SlideShare a Scribd company logo
1 of 13
Performance of binary Non-
orthogonal signals in Random
Phase channels
YOGESH SINGH
Performance of Binary non-
orthogonal signals
• For binary case, the probability of error can be simplified
much further as:
• The receiver compares
are still given by eq. 5.94 and 5.94b of Simon.
• Multiplying Zci and Zsi, i=0,1, by , we have:
νc0 = Zc0 = 2Es/No+uc0
……. (5.110)
νs0 = zs0 = us0
0,1ifor,andwhereand
22
10
 zzzz sicisici
NEs 02
N
Es
0
2
N
Es
0
2
2
Cnt'd…
assuming m0 was transmitted. The Gaussian noise variables,
are zero-mean, unit variance with
E{uc0 uc1}=E{us0 us1}=(2Es/N0)α, E{uc0 us1}= -E{uc1 us0} =
(2Es/N0)β.
The probability of error, assuming message m0 is transmitted, is
equal to the probability that exceeds or
…..(5.112)
Which requires the computation of the joint pdf .
General quadratic form in complex-valued RV by,
…..(5.113)
uuuu scc
and 11s00
,,
 1v
 1v
),(
10
yxf vv 
)(
**
3
*
3
2
2
2
1
1
xyAyxAyAxA kkkkkk
L
k
A  
dxdyyxPE
x
vvvvs fmmP ),()/()/(
0
100010 
 



3
Cnt'd…
where A1, A2, A3 are constants and {xk,yk} are pairs of correlated
complex-valued Gaussian random variables.
Consequently the variables and
are Rician and independent and the probability of error reduces to
the probability that one Rician variable exceeds another
independent Rician variable. Defining the vector x as,
…..(5.114)
then the mean and covariance ,
…..(5.115)
vv swcww
2
0,
2
0,0,
 vv swcww
2
1,
2
1,1,

)( 1100 vvvvx scsc
TT









































0
1
)(
)(
0
)(
0
2
2
2
2
0
0
0
N
Em s
x
N
E
N
E
N
E
s
s
s
4
Cnt'd…
And also,
…..(5.116)
Due to the symmetry of the problem, it is easily shown that
Ps(E/m0)=Ps(E/m1)=Ps(E). Hence, the error probability is
given by,
…..(5.117)
Where,























10
01
10
01
0
2




 N
Es
x
)0()(  QxP x
T
s
PE
5
Cnt'd…















1000
0100
0010
0001
Q …..(5.119)
6
Cnt'd…
In order to whiten the vector x, we need to perform a linear
nonsingular transformation Ƭ on x which diagonalizes ,
xw=Ƭx …..(5.120)
One such transformation is given by,
…..(5.121)
Where,
k= …..(5.122)
x




















k
k
k
k
kk
s
10
01
10
01
)1(2
E
N0





 22
1 
7
Cnt'd…
Also,
…..(5.123)
…..(5.124)
Hence, the probability of error becomes,
.....(5.125)
Where are unit variance uncorrelated
Gaussian (and hence independent) RV with mean
   xx
N
ExxQx w
T
w
s
w
T
wx
T
T
x
QkQ
x
T
w













 


0
1 21

 
     
 
2
1,
2
1,
2
0,
2
0,
00
swcwswcw
w
T
wx
T
s
P
QPPE xxQxP


 1,1,0,0,
and,, swcwswcw
8
Cnt'd…
…..(5.126)
The optimum receiver compares the pdf of is,
…..(5.127)
…..(5.128)
   
   
 
  












 





k
k
kk
kk
xEE
NE
NE
NE
NE
x
s
s
s
s
w
0
0
0
0
2
2
0
12
12
 iww ,
2
0,
and  iw,
   
)1(
)1(
2
exp
0
2
1
0
2
0
0
22
0,
k
k
where
N
Es
N
Es
sI
s
mf
s
s
i
i
i
w



























 
 


9
Cnt'd…
Hence, the probability of error becomes,
……(5.129)
Which is similar to (5.112) except the variables are now
independent. The Rician RV(s) R0 and R1, the probability that R1
exceeds R0 is given by,
P=Prob (R0< R1)
…...(5.130)
…..(5.131)
 
   dydxyx
PE
x
wws
ff
mP
ww




1,
0
0,
00,1,
)(


 and 1,0, ww
   



2
1
2
0
2
0
2
1
2
0
2
1
02
1
2
0
2
0
and
2
exp,









 



ss
I
ba
where
ab
ba
baQ
10
Cnt'd…
In our case 1 and,
…..(5.132)
With . Hence, the probability of error for two
nonorthogonal signals is given by,
…..(5.133)

2
0
2
1


















2
00
2
00
11
2
)1(
2
11
2
)1(
2
N
E
N
E
N
E
N
E
ss
ss
kb
ka
 j
 












































N
E
I
N
E
N
E
N
E
P
ss
ss
s
QE
22 0
0
0
2
0
2
0
exp
2
1
11
2
.11
2
11
Cnt'd…
which is identical to 1-Ps(C) as given by (5.109) in M-ary
equicorrelated signals. It is clear that orthogonal signals (i.e. ρ=0)
minimizes Ps(E). In this case, Ps(E) reduces to,
…..(5.134)
But since , then
…..(5.135)
Consider the cross-correlation between two FSK signals at
frequencies f0 and f1. then the coss-correlation between the
corresponding complex baseband signals is,
 
   
  













































N
E
N
E
N
E
P
x
N
E
N
E
P
sss
s
ss
s
E
xQ
QE
222
2
000
2
00
exp
2
1
exp
2
1
exp
2exp,0
exp
2
1
,0
12
Cnt'd…
 
 
 
 T
T
f
T
T
dtff
T
dtfTfT
f
f
ef
f
e
eEeE
E
tj
T
tj
tj
s
T
tj
s
s
1,0
1,0
2
1,0
1,0
0
)(2
2
0
2
sin
sin1
22
2
1
1,010
10















13

More Related Content

Similar to Binary non coherent in random phase channel

Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysis
divyanshuprakashrock
 
Prin digcommselectedsoln
Prin digcommselectedsolnPrin digcommselectedsoln
Prin digcommselectedsoln
Ahmed Alshomi
 

Similar to Binary non coherent in random phase channel (20)

Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysis
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
 
clock_theorems
clock_theoremsclock_theorems
clock_theorems
 
2007
20072007
2007
 
Prin digcommselectedsoln
Prin digcommselectedsolnPrin digcommselectedsoln
Prin digcommselectedsoln
 
LORENTZ TRANSFORMATION Pooja chouhan
LORENTZ TRANSFORMATION Pooja chouhanLORENTZ TRANSFORMATION Pooja chouhan
LORENTZ TRANSFORMATION Pooja chouhan
 
Particle Collision near 1+1- D Horava-Lifshitz Black Holes (Karl Schwarzschil...
Particle Collision near 1+1- D Horava-Lifshitz Black Holes (Karl Schwarzschil...Particle Collision near 1+1- D Horava-Lifshitz Black Holes (Karl Schwarzschil...
Particle Collision near 1+1- D Horava-Lifshitz Black Holes (Karl Schwarzschil...
 
Propagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater FlowPropagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater Flow
 
Lecture 11
Lecture 11Lecture 11
Lecture 11
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
about power system operation and control13197214.ppt
about power system operation and control13197214.pptabout power system operation and control13197214.ppt
about power system operation and control13197214.ppt
 
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
 
ECE4762011_Lect14.ppt
ECE4762011_Lect14.pptECE4762011_Lect14.ppt
ECE4762011_Lect14.ppt
 
powerflowproblem.ppt
powerflowproblem.pptpowerflowproblem.ppt
powerflowproblem.ppt
 
Electronics and communication engineering_Lect14.ppt
Electronics and communication engineering_Lect14.pptElectronics and communication engineering_Lect14.ppt
Electronics and communication engineering_Lect14.ppt
 
ECE4762011_Lect14.ppt
ECE4762011_Lect14.pptECE4762011_Lect14.ppt
ECE4762011_Lect14.ppt
 
Applied numerical methods lec14
Applied numerical methods lec14Applied numerical methods lec14
Applied numerical methods lec14
 
Ch01p
Ch01pCh01p
Ch01p
 
Solving the Poisson Equation
Solving the Poisson EquationSolving the Poisson Equation
Solving the Poisson Equation
 
Solution a ph o 3
Solution a ph o 3Solution a ph o 3
Solution a ph o 3
 

Recently uploaded

notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
MsecMca
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 

Recently uploaded (20)

notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 

Binary non coherent in random phase channel

  • 1. Performance of binary Non- orthogonal signals in Random Phase channels YOGESH SINGH
  • 2. Performance of Binary non- orthogonal signals • For binary case, the probability of error can be simplified much further as: • The receiver compares are still given by eq. 5.94 and 5.94b of Simon. • Multiplying Zci and Zsi, i=0,1, by , we have: νc0 = Zc0 = 2Es/No+uc0 ……. (5.110) νs0 = zs0 = us0 0,1ifor,andwhereand 22 10  zzzz sicisici NEs 02 N Es 0 2 N Es 0 2 2
  • 3. Cnt'd… assuming m0 was transmitted. The Gaussian noise variables, are zero-mean, unit variance with E{uc0 uc1}=E{us0 us1}=(2Es/N0)α, E{uc0 us1}= -E{uc1 us0} = (2Es/N0)β. The probability of error, assuming message m0 is transmitted, is equal to the probability that exceeds or …..(5.112) Which requires the computation of the joint pdf . General quadratic form in complex-valued RV by, …..(5.113) uuuu scc and 11s00 ,,  1v  1v ),( 10 yxf vv  )( ** 3 * 3 2 2 2 1 1 xyAyxAyAxA kkkkkk L k A   dxdyyxPE x vvvvs fmmP ),()/()/( 0 100010       3
  • 4. Cnt'd… where A1, A2, A3 are constants and {xk,yk} are pairs of correlated complex-valued Gaussian random variables. Consequently the variables and are Rician and independent and the probability of error reduces to the probability that one Rician variable exceeds another independent Rician variable. Defining the vector x as, …..(5.114) then the mean and covariance , …..(5.115) vv swcww 2 0, 2 0,0,  vv swcww 2 1, 2 1,1,  )( 1100 vvvvx scsc TT                                          0 1 )( )( 0 )( 0 2 2 2 2 0 0 0 N Em s x N E N E N E s s s 4
  • 5. Cnt'd… And also, …..(5.116) Due to the symmetry of the problem, it is easily shown that Ps(E/m0)=Ps(E/m1)=Ps(E). Hence, the error probability is given by, …..(5.117) Where,                        10 01 10 01 0 2      N Es x )0()(  QxP x T s PE 5
  • 7. Cnt'd… In order to whiten the vector x, we need to perform a linear nonsingular transformation Ƭ on x which diagonalizes , xw=Ƭx …..(5.120) One such transformation is given by, …..(5.121) Where, k= …..(5.122) x                     k k k k kk s 10 01 10 01 )1(2 E N0       22 1  7
  • 8. Cnt'd… Also, …..(5.123) …..(5.124) Hence, the probability of error becomes, .....(5.125) Where are unit variance uncorrelated Gaussian (and hence independent) RV with mean    xx N ExxQx w T w s w T wx T T x QkQ x T w                  0 1 21            2 1, 2 1, 2 0, 2 0, 00 swcwswcw w T wx T s P QPPE xxQxP    1,1,0,0, and,, swcwswcw 8
  • 9. Cnt'd… …..(5.126) The optimum receiver compares the pdf of is, …..(5.127) …..(5.128)                                 k k kk kk xEE NE NE NE NE x s s s s w 0 0 0 0 2 2 0 12 12  iww , 2 0, and  iw,     )1( )1( 2 exp 0 2 1 0 2 0 0 22 0, k k where N Es N Es sI s mf s s i i i w                                  9
  • 10. Cnt'd… Hence, the probability of error becomes, ……(5.129) Which is similar to (5.112) except the variables are now independent. The Rician RV(s) R0 and R1, the probability that R1 exceeds R0 is given by, P=Prob (R0< R1) …...(5.130) …..(5.131)      dydxyx PE x wws ff mP ww     1, 0 0, 00,1, )(    and 1,0, ww        2 1 2 0 2 0 2 1 2 0 2 1 02 1 2 0 2 0 and 2 exp,               ss I ba where ab ba baQ 10
  • 11. Cnt'd… In our case 1 and, …..(5.132) With . Hence, the probability of error for two nonorthogonal signals is given by, …..(5.133)  2 0 2 1                   2 00 2 00 11 2 )1( 2 11 2 )1( 2 N E N E N E N E ss ss kb ka  j                                               N E I N E N E N E P ss ss s QE 22 0 0 0 2 0 2 0 exp 2 1 11 2 .11 2 11
  • 12. Cnt'd… which is identical to 1-Ps(C) as given by (5.109) in M-ary equicorrelated signals. It is clear that orthogonal signals (i.e. ρ=0) minimizes Ps(E). In this case, Ps(E) reduces to, …..(5.134) But since , then …..(5.135) Consider the cross-correlation between two FSK signals at frequencies f0 and f1. then the coss-correlation between the corresponding complex baseband signals is,                                                       N E N E N E P x N E N E P sss s ss s E xQ QE 222 2 000 2 00 exp 2 1 exp 2 1 exp 2exp,0 exp 2 1 ,0 12
  • 13. Cnt'd…        T T f T T dtff T dtfTfT f f ef f e eEeE E tj T tj tj s T tj s s 1,0 1,0 2 1,0 1,0 0 )(2 2 0 2 sin sin1 22 2 1 1,010 10                13