
1.390
1.391
1.392
l.JSS
1.544
1.553
l.St.1
1.570
i.5?0
1.587
1.554
1.559
1.565
1.571
1.576
1.276
1.289
1.302
1.314
1.326
1.337
1.340
1.359
1.318
1.324
1.330
1.336
1.275
1.276
1.278
1.279
1.200
1.201
1.203
1.204
1.220
1.217
1.214
1.211
1.331
1.335
1.338
1.342
1.345
1.349
1.352
l.SSb
1.390
1.404
1.410
1.416
--__
1.358
1.364
1.369
1.374
li379
1.384
1.389
1.394
I.390
1.390
1.393
1.396
1.331
1.329
1.328
1.32,
1.326
l.S25
I.324
1.323
1.323
1.29,
1.200
1.285
1.413
1.41,
1.421
1.425
1.429
1.433
1.4s,
1.44‘
1.445
1.529
I.SS9
1.548
1.303
I.SO2
l.SO2
1.301
1.300
1.299
1.299
I.298
1.290
L.297
1.400
1.400
1.346
1.349
1.352
1.334
1.357
1.360
i.363
1.365
1.360
1.371
1.326
1.32b
1.460
1.467
1.473
1.480
1.406
1.493
1.499
1.50s
1.512
1.510
1.4se
1.459
(I2,Base
__---we-
1.273020.00
1.200049.64
1.207849.9s
1.293846.87
1.299832.25
1.305ass.97
l.S‘l039.03
1.3178Sb.71
1.32383b.65
1.520036.9s
1.534024.97
1.197844.59
1.153875.14
1.124057.39
‘.‘lbWSS.S8
1.10700S.27
1.099094.49
1.091900.59
1.083900.85
1.075904.40
1.060916.13
1.060923.60
l.OSS920.27
1.139913.09
1.255060.90
1.2b‘855.07
1.267014.97
1.273823.ii
1.278794.18
1.284797.20
1.290776.08
1.296702.39
1.501773.22
l.SO?752.71
1.5‘3771.61
1.370748.‘3
TrlndFOP-.E..t
5.08
3.79
3.59
3.75
4.31
4.17
4.05
4.13
4.15
4.07
4.39
3.62
4.12
4.59
4.67
s.as
3.64
3.33
3.40
S.61
3.38
3.20
S.2b
s.b2
2.65
2.73
2.4,
3.22
3.7s
3.36
3.80
3.7‘
3.00
4.09
S.bb
4.02
927.19
9as.2B
1050.05
1097.61
14‘2.21
lss‘.aI
146S.El
1309.06
‘436.41
1133.JS
1381.61
102L.75
025.67
1001.65
11‘6.22
1244.15
1391.95
1534.66
1524.06
142s*42
1471.81
lS30.75
‘iaS.74
1133.63
937.86
1060.34
972.99
1220.41
1365.30
1610.37
1651.85
1407.b9
1500.99
LJ03.90
lSS9.03
‘041.90
The forecast for Period 2 1 is again 166.1. Suppose that the actual datum for Period 2 1
is 159. Then the smoothed weights and weighted sums will be as summarized in Table 4a.
For example,
WS12i=.2*21*159+.8*316.20=920.76
WS22, = .8 * 526.10 = 420.88
WS321 = .8 *773.35 = 618.68
WS42, = .8 * 427.20 = 341.76
The new quarterly models and seasonal factors are given in Table 4b and the new sums
of deseasonalized weighted sums in Table 4c, yielding the regression model
Yt= 102.31+2.80*t
Thus, the updated estimates of base and trend are 102.3 1 and 2.80, respectively, and the
new seasonal factors are 1.OO, 1.5 1, 1.98, and .99.
Example 4
This final example analyzes six years of monthly data on motorcycle registrations. The
data, taken from Makridakis, Wheelwright, and McGee [2, pp. 138-391, is reproduced in
Table 5.
The first three years of data will be used to generate initial estimates of the parameters
as described in the second section. These estimates will then be updated by applying the
exponential smoothing principle to incorporate each new month of data from the last three
years. The initial estimates appear in Table 6. They were generated using simple regression
analysis for the monthly models, with equal weights applied to all years.
Computational results for Periods 37 to 72 are given in Table 7. The actual datum for
each period appears in the third column, with the resulting updated parameter estimates in
the columns that follow it. Thus, for example, 885.57 and 2.42 are the new parameter
estimates for the Month 1 regression model, and 828.00 and 5.08 are the new estimates of
underlying base and trend. The forecast for the next period is the last element in each row.
In all the computations, CY= .083333, simply following the rule of thumb of choosing the
smoothing constant as the reciprocal of the number of periods in one seasonal cycle.
Journal of Operations Management 497

More Related Content

What's hot

Alam afrizal tambahan
Alam afrizal tambahanAlam afrizal tambahan
Alam afrizal tambahanAlam Afrizal
 
A Singular Spectrum Analysis Technique to Electricity Consumption Forecasting
A Singular Spectrum Analysis Technique to Electricity Consumption ForecastingA Singular Spectrum Analysis Technique to Electricity Consumption Forecasting
A Singular Spectrum Analysis Technique to Electricity Consumption ForecastingIJERA Editor
 
Attention for de Publieke omroep in newspapers: public broadcasting in the n...
Attention for de Publieke omroep in newspapers:  public broadcasting in the n...Attention for de Publieke omroep in newspapers:  public broadcasting in the n...
Attention for de Publieke omroep in newspapers: public broadcasting in the n...Mark Boukes (University of Amsterdam)
 
A Singular Spectrum Analysis Technique to Electricity Consumption Forecasting
A Singular Spectrum Analysis Technique to Electricity Consumption ForecastingA Singular Spectrum Analysis Technique to Electricity Consumption Forecasting
A Singular Spectrum Analysis Technique to Electricity Consumption ForecastingIJERA Editor
 
esmaeili-2016-ijca-911399
esmaeili-2016-ijca-911399esmaeili-2016-ijca-911399
esmaeili-2016-ijca-911399Nafas Esmaeili
 
Iso 9001 quality management system
Iso 9001 quality management systemIso 9001 quality management system
Iso 9001 quality management systemdaretjon
 
Iso 9001 presentation
Iso 9001 presentationIso 9001 presentation
Iso 9001 presentationporikgefus
 
Quality management education
Quality management educationQuality management education
Quality management educationselinasimpson2001
 
Iso 9001 and 14001
Iso 9001 and 14001Iso 9001 and 14001
Iso 9001 and 14001porikgefus
 
Isen 614 project presentation
Isen 614 project presentationIsen 614 project presentation
Isen 614 project presentationVanshaj Handoo
 
Iso 9001 quality policy
Iso 9001 quality policyIso 9001 quality policy
Iso 9001 quality policydenritafu
 
Iso 9001 procedures
Iso 9001 proceduresIso 9001 procedures
Iso 9001 proceduresjomharipe
 

What's hot (20)

Alam afrizal tambahan
Alam afrizal tambahanAlam afrizal tambahan
Alam afrizal tambahan
 
Ukas quality management
Ukas quality managementUkas quality management
Ukas quality management
 
A Singular Spectrum Analysis Technique to Electricity Consumption Forecasting
A Singular Spectrum Analysis Technique to Electricity Consumption ForecastingA Singular Spectrum Analysis Technique to Electricity Consumption Forecasting
A Singular Spectrum Analysis Technique to Electricity Consumption Forecasting
 
Food quality management
Food quality managementFood quality management
Food quality management
 
Attention for de Publieke omroep in newspapers: public broadcasting in the n...
Attention for de Publieke omroep in newspapers:  public broadcasting in the n...Attention for de Publieke omroep in newspapers:  public broadcasting in the n...
Attention for de Publieke omroep in newspapers: public broadcasting in the n...
 
A Singular Spectrum Analysis Technique to Electricity Consumption Forecasting
A Singular Spectrum Analysis Technique to Electricity Consumption ForecastingA Singular Spectrum Analysis Technique to Electricity Consumption Forecasting
A Singular Spectrum Analysis Technique to Electricity Consumption Forecasting
 
Home quality management
Home quality managementHome quality management
Home quality management
 
Power quality management
Power quality managementPower quality management
Power quality management
 
esmaeili-2016-ijca-911399
esmaeili-2016-ijca-911399esmaeili-2016-ijca-911399
esmaeili-2016-ijca-911399
 
Quality management journal
Quality management journalQuality management journal
Quality management journal
 
Quality system management
Quality system managementQuality system management
Quality system management
 
Iso 9001 quality management system
Iso 9001 quality management systemIso 9001 quality management system
Iso 9001 quality management system
 
Iso 9001 presentation
Iso 9001 presentationIso 9001 presentation
Iso 9001 presentation
 
Quality management education
Quality management educationQuality management education
Quality management education
 
Process quality management
Process quality managementProcess quality management
Process quality management
 
Iso 9001 and 14001
Iso 9001 and 14001Iso 9001 and 14001
Iso 9001 and 14001
 
Isen 614 project presentation
Isen 614 project presentationIsen 614 project presentation
Isen 614 project presentation
 
Iso 9001 quality policy
Iso 9001 quality policyIso 9001 quality policy
Iso 9001 quality policy
 
Iso 9001 procedures
Iso 9001 proceduresIso 9001 procedures
Iso 9001 procedures
 
9001 iso
9001 iso9001 iso
9001 iso
 

Similar to ESR TECHNIQUE FOR DEMAND FORECASTING

MFBLP Method Forecast for Regional Load Demand System
MFBLP Method Forecast for Regional Load Demand SystemMFBLP Method Forecast for Regional Load Demand System
MFBLP Method Forecast for Regional Load Demand SystemCSCJournals
 
Adesanya dissagregation of data corrected
Adesanya dissagregation of data correctedAdesanya dissagregation of data corrected
Adesanya dissagregation of data correctedAlexander Decker
 
3122999029.pptx
3122999029.pptx3122999029.pptx
3122999029.pptxMyoZawOo10
 
Principal component analysis - application in finance
Principal component analysis - application in financePrincipal component analysis - application in finance
Principal component analysis - application in financeIgor Hlivka
 
1 s2.0-s0309170811002351-main
1 s2.0-s0309170811002351-main1 s2.0-s0309170811002351-main
1 s2.0-s0309170811002351-mainRameshGowda24
 
Short-term load forecasting with using multiple linear regression
Short-term load forecasting with using multiple  linear regression Short-term load forecasting with using multiple  linear regression
Short-term load forecasting with using multiple linear regression IJECEIAES
 
A Combination of Wavelet Artificial Neural Networks Integrated with Bootstrap...
A Combination of Wavelet Artificial Neural Networks Integrated with Bootstrap...A Combination of Wavelet Artificial Neural Networks Integrated with Bootstrap...
A Combination of Wavelet Artificial Neural Networks Integrated with Bootstrap...IJERA Editor
 
Abnormal Patterns Detection In Control Charts Using Classification Techniques
Abnormal Patterns Detection In Control Charts Using Classification TechniquesAbnormal Patterns Detection In Control Charts Using Classification Techniques
Abnormal Patterns Detection In Control Charts Using Classification TechniquesKate Campbell
 
Estimation of precipitation during the period of south west monsoon
Estimation of precipitation during the period of south west monsoonEstimation of precipitation during the period of south west monsoon
Estimation of precipitation during the period of south west monsoonIAEME Publication
 
Multivariable Parametric Modeling of a Greenhouse by Minimizing the Quadratic...
Multivariable Parametric Modeling of a Greenhouse by Minimizing the Quadratic...Multivariable Parametric Modeling of a Greenhouse by Minimizing the Quadratic...
Multivariable Parametric Modeling of a Greenhouse by Minimizing the Quadratic...TELKOMNIKA JOURNAL
 
Efficiency of recurrent neural networks for seasonal trended time series mode...
Efficiency of recurrent neural networks for seasonal trended time series mode...Efficiency of recurrent neural networks for seasonal trended time series mode...
Efficiency of recurrent neural networks for seasonal trended time series mode...IJECEIAES
 
Anaplan Stat Forecasting Methods.pdf
Anaplan Stat Forecasting Methods.pdfAnaplan Stat Forecasting Methods.pdf
Anaplan Stat Forecasting Methods.pdfVishYrdy
 
Metaheuristic Optimization: Algorithm Analysis and Open Problems
Metaheuristic Optimization: Algorithm Analysis and Open ProblemsMetaheuristic Optimization: Algorithm Analysis and Open Problems
Metaheuristic Optimization: Algorithm Analysis and Open ProblemsXin-She Yang
 
On Selection of Periodic Kernels Parameters in Time Series Prediction
On Selection of Periodic Kernels Parameters in Time Series Prediction On Selection of Periodic Kernels Parameters in Time Series Prediction
On Selection of Periodic Kernels Parameters in Time Series Prediction cscpconf
 
ON SELECTION OF PERIODIC KERNELS PARAMETERS IN TIME SERIES PREDICTION
ON SELECTION OF PERIODIC KERNELS PARAMETERS IN TIME SERIES PREDICTIONON SELECTION OF PERIODIC KERNELS PARAMETERS IN TIME SERIES PREDICTION
ON SELECTION OF PERIODIC KERNELS PARAMETERS IN TIME SERIES PREDICTIONcscpconf
 

Similar to ESR TECHNIQUE FOR DEMAND FORECASTING (20)

MFBLP Method Forecast for Regional Load Demand System
MFBLP Method Forecast for Regional Load Demand SystemMFBLP Method Forecast for Regional Load Demand System
MFBLP Method Forecast for Regional Load Demand System
 
Adesanya dissagregation of data corrected
Adesanya dissagregation of data correctedAdesanya dissagregation of data corrected
Adesanya dissagregation of data corrected
 
3122999029.pptx
3122999029.pptx3122999029.pptx
3122999029.pptx
 
Glm
GlmGlm
Glm
 
Principal component analysis - application in finance
Principal component analysis - application in financePrincipal component analysis - application in finance
Principal component analysis - application in finance
 
Tutorial marzo2011 villen
Tutorial marzo2011 villenTutorial marzo2011 villen
Tutorial marzo2011 villen
 
Tai lieu ve khu mua vu x11.x12
Tai lieu ve khu mua vu x11.x12Tai lieu ve khu mua vu x11.x12
Tai lieu ve khu mua vu x11.x12
 
1 s2.0-s0309170811002351-main
1 s2.0-s0309170811002351-main1 s2.0-s0309170811002351-main
1 s2.0-s0309170811002351-main
 
Short-term load forecasting with using multiple linear regression
Short-term load forecasting with using multiple  linear regression Short-term load forecasting with using multiple  linear regression
Short-term load forecasting with using multiple linear regression
 
A Combination of Wavelet Artificial Neural Networks Integrated with Bootstrap...
A Combination of Wavelet Artificial Neural Networks Integrated with Bootstrap...A Combination of Wavelet Artificial Neural Networks Integrated with Bootstrap...
A Combination of Wavelet Artificial Neural Networks Integrated with Bootstrap...
 
Abnormal Patterns Detection In Control Charts Using Classification Techniques
Abnormal Patterns Detection In Control Charts Using Classification TechniquesAbnormal Patterns Detection In Control Charts Using Classification Techniques
Abnormal Patterns Detection In Control Charts Using Classification Techniques
 
Forecasting Gasonline Price in Vietnam Based on Fuzzy Time Series and Automat...
Forecasting Gasonline Price in Vietnam Based on Fuzzy Time Series and Automat...Forecasting Gasonline Price in Vietnam Based on Fuzzy Time Series and Automat...
Forecasting Gasonline Price in Vietnam Based on Fuzzy Time Series and Automat...
 
Estimation of precipitation during the period of south west monsoon
Estimation of precipitation during the period of south west monsoonEstimation of precipitation during the period of south west monsoon
Estimation of precipitation during the period of south west monsoon
 
Multivariable Parametric Modeling of a Greenhouse by Minimizing the Quadratic...
Multivariable Parametric Modeling of a Greenhouse by Minimizing the Quadratic...Multivariable Parametric Modeling of a Greenhouse by Minimizing the Quadratic...
Multivariable Parametric Modeling of a Greenhouse by Minimizing the Quadratic...
 
Efficiency of recurrent neural networks for seasonal trended time series mode...
Efficiency of recurrent neural networks for seasonal trended time series mode...Efficiency of recurrent neural networks for seasonal trended time series mode...
Efficiency of recurrent neural networks for seasonal trended time series mode...
 
Anaplan Stat Forecasting Methods.pdf
Anaplan Stat Forecasting Methods.pdfAnaplan Stat Forecasting Methods.pdf
Anaplan Stat Forecasting Methods.pdf
 
Time Series Decomposition
Time Series DecompositionTime Series Decomposition
Time Series Decomposition
 
Metaheuristic Optimization: Algorithm Analysis and Open Problems
Metaheuristic Optimization: Algorithm Analysis and Open ProblemsMetaheuristic Optimization: Algorithm Analysis and Open Problems
Metaheuristic Optimization: Algorithm Analysis and Open Problems
 
On Selection of Periodic Kernels Parameters in Time Series Prediction
On Selection of Periodic Kernels Parameters in Time Series Prediction On Selection of Periodic Kernels Parameters in Time Series Prediction
On Selection of Periodic Kernels Parameters in Time Series Prediction
 
ON SELECTION OF PERIODIC KERNELS PARAMETERS IN TIME SERIES PREDICTION
ON SELECTION OF PERIODIC KERNELS PARAMETERS IN TIME SERIES PREDICTIONON SELECTION OF PERIODIC KERNELS PARAMETERS IN TIME SERIES PREDICTION
ON SELECTION OF PERIODIC KERNELS PARAMETERS IN TIME SERIES PREDICTION
 

More from Zulyy Astutik

1 s2.0-0272696386900197-main
1 s2.0-0272696386900197-main1 s2.0-0272696386900197-main
1 s2.0-0272696386900197-mainZulyy Astutik
 
Holtwinters terakhir lengkap
Holtwinters terakhir lengkapHoltwinters terakhir lengkap
Holtwinters terakhir lengkapZulyy Astutik
 
E 27 penerapan-metode_exponential_smoothing_winter_dalam_sistem_informasi_pen...
E 27 penerapan-metode_exponential_smoothing_winter_dalam_sistem_informasi_pen...E 27 penerapan-metode_exponential_smoothing_winter_dalam_sistem_informasi_pen...
E 27 penerapan-metode_exponential_smoothing_winter_dalam_sistem_informasi_pen...Zulyy Astutik
 
Undip paper 2-penerapan metode optimasi exponential smoothing
Undip paper 2-penerapan metode optimasi exponential smoothingUndip paper 2-penerapan metode optimasi exponential smoothing
Undip paper 2-penerapan metode optimasi exponential smoothingZulyy Astutik
 
210358500 37938471-for-casting
210358500 37938471-for-casting210358500 37938471-for-casting
210358500 37938471-for-castingZulyy Astutik
 

More from Zulyy Astutik (9)

1 s2.0-0272696386900197-main
1 s2.0-0272696386900197-main1 s2.0-0272696386900197-main
1 s2.0-0272696386900197-main
 
4 mat
4  mat4  mat
4 mat
 
Noeryanti 15454
Noeryanti 15454Noeryanti 15454
Noeryanti 15454
 
67782206200906271
6778220620090627167782206200906271
67782206200906271
 
Holtwinters terakhir lengkap
Holtwinters terakhir lengkapHoltwinters terakhir lengkap
Holtwinters terakhir lengkap
 
E 27 penerapan-metode_exponential_smoothing_winter_dalam_sistem_informasi_pen...
E 27 penerapan-metode_exponential_smoothing_winter_dalam_sistem_informasi_pen...E 27 penerapan-metode_exponential_smoothing_winter_dalam_sistem_informasi_pen...
E 27 penerapan-metode_exponential_smoothing_winter_dalam_sistem_informasi_pen...
 
Undip paper 2-penerapan metode optimasi exponential smoothing
Undip paper 2-penerapan metode optimasi exponential smoothingUndip paper 2-penerapan metode optimasi exponential smoothing
Undip paper 2-penerapan metode optimasi exponential smoothing
 
Ipi275348
Ipi275348Ipi275348
Ipi275348
 
210358500 37938471-for-casting
210358500 37938471-for-casting210358500 37938471-for-casting
210358500 37938471-for-casting
 

Recently uploaded

letter-from-the-chair-to-the-fca-relating-to-british-steel-pensions-scheme-15...
letter-from-the-chair-to-the-fca-relating-to-british-steel-pensions-scheme-15...letter-from-the-chair-to-the-fca-relating-to-british-steel-pensions-scheme-15...
letter-from-the-chair-to-the-fca-relating-to-british-steel-pensions-scheme-15...Henry Tapper
 
Best VIP Call Girls Noida Sector 18 Call Me: 8448380779
Best VIP Call Girls Noida Sector 18 Call Me: 8448380779Best VIP Call Girls Noida Sector 18 Call Me: 8448380779
Best VIP Call Girls Noida Sector 18 Call Me: 8448380779Delhi Call girls
 
Shrambal_Distributors_Newsletter_Apr-2024 (1).pdf
Shrambal_Distributors_Newsletter_Apr-2024 (1).pdfShrambal_Distributors_Newsletter_Apr-2024 (1).pdf
Shrambal_Distributors_Newsletter_Apr-2024 (1).pdfvikashdidwania1
 
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...Pooja Nehwal
 
Lundin Gold April 2024 Corporate Presentation v4.pdf
Lundin Gold April 2024 Corporate Presentation v4.pdfLundin Gold April 2024 Corporate Presentation v4.pdf
Lundin Gold April 2024 Corporate Presentation v4.pdfAdnet Communications
 
VIP Kolkata Call Girl Serampore 👉 8250192130 Available With Room
VIP Kolkata Call Girl Serampore 👉 8250192130  Available With RoomVIP Kolkata Call Girl Serampore 👉 8250192130  Available With Room
VIP Kolkata Call Girl Serampore 👉 8250192130 Available With Roomdivyansh0kumar0
 
OAT_RI_Ep19 WeighingTheRisks_Apr24_TheYellowMetal.pptx
OAT_RI_Ep19 WeighingTheRisks_Apr24_TheYellowMetal.pptxOAT_RI_Ep19 WeighingTheRisks_Apr24_TheYellowMetal.pptx
OAT_RI_Ep19 WeighingTheRisks_Apr24_TheYellowMetal.pptxhiddenlevers
 
Stock Market Brief Deck for 4/24/24 .pdf
Stock Market Brief Deck for 4/24/24 .pdfStock Market Brief Deck for 4/24/24 .pdf
Stock Market Brief Deck for 4/24/24 .pdfMichael Silva
 
VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With Room...
VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With Room...VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With Room...
VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With Room...Suhani Kapoor
 
Call Girls In Yusuf Sarai Women Seeking Men 9654467111
Call Girls In Yusuf Sarai Women Seeking Men 9654467111Call Girls In Yusuf Sarai Women Seeking Men 9654467111
Call Girls In Yusuf Sarai Women Seeking Men 9654467111Sapana Sha
 
call girls in Nand Nagri (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in  Nand Nagri (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in  Nand Nagri (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Nand Nagri (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Call Girls Service Nagpur Maya Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Maya Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Maya Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Maya Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
Vip B Aizawl Call Girls #9907093804 Contact Number Escorts Service Aizawl
Vip B Aizawl Call Girls #9907093804 Contact Number Escorts Service AizawlVip B Aizawl Call Girls #9907093804 Contact Number Escorts Service Aizawl
Vip B Aizawl Call Girls #9907093804 Contact Number Escorts Service Aizawlmakika9823
 
High Class Call Girls Nashik Maya 7001305949 Independent Escort Service Nashik
High Class Call Girls Nashik Maya 7001305949 Independent Escort Service NashikHigh Class Call Girls Nashik Maya 7001305949 Independent Escort Service Nashik
High Class Call Girls Nashik Maya 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Independent Call Girl Number in Kurla Mumbai📲 Pooja Nehwal 9892124323 💞 Full ...
Independent Call Girl Number in Kurla Mumbai📲 Pooja Nehwal 9892124323 💞 Full ...Independent Call Girl Number in Kurla Mumbai📲 Pooja Nehwal 9892124323 💞 Full ...
Independent Call Girl Number in Kurla Mumbai📲 Pooja Nehwal 9892124323 💞 Full ...Pooja Nehwal
 
Log your LOA pain with Pension Lab's brilliant campaign
Log your LOA pain with Pension Lab's brilliant campaignLog your LOA pain with Pension Lab's brilliant campaign
Log your LOA pain with Pension Lab's brilliant campaignHenry Tapper
 
How Automation is Driving Efficiency Through the Last Mile of Reporting
How Automation is Driving Efficiency Through the Last Mile of ReportingHow Automation is Driving Efficiency Through the Last Mile of Reporting
How Automation is Driving Efficiency Through the Last Mile of ReportingAggregage
 
Q3 2024 Earnings Conference Call and Webcast Slides
Q3 2024 Earnings Conference Call and Webcast SlidesQ3 2024 Earnings Conference Call and Webcast Slides
Q3 2024 Earnings Conference Call and Webcast SlidesMarketing847413
 
VIP Kolkata Call Girl Jodhpur Park 👉 8250192130 Available With Room
VIP Kolkata Call Girl Jodhpur Park 👉 8250192130  Available With RoomVIP Kolkata Call Girl Jodhpur Park 👉 8250192130  Available With Room
VIP Kolkata Call Girl Jodhpur Park 👉 8250192130 Available With Roomdivyansh0kumar0
 

Recently uploaded (20)

letter-from-the-chair-to-the-fca-relating-to-british-steel-pensions-scheme-15...
letter-from-the-chair-to-the-fca-relating-to-british-steel-pensions-scheme-15...letter-from-the-chair-to-the-fca-relating-to-british-steel-pensions-scheme-15...
letter-from-the-chair-to-the-fca-relating-to-british-steel-pensions-scheme-15...
 
🔝+919953056974 🔝young Delhi Escort service Pusa Road
🔝+919953056974 🔝young Delhi Escort service Pusa Road🔝+919953056974 🔝young Delhi Escort service Pusa Road
🔝+919953056974 🔝young Delhi Escort service Pusa Road
 
Best VIP Call Girls Noida Sector 18 Call Me: 8448380779
Best VIP Call Girls Noida Sector 18 Call Me: 8448380779Best VIP Call Girls Noida Sector 18 Call Me: 8448380779
Best VIP Call Girls Noida Sector 18 Call Me: 8448380779
 
Shrambal_Distributors_Newsletter_Apr-2024 (1).pdf
Shrambal_Distributors_Newsletter_Apr-2024 (1).pdfShrambal_Distributors_Newsletter_Apr-2024 (1).pdf
Shrambal_Distributors_Newsletter_Apr-2024 (1).pdf
 
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...
 
Lundin Gold April 2024 Corporate Presentation v4.pdf
Lundin Gold April 2024 Corporate Presentation v4.pdfLundin Gold April 2024 Corporate Presentation v4.pdf
Lundin Gold April 2024 Corporate Presentation v4.pdf
 
VIP Kolkata Call Girl Serampore 👉 8250192130 Available With Room
VIP Kolkata Call Girl Serampore 👉 8250192130  Available With RoomVIP Kolkata Call Girl Serampore 👉 8250192130  Available With Room
VIP Kolkata Call Girl Serampore 👉 8250192130 Available With Room
 
OAT_RI_Ep19 WeighingTheRisks_Apr24_TheYellowMetal.pptx
OAT_RI_Ep19 WeighingTheRisks_Apr24_TheYellowMetal.pptxOAT_RI_Ep19 WeighingTheRisks_Apr24_TheYellowMetal.pptx
OAT_RI_Ep19 WeighingTheRisks_Apr24_TheYellowMetal.pptx
 
Stock Market Brief Deck for 4/24/24 .pdf
Stock Market Brief Deck for 4/24/24 .pdfStock Market Brief Deck for 4/24/24 .pdf
Stock Market Brief Deck for 4/24/24 .pdf
 
VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With Room...
VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With Room...VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With Room...
VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With Room...
 
Call Girls In Yusuf Sarai Women Seeking Men 9654467111
Call Girls In Yusuf Sarai Women Seeking Men 9654467111Call Girls In Yusuf Sarai Women Seeking Men 9654467111
Call Girls In Yusuf Sarai Women Seeking Men 9654467111
 
call girls in Nand Nagri (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in  Nand Nagri (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in  Nand Nagri (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Nand Nagri (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Call Girls Service Nagpur Maya Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Maya Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Maya Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Maya Call 7001035870 Meet With Nagpur Escorts
 
Vip B Aizawl Call Girls #9907093804 Contact Number Escorts Service Aizawl
Vip B Aizawl Call Girls #9907093804 Contact Number Escorts Service AizawlVip B Aizawl Call Girls #9907093804 Contact Number Escorts Service Aizawl
Vip B Aizawl Call Girls #9907093804 Contact Number Escorts Service Aizawl
 
High Class Call Girls Nashik Maya 7001305949 Independent Escort Service Nashik
High Class Call Girls Nashik Maya 7001305949 Independent Escort Service NashikHigh Class Call Girls Nashik Maya 7001305949 Independent Escort Service Nashik
High Class Call Girls Nashik Maya 7001305949 Independent Escort Service Nashik
 
Independent Call Girl Number in Kurla Mumbai📲 Pooja Nehwal 9892124323 💞 Full ...
Independent Call Girl Number in Kurla Mumbai📲 Pooja Nehwal 9892124323 💞 Full ...Independent Call Girl Number in Kurla Mumbai📲 Pooja Nehwal 9892124323 💞 Full ...
Independent Call Girl Number in Kurla Mumbai📲 Pooja Nehwal 9892124323 💞 Full ...
 
Log your LOA pain with Pension Lab's brilliant campaign
Log your LOA pain with Pension Lab's brilliant campaignLog your LOA pain with Pension Lab's brilliant campaign
Log your LOA pain with Pension Lab's brilliant campaign
 
How Automation is Driving Efficiency Through the Last Mile of Reporting
How Automation is Driving Efficiency Through the Last Mile of ReportingHow Automation is Driving Efficiency Through the Last Mile of Reporting
How Automation is Driving Efficiency Through the Last Mile of Reporting
 
Q3 2024 Earnings Conference Call and Webcast Slides
Q3 2024 Earnings Conference Call and Webcast SlidesQ3 2024 Earnings Conference Call and Webcast Slides
Q3 2024 Earnings Conference Call and Webcast Slides
 
VIP Kolkata Call Girl Jodhpur Park 👉 8250192130 Available With Room
VIP Kolkata Call Girl Jodhpur Park 👉 8250192130  Available With RoomVIP Kolkata Call Girl Jodhpur Park 👉 8250192130  Available With Room
VIP Kolkata Call Girl Jodhpur Park 👉 8250192130 Available With Room
 

ESR TECHNIQUE FOR DEMAND FORECASTING

  • 1. JOURNAL OF OPERATIONS MANAGEMENT--SPECIAL COMBINED ISSUE Vol. 6, No. 4, August 1986 Exponentially Smoothed Regression Analysis for Demand Forecasting GARY M. ROODMAN* EXECUTIVE SUMMARY This article proposes a new technique for estimating trend and multiplicative scasonality in time series data. The technique is computationally quite straightforward and gives better forecasts (in a sense described below) than other commonly used methods. Like many other methods, the one presented here is basically a decomposition technique, that is, it attempts to isolate and estimate the several subcomponents in the time series. It draws primarily on regression analysis for its power and has some of the computational advantages of exponential smoothing. In particular, old estimates of base, trend, and seasonality may be smoothed with new data as they occur. The basic technique was developed originally as a way to generate initial parameter values for a Winters exponential smoothing model [4], but it proved to be a useful forecasting method in itself. The objective in all decomposition methods is to separate somehow the effects of trend and seasonahty in the data, so that the two may be estimated independently. When seasonality is modeled with an additive form (Datum = Base + Trend + Seasonal Factor), techniques such as regression analysis with dummy variables or ratio-to-moving-average techniques accomplish this task well. It is more common, however, to model seasonality as a multiplicative form (as in the Winters model, for example, where Datum = [Base + Trend] * Seasonal Factor). In this case, it can be shown that neither of the techniques above achieves a proper separation of the trend and seasonal effects, and in some instances may give highly misleading results. The technique described in this article attempts to deal properly with multiplicative seasonality, while remaining computa- tionally tractable. The technique is built on a set of simple regression models, one for each period in the seasonal cycle. These models are used to estimate individual seasonal effects and then pooled to estimate the base and trend. As new data occur, they are smoothed into the least-squares formulas with computations that are quite similar to those used in ordinary exponential smoothing. Thus, the full least-squares computations are done only once, when the forecasting process is first initiated. Although the technique is demonstrated here under the assumption that trend is linear, the trend may, in fact, assume any form for which the curve-fitting tools are available (exponential, polynomial, etc.). The method has proved to be easy to program and execute, and computational experience has been quite favorable. It is faster than the RTMA method or regression with dummy variables (which requires a multiple regression routine), and it is competitive with, although a bit slower than, ordinary triple exponential smoothing. * State University of New York, Binghamton, New York. Journal of Operations Management 485
  • 2. INTRODUmION This article proposes a new technique for estimating trend and multiplicative seasonality in time series data. The technique is computationally quite straightfonvard and gives better estimates (in a sense described below) than other commonly used methods. The technique is basically a decomposition method, that is, it attempts to isolate and estimate the several subcomponents in a time series. It draws primarily on regression analysis for its power, however, and has some of the computational advantages of exponential smoothing methods. In particular, old estimates may be smoothed with new data as they occur. The basic tech- nique was developed originally as a way to generate initial parameter values for a Winters exponential smoothing model [4], but it has proved to be a useful forecasting method in itself. The first section below briefly examines a few commonly used forecasting techniques to establish the contribution that the new procedure can make. Then, the new procedure is stated in its simplest form in the second section, followed by the full exponentially smoothed regression model in the third section. The article concludes with a brief discussion of several possible extensions. The appendix to the article contains a set of examples. Several of these simply demonstrate the application of the technique to small data sets, and one applies the method to a larger body of real data. SOME STANDARD TECHNIQUES The object in all decomposition methods is to separate somehow the effects of trend and seasonality in the data, so that the two components can be estimated independently. To do this, a transformation is performed on the data to deseasonalize it (thereby isolating the trend) or detrend it (to get at the seasonality). In ratio-to-moving averages techniques, for example, it is necessary to compute for each period a moving average that is intended to average away the seasonality in the data, along with some of the randomness. These moving averages then provide the base from which seasonal variations are measured and the trend is estimated (see Makridakis, Wheelwright, and McGee [2]). Regression analysis with dummy variables is another approach to achieving similar ends. In this case, the dummy variables serve to model the differences among seasons (as reflected in the intercept coefficient) and the slope coefficient is a measure of the trend. These two techniques, and others that have been proposed for the same purpose, work well as long as the seasonality in the data can properly be modelled as an additive form (i.e., Datum = Base + Trend + Seasonal Factor). When seasonality is multiplicative, however (Datum = [Base + Trend] *Seasonal Factor), it can be shown that neither one achieves a complete separation of the trend and seasonal effects (see Roodman [3]). In the case of the RTMA technique, the moving averages do not truly average away the seasonality when it has a multiplicative form; indeed they would not, even if there were no randomness in the data. In regression analysis with dummy variables, the problem arises because both base (intercept) and trend (slope) vary with the seasons for multiplicative seasonality, a fact that the dummy variable mechanism cannot capture. The technique that is now described attempts to deal properly with the case of multipli- cative seasonality, while retaining most of the computational tractability that typically char- acterizes decomposition methods. 466 APICS
  • 3. BASIC ESTIMATION PROCEDURE The procedure will be stated here assuming that trend has a linear form, although it would also be valid if trend were nonlinear. For simplicity of exposition, the periods in the seasonal cycle will be referred to as “quarters,” although it will be clear that they could as well be “months,” “weeks,” etc. Let n be the number of data points in the initial time series and Q the number of periods (quarters) in one seasonal cycle. Then define the sets x,= {tit= 1,. . . ,nandtmodQ=q} q= 1,. . . ,Q As defined, X, is the set of all t-indices for quarter q. The process that generates the data for all periods t that fall in quarter q is given by Yt=(/3+7*t)*cq+e tEX, (1) where Y, = the datum for period t ,6 = base demand at the beginning of the time series horizon T = the linear trend per quarter uq = the multiplicative seasonal factor for quarter q, e = a disturbance term This will be the model used throughout the article. A four-step procedure is proposed for estimating /3,~, and (TV,q = 1, . . . , Q. The procedure is stated below in its simplest form, together with the motivation for each step. MODEL EACH QUARTER. Using simple regression analysis, model each quarter in the seasonal cycle separately. Let Y,=a,+b,*t tEX, (2) denote the least-squares line for quarter q, q = 1, * - - Q. The seasonal variation in the data may be inputed from this set of Q models. If (1) is rewritten as Y,=[/3*aq]+[7*flq]*t+e it is clear that a, is an estimator of [p * cq] and b, is an estimator of [T* uq]. Consequently, the ratio of cq to gI may be estimated from the ratio %,/a,. It may also be estimated from b,/b,, or from any ratio of the form [as + b,*t]/[a, + b1 *t] for specified t. ESTIMATE SEASONALITY. Let S, denote the estimate of uq, q = 1, . . . , Q. Select one quarter, say, Quarter 1, as the “base” quarter and set S, = 1. Then compute S,, q = 2, . . . , Q as ” S, = [a, + b,*A]/[ar + br *A] where A = C t/n. The choice of A here, among all possible values oft, is based on t=I the fact that the variance of the estimators in both the numerator and denominator of the ratio are smallest in the neighborhood of the mean oft (Johnston [ 11). DESEASONALIZE THE DATA. Deseasonalize the data by dividing each Y, by the appropriate seasonal factor, generating a new time series, Zr , . . . , Z,. ESTIMATE TREND AND BASE. Let B and T denote estimates of /3 and T, respec- tively. Compute B and T by fitting a least-squares regression line to the deseasonalized data, Zt=B+T*t Journal of Operations Management 487
  • 4. There are several computational shortcuts that can be taken here. Much of the calculation for Steps 1 and 4, for example, can be combined. This is demonstrated for the more general case in the next section. Example 1 in the Appendix is a demonstration of this procedure. EXPONENTIALLY SMOOTHED REGRESSION This section describes two modifications of the technique presented in the previous section. Both modifications are motivated by a desire to gain some of the advantages of exponential smoothing methods, while retaining the power of regression analysis. Although a distinction is usually drawn between smoothing methods on the one hand, and regression-based tech- niques on the other, the two can be usefully combined, as will now be demonstrated. Two characteristics of exponential smoothing methods are of interest here: 1. Exponential smoothing provides a convenient way to apply decreasing weights to the data as they become older and older. The procedure in the previous section places equal weights on all of the data. 2. Exponentially smoothed forecasts are generated recursively (i.e., in terms of the current datum and the last forecast) without referring to the entire historical record each time. In the previous section, all data in the time series are used whenever a new forecast is required. Both of these features may be incorporated into the earlier technique. Two cases will be examined. Case I: Trend/No Seasonality Assume first that there is trend in the data but no seasonality. For this special case, simple regression analysis can properly be used to do the estimation. (In effect, the procedure in the previous section degenerates to Step 4.) It is necessary first to replace the usual (unweighted) least-squares criterion with a criterion of the form n Mi@&ze: E= c {w&Y,-B-T*t]‘} t=1 where wl, . . . , w, are weights to be attached to the squared error terms. Weighting the errors in this way is similar to a technique often used in econometrics to transform data in order to remove heteroscedasticity. In that case, however, the weights are applied directly to the data points rather than to the squared errors as in (3) (Johnston [ 11). There are many ways that the weights in (3) might be chosen. For example, they might all be made equal, that is, w, = l/n, t = 1, . . . , n (ordinary least-squares); or they might be chosen to decrease linearly back through time, i.e., w, = t/{ 5 r), t = 1, . . . , n. Any set of r=l weights such that w1 < w2 < - - - < w, will yield estimates of base and trend that place relatively more emphasis on recent errors than on earlier ones, as is consistent with the smoothing concept. It may be assumed without loss of generality that g {wt} = 1. Given this assumption, t=l the criterion in (3) will be minimized by selecting B and T as 488 APICS
  • 5. T=[WSl-WS3*WS4] [ws2 - ws47 B=[WS3-T*WS4] (4) (5) where WSl = i {w,*t*YJ t=1 ws2 = f: {w,*t*t} t=1 ws3 = E {w,*Y,} t=I ” ws4 = 2 {w,*t} t=1 In the framework of exponential smoothing, B and T may now be viewed as initial estimates of base and trend as reflected in the first n data points in the time series. In keeping with this perspective, a “time” subscript should now be added to all of the constructs that were previously defined. Thus, B and T would become B, and T,, and the four weighted sums above would become WS 1n, WS2,, WS3,, and WS4,, respectively. To keep the no- tation as simple as possible, however, the time subscript will be used below only to specify the smoothing computations, where it is necessary to distinguish between estimates at times nandn+ 1. Given initial estimates, B, and T, , when datum Y,,, occurs in period n + 1, it may be smoothed into the estimation process with the recursive computations WSl,,, = a*[(n+ l)*Y,+J+(l -cY)*WSI, ws2,+, = a*[(n+ l)*(n+ l)]+(l -a)*WS2, WS3,+,=a*Y”+~+(1-a)*WS3, ws4,,, = a!*(n+ I)+(1 -cx)*WS~, where (Y,0 ~5 (Y5 1, is the appropriate smoothing constant. These, in turn, yield new estimates T,+, and B,+l from (4) and (5). With these few computations, then, the regres- sion model is updated and new forecasts may be generated that take cognizance of the new datum. An example for this case is given in the Appendix. Case II: The General Model To incorporate seasonality into this smoothed regression technique, it is necessary to partition each of the weighted sums above into its quarterly components. For each q, q= l,...,Q,let Journal of Operations Management 499
  • 6. and define WSl,= 2 {wt*t*Y,) tExq ws2,= 2 {w,*t*t} tEXq ws3,= 2 {wt*Yt} tEhq ws4,= 2 {w,*t} tEXq The four-step procedure in the second section may now be restated in terms of these quarterly weighted sums: 1. MODEL EACH QUARTER. The regression model for quarter q may be estimated from b, = [Kg *WS 1, - WS3, *WS4,]/[& *WS2, - WS4q2] a, = WS3,/K, - bq *WS4,& 2. ESTIMATE SEASONALITY. Set S, = 1 and estimate S,, q = 2, . . . , Q as S, = [a, + b,* WS4]/[al + bl *WS4] Q (7) (8) (9) where WS4 = C {WS4,). Note that WS4 is, in fact, the weighted mean oft. q=l 3, 4. DESEASONALIZE THE DATA AND ESTIMATE TREND AND BASE. Pool the deseasonalized weighted sums for the quarters by computing WSl = 2 {ws1,/s,} q=1 ws2 = 2 {WS2,) q=l and again ws3 = 5 {WS3,/S,) q=l ws4 = 5 {WS4,) q=l and estimate trend and base, T and B, from (4) and (5) as before. Note that the weighted sums computed in Step 1 are also used in Steps 3 and 4, so that there is a great deal of economy in doing the necessary least-squares computations. If the weighted sums above are again viewed as initial estimates, then when datum Y,,, occurs in period n + 1, it may be easily smoothed into the estimation process. Let * = (n + 1) mod Q (the quarter in which period n + 1 occurs). Then, Xq*,n+l = (Xq*,n, ?n + l)} and WSl q*,n+1=a*(n+ l)*Y,+l+(l --(~)*Wsl~*,~ ws2 q*,n+l =a*(n+ l)*(n+ l)+(l -a)*WS2,*,, APES
  • 7. ws3 q*,n+ 1 = a*Y,+, + ( 1 - CX)* ws3,*,, WS4,*,,+, =a*(n+ l)+(l -cx)*WS~~*,~ &f,n+l =o+(l -(Y)*I(q*,n And for all q # q*, Xq,*+r = X,,, and WSl,,lI+r =(l -a)*WSl,,, WS2,lH I =(l -a)*WS2,, WS3,,,+, =(l -a)*WS3,,, WS4,,“, I =(l -a)*WS4,,, I(4 ,n+, =(1 -a)*&,n Now, repeating the four-step estimation procedure with these updated sums will yield new estimates of base, trend, and the seasonal factors, B,+, , T,+r , and Sq,n+l, q = 1, . . . , Q. Example 3 in the Appendix demonstrates the application of this procedure. EXTENSIONS This final section briefly outlines several useful extensions of the techniques that have been proposed. 1. Note first that measures of absolute and relative errors may be defined in this method as they are defined in any other technique based on exponential smoothing. Thus, a tracking signal may be used to monitor errors and the smoothing itself may be done adaptively, that is, the smoothing constant may be adjusted in response to prior errors. 2. The method as described in the third section uses the same smoothing constant for both trend and seasonality. In fact, it is possible to use one smoothing constant to construct the quarterly models and estimate seasonality (Steps 1 and 2) and another for estimating the base and trend (Steps 3 and 4). Since this makes it necessary to carry two sets of weighted sums, however, the computational burden is increased. 3. Finally, it will be noted that the proposed method of decomposition is valid for any data generating process of the form Y,=f(t)*a,+e tEX, In earlier sections, f(t) = p + 7 * t. If the trend were nonlinear, however, then f(t) might be a higher-order polynomial or any other functional form for which the curve-fitting tools are available. REFERENCES I. Johnston, J. Econometric Methods. New York: Seasonality Is Multiplicative.” Working Paper Series. McGraw-Hill, 1963. State University of New York, Binghamton, New 2. Makridakis, S., S.C. Wheelwright, and V.E. McGee. York. February 1984. (Available from the author.) Forecasting: Methods and Applications. 2d ed. New 4. Winters, P. R. “Forecasting Sales by Exponentially York: John Wiley and Sons, 1983. Weighted Moving Averages.” Management Science, 3. Roodman, G. “Decomposition Methods When Vol. 6 (1960), pp. 324-342. Journal of Operations Management 491
  • 8. APPENDIX The data for the first three examples in this appendix were generated by a model that has the form of (1) in our second section, with a base of 100, linear trend of 3/quarter, seasonal factors 1.0, 1.5, 2.0, and 1.0, and an error term that has a normal distribution with mean of 0 and standard deviation of 5. The data on motorcycle registrations used in the last example are taken from Makridakis, Wheelwright, and McGee [2, pp. 138-391. Example 1 This first example demonstrates the basic procedure, using the data in Table la. 1. 2. 3. 4. Step 1 yields regression lines for Quarters 1, 2, 3, and 4, respectively. Y,= 101.93+3.07*t tEX, Y,= 151.70+4.45*t tEh* Yt= 196.03+6.12*t tEX3 Y,= 100.60+2.85*t tEX‘$ In Step 2, compute A = 10.5 and s, = 1.00 SZ=(151.70+4.45*10.5)/(101.93+3.07*10.5)= 1.48 S3=(196.03+6.12*10.5)/(101.93+3.07*10.5)= 1.94 S~=(100.60+2.85*10.5)/(101.93+3.07*10.5)= .97 Using the resealed factors from Step 2, the de-seasonalized data in Table lb can be generated. Finally, fitting a simple regression line to the data in Table 1b yields the line z, = 102.24 + 3.04*t TABLE la Period 1979 1980 1981 1982 1983 1 105 116 134 137 156 2 159 177 204 209 232 3 214 237 266 290 310 4 115 120 135 144 160 TABLE lb Period 1979 1980 1981 1982 1983 1 105 116 134 137 156 2 108 120 138 141 157 3 110 122 137 150 160 4 118 123 139 148 165 492 APES
  • 9. TABLE 2 Period 1979 1980 1981 1982 1983 1 105 116 134 137 156 2 106 118 139 138 155 3 105 116 133 145 153 4 115 120 135 144 160 Thus, the estimate of trend is 3.04, and base is 102.24. The forecast for period 2 1 is (102.24 + 21*3.04)* 1 = 166.1. Example 2 This example deals with Case A in our third section, where the data are assumed to show a trend but no seasonality. Consider the data in Table 2. Letting w, = l/20, t = 1, . . . , 20, TABLE 3a Period K WSl ws2 ws3 ws4 1 0.25 316.20 28.25 32.40 2.25 2 0.25 526.10 33.00 49.05 2.50 3 0.25 773.35 38.25 65.85 2.15 4 0.25 427.20 44.00 33.70 3.00 Total 10.5 TABLE 3b Period B T Seasonal Factors 1 101.93 3.07 1.oo 2 151.70 4.45 1.48 3 196.03 6.12 1.94 4 100.60 2.85 0.97 TABLE 3c Period WSl ws2 ws3 ws4 1 316.20 28.25 32.40 2.25 2 355.85 33.00 33.18 2.50 3 398.69 38.25 33.95 2.75 4 439.27 44.00 34.65 3.00 Totals I510.00 143.50 134.18 10.50 Journal of Operations Management 493
  • 10. TABLE 4a Period K WSl ws2 ws3 ws4 1 0.40 920.16 110.80 57.72 6.00 2 0.20 420.88 26.40 39.24 2.00 3 0.20 618.68 30.60 52.68 2.20 4 0.20 341.76 35.20 26.96 2.40 Total 12.60 TABLE 4b B T Seasonal 104.67 2.64 1.00 151.70 4.45 1.51 196.03 6.13 1.98 100.60 2.85 0.99 TABLE 4c Period WSI ws2 ws3 ws4 1 920.76 110.80 57.12 6.00 2 279.46 26.40 26.06 2.00 3 312.42 30.60 26.60 2.20 4 345.39 35.20 27.25 2.40 Totals 1858.03 203.00 137.62 12.60 one may verify that WSI = 1478.6 ws2 = 143.5 ws3 = 131.5 ws4 = 10.5 which in turn yields the least-squares regression line P = 100.6 + 2.94 *t Thus, 100.6 and 2.94 stand as the initial estimates of base and trend, respectively. The forecast for Period 21 is then 162.3. Let (Y= .2. If the actual datum in Period 21 is 159, then the smoothed weighted sums will be WS12,=.2*21*159+.8*1478.6=1850.68 WS2*, = .2*21*21 + .8* 143.5 = 203.00 WS32,=.2*159+.8*131.5 = 137.00 WS42, = .2*21 + .8* 10.5 = 12.60 and the new base and trend estimates will be 10 1.55 and 2.8 1, respectively. 494 APES
  • 11. TABLE 5 1971 1972 1973 1974 1975 1976 1 894 931 900 983 1105 960 2 667 874 859 757 931 954 3 858 937 927 950 1033 996 4 865 952 1038 1056 912 1194 5 989 997 1058 1213 1154 1401 6 1093 1178 1397 1329 1271 1328 7 1191 1404 1476 1476 1539 1760 8 1159 1327 1393 1473 1575 1588 9 1046 1247 1316 1368 1325 1461 10 1191 1302 1353 1419 1423 1640 11 1203 1205 1267 1493 1492 1439 12 1121 1234 1300 1123 1327 1491 Example 3 This third example concerns Case B in our third section. Reconsider the data in Table la. Ifwe again take w, = l/20, t = 1, - - - 20, the weighted sums for this data will be as given in Table 3a. The resulting quarterly models are then summarized in Table 3b, together with the associated seasonal factors. Finally, in Table 3c the sums of the deseasonalized weighted sums are computed. The least-squares regression model based upon them is Yt= 102.24+3.04*t Thus, the initial estimates of base and trend are 102.24 and 3.04, respectively, and the estimated seasonal factors are 1, 1.48, 1.94, and .97. As would be expected, these results are exactly the same as the ones in Example 1. TABLE 6 Initial Estimates a b Seasonal 1 905.08 0.25 1.oo 2 688.00 8.00 0.92 3 864.21 2.88 1.01 4 836.33 7.2 1 1.07 5 965.79 2.87 1.12 6 994.67 12.67 1.35 7 1131.37 11.88 1.49 8 1098.00 9.75 1.41 9 966.75 11.25 1.29 10 1133.50 6.75 1.38 11 1163.67 2.67 1.33 12 1039.33 7.46 I.29 Base = 810.80 Trend = 5.43 Journal of Operations Management 495
  • 12. TABLE7 3e s9 60 61 b2 4s 64 48s b‘ b? ‘a I”:7‘ 72 non. e 9 10 ‘1 I2 : 3 :. ‘ 7 m 9 10 ‘1 12 ‘2‘3 ‘S29 147b ,473 ,368 1419 I49S 1123 “OS 931 ,033 9‘2 ,154 1271 1x9 157s IS25 1423 1492 1327 960 9H 99b 1‘94 1401 152m 1760 1see I4bl lb40 ,439 1491 ..b(1,(2) .-_______- ems.572.421.0000.90% 762.93O.Sl1.000O.SZ 073.532.031.000@.02S 0bS.074.901.0000.021 910.037.201.0000.819 1085.78b.161.000o.ai? lzl:.B9b.371.0000.8‘4 ‘126.017.951.0000.813 1026.597.711.0000.811 ‘148.665.911.0000.BO9 1032.449.S?1.0000.007 1225.90-1.871.0000.00s 037.995.151.000O.?(r4 baa.724.431.0000.829 04L.523.601.0000.029 994.31-1.021.0000.830 1001.653.22L.0000.0SO 1194.971.711.0000.830 1234.xlS.601.0000.ES0 1124.‘aa.041.0000.830 1160.2b3.2‘1.0000.030 1217.903.661.0000.03, 1147.31b.Ob1.0000.831 97s.b7t.421.0000.831 992.79-0.OS1.0000.91b 697.034.171.000O.91b 909.as1.541.0000.920 724.006.74L.0000.925 793.01a.931.0000.929 1176.50-2.261.0000.93s 1044.6410.371.0000.9S8 123‘.155.341.0000.942 104b.bSS.851.0000.947 967.469.311.0000.951 L371.901.191.0000.955 7b1.909.911.0000.960 3.9(?7 0.VBB 0.978 0.977 0.977 0.976 0.976 0.975 0.973 0.974 0.974 0.974 0.925 0.922 0.946 0.945 0.943 0.942 0.941 0.939 0.930 0.937 0.936 0.935 1.029 1.033 0.999 1.000 1.002 1.004 1.005 1.007 1.009 1.010 1.0‘2 1.014 _.--__ 1.0501.096 1.0681.096 1.0651.096 1.0421.097 1.0461.154 1.0491.160 1.053l*lbb 1.0561.172 1.0%1.170 1.0621.183 1.0661.109 1.0691,.194 1.0191.140 1.0101.141 1.0181.143 0.9171.144 0.91‘1.082 0.9051.079 0.a99L.077 0.8931.073 0.8071.072 0.0811.070 0.0761.Ot.S 0.0701.065 0.9ZS1.172 0.9521.173 0.9911.179 i.00a1.102 1.0951.203 1.LO21.293 1,1091.302 1.1161.112 1.12’31.321 1.1311.330 1.1381.340 1.1411.349 (61(7) ____-_ 1.33,1.466 1.3521.479 1.3661.492 1.3001.305 1.3941.517 1.3171.520 1.3211.4b2 L.3251.466 1.3291.470 1.3331.473 1.33,1.477 1.3401.400 I.2781.411 1.2771.410 1.2771.409 I.2761.408 1.2761.407 1,2011.406 t.2011.393 1.1971.391 1.1921.390 l.lB01.300 1.1841.307 1.1791.385 1.2951.525 1.2971.531 1.2991.53, 1.3011.543 1.3031.549 1.313‘.3X 1.3131.&S? 1.3181.648 1.3201.659 1.3231.670 1.3211.600 1.32,l.L91 SO.901 (9) 1.385 1.395 1.405 i.414 I.424 1.433 1.441 1.424 1.430 1.436 1.441 1.447 1.381 1.302 1.303 1.304 1.30% 1.385 1.306 1.389 1.309 1.390 1.391 1.392 l.JSS 1.544 1.553 l.St.1 1.570 i.5?0 1.587 1.554 1.559 1.565 1.571 1.576 1.276 1.289 1.302 1.314 1.326 1.337 1.340 1.359 1.318 1.324 1.330 1.336 1.275 1.276 1.278 1.279 1.200 1.201 1.203 1.204 1.220 1.217 1.214 1.211 1.331 1.335 1.338 1.342 1.345 1.349 1.352 l.SSb 1.390 1.404 1.410 1.416 --__ 1.358 1.364 1.369 1.374 li379 1.384 1.389 1.394 I.390 1.390 1.393 1.396 1.331 1.329 1.328 1.32, 1.326 l.S25 I.324 1.323 1.323 1.29, 1.200 1.285 1.413 1.41, 1.421 1.425 1.429 1.433 1.4s, 1.44‘ 1.445 1.529 I.SS9 1.548 1.303 I.SO2 l.SO2 1.301 1.300 1.299 1.299 I.298 1.290 L.297 1.400 1.400 1.346 1.349 1.352 1.334 1.357 1.360 i.363 1.365 1.360 1.371 1.326 1.32b 1.460 1.467 1.473 1.480 1.406 1.493 1.499 1.50s 1.512 1.510 1.4se 1.459 (I2,Base __---we- 1.273020.00 1.200049.64 1.207849.9s 1.293846.87 1.299832.25 1.305ass.97 l.S‘l039.03 1.3178Sb.71 1.32383b.65 1.520036.9s 1.534024.97 1.197844.59 1.153875.14 1.124057.39 ‘.‘lbWSS.S8 1.10700S.27 1.099094.49 1.091900.59 1.083900.85 1.075904.40 1.060916.13 1.060923.60 l.OSS920.27 1.139913.09 1.255060.90 1.2b‘855.07 1.267014.97 1.273823.ii 1.278794.18 1.284797.20 1.290776.08 1.296702.39 1.501773.22 l.SO?752.71 1.5‘3771.61 1.370748.‘3 TrlndFOP-.E..t 5.08 3.79 3.59 3.75 4.31 4.17 4.05 4.13 4.15 4.07 4.39 3.62 4.12 4.59 4.67 s.as 3.64 3.33 3.40 S.61 3.38 3.20 S.2b s.b2 2.65 2.73 2.4, 3.22 3.7s 3.36 3.80 3.7‘ 3.00 4.09 S.bb 4.02 927.19 9as.2B 1050.05 1097.61 14‘2.21 lss‘.aI 146S.El 1309.06 ‘436.41 1133.JS 1381.61 102L.75 025.67 1001.65 11‘6.22 1244.15 1391.95 1534.66 1524.06 142s*42 1471.81 lS30.75 ‘iaS.74 1133.63 937.86 1060.34 972.99 1220.41 1365.30 1610.37 1651.85 1407.b9 1500.99 LJ03.90 lSS9.03 ‘041.90
  • 13. The forecast for Period 2 1 is again 166.1. Suppose that the actual datum for Period 2 1 is 159. Then the smoothed weights and weighted sums will be as summarized in Table 4a. For example, WS12i=.2*21*159+.8*316.20=920.76 WS22, = .8 * 526.10 = 420.88 WS321 = .8 *773.35 = 618.68 WS42, = .8 * 427.20 = 341.76 The new quarterly models and seasonal factors are given in Table 4b and the new sums of deseasonalized weighted sums in Table 4c, yielding the regression model Yt= 102.31+2.80*t Thus, the updated estimates of base and trend are 102.3 1 and 2.80, respectively, and the new seasonal factors are 1.OO, 1.5 1, 1.98, and .99. Example 4 This final example analyzes six years of monthly data on motorcycle registrations. The data, taken from Makridakis, Wheelwright, and McGee [2, pp. 138-391, is reproduced in Table 5. The first three years of data will be used to generate initial estimates of the parameters as described in the second section. These estimates will then be updated by applying the exponential smoothing principle to incorporate each new month of data from the last three years. The initial estimates appear in Table 6. They were generated using simple regression analysis for the monthly models, with equal weights applied to all years. Computational results for Periods 37 to 72 are given in Table 7. The actual datum for each period appears in the third column, with the resulting updated parameter estimates in the columns that follow it. Thus, for example, 885.57 and 2.42 are the new parameter estimates for the Month 1 regression model, and 828.00 and 5.08 are the new estimates of underlying base and trend. The forecast for the next period is the last element in each row. In all the computations, CY= .083333, simply following the rule of thumb of choosing the smoothing constant as the reciprocal of the number of periods in one seasonal cycle. Journal of Operations Management 497