SlideShare a Scribd company logo
1 of 81
GelombanG dan optika
Keywords
(kata kunci)
 Ligght theory (teori cahaya)
 Reflection of light
(pemantulan cahaya)
 Mirror (cermin)
 Mirror equation (persamaan
cermin)
 Image formation
(pembentukan bayangan)
 Refraktion of light
(pembiasan cahaya)
 Refractive index (indeks bias)
 Lens (lensa)
 Lens equation (persamaan
lensa)
 Optical instruments (alat-alat
optik)
 Electromagnetic waves
spectrum (spektrum
gelombang elektromagnetik)
A. Nature of Light (sifat dasar cahaya)
Sifat cahaya ada dua, yaitu:
1. Cahaya sebagai gelombang (waves)
2. Cahaya sebagai partikel (particles)
1. Emission of Light (Pancaran Cahaya)
Elektron
Cahaya dipancarkan
Light is emited
Inti
Excited state
Keadaan
tereksitasi
Lower energy
level
Tingkat energi
Lebih rendah
Lowest energy level
Tingkat terendah
+
2. Electromagnetic Waves (gelombang
Elektromagnetik)
Cahaya polikromatik (polychromatic light)
adalah cahaya yang terdiri dari berbagai
panjang gelombang dan frekuensi.
contoh : cahaya matahari (sunshine)
cahaya monokramatik (monochromatic light)
adalah cahaya yang hanya terdiri dari satu
panjang gelombang dan frekuensi.
contoh : laser
 Hubungan panjang gelombang dan frekuensi
gelombang elektromagnetik (EMG),
dirumuskan:
fcv λ==
 Dengan:
 v = c = light speed (laju cahaya)
= 3 x 108
m/s
 λ = wavelength/panjang gelombang (m)
 f = frequency/frekuensi (Hz)
3. Photon (foton)
adalah paket-paket energi cahaya atau
energi yang dibangkitkan oleh gerakan
muatan-muatan listrik (radiasi
elektromagnetik)
Foton merupakan partikel-partikel yang
tidak bermuatan listrik dan tidak
bermassa,tetapi mempunyai energi dan
momentum.
 Besarnya energi
sebuah foton
dirumuskan:
 Dengan :
 E = photon energy (J)
 h = Planck’s constant
 = 6,63 x 10-34
Js
 f = frequency (Hz)
 1 eV = 1,6 x 10-19
J
hfE =
Contoh soal
 Calculate the amount of photon emitted by a 100 watt
lamp in 2 second, if the light that radiated by the lamp
has wavelength of 600 nm!
 Diket :
 P = 100 watt t = 2 s
 λ = 600 nm = 600 x 10-9
m
 c = 3 x 108
m/s
 h = 6,63 x 10-34
Js
 Ditanya: n
b. Opaque Subtances (bahan tak tembus
cahaya)
light ray
Sinar cahaya
Mirror
Cermin
4. Interaction of Light with substances
(interaksi cahaya dengan bahan)
a. Transparent Subtstances (bahan tembus
cahaya)
lens
c. Translucent Substances (bahan buram)
- meneruskan
- memantulkan
- menyerap
- menghamburkan
contoh : air keruh
5. Interference, Diffraction, and
Polarization (interferensi, difraksi, dan
polarisasi)
a. Interference (Interferensi)
adalah sebuah peristiwa yang terjadi
ketika dua buah gelombang bertemu
pada saat bergerak dalam medium yang
sama.
Interferensi gelombang ada 2 yaitu:
interferensi konstruktif dan destruktif
b. Difraction (difraksi)
Pembelokan atau penyebaran gelombang cahaya ketika
cahaya tersebut dilewatkan melalui celah sempit.
contoh : difraksi sinar – x oleh kisi kristal padat
c. Polarization
proses pengubahan cahaya tak terpolarisasi menjadi
cahaya terpolarisasi.
Proses polarisasi:
- transmisi
- pemantulan
- pembiasan
- hamburan menggunakan polaroid filter.
6. The development of Theories of Light
(Perkembangan Teori-teori Cahaya)
a. Impuls Theory of Light (teori impuls
cahaya)
b. Corpuscular Theory (teori Korpuskuler)
c. Waves Theory (teory gelombang)
d. Theory of Electromagnetic Waves (teori
gelombang elektromagnetik)
e. Quantum Theory (teori kuantum)
B. Reflection of Light (Pemantulan Cahaya)
1. Stremam of Ligth (Berkas cahaya)
Source of light
Sumber cahaya
Waves front
Muka gelombang
Rays/sinar
 Kinds of stream of ligth (jenis-jenis berkas
cahaya)
Parallel/sejajar
Diverging
Menyebar
Converging
mengumpul
2. Types of Light Reflection (jenis-jenis
pemantulan cahaya)
Specular Reflection
(smooth surfaces)
Diffuse Reflection
(rough surfaces
3. The Law of Light Reflection (Hukum
Pemantulan cahaya)
I R
θi θR
N
I = incident ray
sinar datang
R = reflected ray
sinar pantul
 The Law of light reflection:
a. Incident ray, reflected ray, and the
normal line cut at one point and lie on
one straight plane.
b. The angle of incidence (θi) is equal to the
angle reflection (θR)
θI = θR
4. Reflection of Light on Plane Mirrors
(Pemantulan pada Cermin Datar)
a. The Characteristics of Image on Plane
Mirrors (Sifat-sifat Bayangan pada
Cermin Datar)
1) Cannot catched by screen (virtual image)
(bayangan maya)
2) Upright and face invertedly to the object
(tegak dan menghadap berlawanan arah
terhadap bendanya)
3) The image is equal in size as the object
(bayangan sama besar dengan bendanya)
4) The image distance to the mirror is equal
to the object distance to the mirror (jarak
bayangan ke cermin sama dengan jarak
benda ke cermin)
S S’
b. Drawing Image Formation in Plane
Mirrors with Ray Diagram (melukis
pembentukan bayangan pada cermin
datar dengan diagram sinar)
c. The Sum of Image on Plane Mirror
(jumlah bayangan pada cermin
datar)
mn −=
α
0
360
Contoh
 Two plane mirrors form an angle of
90o
of each. If an object is placed
between both mirrors, determine the
sum of image formed!
5. Reflection in Curved Mirrors
(Pemantulan pada cermin Lengkung)
a. The Anatomy of Concave and
Convex Mirror (anatomi cermin
cekung dan cermin cembung)
O
FM
O
F M
R R
Concave mirror Convex mirror
b. Reflection in Concave Mirrors
(Pemantulan Pada Cermin Cekung)
1) Special Rays in Convave Mirrors (sinar-
sinar istimewa pada cermin cekung)
a) The incident ray parallel to the principal
axis will be reflected passing through the
focal point.
O
FM
+
b) The incident ray passing through the focal
point will be reflected parallel to the
principal axis.
O
FM
+
c) The incident ray passing through the
mirror’s center of curvature will be
reflected again through the same point.
OFM
+
2) Drawing Image Formation in Concave Mirrors
with Ray Diagrams (melukis pembentukan
bayangan pada cermin cekung dengan
diagram sinar)
3) Spherical Aberration (Aberasi Sferis)
FM
c. Reflection in Convex Mirror
(Pemantulan pada Cermin
Cembung)
F M
1) Special Rays in convex Mirrors
(Sinar-sinar Istimewa pada
Cermin Cembung)
a) The incident ray parallel to the
principal axis will be reflected as
if it comes from the focal point.
F MO
2) The incident ray that seems to
wards the focal point will be
reflected parallel to the principal
axis.
F M
c) The incident ray that seems to
wards the mirror’s center of
curvature will be reflected as if it
comes from that point.
F M
2) Drawing Image Formation in
Convex Mirrors with Ray
Diagram (Melukis
Pembentukkan Bayangan pada
Cermin Cembung dengan
Diagram Sinar)
d. Esbach’s Theorem (Dalil
Esbach)
OFM
III II I IV
+
CONCAVE MIRRORS
O F M
IV I II III
-
CONVEX MIRRORS
 The image characteristics of concave and
convex mirrors can be determined based on
Esbach’s theorem according to the rules as
follows:
1. R + R’ = 5
2. All images in front of the mirrors are real and
inverted.
3. All images behind the mirrors are virtual and
upright.
4. R’ > R (then the image is magnified)
5. R’ < R (then the image is reduced)
e. The Curved Mirror Equation
(Persamaan Cermin Lengkung)
'
112
'
111
ssR
atau
ssf
+=
+=
 Where:
 f = mirror focal length (panjang
fokus cermin)
 S = object distance to the mirror
(jarak benda ke cermin)
 S’= image distance to the mirror
(jarak bayangan ke cermin)
 R = mirror’s radius of vurvature
(jari-jari cermin)
= 2f
 Note (catatan)
 In the curved mirror equation, there
are rules of mark, those are:
 f and R is positive (+) for concave
mirrors
 f and R is negative (-) for convex mirrors
 S is positive (+) if the object is in front
of the mirror and s is negative (-) if the
object lies behind the mirror.
 S’ is positive (+) if the image lies is in
front of the mirror and s’ is negative (-)
if the image lies behind the mirror.
 Linear magnification is defined
as the ratio of image height (h’)
with object height (h), this
magnification is formulated by
the following equation.
s
s
h
h
M
'' −
==
 Where:
 M = linear magnification
(perbesaran linier)
 h’ = image height (tinggi
bayangan)
 h = object height (tinggi benda)
Sample Problem
1. A convex mirror has focal
length of 20 cm. If an object lies
10 cm in front of the mirror,
determine:
a. Image distance to the mirror
b. Image linier magnification.
2. An object of 2 cm in height
stands upright in front of a
concave mirror which has the
focal length 10 cm. If the object
distance to the mirror 15 cm,
ditermine:
a. Image magnification
b. Image height
f. Problem Solving of Two Mirrors
which Face Each Other
(Penyelesaian Masalah Dua
Buah Cermin yang saling
Berhadapan)
Secara matematis jarak antar
cermin dirumuskan:
2
'
1 ssd +=
 Where:
 d = distance between mirror (jarak
antar cermin)
 s1’ = first image distance to the
first mirror (jarak bayangan
pertama ke cermin pertama)
 S2 = first image distance to the
second mirror (jarak
bayangan pertama ke cermin
ke dua)
 The final image resulthan from
the curved mirror system that
face each other has the total
magnification as follows.
2
'
2
1
'
1
21
s
s
x
s
s
xMMMtot ==
Refraction of Light
(Pembiasan Cahaya)
1. The Definition of Light
Refraction (Pengertian
Pembiasan Cahaya)
Pembiasan cahaya adalah:
peristiwa pembelokan arah
cahaya ketika meliwati bidang
batas diantara dua medium
yang berbeda.
 Pada Pembiasan cahaya terjadi:
 Perubahan arah
 Perubahan kecepatan
 Perubahan panjang gelombang
 Frekuensi dan fase gelombang
tetap
2. The Law of Refraction (Snell’s Law)
1. Snell’s I law:
“The incident ray, refracted ray and
normal line all lie on one plane”
2. Snell’s II law:
“If the incident ray travels from a less
dense to a denser medium, then it
bends (refracts) towards the normal
line, and if the incident ray travels from
a denser to a less dense medium then it
bends (refracts) away from the normal
line.
 n2 > n1
n2
n1
 n2 < n1
n1
n2
 Secara matematis dirumuskan:
2211 sinsin θθ nn =
Where:
n1 = refractive index of medium 1
n2 = refractive index of medium 2
Θ1 = angle of incidence
Θ2 = angle of refraction
3. Refractive Index (Indeks Bias)
1. Absolute refractive index
v
c
n =
Where:
n = absolute refractive index
c = light speed in air
= 3 x 108
m/s
v = light speed in medium (m/s)
2. Relative Refractive Index
2
1
12
n
n
n =
 Generally, for two medium, the
Snell’s law equation is:
21
2
1
1
2
2211
sin
sin
sinsin
n
n
n
or
nn
==
=
θ
θ
θθ
 When light travels a certain
medium to another medium and
is refracted, then it has different
speed in the two medium.
Therefore, holds the following
eqution.
21
2
1
1
2
2
1
n
n
n
v
v
===
λ
λ
Sample Problem
 A stream of light travels from air to a
glass with the angle of incidence 60o
,
if nair = 1 and nglass = √3, determine the
angle of light refraction!
 The speed of light in air 3 x 108
m/s
and its frequency 6 x 1014
Hz,
determine:
a. Light speed in water (n = 1,33)
b. The change of wavelength in water and
in air
Scientific Activity
(Kegiatan Ilmiah)
 Refraction of Light in Planparallel Glass
( Pembiasan cahaya pada kaca Planparalel)
 Refraction of Light in Prism
(Pembiasan Cahaya pada Prisma)
Total Reflection
(PemantulanTotal/Sempurna)
 Total reflection can occur if the following two
conditions are complied, those are, light
travels from a denser to a less dense medium
and the light angle of incidence is larger than
the critical angle.
1
2
21
sin
90sinsin
n
n
nn
k
o
k
=
=
θ
θ
 Where :
 n1 = refractive index of medium 1 (denser
medium)
 n2 = refractive index of medium 2 (less dense
medium)
 θk = critical angle
Reflection of Light in Planparallel Glass
(Pembiasan pada Kaca Planparallel)
N1 N2
d
n1
n2> n1
n1
θ1
θ2
t
θ1’
θ2’
 The magnitude of light displacement complies
the following equation:
( )
2
21
cos
sin
θ
θθ −
=
d
t
 Where:
 t = displacement of light
 d = planparallel glass thickness
 θ1= angle of incidence
 θ2= angle of refraction
Refraction of Light in Prism
(Pembiasan Cahaya pada
Prisma)
N1
N2
β
θ1
θ2 θ3
θ4
D
 Based on the figure above, then the
refraction in prism the following
equations:
βθθ
θθβ
−+=
+=
41
32
D
and
Where:
β = angle of refrator
θ1 = first angle of
incidence
θ2 = first angle
Of refraction
D = deviation angle
θ3 = second angle of
Incidence
θ4 = second angle of
refraction
 If θ1 = θ4, then:
βθ −= 12mD
Dm = angle of minimum deviation
 Because at the moment of minimum
deviation θ1 = θ4, then θ2= θ3, so that θ1= ½
(β + Dm), and β = 2θ2 = 2θ3
 Then, Snell’s law equation:
( ) ββ 2
1
2
1
sinsin pmm nDn =+
Where :
nm = refractive index of medium
np = refractive index of pris
 Specifically for β ≤ 150
, then holds the
following equation :
β





−= 1
m
p
m
n
n
D
Sample problem
 The ray of light shown in Figure 1 is
incident upon a 600
-600
-600
glass prism, n
= 1,5
θ1=450
θ2 θ1’
θ2’
600
600
600
P Q
a. Using Snell’s law of refraction,
determine the angle θ2, the nearest
degree.
b. Using elementary geometri, determine
the value of θ1’
c. Determine θ2’
 A light hits one surface of a thick glass
by angle of incidence 600
. If the
refraction index of glass 1,5, then
calculate the angle formed by the light
coming out from the glass to the normal
line!
Refraction of Light in Curved Plane
(Pembiasan Cahaya pada Bidang Lengkung)
 Light refraction in curved plane
s
S’
n1 n2
 Mathematically, the image formation
in transparent curved plane complies
the following equation:
R
nn
s
n
s
n 12
,
21 −
=+
Where:
n1 = refractive index of medium 1
n2 = refractive index of medium 2
S = object distance to the curved plane surface
S’ = image distance to the curved plane surface
R = radius of curvature
 While the magnification of image
formed can be ditermined by the
following equation:
2
1''
n
n
x
s
s
h
h
M ==
Where:
M = image magnification
h’ = image height
h = object height
 The value of R, s and s’ from the
above equtions comply the following
rules:
 R positive (+) if the surface of plane is
convex and R negative (-) if the surface
of plane is concave.
 S positive (+) for real object and s
negatif (-) for virtual object.
 S’ positive (+) for real image and s’
negatif (-) for virtual image.
 Object focal points in curved plane
F1
f1
n1 n2
S’ = ∼
 Based on the figure above, for s = f1,
then s’= ~, therefore the object focal
length (f1) can be determined as
follows:
12
1
1
1
12
1
121
1221
,
nn
Rn
f
thenfs
because
nn
Rn
s
R
nn
s
n
R
nnn
s
n
−
=
=
−
=
−
=
−
=
∝
+
Where:
f1 = object focal
length
 Image focal point in curved plane
n1
n2
F2
S = ~
12
2
2
nn
Rn
f
−
= Where:
f2 = image focal
length

More Related Content

Similar to Lensa cermin dan gelombang

Dr Md Anisur Rahman Optics basics concepts
Dr Md Anisur Rahman Optics basics conceptsDr Md Anisur Rahman Optics basics concepts
Dr Md Anisur Rahman Optics basics conceptsAnisur Rahman
 
Sesión de Laboratorio 6: Lentes Ópticas
Sesión de Laboratorio 6: Lentes ÓpticasSesión de Laboratorio 6: Lentes Ópticas
Sesión de Laboratorio 6: Lentes ÓpticasJavier García Molleja
 
Reflection of light
Reflection of lightReflection of light
Reflection of lighthmsoh
 
Phy exppp chap12
Phy exppp chap12Phy exppp chap12
Phy exppp chap12hmsoh
 
Lens Focal Lenght Thin Report by Fildia Putri
Lens Focal Lenght Thin Report by Fildia PutriLens Focal Lenght Thin Report by Fildia Putri
Lens Focal Lenght Thin Report by Fildia PutriIndy Puteri
 
Chapter 2 geometrical_optics_b
Chapter 2 geometrical_optics_bChapter 2 geometrical_optics_b
Chapter 2 geometrical_optics_bGabriel O'Brien
 
SPM Form 4 Physics - Light
SPM Form 4 Physics - LightSPM Form 4 Physics - Light
SPM Form 4 Physics - LightLoo Carmen
 
Reflection-refraction.ppt
Reflection-refraction.pptReflection-refraction.ppt
Reflection-refraction.pptsimonckt1
 
To Study Principles of Microscopy: Light Microscope, Phase Contrast Microsco...
To Study Principles of Microscopy: Light Microscope, Phase Contrast  Microsco...To Study Principles of Microscopy: Light Microscope, Phase Contrast  Microsco...
To Study Principles of Microscopy: Light Microscope, Phase Contrast Microsco...Om Prakash
 
روعه Exellent P P Reflection Of Light
روعه  Exellent P P  Reflection Of Lightروعه  Exellent P P  Reflection Of Light
روعه Exellent P P Reflection Of Lightamr hassaan
 
RAY OPTICS 12 -12-2023.pdf for class 12th students
RAY OPTICS 12 -12-2023.pdf for class 12th studentsRAY OPTICS 12 -12-2023.pdf for class 12th students
RAY OPTICS 12 -12-2023.pdf for class 12th studentsasonal761
 

Similar to Lensa cermin dan gelombang (20)

Dr Md Anisur Rahman Optics basics concepts
Dr Md Anisur Rahman Optics basics conceptsDr Md Anisur Rahman Optics basics concepts
Dr Md Anisur Rahman Optics basics concepts
 
Ejemplo optica - Inspección Visual
Ejemplo optica - Inspección VisualEjemplo optica - Inspección Visual
Ejemplo optica - Inspección Visual
 
Lec 4_Energy Light_L1.pdf
Lec 4_Energy  Light_L1.pdfLec 4_Energy  Light_L1.pdf
Lec 4_Energy Light_L1.pdf
 
Light 1.pptx
Light 1.pptxLight 1.pptx
Light 1.pptx
 
Sesión de Laboratorio 6: Lentes Ópticas
Sesión de Laboratorio 6: Lentes ÓpticasSesión de Laboratorio 6: Lentes Ópticas
Sesión de Laboratorio 6: Lentes Ópticas
 
01 ray-optics-mm
01 ray-optics-mm01 ray-optics-mm
01 ray-optics-mm
 
Reflection of light
Reflection of lightReflection of light
Reflection of light
 
Phy exppp chap12
Phy exppp chap12Phy exppp chap12
Phy exppp chap12
 
FINAL
FINALFINAL
FINAL
 
XRD.pptx
XRD.pptxXRD.pptx
XRD.pptx
 
Lens Focal Lenght Thin Report by Fildia Putri
Lens Focal Lenght Thin Report by Fildia PutriLens Focal Lenght Thin Report by Fildia Putri
Lens Focal Lenght Thin Report by Fildia Putri
 
Chapter 2 geometrical_optics_b
Chapter 2 geometrical_optics_bChapter 2 geometrical_optics_b
Chapter 2 geometrical_optics_b
 
SPM Form 4 Physics - Light
SPM Form 4 Physics - LightSPM Form 4 Physics - Light
SPM Form 4 Physics - Light
 
Alat optik
Alat optikAlat optik
Alat optik
 
Reflection-refraction.ppt
Reflection-refraction.pptReflection-refraction.ppt
Reflection-refraction.ppt
 
Reflection-refraction.ppt
Reflection-refraction.pptReflection-refraction.ppt
Reflection-refraction.ppt
 
To Study Principles of Microscopy: Light Microscope, Phase Contrast Microsco...
To Study Principles of Microscopy: Light Microscope, Phase Contrast  Microsco...To Study Principles of Microscopy: Light Microscope, Phase Contrast  Microsco...
To Study Principles of Microscopy: Light Microscope, Phase Contrast Microsco...
 
روعه Exellent P P Reflection Of Light
روعه  Exellent P P  Reflection Of Lightروعه  Exellent P P  Reflection Of Light
روعه Exellent P P Reflection Of Light
 
RAY OPTICS 12 -12-2023.pdf for class 12th students
RAY OPTICS 12 -12-2023.pdf for class 12th studentsRAY OPTICS 12 -12-2023.pdf for class 12th students
RAY OPTICS 12 -12-2023.pdf for class 12th students
 
02 lecture 16 april
02 lecture 16 april02 lecture 16 april
02 lecture 16 april
 

More from Yusep Sunandar

More from Yusep Sunandar (19)

Smk usaha &amp; energi
Smk usaha &amp; energiSmk usaha &amp; energi
Smk usaha &amp; energi
 
Smk usaha & energi
Smk usaha & energiSmk usaha & energi
Smk usaha & energi
 
Makanan dan-golongan-darah-1
Makanan dan-golongan-darah-1Makanan dan-golongan-darah-1
Makanan dan-golongan-darah-1
 
Smk usaha & energi
Smk usaha & energiSmk usaha & energi
Smk usaha & energi
 
Smk usaha & energi
Smk usaha & energiSmk usaha & energi
Smk usaha & energi
 
Smk usaha & energi
Smk usaha & energiSmk usaha & energi
Smk usaha & energi
 
Sistem cardiovascular ii 2
Sistem cardiovascular ii 2Sistem cardiovascular ii 2
Sistem cardiovascular ii 2
 
Lensa cermin dan gelombang
Lensa cermin dan gelombangLensa cermin dan gelombang
Lensa cermin dan gelombang
 
Jaringan otot (1)
Jaringan otot (1)Jaringan otot (1)
Jaringan otot (1)
 
sIstem pernafasan-2
sIstem pernafasan-2sIstem pernafasan-2
sIstem pernafasan-2
 
Bahan ajar biologi
Bahan ajar biologiBahan ajar biologi
Bahan ajar biologi
 
Alat indra dan hormon
Alat indra dan hormonAlat indra dan hormon
Alat indra dan hormon
 
Adaptasi morpologi
Adaptasi morpologiAdaptasi morpologi
Adaptasi morpologi
 
1.sistem ekskresi manusia
1.sistem ekskresi  manusia1.sistem ekskresi  manusia
1.sistem ekskresi manusia
 
Kelas07 02 bab 1
Kelas07 02 bab 1Kelas07 02 bab 1
Kelas07 02 bab 1
 
Kelas07 05 bab 4
Kelas07 05 bab 4Kelas07 05 bab 4
Kelas07 05 bab 4
 
Kelas07 04 bab 3
Kelas07 04 bab 3Kelas07 04 bab 3
Kelas07 04 bab 3
 
Kelas07 03 bab 2
Kelas07 03 bab 2Kelas07 03 bab 2
Kelas07 03 bab 2
 
Kelas07 02 bab 1
Kelas07 02 bab 1Kelas07 02 bab 1
Kelas07 02 bab 1
 

Recently uploaded

Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...RKavithamani
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 

Recently uploaded (20)

Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 

Lensa cermin dan gelombang

  • 2. Keywords (kata kunci)  Ligght theory (teori cahaya)  Reflection of light (pemantulan cahaya)  Mirror (cermin)  Mirror equation (persamaan cermin)  Image formation (pembentukan bayangan)  Refraktion of light (pembiasan cahaya)  Refractive index (indeks bias)  Lens (lensa)  Lens equation (persamaan lensa)  Optical instruments (alat-alat optik)  Electromagnetic waves spectrum (spektrum gelombang elektromagnetik)
  • 3. A. Nature of Light (sifat dasar cahaya) Sifat cahaya ada dua, yaitu: 1. Cahaya sebagai gelombang (waves) 2. Cahaya sebagai partikel (particles)
  • 4. 1. Emission of Light (Pancaran Cahaya) Elektron Cahaya dipancarkan Light is emited Inti Excited state Keadaan tereksitasi Lower energy level Tingkat energi Lebih rendah Lowest energy level Tingkat terendah +
  • 5. 2. Electromagnetic Waves (gelombang Elektromagnetik) Cahaya polikromatik (polychromatic light) adalah cahaya yang terdiri dari berbagai panjang gelombang dan frekuensi. contoh : cahaya matahari (sunshine) cahaya monokramatik (monochromatic light) adalah cahaya yang hanya terdiri dari satu panjang gelombang dan frekuensi. contoh : laser
  • 6.  Hubungan panjang gelombang dan frekuensi gelombang elektromagnetik (EMG), dirumuskan: fcv λ==
  • 7.  Dengan:  v = c = light speed (laju cahaya) = 3 x 108 m/s  λ = wavelength/panjang gelombang (m)  f = frequency/frekuensi (Hz)
  • 8. 3. Photon (foton) adalah paket-paket energi cahaya atau energi yang dibangkitkan oleh gerakan muatan-muatan listrik (radiasi elektromagnetik) Foton merupakan partikel-partikel yang tidak bermuatan listrik dan tidak bermassa,tetapi mempunyai energi dan momentum.
  • 9.  Besarnya energi sebuah foton dirumuskan:  Dengan :  E = photon energy (J)  h = Planck’s constant  = 6,63 x 10-34 Js  f = frequency (Hz)  1 eV = 1,6 x 10-19 J hfE =
  • 10. Contoh soal  Calculate the amount of photon emitted by a 100 watt lamp in 2 second, if the light that radiated by the lamp has wavelength of 600 nm!  Diket :  P = 100 watt t = 2 s  λ = 600 nm = 600 x 10-9 m  c = 3 x 108 m/s  h = 6,63 x 10-34 Js  Ditanya: n
  • 11. b. Opaque Subtances (bahan tak tembus cahaya) light ray Sinar cahaya Mirror Cermin
  • 12. 4. Interaction of Light with substances (interaksi cahaya dengan bahan) a. Transparent Subtstances (bahan tembus cahaya) lens
  • 13. c. Translucent Substances (bahan buram) - meneruskan - memantulkan - menyerap - menghamburkan contoh : air keruh
  • 14. 5. Interference, Diffraction, and Polarization (interferensi, difraksi, dan polarisasi) a. Interference (Interferensi) adalah sebuah peristiwa yang terjadi ketika dua buah gelombang bertemu pada saat bergerak dalam medium yang sama. Interferensi gelombang ada 2 yaitu: interferensi konstruktif dan destruktif
  • 15. b. Difraction (difraksi) Pembelokan atau penyebaran gelombang cahaya ketika cahaya tersebut dilewatkan melalui celah sempit. contoh : difraksi sinar – x oleh kisi kristal padat c. Polarization proses pengubahan cahaya tak terpolarisasi menjadi cahaya terpolarisasi. Proses polarisasi: - transmisi - pemantulan - pembiasan - hamburan menggunakan polaroid filter.
  • 16. 6. The development of Theories of Light (Perkembangan Teori-teori Cahaya) a. Impuls Theory of Light (teori impuls cahaya) b. Corpuscular Theory (teori Korpuskuler) c. Waves Theory (teory gelombang) d. Theory of Electromagnetic Waves (teori gelombang elektromagnetik) e. Quantum Theory (teori kuantum)
  • 17. B. Reflection of Light (Pemantulan Cahaya) 1. Stremam of Ligth (Berkas cahaya) Source of light Sumber cahaya Waves front Muka gelombang Rays/sinar
  • 18.  Kinds of stream of ligth (jenis-jenis berkas cahaya) Parallel/sejajar Diverging Menyebar Converging mengumpul
  • 19. 2. Types of Light Reflection (jenis-jenis pemantulan cahaya) Specular Reflection (smooth surfaces) Diffuse Reflection (rough surfaces
  • 20. 3. The Law of Light Reflection (Hukum Pemantulan cahaya) I R θi θR N I = incident ray sinar datang R = reflected ray sinar pantul
  • 21.  The Law of light reflection: a. Incident ray, reflected ray, and the normal line cut at one point and lie on one straight plane. b. The angle of incidence (θi) is equal to the angle reflection (θR) θI = θR
  • 22. 4. Reflection of Light on Plane Mirrors (Pemantulan pada Cermin Datar) a. The Characteristics of Image on Plane Mirrors (Sifat-sifat Bayangan pada Cermin Datar) 1) Cannot catched by screen (virtual image) (bayangan maya) 2) Upright and face invertedly to the object (tegak dan menghadap berlawanan arah terhadap bendanya)
  • 23. 3) The image is equal in size as the object (bayangan sama besar dengan bendanya) 4) The image distance to the mirror is equal to the object distance to the mirror (jarak bayangan ke cermin sama dengan jarak benda ke cermin) S S’
  • 24. b. Drawing Image Formation in Plane Mirrors with Ray Diagram (melukis pembentukan bayangan pada cermin datar dengan diagram sinar) c. The Sum of Image on Plane Mirror (jumlah bayangan pada cermin datar) mn −= α 0 360
  • 25. Contoh  Two plane mirrors form an angle of 90o of each. If an object is placed between both mirrors, determine the sum of image formed!
  • 26. 5. Reflection in Curved Mirrors (Pemantulan pada cermin Lengkung) a. The Anatomy of Concave and Convex Mirror (anatomi cermin cekung dan cermin cembung) O FM O F M R R Concave mirror Convex mirror
  • 27. b. Reflection in Concave Mirrors (Pemantulan Pada Cermin Cekung)
  • 28. 1) Special Rays in Convave Mirrors (sinar- sinar istimewa pada cermin cekung) a) The incident ray parallel to the principal axis will be reflected passing through the focal point. O FM +
  • 29. b) The incident ray passing through the focal point will be reflected parallel to the principal axis. O FM +
  • 30. c) The incident ray passing through the mirror’s center of curvature will be reflected again through the same point. OFM +
  • 31. 2) Drawing Image Formation in Concave Mirrors with Ray Diagrams (melukis pembentukan bayangan pada cermin cekung dengan diagram sinar) 3) Spherical Aberration (Aberasi Sferis) FM
  • 32. c. Reflection in Convex Mirror (Pemantulan pada Cermin Cembung) F M
  • 33. 1) Special Rays in convex Mirrors (Sinar-sinar Istimewa pada Cermin Cembung) a) The incident ray parallel to the principal axis will be reflected as if it comes from the focal point. F MO
  • 34. 2) The incident ray that seems to wards the focal point will be reflected parallel to the principal axis. F M
  • 35. c) The incident ray that seems to wards the mirror’s center of curvature will be reflected as if it comes from that point. F M
  • 36. 2) Drawing Image Formation in Convex Mirrors with Ray Diagram (Melukis Pembentukkan Bayangan pada Cermin Cembung dengan Diagram Sinar)
  • 37. d. Esbach’s Theorem (Dalil Esbach) OFM III II I IV + CONCAVE MIRRORS O F M IV I II III - CONVEX MIRRORS
  • 38.  The image characteristics of concave and convex mirrors can be determined based on Esbach’s theorem according to the rules as follows: 1. R + R’ = 5 2. All images in front of the mirrors are real and inverted. 3. All images behind the mirrors are virtual and upright. 4. R’ > R (then the image is magnified) 5. R’ < R (then the image is reduced)
  • 39. e. The Curved Mirror Equation (Persamaan Cermin Lengkung) ' 112 ' 111 ssR atau ssf += +=
  • 40.  Where:  f = mirror focal length (panjang fokus cermin)  S = object distance to the mirror (jarak benda ke cermin)  S’= image distance to the mirror (jarak bayangan ke cermin)  R = mirror’s radius of vurvature (jari-jari cermin) = 2f
  • 41.  Note (catatan)  In the curved mirror equation, there are rules of mark, those are:  f and R is positive (+) for concave mirrors  f and R is negative (-) for convex mirrors  S is positive (+) if the object is in front of the mirror and s is negative (-) if the object lies behind the mirror.  S’ is positive (+) if the image lies is in front of the mirror and s’ is negative (-) if the image lies behind the mirror.
  • 42.  Linear magnification is defined as the ratio of image height (h’) with object height (h), this magnification is formulated by the following equation. s s h h M '' − ==
  • 43.  Where:  M = linear magnification (perbesaran linier)  h’ = image height (tinggi bayangan)  h = object height (tinggi benda)
  • 44. Sample Problem 1. A convex mirror has focal length of 20 cm. If an object lies 10 cm in front of the mirror, determine: a. Image distance to the mirror b. Image linier magnification.
  • 45. 2. An object of 2 cm in height stands upright in front of a concave mirror which has the focal length 10 cm. If the object distance to the mirror 15 cm, ditermine: a. Image magnification b. Image height
  • 46. f. Problem Solving of Two Mirrors which Face Each Other (Penyelesaian Masalah Dua Buah Cermin yang saling Berhadapan) Secara matematis jarak antar cermin dirumuskan: 2 ' 1 ssd +=
  • 47.  Where:  d = distance between mirror (jarak antar cermin)  s1’ = first image distance to the first mirror (jarak bayangan pertama ke cermin pertama)  S2 = first image distance to the second mirror (jarak bayangan pertama ke cermin ke dua)
  • 48.  The final image resulthan from the curved mirror system that face each other has the total magnification as follows. 2 ' 2 1 ' 1 21 s s x s s xMMMtot ==
  • 49. Refraction of Light (Pembiasan Cahaya) 1. The Definition of Light Refraction (Pengertian Pembiasan Cahaya) Pembiasan cahaya adalah: peristiwa pembelokan arah cahaya ketika meliwati bidang batas diantara dua medium yang berbeda.
  • 50.  Pada Pembiasan cahaya terjadi:  Perubahan arah  Perubahan kecepatan  Perubahan panjang gelombang  Frekuensi dan fase gelombang tetap
  • 51. 2. The Law of Refraction (Snell’s Law) 1. Snell’s I law: “The incident ray, refracted ray and normal line all lie on one plane” 2. Snell’s II law: “If the incident ray travels from a less dense to a denser medium, then it bends (refracts) towards the normal line, and if the incident ray travels from a denser to a less dense medium then it bends (refracts) away from the normal line.
  • 52.  n2 > n1 n2 n1  n2 < n1 n1 n2
  • 53.  Secara matematis dirumuskan: 2211 sinsin θθ nn = Where: n1 = refractive index of medium 1 n2 = refractive index of medium 2 Θ1 = angle of incidence Θ2 = angle of refraction
  • 54. 3. Refractive Index (Indeks Bias) 1. Absolute refractive index v c n = Where: n = absolute refractive index c = light speed in air = 3 x 108 m/s v = light speed in medium (m/s)
  • 55. 2. Relative Refractive Index 2 1 12 n n n =
  • 56.  Generally, for two medium, the Snell’s law equation is: 21 2 1 1 2 2211 sin sin sinsin n n n or nn == = θ θ θθ
  • 57.  When light travels a certain medium to another medium and is refracted, then it has different speed in the two medium. Therefore, holds the following eqution. 21 2 1 1 2 2 1 n n n v v === λ λ
  • 58. Sample Problem  A stream of light travels from air to a glass with the angle of incidence 60o , if nair = 1 and nglass = √3, determine the angle of light refraction!  The speed of light in air 3 x 108 m/s and its frequency 6 x 1014 Hz, determine: a. Light speed in water (n = 1,33) b. The change of wavelength in water and in air
  • 59. Scientific Activity (Kegiatan Ilmiah)  Refraction of Light in Planparallel Glass ( Pembiasan cahaya pada kaca Planparalel)  Refraction of Light in Prism (Pembiasan Cahaya pada Prisma)
  • 61.  Total reflection can occur if the following two conditions are complied, those are, light travels from a denser to a less dense medium and the light angle of incidence is larger than the critical angle. 1 2 21 sin 90sinsin n n nn k o k = = θ θ
  • 62.  Where :  n1 = refractive index of medium 1 (denser medium)  n2 = refractive index of medium 2 (less dense medium)  θk = critical angle
  • 63. Reflection of Light in Planparallel Glass (Pembiasan pada Kaca Planparallel) N1 N2 d n1 n2> n1 n1 θ1 θ2 t θ1’ θ2’
  • 64.  The magnitude of light displacement complies the following equation: ( ) 2 21 cos sin θ θθ − = d t
  • 65.  Where:  t = displacement of light  d = planparallel glass thickness  θ1= angle of incidence  θ2= angle of refraction
  • 66. Refraction of Light in Prism (Pembiasan Cahaya pada Prisma) N1 N2 β θ1 θ2 θ3 θ4 D
  • 67.  Based on the figure above, then the refraction in prism the following equations: βθθ θθβ −+= += 41 32 D and Where: β = angle of refrator θ1 = first angle of incidence θ2 = first angle Of refraction D = deviation angle θ3 = second angle of Incidence θ4 = second angle of refraction
  • 68.  If θ1 = θ4, then: βθ −= 12mD Dm = angle of minimum deviation
  • 69.  Because at the moment of minimum deviation θ1 = θ4, then θ2= θ3, so that θ1= ½ (β + Dm), and β = 2θ2 = 2θ3  Then, Snell’s law equation: ( ) ββ 2 1 2 1 sinsin pmm nDn =+ Where : nm = refractive index of medium np = refractive index of pris
  • 70.  Specifically for β ≤ 150 , then holds the following equation : β      −= 1 m p m n n D
  • 71. Sample problem  The ray of light shown in Figure 1 is incident upon a 600 -600 -600 glass prism, n = 1,5 θ1=450 θ2 θ1’ θ2’ 600 600 600 P Q
  • 72. a. Using Snell’s law of refraction, determine the angle θ2, the nearest degree. b. Using elementary geometri, determine the value of θ1’ c. Determine θ2’
  • 73.  A light hits one surface of a thick glass by angle of incidence 600 . If the refraction index of glass 1,5, then calculate the angle formed by the light coming out from the glass to the normal line!
  • 74. Refraction of Light in Curved Plane (Pembiasan Cahaya pada Bidang Lengkung)  Light refraction in curved plane s S’ n1 n2
  • 75.  Mathematically, the image formation in transparent curved plane complies the following equation: R nn s n s n 12 , 21 − =+ Where: n1 = refractive index of medium 1 n2 = refractive index of medium 2 S = object distance to the curved plane surface S’ = image distance to the curved plane surface R = radius of curvature
  • 76.  While the magnification of image formed can be ditermined by the following equation: 2 1'' n n x s s h h M == Where: M = image magnification h’ = image height h = object height
  • 77.  The value of R, s and s’ from the above equtions comply the following rules:  R positive (+) if the surface of plane is convex and R negative (-) if the surface of plane is concave.  S positive (+) for real object and s negatif (-) for virtual object.  S’ positive (+) for real image and s’ negatif (-) for virtual image.
  • 78.  Object focal points in curved plane F1 f1 n1 n2 S’ = ∼
  • 79.  Based on the figure above, for s = f1, then s’= ~, therefore the object focal length (f1) can be determined as follows: 12 1 1 1 12 1 121 1221 , nn Rn f thenfs because nn Rn s R nn s n R nnn s n − = = − = − = − = ∝ + Where: f1 = object focal length
  • 80.  Image focal point in curved plane n1 n2 F2 S = ~
  • 81. 12 2 2 nn Rn f − = Where: f2 = image focal length