SlideShare a Scribd company logo
1 of 15
Download to read offline
‫2. ﺍﻨﺘﺸﺎﺭ ﻤﻭﺠﺔ ﻤﻴﻜﺎﻨﻴﻜﻴﺔ ﺩﻭﺭﻴﺔ‬


        ‫ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ‬



              ‫2. 1. ﺍﻟﺩﻭﺭﻴﺔ ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﻤﻜﺎﻨﻴﺔ‬
                 ‫2 . 1 . 1 . ﺍﻟﺩﻭﺭﻴﺔ ﺍﻟﺯﻤﻨﻴﺔ‬
                    ‫2. 1. 2. ﺍﻟﺩﻭﺭﻴﺔ ﺍﻟﻤﻜﺎﻨﻴﺔ‬
                ‫2. 1. 3. ﺴﺭﻋﺔ ﻭﺘﺒﺩﺩ ﺍﻟﻤﻭﺠﺔ‬
                  ‫2. 2 . ﺤﺎﻟﺔ ﺍﻷﻤﻭﺍﺝ ﺍﻟﺠﻴﺒﻴﺔ‬
      ‫2 .3 . ﺗﺮاآﺐ ﻣﻮﺟﺘﻴﻨﺔ ﺟﻴﺒﻴﺘﻴﻦ : اﻟﺘﺪاﺧﻞ‬
‫2. 1. ﺍﻟﺩﻭﺭﻴﺔ ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﻤﻜﺎﻨﻴﺔ‬

‫ﺒﻴﻨﺎ ﺴﺎﺒﻘﺎ، ﻋﻨﺩ ﺍﻟﻜﻼﻡ ﻋﻥ "ﺍﻨﺘﺸﺎﺭ ﺇﺸﺎﺭﺓ"، ﺍﻟﺤﺎﻻﺕ ﺍﻟﻤﻭﺠﻴﺔ ﻤﻥ ﺨﻼل‬
‫ﺍﻨﺘﺸﺎﺭ ﺍﻀﻁﺭﺍﺏ. ﺴﻨﺭﻯ ﺍﻵﻥ ﻜﻴﻑ ﺘﺘﺼﺭﻑ ﺍﻷﻤﻭﺍﺝ ﺍﻟﻤﺴﺘﻤﺭﺓ. ﻴﺠﺏ‬
‫ﻋﻠﻰ ﺍﻟﻤﻭﺠﺔ ﺍﻟﻤﻴﻜﺎﻨﻴﻜﻴﺔ ﺍﻟﻤﺘﻘﺩﻤﺔ ﺃﻥ ﺘﻜﻭﻥ ﺼﺎﺩﺭﺓ ﻋﻥ ﻤﻨﺒﻊ ﺨﺎﻀﻊ ﻟﺤﺭﻜﺔ‬
‫ﺩﻭﺭﻴﺔ ﺤﺘﻰ ﺘﺘﻤﻜﻥ ﻤﻥ ﺇﻨﺘﺎﺝ ﺍﻟﻤﻭﺠﺔ ﺍﻟﻤﺴﺘﻤﺭﺓ. ﻴﻁﻠﻕ ﻋﻠﻰ ﻫﺫﻩ ﺍﻟﻤﻭﺠﺔ ﺍﺴﻡ‬
                                               ‫ﺍﻟﻤﻭﺠﺔ ﺍﻟﻤﺘﻘﺩﻤﺔ ﺍﻟﺩﻭﺭﻴﺔ.‬

                                          ‫2 . 1 . 1 . ﺍﻟﺩﻭﺭﻴﺔ ﺍﻟﺯﻤﻨﻴﺔ‬

                                 ‫ﺘﻤﺜل ﺍﻟﺼﻭﺭﺓ ﺍﻟﻤﻘﺎﺒﻠﺔ ﺘﺴﺠﻴﻼ ﻟﻠﺼﻭﺕ‬
                                   ‫ﺍﻟﺼﺎﺩﺭ ﻋﻥ ﺁﻟﺔ ﻤﻭﺴﻴﻘﻴﺔ ﺘﻁﻠﻕ ﻨﻭﺘﺔ‬
                               ‫ﻤﺴﺘﻤﺭﺓ ﻭﻫﻲ ﻤﻭﺠﺔ ﺼﻭﺘﻴﺔ ﻤﺴﺘﻤﺭﺓ. ﺘﻡ‬
                                     ‫ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﻫﺫﻩ ﺍﻟﺼﻭﺭﺓ ﺒﺭﺒﻁ‬
                                   ‫ﻤﻴﻜﺭﻭﻓﻭﻥ ﻴﻠﺘﻘﻁ ﺍﻟﺼﻭﺕ ﺇﻟﻰ ﺭﺍﺴﻡ‬
    ‫ﺍﻫﺘﺯﺍﺯ. ﻓﻴﺯﻴﺎﺌﻴﺎ، ﺘﻘﻭﻡ ﺍﻵﻟﺔ ﺍﻟﻤﻭﺴﻴﻘﻴﺔ ﺒﺈﺭﺴﺎل ﻤﻭﺠﺎﺕ ﺩﻭﺭﻴﺔ، ﺩﻭﺭﻫﺎ‬
      ‫‪T‬ﻓﻲ ﺍﻟﻬﻭﺍﺀ. ﺘﺒﻴﻥ ﺍﻟﻘﻤﻡ ﻭﺍﻟﻤﻨﺨﻔﻀﺎﺕ ﻓﻲ ﺍﻟﺼﻭﺭﺓ ﻤﻭﺍﻗﻊ ﺍﻻﻨﻀﻐﺎﻁ‬
  ‫ﻭﺍﻟﺘﻤﺩﺩ ﺨﻼل ﺍﻻﻨﺘﺸﺎﺭ. ﺘﻜﻭﻥ ﺍﻟﺤﺭﻜﺔ ﺩﻭﺭﻴﺔ ﺇﺫﺍ ﺘﻜﺭﺭﺕ ﻤﻤﺎﺜﻠﺔ ﻟﻨﻔﺴﻬﺎ‬
    ‫ﻓﻲ ﻓﺘﺭﺍﺕ ﺯﻤﻨﻴﺔ ﻤﺘﺴﺎﻭﻴﺔ ﻭﻤﺘﻌﺎﻗﺒﺔ، ﺘﺩﻋﻰ ﻫﺫﻩ ﺍﻟﻔﺘﺭﺓ ﺍﻟﺯﻤﻨﻴﺔ ‪ T‬ﺩﻭﺭ‬
                                          ‫1‬
‫= ‪ f‬ﺍﻟﺘﻭﺍﺘﺭ. ﻴﻌﺒﺭ ﻋﻨﻪ ﺒﺎﻟﻬﻴﺭﺘﺯ )‪ (Hz‬ﺇﺫﺍ‬     ‫ﺍﻟﺤﺭﻜﺔ. ﻴﺩﻋﻰ ﻤﻘﻠﻭﺏ ﺍﻟﺩﻭﺭ‬
                                          ‫‪T‬‬
                                                ‫ﻜﺎﻥ ﺍﻟﺩﻭﺭ ﺒﺎﻟﺜﺎﻨﻴﺔ )‪.(s‬‬

‫ﺘﻤﺜل ﺍﻟﻭﺜﻴﻘﺔ ﺍﻟﺘﺎﻟﻴﺔ ﺘﻐﻴﺭ ﺍﻟﻤﻁﺎل )‪ u(t‬ﻟﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻭﺴﻁ ﺘﺘﺄﺜﺭ ﺒﺎﻀﻁﺭﺍﺏ‬
                                                ‫ﻴﺭﺩﻫﺎ ﻤﻥ ﻤﻨﺒﻊ ﻤﻌﻴﻥ :‬
‫‪u‬‬
                  ‫‪T = 0,5 s‬‬     ‫‪T = 0,5 s T = 0,5 s‬‬




                          ‫5,0‬          ‫0,1‬        ‫5,1‬         ‫)‪t (s‬‬


‫ﺇﻥ ﺩﻭﺭ ﻤﻭﺠﺔ ﻤﺘﻘﺩﻤﺔ ﺩﻭﺭﻴﺔ ‪ T‬ﻫﻭ ﺃﻗﺼﺭ ﻤﺩﺓ ﻻﺯﻤﺔ ﻟﻨﻘﻁﺔ ﻤﻥ ﻭﺴﻁ‬
                              ‫ﺍﻻﻨﺘﺸﺎﺭ ﻟﻜﻲ ﺘﺘﻭﺍﺠﺩ ﻤﻥ ﺠﺩﻴﺩ ﻓﻲ ﻨﻔﺱ ﺍﻟﺤﺎﻟﺔ.‬

                                                      ‫2 . 1 . 2 . ﺍﻟﺩﻭﺭﻴﺔ ﺍﻟﻤﻜﺎﻨﻴﺔ‬

‫ﺘﻤﺘﻠﻙ ﺍﻷﻤﻭﺍﺝ ﺍﻟﻤﺘﻘﺩﻤﺔ ﺍﻟﺩﻭﺭﻴﺔ ﺃﻴﻀﺎ ﺩﻭﺭﺍ ﻤﻜﺎﻨﻴﺎ. ﻴﻤﻜﻥ ﺘﺒﻴﺎﻥ ﻫﺫﻩ‬
‫ﺍﻟﻅﺎﻫﺭﺓ ﺒﺒﺴﺎﻁﺔ ﺒﺎﺴﺘﻌﻤﺎل ﻤﻭﻟﺩﺍ ﻟﻠﺘﻭﺍﺘﺭﺍﺕ ﺍﻟﻤﻨﺨﻔﻀﺔ ﻭﻤﻜﺒﺭﺍ ﻟﻠﺼﻭﺕ‬
                              ‫ﻭﻤﻴﻜﺭﻭﻓﻭﻨﺎﻥ ﻭﺭﺍﺴﻡ ﺍﻫﺘﺯﺍﺯ ﻭﻤﺴﻁﺭﺓ ﻤﺩﺭﺠﺔ.‬
‫– ﻨﺭﺒﻁ ﻤﻭﻟﺩ ﺍﻟﺘﻭﺍﺘﺭﺍﺕ ﺍﻟﻤﻨﺨﻔﻀﺔ ﺒﻤﻜﺒﺭ ﺍﻟﺼﻭﺕ ﺒﻌﺩ ﻀﺒﻁﻪ ﻋﻠﻰ ﺘﻭﺍﺘﺭ‬
                                                            ‫ﻗﻴﻤﺘﻪ ﺒﻀﻌﺔ ﻫﻴﺭﺘﺯﺍﺕ.‬
                              ‫– ﻨﺼل ﺍﻟﻤﻴﻜﺭﻭﻓﻭﻨﻴﻥ ﺒﻤﺩﺨﻠﻲ ﺭﺍﺴﻡ ﺍﻻﻫﺘﺯﺍﺯ.‬
‫– ﻨﻀﻊ ﺍﻟﻤﻴﻜﺭﻭﻓﻭﻨﻴﻥ)1‪ M‬ﻭ 2‪ (M‬ﺠﻨﺒﺎ ﺇﻟﻰ ﺠﻨﺏ ﻜﻤﺎ ﻫﻭ ﻤﺒﻴﻥ ﻋﻠﻰ ﺍﻟﻭﺜﻴﻘﺔ‬
                                                                           ‫ﺍﻟﺘﺎﻟﻴﺔ :‬
                              ‫1‪M‬‬
                                             ‫1‪y‬‬


           ‫ﻣﻜﺒﺮ اﻟﺼﻮت‬
‫ﻨﺤﺼل ﻤﻥ ﺸﺎﺸﺔ ﺭﺍﺴﻡ ﺍﻻﻫﺘﺯﺍﺯ ﻓﻨﺤﺼل ﻋﻠﻰ ﺍﻟﻭﺜﻴﻘﺔ ﺍﻟﺘﺎﻟﻴﺔ :‬

                                   ‫‪0.2 ms / div‬‬




‫– ﻨﺘﺭﻙ ﺍﻟﻤﻴﻜﺭﻭﻓﻭﻥ 1‪ M‬ﻭﻨﺒﻌﺩ ﺍﻟﻤﻴﻜﺭﻭﻓﻭﻥ 2‪ M‬ﺒﺒﻁﺀ ﺤﺘﻰ ﻭﻀﻊ ﻤﻌﻴﻥ‬
                                              ‫ﻜﻤﺎ ﺘﺒﻴﻨﻪ ﺍﻟﻭﺜﻴﻘﺔ ﺍﻟﺘﺎﻟﻴﺔ :‬




         ‫‪d = 19 cm‬‬
                       ‫‪d‬‬
           ‫ﻧﺤﺼﻞ ﻣﻦ ﺷﺎﺷﺔ راﺳﻢ اﻻهﺘﺰاز اﻟﻤﻬﺒﻄﻲ ﻋﻠﻰ اﻟﻮﺛﻴﻘﺔ اﻟﺘﺎﻟﻴﺔ:‬
                                    ‫‪0 . 2 ms / div‬‬




‫ﻨﺴﺤﺏ ﻤﻥ ﺠﺩﻴﺩ ﺍﻟﻤﻴﻜﺭﻭﻓﻭﻥ 2‪ M‬ﺇﻟﻰ ﻭﻀﻊ ﺁﺨﺭ ﻜﻤﺎ ﻫﻭ ﻤﺒﻴﻥ ﻋﻠﻰ ﺍﻟﻭﺜﻴﻘﺔ‬
                                                                  ‫ﺍﻟﺘﺎﻟﻴﺔ:‬
‫‪d = 34 cm‬‬

                             ‫‪d‬‬
         ‫ﻨﺤﺼل ﻤﻥ ﺸﺎﺸﺔ ﺭﺍﺴﻡ ﺍﻻﻫﺘﺯﺍﺯ ﺍﻟﻤﻬﺒﻁﻲ ﻋﻠﻰ ﺍﻟﻭﺜﻴﻘﺔ ﺍﻟﺘﺎﻟﻴﺔ :‬
                                      ‫‪0 .2 ms / div‬‬




‫ﻋﻨﺩﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻤﻴﻜﺭﻭﻓﻭﻨﺎﻥ ﻤﻭﻀﻭﻋﻴﻥ ﺒﺠﻭﺍﺭ ﺒﻌﻀﻬﻤﺎ، ﻨﺸﺎﻫﺩ ﻋﻠﻰ ﺸﺎﺸﺔ‬
‫ﺭﺍﺴﻡ ﺍﻻﻫﺘﺯﺍﺯ ﻤﻭﺠﺘﻴﻥ ﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻟﺩﻭﺭ، ﺒﺤﻴﺙ ﻴﺘﻡ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﺍﻟﻘﻴﻡ‬
‫ﺍﻷﺼﻐﺭﻴﺔ ﻟﻬﺎ ﻓﻲ ﻨﻔﺱ ﺍﻟﻭﻗﺕ، ﻭﻟﻬﺎﺘﻴﻥ ﺍﻟﻤﻭﺠﺘﻴﻥ ﺍﻟﺩﻭﺭ ﻨﻔﺴﻪ ﻷﻨﻬﻤﺎ‬
‫ﻴﻌﺘﺒﺭﺍﻥ ﻤﻨﺒﻌﻴﻥ ﻤﻥ ﺍﻟﻤﻨﺒﻊ ﻨﻔﺴﻪ. ﻋﻨﺩ ﺇﺒﻌﺎﺩ ﺍﻟﻤﻴﻜﺭﻭﻓﻭﻥ 2‪ M‬ﺒﺒﻁﺀ، ﻓﺈﻥ‬
‫ﺍﻹﺸﺎﺭﺘﻴﻥ ﺘﻔﺘﺭﻗﺎﻥ ﺃﻓﻘﻴﺎ، ﻭﻴﻜﺒﺭ ﺍﻟﻔﺎﺭﻕ ﻤﻊ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ﺍﻟﻤﻴﻜﺭﻭﻓﻭﻨﻴﻥ.‬
‫ﻴﻜﻭﻥ ﻟﻺﺸﺎﺭﺘﻴﻥ ﻨﻔﺱ ﺍﻟﻁﻭﺭ ﻤﻥ ﺠﺩﻴﺩ ﻋﻠﻰ ﻤﺴﺎﻓﺔ ﻤﻌﻴﻨﺔ ﺨﺎﺼﺔ. ﺇﻀﺎﻓﺔ‬
‫ﺇﻟﻰ ﻫﺫﺍ ﻨﻼﺤﻅ ﺃﻥ ﺍﻹﺸﺎﺭﺘﻴﻥ ﻴﻜﻭﻥ ﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻟﻁﻭﺭ ﻋﻨﺩ ﻤﺴﺎﻓﺎﺕ‬
‫ﻤﻀﺎﻋﻔﺔ ﻟﻬﺫﺍ ﺍﻟﻤﻭﻀﻊ ﺍﻟﺨﺎﺹ. ﺘﺩﻋﻰ ﻫﺫﻩ ﺍﻟﻤﺴﺎﻓﺔ ﻁﻭل ﺍﻟﻤﻭﺠﺔ ﻭ ﻴﺭﻤﺯ‬
             ‫ﻟﻬﺎ ﺒﺎﻟﺭﻤﺯ ‪ .λ‬ﻴﺸﻜل ﻫﺫﺍ ﺍﻟﺩﻭﺭﻴﺔ ﺍﻟﻤﻜﺎﻨﻴﺔ ﻟﻠﻤﻭﺠﺔ ﺍﻟﺼﻭﺘﻴﺔ.‬
‫ﻟﻠﻤﻭﺠﺔ ﺍﻟﻤﺘﻘﺩﻤﺔ ﺩﻭﺭﺍﻥ:‬
                                         ‫– ﺩﻭﺭ ﺯﻤﻨﻲ ﻴﺩﻋﻰ ﺍﻟﺩﻭﺭ‪. T‬‬
                                   ‫– ﺩﻭﺭ ﻤﻜﺎﻨﻲ ﻴﺩﻋﻰ ﻁﻭل ﺍﻟﻤﻭﺠﺔ‪.λ‬‬
                                    ‫2 . 1 . 3 . ﺴﺭﻋﺔ ﻭﺘﺒﺩﺩ ﺍﻟﻤﻭﺠﺔ‬
‫ﻋﻨﺩﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻤﻴﻜﺭﻭﻓﻭﻥ2‪ M‬ﻤﻭﺠﻭﺩﺍ ﻋﻠﻰ ﺒﻌﺩ ‪ d‬ﻤﻥ ﺍﻟﻤﻴﻜﺭﻭﻓﻭﻥ1‪ ، M‬ﻓﺈﻥ‬
‫ﺍﻟﻤﻭﺠﺔ ﺍﻟﻤﻠﺘﻘﻁﺔ ﻤﻥ ﻁﺭﻑ ﺍﻟﻤﻴﻜﺭﻭﻓﻭﻥ ﺘﻜﻭﻥ ﻤﺘﺄﺨﺭﺓ ﺒﺯﻤﻥ ‪ τ‬ﺒﺎﻟﻨﺴﺒﺔ‬
‫ﻟﻠﻤﻭﺠﺔ ﺍﻟﻤﻠﺘﻘﻁﺔ ﻤﻥ ﻁﺭﻑ 2‪ ،M‬ﺇﺫﺍ ﻜﺎﻨﺕ ﺴﺭﻋﺔ ﺍﻨﺘﺸﺎﺭ ﺍﻟﻤﻭﺠﺔ ‪ v‬ﻴﻤﻜﻥ‬
                                                             ‫‪d‬‬
                                                      ‫= ‪.v‬‬     ‫ﻜﺘﺎﺒﺔ:‬
                                                             ‫‪τ‬‬
               ‫ﺘﻜﻭﻥ ﺍﻟﻤﻭﺠﺘﺎﻥ ﻤﺘﻭﺍﻓﻘﺘﻴﻥ ﺇﺫﺍ ﻜﺎﻥ ﺍﻟﺘﺄﺨﺭ ﻤﺴﺎﻭﻴﺎ ﻟﻠﺩﻭﺭ‪. T‬‬
                                           ‫ﻴﻜﻭﻥ ﻟﺩﻴﻨﺎ ﺇﺫﻥ : ‪.λ= v.T‬‬
‫ﺇﻥ ﺍﻟﺩﻭﺭ ﻭﺍﻟﺘﻭﺍﺘﺭ ﻤﻥ ﻤﻤﻴﺯﺍﺕ ﺍﻟﻤﻭﺠﺔ ﺍﻟﻤﻨﺒﻌﺜﺔ، ﻭﻻ ﻴﺘﻌﻠﻘﺎﻥ ﺒﻭﺴﻁ‬
                                                             ‫ﺍﻻﻨﺘﺸﺎﺭ.‬
‫ﻟﻘﺩ ﺭﺃﻴﻨﺎ ﻓﻲ ﺍﻟﺴﺎﺒﻕ ﺃﻥ ﺴﺭﻋﺔ ﺍﻨﺘﺸﺎﺭ ﺍﻟﻤﻭﺠﺔ ﺘﺘﻌﻠﻕ ﺒﺎﻟﻭﺴﻁ، ﻤﺜﻼ ﺘﻜﻭﻥ‬
     ‫‪λ‬‬
‫=‪v‬‬     ‫ﺍﻟﻤﻭﺠﺔ ﺃﺴﺭﻉ ﻓﻲ ﺍﻟﻤﺎﺀ ﻤﻨﻬﺎ ﻓﻲ ﺍﻟﻬﻭﺍﺀ. ﺘﺒﻴﻥ ﺇﺫﻥ ﺍﻟﻌﻼﻗﺔ: ‪= λ ⋅ f‬‬
     ‫‪T‬‬
                               ‫ﺒﺄﻥ ﻁﻭل ﺍﻟﻤﻭﺠﺔ ﻴﺭﺘﺒﻁ ﺒﻭﺴﻁ ﺍﻻﻨﺘﺸﺎﺭ.‬
‫ﺘﺘﻌﻠﻕ ﺴﺭﻋﺔ ﺍﻨﺘﺸﺎﺭ ﺍﻟﻤﻭﺠﺔ ﺒﺎﻟﻭﺴﻁ )ﻫﻭﺍﺀ، ﻤﺎﺀ( ﻭﺒﺸﺩﺓ ﺍﻟﻤﻭﺠﺔ. ﻜﻤﺎ ﺃﻨﻬﺎ‬
           ‫ﻴﻤﻜﻥ ﺃﻥ ﺘﺭﺘﺒﻁ ﺒﺎﻟﺘﻭﺍﺘﺭ. ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻨﻘﻭل ﺇﻥ ﺍﻟﻭﺴﻁ ﻤﺒﺩﺩ.‬
             ‫‪‬‬
                            ‫ﺒﺎﻟﻨﺴﺒﺔ ﻟﻸﻤﻭﺍﺝ ﺍﻟﺼﻭﺘﻴﺔ ﺍﻟﺼﺎﺩﺭﺓ ﻋﻥ‬
                            ‫ﺍﻵﻻﺕ ﺍﻟﻤﻭﺴﻴﻘﻴﺔ )ﺍﻟﻭﺜﻴﻘﺔ ﺍﻟﻤﻘﺎﺒﻠﺔ(، ﻻ‬
                            ‫ﻴﻌﺘﺒﺭ ﺍﻟﻬﻭﺍﺀ ﻭﺴﻁﺎ ﻤﺒﺩﺩﺍ ﺨﻼل ﻋﺯﻑ‬
                            ‫ﺴﻨﻔﻭﻨﻲ، ﻷﻥ ﺍﻷﺼﻭﺍﺕ ﺍﻟﺤﺎﺩﺓ ﻭﺍﻟﻐﻠﻴﻅﺔ‬
‫ﺘﺼل ﺇﻟﻰ ﻤﺴﺎﻤﻌﻨﺎ ﻓﻲ ﻨﻔﺱ ﺍﻟﻭﻗﺕ.‬
‫ﻋﻜﺱ ﺫﻟﻙ ﻋﻨﺩﻤﺎ ﺘﻜﻭﻥ ﺍﻟﺸﺩﺓ ﻋﺎﻟﻴﺔ ﺠﺩﺍ )ﺍﻟﺼﺎﻋﻘﺔ(، ﻴﺼﺒﺢ ﺍﻟﻬﻭﺍﺀ ﻭﺴﻁﺎ‬
‫ﻤﺒﺩﺩﺍ ﻷﻥ ﺴﺭﻋﺔ ﺍﻟﺼﻭﺕ ﺘﺼﺒﺢ ﻤﺭﺘﺒﻁﺔ ﺒﺎﻟﺘﻭﺍﺘﺭ. ﺒﺎﻟﻘﺭﺏ ﻤﻥ ﺍﻟﺒﺭﻕ‬
‫ﻨﺴﻤﻊ ﺼﻭﺘﺎ ﻤﻀﺭﺍ ﺠﺩﺍ. ﻟﻜﻥ ﺒﻌﻴﺩﺍ ﻋﻥ ﺍﻟﺒﺭﻕ ﻨﺴﻤﻊ ﺼﻭﺘﺎ ﻤﺴﺘﻤﺭﺍ ﻴﺯﺩﺍﺩ‬
‫ﻏﻠﻅﺔ. ﺸﺭﺡ ﺫﻟﻙ ﺃﻥ ﺍﻟﺼﺎﻋﻘﺔ ﺘﻜﻭﻥ ﻤﺸ ﱠﻠﺔ ﻤﻥ ﺃﻤﻭﺍﺝ ﺼﻭﺘﻴﺔ ﺫﺍﺕ‬
                     ‫ﹶﻜ‬
                                  ‫ﺃﻥ‬    ‫ﺃﻱ‬     ‫ﻤﻨﺨﻔﻀﺔ،‬     ‫ﺘﻭﺍﺘﺭﺍﺕ‬
                                  ‫ﺍﻷﺼﻭﺍﺕ ﺍﻟﻐﻠﻴﻅﺔ ﺘﻨﺘﺸﺭ ﺒﺒﻁﺀ‬
                                  ‫ﺫﺍﺕ‬     ‫ﺍﻟﺤﺎﺩﺓ‬   ‫ﺘﻠﻙ‬    ‫ﻤﻥ‬     ‫ﺃﻜﺜﺭ‬
                                  ‫ﺍﻟﺘﻭﺍﺘﺭﺍﺕ ﺍﻷﻋﻠﻰ. ﺘﺼل ﺍﻷﺼﻭﺍﺕ‬
                                  ‫ﺍﻟﺨﺸﻨﺔ ﺇﻟﻰ ﻤﺴﺎﻤﻌﻨﺎ ﻓﻲ ﺍﻷﺨﻴﺭ، ﻫﺫﻩ‬
                                  ‫ﺘﻀﺨﻴﻡ‬      ‫ﺇﻟﻰ‬   ‫ﻴﺅﺩﻱ‬   ‫ﺍﻟﺫﻱ‬    ‫ﻫﻭ‬
                                                           ‫ﺍﻟﺼﺎﻋﻘﺔ.‬
‫ﺃﻤﺎ ﺍﻟﻤﺎﺀ ﻓﺈﻨﻪ ﻋﻠﻰ ﺍﻟﻌﻜﺱ ﻴﻌﺘﺒﺭ ﻭﺴﻁﺎ ﻤﺒﺩﺩﺍ. ﺇﺫﺍ ﺘﻡ ﺇﺤﺩﺍﺙ ﻤﻭﺠﺔ ﻋﻠﻰ‬
‫ﺴﻁﺢ ﺍﻟﻤﺎﺀ ﻓﻲ ﺤﻭﺽ، ﻭﺘﻡ ﻗﻴﺎﺱ ﻁﻭل ﺍﻟﻤﻭﺠﺔ ﻤﻥ ﺃﺠل ﻋﺩﺓ ﺘﻭﺍﺘﺭﺍﺕ‬
‫ﻻﻫﺘﺯﺍﺯ ﺍﻟﻤﻨﺒﻊ، ﻨﻼﺤﻅ ﺃﻥ ﺴﺭﻋﺔ ﺍﻻﻨﺘﺸﺎﺭ ‪ v = λ ⋅ f‬ﺘﺘﻐﻴﺭ ﻤﻥ ﺍﺠل ﻗﻴﻡ‬
                                                     ‫ﻤﺨﺘﻠﻔﺔ ﻟﻠﺘﻭﺍﺘﺭ.‬
‫2 . 2 . ﺤﺎﻟﺔ ﺍﻷﻤﻭﺍﺝ ﺍﻟﺠﻴﺒﻴﺔ‬
‫ﺇﻥ ﺍﻟﻤﻭﺠﺔ ﺍﻟﺠﻴﺒﻴﺔ ﻫﻲ ﺍﻟﻤﻭﺠﺔ ﺍﻟﺘﻲ ﺘﻜﻭﻥ ﺤﺭﻜﺘﻬﺎ ﻤﺴﻴﺭﺓ ﺒﺩﺍﻟﺔ ﺠﻴﺒﻴﺔ.‬
‫ﺘﻭﺠﺩ ﻋﺒﺎﺭﺕ ﻀﺭﻭﺭﻴﺔ ﻴﺠﺏ ﺘﻌﺭﻴﻔﻬﺎ ﻟﻠﺘﻤﻜﻥ ﻤﻥ ﺘﺤﻠﻴل ﺤﺭﻜﺔ ﻤﻭﺠﺔ‬
‫ﺠﻴﺒﻴﺔ ﺒﺩﻗﺔ ﺃﻜﺒﺭ. ﻴﺸﺭﺡ ﺍﻟﺠﺩﻭل ﺍﻟﺘﺎﻟﻲ ﻜل ﺍﻟﺤﺩﻭﺩ. ﺒﻤﺎ ﺃﻥ ﺍﻷﺸﻜﺎل ﺍﻟﺠﻴﺒﻴﺔ‬
                 ‫ﺘﺒﺩﻭ ﻤﺘﺴﺎﻭﻴﺔ، ﻴﺠﺏ ﻋﻠﻴﻨﺎ ﻤﻼﺤﻅﺔ ﻤﺤﺎﻭﺭ ﺍﻟﺒﻴﺎﻨﻴﻥ ﺒﻌﻨﺎﻴﺔ.‬
‫– ﻴﻤﺜل ﻤﻨﺤﻨﻰ ﺍﻻﻨﺘﻘﺎل ﺒﺩﻻﻟﺔ ﺍﻟﺯﻤﻥ ﺍﻫﺘﺯﺍﺯﺍﺕ ﻨﻘﻁﺔ ﻋﻠﻰ ﺍﻟﻤﻭﺠﺔ، ﻤﺜﻼ‬
‫ﻤﺭﻜﺏ ﻋﻠﻰ ﻤﻭﺠﺔ ﺤﺎﺩﺓ، ﺘﻬﺘﺯ ﺠﻤﻴﻊ ﺍﻟﻨﻘﺎﻁ ﺍﻷﺨﺭﻯ ﻤﻥ ﺍﻟﻭﺴﻁ ﺒﻨﻔﺱ‬
                 ‫ﺍﻟﻁﺭﻴﻘﺔ، ﻭﻟﻜﻨﻬﺎ ﻻ ﺘﺒﺩﺃ ﺍﻟﺤﺭﻜﺔ ﻓﻲ ﻨﻔﺱ ﺍﻟﻭﻗﺕ ﺒﺎﻟﻀﺒﻁ.‬
‫– ﻤﻨﺤﻨﻰ ﺍﻻﻨﺘﻘﺎل ﺒﺩﻻﻟﺔ ﺍﻟﻤﻭﻀﻊ ﺍﻟﺫﻱ ﻴﻤﺜل ﺼﻭﺭﺓ ﺠﻤﻴﻊ ﺍﻟﻨﻘﺎﻁ ﻋﻠﻰ‬
‫ﻁﻭل ﺍﻟﺤﺒل ﻓﻲ ﻟﺤﻅﺔ ﻤﻌﻴﻨﺔ، ﻭﻓﻲ ﻟﺤﻅﺔ ﺒﻌﺩﻫﺎ ﺘﻜﻭﻥ ﺍﻟﻤﻭﺠﺔ ﻗﺩ ﺘﻘﺩﻤﺕ،‬
‫ﻭﻟﻜﻨﻬﺎ ﺘﺤﺎﻓﻅ ﻋﻠﻰ ﻨﻔﺱ ﺍﻟﺸﻜل. ﺘﻤﺜل ﺍﻟﻭﺜﻴﻘﺔ ﺍﻟﺘﺎﻟﻴﺔ ﺘﻘﺩﻡ ﻤﻭﺠﺔ ﺠﻴﺒﻴﺔ ﻋﻠﻰ‬
                                                                ‫ﻁﻭل ﺤﺒل:‬

           ‫‪A‬‬                                        ‫0=‪t‬‬


           ‫‪A‬‬                                             ‫‪T‬‬
                                                    ‫=‪t‬‬
                                                         ‫4‬


           ‫‪A‬‬                                             ‫‪T‬‬
                                                    ‫=‪t‬‬
                                                         ‫2‬


                                                         ‫‪3T‬‬
                                                    ‫=‪t‬‬
           ‫‪A‬‬                                              ‫4‬


                        ‫‪B‬‬
           ‫‪A‬‬                                        ‫‪t=T‬‬
               ‫‪λ = vT‬‬

           ‫‪A‬‬                                             ‫‪10 T‬‬
                                                    ‫=‪t‬‬
                                                          ‫4‬
‫– ﻴﻤﻜﻥ ﺍﺴﺘﺨﺩﺍﻡ ﻫﺫﻩ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻟﺘﻤﺜﻴل ﺍﻷﻤﻭﺍﺝ ﺍﻟﻁﻭﻟﻴﺔ ﻭﺍﻷﻤﻭﺍﺝ ﺍﻟﻌﺭﻀﻴﺔ‬
‫ﻷﻥ ﺍﻟﻤﺤﻭﺭ ﻴﻤﺜل ﻓﻘﻁ ﻗﻴﻤﺔ ﻻﻨﺘﻘﺎل. ﺇﺫﺍ ﻜﺎﻥ ﺍﻻﻨﺘﻘﺎل ﻤﻤﺎﺴﺎ ﻻﺘﺠﺎﻩ ﺍﻨﺘﺸﺎﺭ‬
‫ﻁﺎﻗﺔ ﺍﻟﻤﻭﺠﺔ، ﺘﻜﻭﻥ ﺍﻟﻤﻭﺠﺔ ﻁﻭﻟﻴﺔ. ﻭﻓﻲ ﺤﺎﻟﺔ ﻤﺎ ﺇﺫﺍ ﻜﺎﻥ ﺍﻻﻨﺘﻘﺎل ﻋﻤﻭﺩﻴﺎ‬
                   ‫ﻋﻠﻰ ﺍﺘﺠﺎﻩ ﺍﻨﺘﺸﺎﺭ ﻁﺎﻗﺔ ﺍﻟﻤﻭﺠﺔ ﺘﻜﻭﻥ ﺍﻟﻤﻭﺠﺔ ﻋﺭﻀﻴﺔ.‬

   ‫ﺍﻟﺭﻤﺯ ﺍﻟﻌﺒﺎﺭﺓ‬                                                        ‫ﺍﻟﺘﻌﺭﻴﻑ‬
                       ‫ﻴﻘﻴﺱ ﺍﻟﺘﻐﻴﺭ ﺍﻟﺫﻱ ﻭﻗﻊ ﻨﺘﻴﺠﺔ ﻤﺭﻭﺭ ﺍﻟﻤﻭﺠﺔ ﻓﻲ ﻨﻘﻁﺔ ﺨﺎﺼﺔ‬
 ‫ﺍﻻﻨﺘﻘﺎل‬    ‫‪y‬‬         ‫ﺒﺎﻟﻨﺴﺒﺔ ﻟﻸﻤﻭﺍﺝ ﺍﻟﻤﻴﻜﺎﻨﻴﻜﻴﺔ، ﻴﻜﻭﻥ ﺍﻻﻨﺘﻘﺎل ﻫﻭ ﺍﻟﻤﺴﺎﻓﺔ ﺒﺎﻟﻤﺘﺭ‬
                   ‫ﺍﻟﺘﻲ ﻴﻘﻁﻌﻬﺎ ﺍﻟﺠﺴﻡ ﺍﻨﻁﻼﻗﺎ ﻤﻥ ﻭﻀﻌﻪ ﺍﻻﺒﺘﺩﺍﺌﻲ ﻗﺒل ﺍﻻﻀﻁﺭﺍﺏ.‬
                    ‫ﺇﻨﻪ ﺍﻻﻨﺘﻘﺎل ﺍﻷﻋﻅﻤﻲ ﺍﻨﻁﻼﻗﺎ ﻤﻥ ﺍﻟﻤﻭﻀﻊ ﺍﻟﻭﺴﻁﻲ. ﺇﺫﺍ ﻟﻡ ﻴﻔﻘﺩ‬
 ‫ﺍﻟﺴﻌﺔ‬      ‫‪A‬‬
                                               ‫ﺍﻟﺠﺴﻡ ﻁﺎﻗﺘﻪ ﻓﺈﻥ ﺍﻟﺴﻌﺔ ﺘﺒﻘﻰ ﺜﺎﺒﺘﺔ.‬
 ‫ﺍﻟﺩﻭﺭ‬      ‫‪T‬‬         ‫ﺇﻨﻪ ﺍﻟﺯﻤﻥ ﺒﺎﻟﺜﺎﻨﻴﺔ ﻹﻨﺠﺎﺯ ﺍﻫﺘﺯﺍﺯﺓ ﻜﺎﻤﻠﺔ ﻟﻠﻤﺭﻭﺭ ﺒﻨﻘﻁﺔ ﻤﻌﻴﻨﺔ.‬
                     ‫ﺇﻨﻪ ﻋﺩﺩ ﺍﻻﻫﺘﺯﺍﺯﺍﺕ ﺍﻟﻤﻨﺠﺯﺓ ﻓﻲ ﺍﻟﺜﺎﻨﻴﺔ. ﺍﻟﻭﺤﺩﺓ ﺍﻟﻤﺴﺘﻌﻤﻠﺔ ﻫﻲ‬
 ‫ﺍﻟﺘﻭﺍﺘﺭ‬
             ‫‪f‬‬         ‫ﻫﻴﺭﺘﺯ )‪ .(Hz‬ﺘﻭﺍﺘﺭ‪ 50Hz‬ﻫﻴﺭﺘﺯ ﻴﻌﻨﻲ ﺃﻥ ﺨﻤﺴﻴﻥ ﺍﻫﺘﺯﺍﺯﺓ‬
                                                            ‫ﺘﺤﻘﻘﺕ ﻓﻲ ﻜل ﺜﺎﻨﻴﺔ.‬
                       ‫ﺇﻨﻬﺎ ﺃﻗﺼﺭ ﻤﺴﺎﻓﺔ ﻋﻠﻰ ﻁﻭل ﺍﻟﻤﻭﺠﺔ ﺒﻴﻥ ﻨﻘﻁﺘﻴﻥ ﻤﺘﻭﺍﻓﻘﺘﻴﻥ.‬
                     ‫"ﺍﻟﺘﻭﺍﻓﻕ" ﻴﻌﻨﻲ ﺃﻥ ﺍﻟﻨﻘﻁﺘﻴﻥ ﺘﺘﺤﺭﻜﺎﻥ ﺒﻨﻔﺱ ﺍﻟﻁﺭﻴﻘﺔ ﻓﻲ ﺍﻟﻔﻀﺎﺀ‬
  ‫ﻁﻭل‬
            ‫‪λ‬‬            ‫ﻭﻓﻲ ﺍﻟﺯﻤﻥ. ﻤﺜﻼ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ﻗﻤﺔ ﻭﺃﺨﺭﻯ ﺒﻴﻥ ﻤﻭﺠﺘﻴﻥ ﺃﻭ‬
 ‫ﺍﻟﻤﻭﺠﺔ‬
                       ‫ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ﺍﻨﻀﻐﻁ ﻭﺁﺨﺭ ﻓﻲ ﺍﻷﻤﻭﺍﺝ ﺍﻟﺼﻭﺘﻴﺔ ﺘﻤﺜل ﺃﻁﻭﺍل‬
                                                                        ‫ﻤﻭﺠﺎﺕ.‬
 ‫ﺴﺭﻋﺔ‬
                       ‫ﺇﻨﻬﺎ ﺍﻟﺴﺭﻋﺔ)1-‪ (m.s‬ﺍﻟﺘﻲ ﺘﻤﺭ ﺒﻬﺎ ﺠﺒﻬﺔ ﺍﻟﻤﻭﺠﺔ ﺃﻤﺎﻡ ﻤﻼﺤﻅ‬
 ‫ﺍﻨﺘﺸﺎﺭ‬     ‫‪v‬‬
                                                                         ‫ﺴﺎﻜﻥ.‬
 ‫ﺍﻟﻤﻭﺠﺔ‬
‫ﻴﺸﻜل ﺩﻭﺭ ﻭﺘﻭﺍﺘﺭ ﻤﻭﺠﺔ ﻤﻘﻠﻭﺏ ﺒﻌﻀﻬﻤﺎ ﺍﻟﺒﻌﺽ. ﻓﻤﺜﻼ ﺇﺫﺍ ﻜﺎﻥ ﺍﻟﺘﻭﺍﺘﺭ‬
                       ‫1‬          ‫1‬
             ‫ﺜﺎﻨﻴﺔ.‬       ‫ﻴﺴﺎﻭﻱ ‪ ، 100Hz‬ﻴﻜﻭﻥ ﺍﻟﺩﻭﺭ ﻤﺴﺎﻭﻴﺎ ﻟـ = ‪ ، T‬ﺃﻱ‬
                      ‫001‬         ‫‪f‬‬
                               ‫‪λ‬‬
                          ‫=‪v‬‬     ‫ﺒﺎﻟﻨﺴﺒﺔ ﻟﻠﻤﻭﺠﺔ ﺍﻟﺠﻴﺒﻴﺔ ﺘﻜﻭﻥ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻭﺠﺔ: ‪= λ ⋅ f‬‬
                               ‫‪T‬‬
    ‫‪y‬‬        ‫‪M‬‬        ‫‪N‬‬                      ‫اﻟﻠﺤﻈﺔ ‪t‬‬
                                                                  ‫ﺣﺎﻟﺔ اهﺘﺰاز أو اﺳﺘﻄﺎﻟﺔ‬
‫0‬
                                                        ‫‪x‬‬       ‫ﻧﻘﻄﺘﻴﻦ ﺗﺒﻌﺪان ﻋﻦ ﺑﻌﻀﻬﺎ‬
                 ‫‪λ‬‬                                               ‫اﻟﺒﻌﺾ ﺑﻄﻮل ﻣﻮﺟﺔ ‪. λ‬‬
    ‫‪y‬‬                                       ‫اﻟﻠﺤﻈﺔ '‪t‬‬
‫0‬
                                                                 ‫ﺗﻬﺘﺰ اﻟﻨﻘﻄﺘﺎن ﻋﻠﻰ ﺗﻮاﻓﻖ‬
                                                        ‫‪x‬‬
             ‫‪M‬‬        ‫‪N‬‬



    ‫‪y‬‬        ‫‪M‬‬                      ‫‪P‬‬       ‫اﻟﻠﺤﻈﺔ ‪t‬‬
‫0‬
                                                                   ‫ﺣﺎﻟﺔ اهﺘﺰاز أو اﺳﺘﻄﺎﻟﺔ‬
                                                        ‫‪x‬‬        ‫ﻧﻘﻄﺘﻴﻦ ﺗﺒﻌﺪان ﻋﻦ ﺑﻌﻀﻬﺎ‬
                          ‫‪3λ‬‬
    ‫‪y‬‬                                       ‫اﻟﻠﺤﻈﺔ '‪t‬‬
                                                                ‫اﻟﺒﻌﺾ ﺑﺜﻼﺛﺔ أﻃﻮال ﻣﻮﺟﺔ‬
‫0‬
                                                                                    ‫‪. 3λ‬‬
             ‫‪M‬‬                      ‫‪P‬‬
                                                        ‫‪x‬‬
                                                                  ‫ﺗﻬﺘﺰ اﻟﻨﻘﻄﺘﺎن ﻋﻠﻰ ﺗﻮاﻓﻖ‬
        ‫‪yS‬‬

                                                                   ‫اﻟﺘﻤﺜﻴﻞ اﻟﺒﻴﺎﻧﻲ ﻟﺘﻐﻴﺮ ﻣﻄﺎل‬
                                                            ‫‪t‬‬         ‫اﻟﻤﻨﺒﻊ ‪ S‬ﺑﺪﻻﻟﺔ اﻟﺰﻣﻦ.‬


                                                                                    ‫ﻤﺜﺎل :‬

    ‫ﻨﺄﺨﺫ ﺤﺒﻼ ﻁﻭﻴﻼ ﻭﻨﺸﺩﻩ ﺃﻓﻘﻴﺎ ﺇﻟﻰ ﻨﻬﺎﻴﺔ ﺭﻨﺎﻨﺔ ﻜﻬﺭﺒﺎﺌﻴﺔ ﺘﻬﺘﺯ ﺒﺤﺭﻜﺔ ﺠﻴﺒﻴﺔ‬
    ‫ﺘﻭﺍﺘﺭﻫﺎ ‪ . f = 100 Hz‬ﻨﺸﺩ ﺍﻟﻁﺭﻑ ﺍﻷﺨﺭ ﻟﻠﺤﺒل ﻓﻲ ﻗﻁﻌﺔ ﻤﻥ ﺍﻟﻔﻠﻴﻥ ﻟﺘﻔﺎﺩﻱ‬
    ‫ﺍﻨﻌﻜﺎﺱ ﺍﻷﻤﻭﺍﺝ. ﻨﻌﺘﺒﺭ ﻨﻘﻁﺔ ‪ M‬ﻋﻠﻰ ﺍﻟﺤﺒل ﺘﺒﻌﺩ ﺒﻤﺴﺎﻓﺔ ‪ d = 1 m‬ﻋﻥ ﺍﻟﻤﻨﺒﻊ‬
    ‫‪ . S‬ﺍﻟﻜﺘﻠﺔ ﺍﻟﺨﻁﻴﺔ ﻟﻬﺫﺍ ﺍﻟﺤﺒل ﻫﻲ 1–‪ µ = 100 g.m‬ﻭﻗﻴﻤﺔ ﺍﻟﻘﻭﺓ ﺍﻟﺘﻲ ﺘﺸﺩﻩ ﻫﻲ‬
                                                                             ‫‪.F = 0,4 N‬‬
‫‪M‬‬                               ‫‪O‬‬
‫‪S‬‬


                        ‫1 . ﺃﺤﺴﺏ ﻗﻴﻤﺔ ﺍﻟﺴﺭﻋﺔ ﺍﻟﺘﻲ ﺘﻨﺘﺸﺭ ﺒﻬﺎ ﺍﻷﻤﻭﺍﺝ.‬
‫2. ﺃﺤﺴﺏ ﺍﻟﻤﺩﺓ ﺍﻟﺯﻤﻨﻴﺔ ﺍﻟﺘﻲ ﻴﺴﺘﻐﺭﻗﻬﺎ ﺍﻻﻀﻁﺭﺍﺏ ﻟﻜﻲ ﻴﻘﻁﻊ ﺍﻟﻤﺴﺎﻓﺔ = ‪d‬‬
                                                                       ‫‪.SM‬‬
                         ‫3 . ﻤﺜل ﺘﻐﻴﺭﺍﺕ ﻤﻁﺎل ﺍﻟﻨﻘﻁﺔ ‪ M‬ﺒﺩﻻﻟﺔ ﺍﻟﺯﻤﻥ.‬
                                                               ‫ﺘﺤﻠﻴل ﺍﻟﻤﺜﺎل:‬
                  ‫‪F‬‬
            ‫=‪v‬‬      ‫1 . ﺴﺭﻋﺔ ﺍﻻﻨﺘﺸﺎﺭ ﻋﻠﻰ ﻁﻭل ﺤﺒل ﺘﻌﻁﻲ ﺒﺎﻟﻌﻼﻗﺔ:‬
                  ‫‪µ‬‬
                                                ‫4 ,0‬
         ‫= ‪ v‬ﻭﺍﻟﻨﺘﻴﺠﺔ ﺘﻜﻭﻥ: 1− ‪v = 2 m.s‬‬               ‫3−‬
                                                             ‫ﺍﻟﺘﻁﺒﻴﻕ ﺍﻟﻌﺩﺩﻱ:‬
                                             ‫01. 001‬
‫2 . ﺍﻟﻤﺩﺓ ﺍﻟﺯﻤﻨﻴﺔ ﺍﻟﺘﻲ ﻴﺴﺘﻐﺭﻗﻬﺎ ﺍﻻﻀﻁﺭﺍﺏ ﻟﻜﻲ ﻴﻘﻁﻊ ﺍﻟﻤﺴﺎﻓﺔ ‪d = SM‬‬
                                                        ‫‪d‬‬
                                                  ‫=‪τ‬‬      ‫ﺘﻌﻁﻰ ﺒﺎﻟﻌﻼﻗﺔ:‬
                                                        ‫‪v‬‬
                                             ‫1‬
                                        ‫=‪τ‬‬     ‫ﺍﻟﺘﻁﺒﻴﻕ ﺍﻟﻌﺩﺩﻱ: ‪= 0,5 s‬‬
                                             ‫2‬
    ‫‪yM‬‬
                                                            ‫3 . ﺭﺴﻡ ﺍﻟﺒﻴﺎﻥ :‬

                                    ‫) ‪t (s‬‬
    ‫‪τ = 0 ,5 s‬‬
‫2. 3. ﺘﺭﺍﻜﺏ ﻤﻭﺠﺘﻴﻨﺔ ﺠﻴﺒﻴﺘﻴﻥ : ﺍﻟﺘﺩﺍﺨل‬
‫ﻋﻨﺩﻤﺎ ﺘﻠﺘﻘﻲ ﻤﻭﺠﺘﺎﻥ ﻤﻥ ﻨﻔﺱ ﺍﻟﻨﻭﻉ ﻓﺈﻨﻬﻤﺎ ﺘﺘﺩﺍﺨﻼﻥ، ﻭﻴﻤﻜﻥ ﺍﻟﺤﺼﻭل‬
‫ﻋﻠﻰ ﺍﻟﻤﻭﺠﺔ ﺍﻟﻤﺤﺼﻠﺔ ﺒﺎﺴﺘﺨﺩﺍﻡ ﻤﺒﺩﺃ ﺍﻟﺘﺭﺍﻜﺏ. ﺇﻥ ﺍﻻﻀﻁﺭﺍﺏ ﺍﻟﻜﻠﻲ ﻓﻲ‬
‫ﺃﻱ ﻤﻜﺎﻥ ﻭﻓﻲ ﺃﻱ ﺯﻤﺎﻥ ﺘﻠﺘﻘﻲ ﻓﻴﻪ ﺍﻟﻤﻭﺠﺘﺎﻥ ﻫﻭ ﺸﻌﺎﻉ ﻤﺠﻤﻭﻉ‬
‫ﺍﻻﻀﻁﺭﺍﺒﻴﻥ ﺍﻟﻠﺫﻴﻥ ﻨﺘﺠﺎ ﻋﻥ ﻜل ﻤﻭﺠﺔ ﺒﻤﻔﺭﺩﻫﺎ. ﺇﺫﺍ ﻜﺎﻨﺕ ﻟﻠﻤﻭﺠﺘﻴﻥ ﻨﻔﺱ‬
‫ﺍﻟﺴﻌﺔ ﻭﻨﻔﺱ ﺍﻟﺘﻭﺍﺘﺭ، ﻴﻜﻭﻥ ﺍﻟﺘﺩﺍﺨل ﺇﺫﻥ ﺒﻨﺎﺀ ﻓﻲ ﻜل ﻨﻘﻁﺔ ﻤﺜﻠﻤﺎ ﻴﻅﻬﺭﻩ‬
                         ‫ﹼ‬
‫ﺍﻟﺒﻴﺎﻥ ﻜﻤﺎ ﺘﻌﺭﻀﻨﺎ ﻟﻪ ﺴﺎﺒﻘﺎ. ﻭﻓﻲ ﺤﺎﻟﺔ ﺍﻟﺘﺩﺍﺨل ﺍﻟﺒﻨﺎﺀ) ﻭﺜﻴﻘﺔ ‪ ( a‬ﺘﻜﻭﻥ‬
                  ‫ﹼ‬
‫ﺍﻟﻤﻭﺠﺘﺎﻥ ﻤﺘﻭﺍﻓﻘﺘﻴﻥ. ﻓﻲ ﺤﺎﻟﺔ ﺍﻟﺘﺩﺍﺨل ﺍﻟﻬﺩﺍﻡ )ﻭﺜﻴﻘﺔ ‪ ،(b‬ﺘﻜﻭﻥ ﺍﻟﻤﻭﺠﺘﺎﻥ‬
                           ‫ﻋﻠﻰ ﺘﻌﺎﻜﺱ ﻓﻲ ﺍﻟﻁﻭﺭ، ﺃﻱ ﺍﻟﻔﺎﺭﻕ ﺒﻴﻨﻬﻤﺎ ﻫﻭ°081.‬
            ‫اﻟﻮﺛﻴﻘﺔ )‪(a‬‬                                   ‫اﻟﻮﺛﻴﻘﺔ )‪(b‬‬


                                  ‫اﻟﻤﻮﺟﺔ 1‬                                      ‫اﻟﻤﻮﺟﺔ 1‬




                                  ‫اﻟﻤﻮﺟﺔ 2‬                                       ‫اﻟﻤﻮﺟﺔ 2‬




 ‫ﺗﺪاﺧﻞ اﻟﻤﻮﺟﺘﻴﻦ)1( و )2(. ﺗﺪاﺧﻞ ﺑﻨﺎء‬
   ‫ّ‬                                            ‫ﺗﺪاﺧﻞ اﻟﻤﻮﺟﺘﻴﻦ)1( و )2(. ﺗﺪاﺧﻞ هﺪام‬


    ‫ﻴﻤﻜﻥ ﺤﺩﻭﺙ ﺤﺎﻟﺔ ﺨﺎﺼﺔ ﻋﻨﺩﻤﺎ ﺘﻠﺘﻘﻲ ﻤﻭﺠﺘﺎﻥ ﻟﻬﻤﺎ ﺍﻟﺨﺎﺼﻴﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ:‬
                                                                      ‫– ﻨﻔﺱ ﺍﻟﺴﻌﺔ.‬
                                                                     ‫– ﻨﻔﺱ ﺍﻟﺘﻭﺍﺘﺭ.‬
                                               ‫– ﺍﻻﻨﺘﻘﺎل ﻓﻲ ﺠﻬﺘﻴﻥ ﻤﺘﻌﺎﻜﺴﺘﻴﻥ.‬
                                 ‫ﻨﺤﺼل ﻀﻤﻥ ﻫﺫﻩ ﺍﻟﺸﺭﻭﻁ ﻋﻠﻰ ﻤﻭﺠﺔ ﻤﺴﺘﻘﺭﺓ.‬
‫ﻴﺒﺩﻭ ﺃﻥ ﺍﻟﺸﺭﻭﻁ ﺍﻟﻤﻁﻠﻭﺒﺔ ﻟﻠﺤﺼﻭل ﻋل ﺍﻟﻤﻭﺠﺔ ﺍﻟﻤﺴﺘﻘﺭﺓ ﻫﻲ ﺸﺭﻭﻁ‬
‫ﺨﺎﺼﺔ، ﻭﻟﻜﻥ، ﺘﻅﻬﺭ ﻫﺫﻩ ﺍﻷﻤﻭﺍﺝ ﻓﻲ ﺍﻟﻭﺍﻗﻊ ﺒﺼﻭﺭﺓ ﻋﺎﺩﻴﺔ، ﻭﻴﺤﺼل‬
   ‫‪‬‬
‫ﻋﻠﻴﻬﺎ ﻋﻨﺩ ﺍﻨﻌﻜﺎﺱ ﻤﻭﺠﺔ ﻋﻠﻰ ﺤﺎﺠﺯ، ﻷﻥ ﺍﻟﻤﻭﺠﺔ ﺍﻟﻭﺍﺭﺩﺓ ﻭﺍﻟﻤﻭﺠﺔ‬
‫ﺍﻟﻤﻨﻌﻜﺴﺔ ﺘﺘﺩﺍﺨﻼﻥ ﻹﻋﻁﺎﺀ ﺍﻟﻤﻭﺠﺔ ﺍﻟﻤﺴﺘﻘﺭﺓ. ﻗﺩ ﺘﻜﻭﻥ ﺃﺤﺴﻥ ﻁﺭﻴﻘﺔ‬
‫ﻟﺘﺨﻴل ﻤﻭﺠﺔ ﻤﺴﺘﻘﺭﺓ ﻫﻲ ﺘﻠﻙ ﺍﻟﺘﻲ ﺘﻌﺒﺭ ﻋﻥ ﻤﻭﺠﺘﻴﻥ ﻋﺭﻀﻴﺘﻴﻥ ﺘﻨﺘﺸﺭﺍﻥ‬
                          ‫ﻓﻲ ﺠﻬﺘﻴﻥ ﻤﺘﻌﺎﻜﺴﺘﻴﻥ ﻋﻠﻰ ﻁﻭل ﺤﺒل ﻤﺸﺩﻭﺩ.‬

‫ﺍﻟﻤﻭﺠﺔ ﺍﻟﻤﺴﺘﻘﺭﺓ ﺍﻟﻨﺎﺘﺠﺔ ﻋﻥ ﻤﻭﺠﺔ ﺠﻴﺒﻴﺔ ﺒﻴﻥ ﻨﻬﺎﻴﺘﻴﻥ ﻤﻘﻴﺩﺘﻴﻥ. ﻴﺠﺏ ﺃﻥ‬
‫ﺘﻜﻭﻥ ﺍﻟﻤﺴﺎﻓﺔ ‪ L‬ﺍﻟﻔﺎﺼﻠﺔ ﺒﻴﻥ ﺍﻟﻨﻘﻁﺘﻴﻥ ﺍﻟﻤﻘﻴﺩﺘﻴﻥ ﻤﺴﺎﻭﻴﺔ ﻟﻤﻀﺎﻋﻑ 2 / ‪. λ‬‬

‫ﻫﻨﺎﻙ ﻨﻘﺎﻁ ﻋﻠﻰ ﺍﻟﺤﺒل ﺘﺒﺩﻭ ﺴﺎﻜﻨﺔ ﺩﺍﺌﻤﺎ ﺘﺩﻋﻰ ﺍﻟﻌﻘﺩ. ﺘﺩﻋﻰ ﺍﻟﻨﻘﺎﻁ ﺍﻟﺘﻲ‬
                                  ‫ﺘﻜﻭﻥ ﺴﻌﺔ ﺤﺭﻜﺘﻬﺎ ﺃﻋﻅﻤﻴﺔ ﺍﻟﺒﻁﻭﻥ.‬
                                 ‫‪L‬‬


                                          ‫2/‪λ‬‬
                    ‫ﺑﻄﻦ‬
                          ‫ﻋﻘﺪة‬

‫ﺘﺩﻋﻰ ﺍﻟﻤﻭﺠﺔ ﺍﻟﻤﺴﺘﻘﺭﺓ ﺍﻟﻤﺤﺼﻠﺔ ﺒﻬﺫﺍ ﺍﻻﺴﻡ، ﻷﻥ ﺸﻜﻠﻬﺎ ﻴﺒﺩﻭ ﺜﺎﺒﺘﺎ ﻓﻲ‬
                                      ‫ﺍﻟﻔﺭﺍﻍ، ﻭﺴﻌﺘﻬﺎ ﻫﻲ ﺍﻟﺘﻲ ﺘﺘﻐﻴﺭ.‬
‫ﺑﻄﻦ‬
     ‫‪y‬‬

                                                                         ‫‪x‬‬




               ‫ﻋﻘﺪة‬               ‫ﻋﻘﺪة‬           ‫ﻋﻘﺪة‬             ‫ﻋﻘﺪة‬
‫ﻓﻲ ﺤﺎﻟﺔ ﺁﻟﺔ ﻤﻭﺴﻴﻘﻴﺔ ﻴﺠﺏ ﺃﻥ ﻴﻜﻭﻥ ﻫﻨﺎﻙ ﻋﻨﺼﺭﺍﻥ ﻹﻨﺘﺎﺝ ﺼﻭﺕ ﻤﻭﺴﻴﻘﻲ:‬
‫ﻤﻬﺘﺯ ﻭﻤﺘﺠﺎﻭﺏ. ﻓﻲ ﺤﺎﻟﺔ ﺍﻟﻜﻤﻨﺠﺔ ﻤﺜﻼ، ﻴﻤﺜل ﻭﺘﺭ ﺍﻟﻜﻤﻨﺠﺔ ﺍﻟﻤﻬﺘﺯ، ﻭﺼﻨﺩﻭﻗﻬﺎ‬
‫ﺍﻟﺫﻱ ﻫﻭ ﻫﻴﻜل ﺍﻟﻜﻤﻨﺠﺔ ﻴﻤﺜل ﺍﻟﻤﺘﺠﺎﻭﺏ ﺍﻟﺫﻱ ﻴﻀﺨﻡ ﺍﻻﻫﺘﺯﺍﺯﺍﺕ ﻭﻴﺒﺜﻬﺎ ﻓﻲ‬
                                                                    ‫ﺍﻟﻬﻭﺍﺀ.‬
‫ﻴﺜﺒﺕ ﻭﺘﺭ ﺍﻟﻜﻤﻨﺠﺔ ﻓﻲ ﻨﻬﺎﻴﺘﻴﻥ. ﺘﻨﺸﺄ ﻤﻭﺠﺔ ﻤﺴﺘﻘﺭﺓ ﺤﻴﺙ ﺘﻜﻭﻥ ﺍﻟﻨﻘﺎﻁ ﺍﻟﺜﺎﺒﺘﺔ‬
‫ﻤﻭﺍﻓﻘﺔ ﻟﻌﻘﺩ ﺍﻻﻫﺘﺯﺍﺯ. ﺘﻜﻭﻥ ﺍﻟﻤﻭﺠﺔ ﺍﻟﻤﺴﺘﻘﺭﺓ ﻋﺒﺎﺭﺓ ﻋﻥ ﻤﺠﻤﻭﻉ ﻤﻭﺠﺔ ﻭﺍﺭﺩﺓ‬
‫ﺘﻭﺍﺘﺭﻫﺎ ‪ ، f‬ﻭﻤﻭﺠﺔ ﻤﻨﻌﻜﺴﺔ ﺒﻨﻔﺱ ﺍﻟﺘﻭﺍﺘﺭ‪ . f‬ﺘﺘﺸﻜل ﺍﻟﻤﻭﺠﺔ ﺍﻟﻤﺴﺘﻘﺭﺓ ﻋﻨﺩﻤﺎ‬
‫ﺘﻜﻭﻥ ﺍﻟﻤﺴﺎﻓﺔ ﺍﻟﻜﻠﻴﺔ ﺍﻟﻤﻘﻁﻭﻋﺔ ‪ ،2 L‬ﺍﻟﺫﻫﺎﺏ ﻭﺍﻟﻌﻭﺩﺓ ﻋﻠﻰ ﻁﻭل ﺍﻟﺤﺒل ﻤﺴﺎﻭﻴﺔ‬
                                                    ‫ﻟﻤﻀﺎﻋﻑ ﺼﺤﻴﺢ ﻟﻁﻭل‬
 ‫‪λ‬‬
‫ﺍﻟﻤﻭﺠﺔ )‪ ،(n.λ‬ﻭﺒﺘﻌﺒﻴﺭ ﺁﺨﺭ ﻴﺠﺏ ﺃﻥ ﻴﻜﻭﻥ ﻁﻭل ﺍﻟﺤﺒل‪ L‬ﻤﺴﺎﻭﻴﺎ ﻟﻤﻀﺎﻋﻑ ،‬
 ‫2‬
                                                                    ‫‪λ‬‬
‫أي ) ‪ .( L = n‬ﺇﻥ ﻫﺫﺍ ﻴﻔﺭﺽ ﻗﻴﻤﺎ ﻋﻠﻰ ﺍﻟﺘﻭﺍﺘﺭﺍﺕ‪ fn‬ﻟﻸﻤﻭﺍﺝ ﺍﻟﻤﺴﺘﻘﺭﺓ ﺍﻟﺘﻲ‬
                                                                    ‫2‬
                                            ‫ﻴﻤﻜﻥ ﺤﺩﻭﺜﻬﺎ ﺒﻴﻥ ﻨﻘﻁﺘﻴﻥ ﻤﺜﺒﺘﺘﻴﻥ.‬
                                  ‫‪v‬‬               ‫‪v‬‬               ‫‪λ‬‬
                       ‫‪fn = n‬‬       ‫‪ L = n‬ﻭﻤﻨﻪ :‬      ‫‪ L = n‬ﻭﻤﻨﻪ:‬
                                 ‫‪2L‬‬              ‫‪2f n‬‬             ‫2‬
                              ‫‪v‬‬
                      ‫= 1‪f‬‬      ‫ﻳﻜﻮن ﺗﻮاﺗﺮ اﻟﻤﻮﺟﺔ هﻮ إذن ﻣﻀﺎﻋﻔﺎ ﻟﻠﺘﻮاﺗﺮ‬
                             ‫‪2L‬‬
                              ‫ﻳﻌﻄﻲ اﻟﺠﺪول اﻟﺘﺎﻟﻲ ﻣﻘﺎرﻧﺔ ﻣﻊ اﻟﻤﻮﺟﺔ اﻟﻌﺎدﻳﺔ.‬
‫اﻟﻤﻮﺟﺔ اﻟﻤﺴﺘﻘﺮة‬                      ‫اﻟﻤﻮﺟﺔ اﻟﻌﺎدﻳﺔ‬
              ‫ﺟﻤﻴﻊ ﻧﻘﺎط اﻟﻤﻮﺟﺔ ﻟﻬﺎ ﺳﻌﺎت ﻣﺨﺘﻠﻔﺔ.‬
                                                     ‫ﺟﻤﻴﻊ ﻧﻘﺎط اﻟﻤﻮﺟﺔ ﻟﻬﺎ ﻧﻔﺲ‬
‫اﻟﺴﻌﺔ‬        ‫اﻟﺴﻌﺔ اﻟﻌﻈﻤﻰ هﻲ ‪ 2A‬ﻓﻲ اﻟﺒﻄﻮن،‬
                                                                         ‫اﻟﺴﻌﺔ‬
                         ‫ﺗﺴﺎوي اﻟﺼﻔﺮ ﻓﻲ اﻟﻌﻘﺪ.‬
                                                         ‫ﺗﻬﺘﺰ ﺟﻤﻴﻊ اﻟﻨﻘﺎط ﺑﻨﻔﺲ‬
‫اﻟﺘﻮاﺗﺮ‬           ‫ﺗﻬﺘﺰ ﺟﻤﻴﻊ اﻟﻨﻘﺎط ﺑﻨﻔﺲ اﻟﺘﻮاﺗﺮ.‬
                                                                        ‫اﻟﺘﻮاﺗﺮ‬
 ‫ﻃﻮل‬            ‫ﺗﺴﺎوي ﺿﻌﻒ اﻟﻤﺴﺎﻓﺔ ﺑﻴﻦ ﻋﻘﺪﺗﻴﻦ‬            ‫هﻲ اﻟﻤﺴﺎﻓﺔ اﻷﻗﺼﺮ ﻋﻠﻰ‬
‫اﻟﻤﻮﺟﺔ‬                  ‫ﻣﺘﺘﺎﻟﻴﺘﻴﻦ )أو ﺑﻴﻦ ﺑﻄﻨﻴﻦ(‬    ‫اﻟﻤﻮﺟﺔ ﺑﻴﻦ ﻧﻘﻄﺘﻴﻦ ﻣﺘﻮاﻗﺘﺘﻴﻦ‬
                                                       ‫ﺟﻤﻴﻊ اﻟﻨﻘﺎط اﻟﻮاﻗﻌﺔ ﻋﻠﻰ‬
          ‫ﺗﺘﺤﺮك ﺟﻤﻴﻊ اﻟﻨﻘﺎط ﺑﻴﻦ ﻋﻘﺪﺗﻴﻦ ﻣﺘﺘﺎﻟﻴﺘﻴﻦ‬
‫اﻟﻄﻮر‬                                                   ‫ﻃﻮل اﻟﻤﻮﺟﺔ ﻟﻬﺎ أﻃﻮار‬
                                      ‫ﺑﻨﻔﺲ اﻟﻄﻮر.‬
                                                                        ‫ﻣﺨﺘﻠﻔﺔ‬
              ‫اﻟﻄﺎﻗﺔ ﻟﻴﺴﺖ ﻣﻨﻘﻮﻟﺔ ﺑﻮاﺳﻄﺔ اﻟﻤﻮﺟﺔ‬
‫اﻟﻄﺎﻗﺔ‬                                         ‫اﻟﻄﺎﻗﺔ ﻣﻨﻘﻮﻟﺔ ﺑﻮاﺳﻄﺔ اﻟﻤﻮﺟﺔ‬
                     ‫وﻟﻜﻦ ﺗﻮﺟﺪ ﻃﺎﻗﺔ ﻣﻨﺴﻮﺑﺔ ﻟﻬﺎ‬

More Related Content

Featured

2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by HubspotMarius Sescu
 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTExpeed Software
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsPixeldarts
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthThinkNow
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfmarketingartwork
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024Neil Kimberley
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)contently
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024Albert Qian
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsKurio // The Social Media Age(ncy)
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Search Engine Journal
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summarySpeakerHub
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next Tessa Mero
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentLily Ray
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best PracticesVit Horky
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project managementMindGenius
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...RachelPearson36
 

Featured (20)

2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot
 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPT
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage Engineerings
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
 
Skeleton Culture Code
Skeleton Culture CodeSkeleton Culture Code
Skeleton Culture Code
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 

3 as physique3-l15

  • 1. ‫2. ﺍﻨﺘﺸﺎﺭ ﻤﻭﺠﺔ ﻤﻴﻜﺎﻨﻴﻜﻴﺔ ﺩﻭﺭﻴﺔ‬ ‫ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ‬ ‫2. 1. ﺍﻟﺩﻭﺭﻴﺔ ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﻤﻜﺎﻨﻴﺔ‬ ‫2 . 1 . 1 . ﺍﻟﺩﻭﺭﻴﺔ ﺍﻟﺯﻤﻨﻴﺔ‬ ‫2. 1. 2. ﺍﻟﺩﻭﺭﻴﺔ ﺍﻟﻤﻜﺎﻨﻴﺔ‬ ‫2. 1. 3. ﺴﺭﻋﺔ ﻭﺘﺒﺩﺩ ﺍﻟﻤﻭﺠﺔ‬ ‫2. 2 . ﺤﺎﻟﺔ ﺍﻷﻤﻭﺍﺝ ﺍﻟﺠﻴﺒﻴﺔ‬ ‫2 .3 . ﺗﺮاآﺐ ﻣﻮﺟﺘﻴﻨﺔ ﺟﻴﺒﻴﺘﻴﻦ : اﻟﺘﺪاﺧﻞ‬
  • 2. ‫2. 1. ﺍﻟﺩﻭﺭﻴﺔ ﺍﻟﺯﻤﻨﻴﺔ ﻭﺍﻟﻤﻜﺎﻨﻴﺔ‬ ‫ﺒﻴﻨﺎ ﺴﺎﺒﻘﺎ، ﻋﻨﺩ ﺍﻟﻜﻼﻡ ﻋﻥ "ﺍﻨﺘﺸﺎﺭ ﺇﺸﺎﺭﺓ"، ﺍﻟﺤﺎﻻﺕ ﺍﻟﻤﻭﺠﻴﺔ ﻤﻥ ﺨﻼل‬ ‫ﺍﻨﺘﺸﺎﺭ ﺍﻀﻁﺭﺍﺏ. ﺴﻨﺭﻯ ﺍﻵﻥ ﻜﻴﻑ ﺘﺘﺼﺭﻑ ﺍﻷﻤﻭﺍﺝ ﺍﻟﻤﺴﺘﻤﺭﺓ. ﻴﺠﺏ‬ ‫ﻋﻠﻰ ﺍﻟﻤﻭﺠﺔ ﺍﻟﻤﻴﻜﺎﻨﻴﻜﻴﺔ ﺍﻟﻤﺘﻘﺩﻤﺔ ﺃﻥ ﺘﻜﻭﻥ ﺼﺎﺩﺭﺓ ﻋﻥ ﻤﻨﺒﻊ ﺨﺎﻀﻊ ﻟﺤﺭﻜﺔ‬ ‫ﺩﻭﺭﻴﺔ ﺤﺘﻰ ﺘﺘﻤﻜﻥ ﻤﻥ ﺇﻨﺘﺎﺝ ﺍﻟﻤﻭﺠﺔ ﺍﻟﻤﺴﺘﻤﺭﺓ. ﻴﻁﻠﻕ ﻋﻠﻰ ﻫﺫﻩ ﺍﻟﻤﻭﺠﺔ ﺍﺴﻡ‬ ‫ﺍﻟﻤﻭﺠﺔ ﺍﻟﻤﺘﻘﺩﻤﺔ ﺍﻟﺩﻭﺭﻴﺔ.‬ ‫2 . 1 . 1 . ﺍﻟﺩﻭﺭﻴﺔ ﺍﻟﺯﻤﻨﻴﺔ‬ ‫ﺘﻤﺜل ﺍﻟﺼﻭﺭﺓ ﺍﻟﻤﻘﺎﺒﻠﺔ ﺘﺴﺠﻴﻼ ﻟﻠﺼﻭﺕ‬ ‫ﺍﻟﺼﺎﺩﺭ ﻋﻥ ﺁﻟﺔ ﻤﻭﺴﻴﻘﻴﺔ ﺘﻁﻠﻕ ﻨﻭﺘﺔ‬ ‫ﻤﺴﺘﻤﺭﺓ ﻭﻫﻲ ﻤﻭﺠﺔ ﺼﻭﺘﻴﺔ ﻤﺴﺘﻤﺭﺓ. ﺘﻡ‬ ‫ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﻫﺫﻩ ﺍﻟﺼﻭﺭﺓ ﺒﺭﺒﻁ‬ ‫ﻤﻴﻜﺭﻭﻓﻭﻥ ﻴﻠﺘﻘﻁ ﺍﻟﺼﻭﺕ ﺇﻟﻰ ﺭﺍﺴﻡ‬ ‫ﺍﻫﺘﺯﺍﺯ. ﻓﻴﺯﻴﺎﺌﻴﺎ، ﺘﻘﻭﻡ ﺍﻵﻟﺔ ﺍﻟﻤﻭﺴﻴﻘﻴﺔ ﺒﺈﺭﺴﺎل ﻤﻭﺠﺎﺕ ﺩﻭﺭﻴﺔ، ﺩﻭﺭﻫﺎ‬ ‫‪T‬ﻓﻲ ﺍﻟﻬﻭﺍﺀ. ﺘﺒﻴﻥ ﺍﻟﻘﻤﻡ ﻭﺍﻟﻤﻨﺨﻔﻀﺎﺕ ﻓﻲ ﺍﻟﺼﻭﺭﺓ ﻤﻭﺍﻗﻊ ﺍﻻﻨﻀﻐﺎﻁ‬ ‫ﻭﺍﻟﺘﻤﺩﺩ ﺨﻼل ﺍﻻﻨﺘﺸﺎﺭ. ﺘﻜﻭﻥ ﺍﻟﺤﺭﻜﺔ ﺩﻭﺭﻴﺔ ﺇﺫﺍ ﺘﻜﺭﺭﺕ ﻤﻤﺎﺜﻠﺔ ﻟﻨﻔﺴﻬﺎ‬ ‫ﻓﻲ ﻓﺘﺭﺍﺕ ﺯﻤﻨﻴﺔ ﻤﺘﺴﺎﻭﻴﺔ ﻭﻤﺘﻌﺎﻗﺒﺔ، ﺘﺩﻋﻰ ﻫﺫﻩ ﺍﻟﻔﺘﺭﺓ ﺍﻟﺯﻤﻨﻴﺔ ‪ T‬ﺩﻭﺭ‬ ‫1‬ ‫= ‪ f‬ﺍﻟﺘﻭﺍﺘﺭ. ﻴﻌﺒﺭ ﻋﻨﻪ ﺒﺎﻟﻬﻴﺭﺘﺯ )‪ (Hz‬ﺇﺫﺍ‬ ‫ﺍﻟﺤﺭﻜﺔ. ﻴﺩﻋﻰ ﻤﻘﻠﻭﺏ ﺍﻟﺩﻭﺭ‬ ‫‪T‬‬ ‫ﻜﺎﻥ ﺍﻟﺩﻭﺭ ﺒﺎﻟﺜﺎﻨﻴﺔ )‪.(s‬‬ ‫ﺘﻤﺜل ﺍﻟﻭﺜﻴﻘﺔ ﺍﻟﺘﺎﻟﻴﺔ ﺘﻐﻴﺭ ﺍﻟﻤﻁﺎل )‪ u(t‬ﻟﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻭﺴﻁ ﺘﺘﺄﺜﺭ ﺒﺎﻀﻁﺭﺍﺏ‬ ‫ﻴﺭﺩﻫﺎ ﻤﻥ ﻤﻨﺒﻊ ﻤﻌﻴﻥ :‬
  • 3. ‫‪u‬‬ ‫‪T = 0,5 s‬‬ ‫‪T = 0,5 s T = 0,5 s‬‬ ‫5,0‬ ‫0,1‬ ‫5,1‬ ‫)‪t (s‬‬ ‫ﺇﻥ ﺩﻭﺭ ﻤﻭﺠﺔ ﻤﺘﻘﺩﻤﺔ ﺩﻭﺭﻴﺔ ‪ T‬ﻫﻭ ﺃﻗﺼﺭ ﻤﺩﺓ ﻻﺯﻤﺔ ﻟﻨﻘﻁﺔ ﻤﻥ ﻭﺴﻁ‬ ‫ﺍﻻﻨﺘﺸﺎﺭ ﻟﻜﻲ ﺘﺘﻭﺍﺠﺩ ﻤﻥ ﺠﺩﻴﺩ ﻓﻲ ﻨﻔﺱ ﺍﻟﺤﺎﻟﺔ.‬ ‫2 . 1 . 2 . ﺍﻟﺩﻭﺭﻴﺔ ﺍﻟﻤﻜﺎﻨﻴﺔ‬ ‫ﺘﻤﺘﻠﻙ ﺍﻷﻤﻭﺍﺝ ﺍﻟﻤﺘﻘﺩﻤﺔ ﺍﻟﺩﻭﺭﻴﺔ ﺃﻴﻀﺎ ﺩﻭﺭﺍ ﻤﻜﺎﻨﻴﺎ. ﻴﻤﻜﻥ ﺘﺒﻴﺎﻥ ﻫﺫﻩ‬ ‫ﺍﻟﻅﺎﻫﺭﺓ ﺒﺒﺴﺎﻁﺔ ﺒﺎﺴﺘﻌﻤﺎل ﻤﻭﻟﺩﺍ ﻟﻠﺘﻭﺍﺘﺭﺍﺕ ﺍﻟﻤﻨﺨﻔﻀﺔ ﻭﻤﻜﺒﺭﺍ ﻟﻠﺼﻭﺕ‬ ‫ﻭﻤﻴﻜﺭﻭﻓﻭﻨﺎﻥ ﻭﺭﺍﺴﻡ ﺍﻫﺘﺯﺍﺯ ﻭﻤﺴﻁﺭﺓ ﻤﺩﺭﺠﺔ.‬ ‫– ﻨﺭﺒﻁ ﻤﻭﻟﺩ ﺍﻟﺘﻭﺍﺘﺭﺍﺕ ﺍﻟﻤﻨﺨﻔﻀﺔ ﺒﻤﻜﺒﺭ ﺍﻟﺼﻭﺕ ﺒﻌﺩ ﻀﺒﻁﻪ ﻋﻠﻰ ﺘﻭﺍﺘﺭ‬ ‫ﻗﻴﻤﺘﻪ ﺒﻀﻌﺔ ﻫﻴﺭﺘﺯﺍﺕ.‬ ‫– ﻨﺼل ﺍﻟﻤﻴﻜﺭﻭﻓﻭﻨﻴﻥ ﺒﻤﺩﺨﻠﻲ ﺭﺍﺴﻡ ﺍﻻﻫﺘﺯﺍﺯ.‬ ‫– ﻨﻀﻊ ﺍﻟﻤﻴﻜﺭﻭﻓﻭﻨﻴﻥ)1‪ M‬ﻭ 2‪ (M‬ﺠﻨﺒﺎ ﺇﻟﻰ ﺠﻨﺏ ﻜﻤﺎ ﻫﻭ ﻤﺒﻴﻥ ﻋﻠﻰ ﺍﻟﻭﺜﻴﻘﺔ‬ ‫ﺍﻟﺘﺎﻟﻴﺔ :‬ ‫1‪M‬‬ ‫1‪y‬‬ ‫ﻣﻜﺒﺮ اﻟﺼﻮت‬
  • 4. ‫ﻨﺤﺼل ﻤﻥ ﺸﺎﺸﺔ ﺭﺍﺴﻡ ﺍﻻﻫﺘﺯﺍﺯ ﻓﻨﺤﺼل ﻋﻠﻰ ﺍﻟﻭﺜﻴﻘﺔ ﺍﻟﺘﺎﻟﻴﺔ :‬ ‫‪0.2 ms / div‬‬ ‫– ﻨﺘﺭﻙ ﺍﻟﻤﻴﻜﺭﻭﻓﻭﻥ 1‪ M‬ﻭﻨﺒﻌﺩ ﺍﻟﻤﻴﻜﺭﻭﻓﻭﻥ 2‪ M‬ﺒﺒﻁﺀ ﺤﺘﻰ ﻭﻀﻊ ﻤﻌﻴﻥ‬ ‫ﻜﻤﺎ ﺘﺒﻴﻨﻪ ﺍﻟﻭﺜﻴﻘﺔ ﺍﻟﺘﺎﻟﻴﺔ :‬ ‫‪d = 19 cm‬‬ ‫‪d‬‬ ‫ﻧﺤﺼﻞ ﻣﻦ ﺷﺎﺷﺔ راﺳﻢ اﻻهﺘﺰاز اﻟﻤﻬﺒﻄﻲ ﻋﻠﻰ اﻟﻮﺛﻴﻘﺔ اﻟﺘﺎﻟﻴﺔ:‬ ‫‪0 . 2 ms / div‬‬ ‫ﻨﺴﺤﺏ ﻤﻥ ﺠﺩﻴﺩ ﺍﻟﻤﻴﻜﺭﻭﻓﻭﻥ 2‪ M‬ﺇﻟﻰ ﻭﻀﻊ ﺁﺨﺭ ﻜﻤﺎ ﻫﻭ ﻤﺒﻴﻥ ﻋﻠﻰ ﺍﻟﻭﺜﻴﻘﺔ‬ ‫ﺍﻟﺘﺎﻟﻴﺔ:‬
  • 5. ‫‪d = 34 cm‬‬ ‫‪d‬‬ ‫ﻨﺤﺼل ﻤﻥ ﺸﺎﺸﺔ ﺭﺍﺴﻡ ﺍﻻﻫﺘﺯﺍﺯ ﺍﻟﻤﻬﺒﻁﻲ ﻋﻠﻰ ﺍﻟﻭﺜﻴﻘﺔ ﺍﻟﺘﺎﻟﻴﺔ :‬ ‫‪0 .2 ms / div‬‬ ‫ﻋﻨﺩﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻤﻴﻜﺭﻭﻓﻭﻨﺎﻥ ﻤﻭﻀﻭﻋﻴﻥ ﺒﺠﻭﺍﺭ ﺒﻌﻀﻬﻤﺎ، ﻨﺸﺎﻫﺩ ﻋﻠﻰ ﺸﺎﺸﺔ‬ ‫ﺭﺍﺴﻡ ﺍﻻﻫﺘﺯﺍﺯ ﻤﻭﺠﺘﻴﻥ ﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻟﺩﻭﺭ، ﺒﺤﻴﺙ ﻴﺘﻡ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﺍﻟﻘﻴﻡ‬ ‫ﺍﻷﺼﻐﺭﻴﺔ ﻟﻬﺎ ﻓﻲ ﻨﻔﺱ ﺍﻟﻭﻗﺕ، ﻭﻟﻬﺎﺘﻴﻥ ﺍﻟﻤﻭﺠﺘﻴﻥ ﺍﻟﺩﻭﺭ ﻨﻔﺴﻪ ﻷﻨﻬﻤﺎ‬ ‫ﻴﻌﺘﺒﺭﺍﻥ ﻤﻨﺒﻌﻴﻥ ﻤﻥ ﺍﻟﻤﻨﺒﻊ ﻨﻔﺴﻪ. ﻋﻨﺩ ﺇﺒﻌﺎﺩ ﺍﻟﻤﻴﻜﺭﻭﻓﻭﻥ 2‪ M‬ﺒﺒﻁﺀ، ﻓﺈﻥ‬ ‫ﺍﻹﺸﺎﺭﺘﻴﻥ ﺘﻔﺘﺭﻗﺎﻥ ﺃﻓﻘﻴﺎ، ﻭﻴﻜﺒﺭ ﺍﻟﻔﺎﺭﻕ ﻤﻊ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ﺍﻟﻤﻴﻜﺭﻭﻓﻭﻨﻴﻥ.‬ ‫ﻴﻜﻭﻥ ﻟﻺﺸﺎﺭﺘﻴﻥ ﻨﻔﺱ ﺍﻟﻁﻭﺭ ﻤﻥ ﺠﺩﻴﺩ ﻋﻠﻰ ﻤﺴﺎﻓﺔ ﻤﻌﻴﻨﺔ ﺨﺎﺼﺔ. ﺇﻀﺎﻓﺔ‬ ‫ﺇﻟﻰ ﻫﺫﺍ ﻨﻼﺤﻅ ﺃﻥ ﺍﻹﺸﺎﺭﺘﻴﻥ ﻴﻜﻭﻥ ﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻟﻁﻭﺭ ﻋﻨﺩ ﻤﺴﺎﻓﺎﺕ‬ ‫ﻤﻀﺎﻋﻔﺔ ﻟﻬﺫﺍ ﺍﻟﻤﻭﻀﻊ ﺍﻟﺨﺎﺹ. ﺘﺩﻋﻰ ﻫﺫﻩ ﺍﻟﻤﺴﺎﻓﺔ ﻁﻭل ﺍﻟﻤﻭﺠﺔ ﻭ ﻴﺭﻤﺯ‬ ‫ﻟﻬﺎ ﺒﺎﻟﺭﻤﺯ ‪ .λ‬ﻴﺸﻜل ﻫﺫﺍ ﺍﻟﺩﻭﺭﻴﺔ ﺍﻟﻤﻜﺎﻨﻴﺔ ﻟﻠﻤﻭﺠﺔ ﺍﻟﺼﻭﺘﻴﺔ.‬
  • 6. ‫ﻟﻠﻤﻭﺠﺔ ﺍﻟﻤﺘﻘﺩﻤﺔ ﺩﻭﺭﺍﻥ:‬ ‫– ﺩﻭﺭ ﺯﻤﻨﻲ ﻴﺩﻋﻰ ﺍﻟﺩﻭﺭ‪. T‬‬ ‫– ﺩﻭﺭ ﻤﻜﺎﻨﻲ ﻴﺩﻋﻰ ﻁﻭل ﺍﻟﻤﻭﺠﺔ‪.λ‬‬ ‫2 . 1 . 3 . ﺴﺭﻋﺔ ﻭﺘﺒﺩﺩ ﺍﻟﻤﻭﺠﺔ‬ ‫ﻋﻨﺩﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻤﻴﻜﺭﻭﻓﻭﻥ2‪ M‬ﻤﻭﺠﻭﺩﺍ ﻋﻠﻰ ﺒﻌﺩ ‪ d‬ﻤﻥ ﺍﻟﻤﻴﻜﺭﻭﻓﻭﻥ1‪ ، M‬ﻓﺈﻥ‬ ‫ﺍﻟﻤﻭﺠﺔ ﺍﻟﻤﻠﺘﻘﻁﺔ ﻤﻥ ﻁﺭﻑ ﺍﻟﻤﻴﻜﺭﻭﻓﻭﻥ ﺘﻜﻭﻥ ﻤﺘﺄﺨﺭﺓ ﺒﺯﻤﻥ ‪ τ‬ﺒﺎﻟﻨﺴﺒﺔ‬ ‫ﻟﻠﻤﻭﺠﺔ ﺍﻟﻤﻠﺘﻘﻁﺔ ﻤﻥ ﻁﺭﻑ 2‪ ،M‬ﺇﺫﺍ ﻜﺎﻨﺕ ﺴﺭﻋﺔ ﺍﻨﺘﺸﺎﺭ ﺍﻟﻤﻭﺠﺔ ‪ v‬ﻴﻤﻜﻥ‬ ‫‪d‬‬ ‫= ‪.v‬‬ ‫ﻜﺘﺎﺒﺔ:‬ ‫‪τ‬‬ ‫ﺘﻜﻭﻥ ﺍﻟﻤﻭﺠﺘﺎﻥ ﻤﺘﻭﺍﻓﻘﺘﻴﻥ ﺇﺫﺍ ﻜﺎﻥ ﺍﻟﺘﺄﺨﺭ ﻤﺴﺎﻭﻴﺎ ﻟﻠﺩﻭﺭ‪. T‬‬ ‫ﻴﻜﻭﻥ ﻟﺩﻴﻨﺎ ﺇﺫﻥ : ‪.λ= v.T‬‬ ‫ﺇﻥ ﺍﻟﺩﻭﺭ ﻭﺍﻟﺘﻭﺍﺘﺭ ﻤﻥ ﻤﻤﻴﺯﺍﺕ ﺍﻟﻤﻭﺠﺔ ﺍﻟﻤﻨﺒﻌﺜﺔ، ﻭﻻ ﻴﺘﻌﻠﻘﺎﻥ ﺒﻭﺴﻁ‬ ‫ﺍﻻﻨﺘﺸﺎﺭ.‬ ‫ﻟﻘﺩ ﺭﺃﻴﻨﺎ ﻓﻲ ﺍﻟﺴﺎﺒﻕ ﺃﻥ ﺴﺭﻋﺔ ﺍﻨﺘﺸﺎﺭ ﺍﻟﻤﻭﺠﺔ ﺘﺘﻌﻠﻕ ﺒﺎﻟﻭﺴﻁ، ﻤﺜﻼ ﺘﻜﻭﻥ‬ ‫‪λ‬‬ ‫=‪v‬‬ ‫ﺍﻟﻤﻭﺠﺔ ﺃﺴﺭﻉ ﻓﻲ ﺍﻟﻤﺎﺀ ﻤﻨﻬﺎ ﻓﻲ ﺍﻟﻬﻭﺍﺀ. ﺘﺒﻴﻥ ﺇﺫﻥ ﺍﻟﻌﻼﻗﺔ: ‪= λ ⋅ f‬‬ ‫‪T‬‬ ‫ﺒﺄﻥ ﻁﻭل ﺍﻟﻤﻭﺠﺔ ﻴﺭﺘﺒﻁ ﺒﻭﺴﻁ ﺍﻻﻨﺘﺸﺎﺭ.‬ ‫ﺘﺘﻌﻠﻕ ﺴﺭﻋﺔ ﺍﻨﺘﺸﺎﺭ ﺍﻟﻤﻭﺠﺔ ﺒﺎﻟﻭﺴﻁ )ﻫﻭﺍﺀ، ﻤﺎﺀ( ﻭﺒﺸﺩﺓ ﺍﻟﻤﻭﺠﺔ. ﻜﻤﺎ ﺃﻨﻬﺎ‬ ‫ﻴﻤﻜﻥ ﺃﻥ ﺘﺭﺘﺒﻁ ﺒﺎﻟﺘﻭﺍﺘﺭ. ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻨﻘﻭل ﺇﻥ ﺍﻟﻭﺴﻁ ﻤﺒﺩﺩ.‬ ‫‪‬‬ ‫ﺒﺎﻟﻨﺴﺒﺔ ﻟﻸﻤﻭﺍﺝ ﺍﻟﺼﻭﺘﻴﺔ ﺍﻟﺼﺎﺩﺭﺓ ﻋﻥ‬ ‫ﺍﻵﻻﺕ ﺍﻟﻤﻭﺴﻴﻘﻴﺔ )ﺍﻟﻭﺜﻴﻘﺔ ﺍﻟﻤﻘﺎﺒﻠﺔ(، ﻻ‬ ‫ﻴﻌﺘﺒﺭ ﺍﻟﻬﻭﺍﺀ ﻭﺴﻁﺎ ﻤﺒﺩﺩﺍ ﺨﻼل ﻋﺯﻑ‬ ‫ﺴﻨﻔﻭﻨﻲ، ﻷﻥ ﺍﻷﺼﻭﺍﺕ ﺍﻟﺤﺎﺩﺓ ﻭﺍﻟﻐﻠﻴﻅﺔ‬
  • 7. ‫ﺘﺼل ﺇﻟﻰ ﻤﺴﺎﻤﻌﻨﺎ ﻓﻲ ﻨﻔﺱ ﺍﻟﻭﻗﺕ.‬ ‫ﻋﻜﺱ ﺫﻟﻙ ﻋﻨﺩﻤﺎ ﺘﻜﻭﻥ ﺍﻟﺸﺩﺓ ﻋﺎﻟﻴﺔ ﺠﺩﺍ )ﺍﻟﺼﺎﻋﻘﺔ(، ﻴﺼﺒﺢ ﺍﻟﻬﻭﺍﺀ ﻭﺴﻁﺎ‬ ‫ﻤﺒﺩﺩﺍ ﻷﻥ ﺴﺭﻋﺔ ﺍﻟﺼﻭﺕ ﺘﺼﺒﺢ ﻤﺭﺘﺒﻁﺔ ﺒﺎﻟﺘﻭﺍﺘﺭ. ﺒﺎﻟﻘﺭﺏ ﻤﻥ ﺍﻟﺒﺭﻕ‬ ‫ﻨﺴﻤﻊ ﺼﻭﺘﺎ ﻤﻀﺭﺍ ﺠﺩﺍ. ﻟﻜﻥ ﺒﻌﻴﺩﺍ ﻋﻥ ﺍﻟﺒﺭﻕ ﻨﺴﻤﻊ ﺼﻭﺘﺎ ﻤﺴﺘﻤﺭﺍ ﻴﺯﺩﺍﺩ‬ ‫ﻏﻠﻅﺔ. ﺸﺭﺡ ﺫﻟﻙ ﺃﻥ ﺍﻟﺼﺎﻋﻘﺔ ﺘﻜﻭﻥ ﻤﺸ ﱠﻠﺔ ﻤﻥ ﺃﻤﻭﺍﺝ ﺼﻭﺘﻴﺔ ﺫﺍﺕ‬ ‫ﹶﻜ‬ ‫ﺃﻥ‬ ‫ﺃﻱ‬ ‫ﻤﻨﺨﻔﻀﺔ،‬ ‫ﺘﻭﺍﺘﺭﺍﺕ‬ ‫ﺍﻷﺼﻭﺍﺕ ﺍﻟﻐﻠﻴﻅﺔ ﺘﻨﺘﺸﺭ ﺒﺒﻁﺀ‬ ‫ﺫﺍﺕ‬ ‫ﺍﻟﺤﺎﺩﺓ‬ ‫ﺘﻠﻙ‬ ‫ﻤﻥ‬ ‫ﺃﻜﺜﺭ‬ ‫ﺍﻟﺘﻭﺍﺘﺭﺍﺕ ﺍﻷﻋﻠﻰ. ﺘﺼل ﺍﻷﺼﻭﺍﺕ‬ ‫ﺍﻟﺨﺸﻨﺔ ﺇﻟﻰ ﻤﺴﺎﻤﻌﻨﺎ ﻓﻲ ﺍﻷﺨﻴﺭ، ﻫﺫﻩ‬ ‫ﺘﻀﺨﻴﻡ‬ ‫ﺇﻟﻰ‬ ‫ﻴﺅﺩﻱ‬ ‫ﺍﻟﺫﻱ‬ ‫ﻫﻭ‬ ‫ﺍﻟﺼﺎﻋﻘﺔ.‬ ‫ﺃﻤﺎ ﺍﻟﻤﺎﺀ ﻓﺈﻨﻪ ﻋﻠﻰ ﺍﻟﻌﻜﺱ ﻴﻌﺘﺒﺭ ﻭﺴﻁﺎ ﻤﺒﺩﺩﺍ. ﺇﺫﺍ ﺘﻡ ﺇﺤﺩﺍﺙ ﻤﻭﺠﺔ ﻋﻠﻰ‬ ‫ﺴﻁﺢ ﺍﻟﻤﺎﺀ ﻓﻲ ﺤﻭﺽ، ﻭﺘﻡ ﻗﻴﺎﺱ ﻁﻭل ﺍﻟﻤﻭﺠﺔ ﻤﻥ ﺃﺠل ﻋﺩﺓ ﺘﻭﺍﺘﺭﺍﺕ‬ ‫ﻻﻫﺘﺯﺍﺯ ﺍﻟﻤﻨﺒﻊ، ﻨﻼﺤﻅ ﺃﻥ ﺴﺭﻋﺔ ﺍﻻﻨﺘﺸﺎﺭ ‪ v = λ ⋅ f‬ﺘﺘﻐﻴﺭ ﻤﻥ ﺍﺠل ﻗﻴﻡ‬ ‫ﻤﺨﺘﻠﻔﺔ ﻟﻠﺘﻭﺍﺘﺭ.‬
  • 8. ‫2 . 2 . ﺤﺎﻟﺔ ﺍﻷﻤﻭﺍﺝ ﺍﻟﺠﻴﺒﻴﺔ‬ ‫ﺇﻥ ﺍﻟﻤﻭﺠﺔ ﺍﻟﺠﻴﺒﻴﺔ ﻫﻲ ﺍﻟﻤﻭﺠﺔ ﺍﻟﺘﻲ ﺘﻜﻭﻥ ﺤﺭﻜﺘﻬﺎ ﻤﺴﻴﺭﺓ ﺒﺩﺍﻟﺔ ﺠﻴﺒﻴﺔ.‬ ‫ﺘﻭﺠﺩ ﻋﺒﺎﺭﺕ ﻀﺭﻭﺭﻴﺔ ﻴﺠﺏ ﺘﻌﺭﻴﻔﻬﺎ ﻟﻠﺘﻤﻜﻥ ﻤﻥ ﺘﺤﻠﻴل ﺤﺭﻜﺔ ﻤﻭﺠﺔ‬ ‫ﺠﻴﺒﻴﺔ ﺒﺩﻗﺔ ﺃﻜﺒﺭ. ﻴﺸﺭﺡ ﺍﻟﺠﺩﻭل ﺍﻟﺘﺎﻟﻲ ﻜل ﺍﻟﺤﺩﻭﺩ. ﺒﻤﺎ ﺃﻥ ﺍﻷﺸﻜﺎل ﺍﻟﺠﻴﺒﻴﺔ‬ ‫ﺘﺒﺩﻭ ﻤﺘﺴﺎﻭﻴﺔ، ﻴﺠﺏ ﻋﻠﻴﻨﺎ ﻤﻼﺤﻅﺔ ﻤﺤﺎﻭﺭ ﺍﻟﺒﻴﺎﻨﻴﻥ ﺒﻌﻨﺎﻴﺔ.‬ ‫– ﻴﻤﺜل ﻤﻨﺤﻨﻰ ﺍﻻﻨﺘﻘﺎل ﺒﺩﻻﻟﺔ ﺍﻟﺯﻤﻥ ﺍﻫﺘﺯﺍﺯﺍﺕ ﻨﻘﻁﺔ ﻋﻠﻰ ﺍﻟﻤﻭﺠﺔ، ﻤﺜﻼ‬ ‫ﻤﺭﻜﺏ ﻋﻠﻰ ﻤﻭﺠﺔ ﺤﺎﺩﺓ، ﺘﻬﺘﺯ ﺠﻤﻴﻊ ﺍﻟﻨﻘﺎﻁ ﺍﻷﺨﺭﻯ ﻤﻥ ﺍﻟﻭﺴﻁ ﺒﻨﻔﺱ‬ ‫ﺍﻟﻁﺭﻴﻘﺔ، ﻭﻟﻜﻨﻬﺎ ﻻ ﺘﺒﺩﺃ ﺍﻟﺤﺭﻜﺔ ﻓﻲ ﻨﻔﺱ ﺍﻟﻭﻗﺕ ﺒﺎﻟﻀﺒﻁ.‬ ‫– ﻤﻨﺤﻨﻰ ﺍﻻﻨﺘﻘﺎل ﺒﺩﻻﻟﺔ ﺍﻟﻤﻭﻀﻊ ﺍﻟﺫﻱ ﻴﻤﺜل ﺼﻭﺭﺓ ﺠﻤﻴﻊ ﺍﻟﻨﻘﺎﻁ ﻋﻠﻰ‬ ‫ﻁﻭل ﺍﻟﺤﺒل ﻓﻲ ﻟﺤﻅﺔ ﻤﻌﻴﻨﺔ، ﻭﻓﻲ ﻟﺤﻅﺔ ﺒﻌﺩﻫﺎ ﺘﻜﻭﻥ ﺍﻟﻤﻭﺠﺔ ﻗﺩ ﺘﻘﺩﻤﺕ،‬ ‫ﻭﻟﻜﻨﻬﺎ ﺘﺤﺎﻓﻅ ﻋﻠﻰ ﻨﻔﺱ ﺍﻟﺸﻜل. ﺘﻤﺜل ﺍﻟﻭﺜﻴﻘﺔ ﺍﻟﺘﺎﻟﻴﺔ ﺘﻘﺩﻡ ﻤﻭﺠﺔ ﺠﻴﺒﻴﺔ ﻋﻠﻰ‬ ‫ﻁﻭل ﺤﺒل:‬ ‫‪A‬‬ ‫0=‪t‬‬ ‫‪A‬‬ ‫‪T‬‬ ‫=‪t‬‬ ‫4‬ ‫‪A‬‬ ‫‪T‬‬ ‫=‪t‬‬ ‫2‬ ‫‪3T‬‬ ‫=‪t‬‬ ‫‪A‬‬ ‫4‬ ‫‪B‬‬ ‫‪A‬‬ ‫‪t=T‬‬ ‫‪λ = vT‬‬ ‫‪A‬‬ ‫‪10 T‬‬ ‫=‪t‬‬ ‫4‬
  • 9. ‫– ﻴﻤﻜﻥ ﺍﺴﺘﺨﺩﺍﻡ ﻫﺫﻩ ﺍﻟﺒﻴﺎﻨﺎﺕ ﻟﺘﻤﺜﻴل ﺍﻷﻤﻭﺍﺝ ﺍﻟﻁﻭﻟﻴﺔ ﻭﺍﻷﻤﻭﺍﺝ ﺍﻟﻌﺭﻀﻴﺔ‬ ‫ﻷﻥ ﺍﻟﻤﺤﻭﺭ ﻴﻤﺜل ﻓﻘﻁ ﻗﻴﻤﺔ ﻻﻨﺘﻘﺎل. ﺇﺫﺍ ﻜﺎﻥ ﺍﻻﻨﺘﻘﺎل ﻤﻤﺎﺴﺎ ﻻﺘﺠﺎﻩ ﺍﻨﺘﺸﺎﺭ‬ ‫ﻁﺎﻗﺔ ﺍﻟﻤﻭﺠﺔ، ﺘﻜﻭﻥ ﺍﻟﻤﻭﺠﺔ ﻁﻭﻟﻴﺔ. ﻭﻓﻲ ﺤﺎﻟﺔ ﻤﺎ ﺇﺫﺍ ﻜﺎﻥ ﺍﻻﻨﺘﻘﺎل ﻋﻤﻭﺩﻴﺎ‬ ‫ﻋﻠﻰ ﺍﺘﺠﺎﻩ ﺍﻨﺘﺸﺎﺭ ﻁﺎﻗﺔ ﺍﻟﻤﻭﺠﺔ ﺘﻜﻭﻥ ﺍﻟﻤﻭﺠﺔ ﻋﺭﻀﻴﺔ.‬ ‫ﺍﻟﺭﻤﺯ ﺍﻟﻌﺒﺎﺭﺓ‬ ‫ﺍﻟﺘﻌﺭﻴﻑ‬ ‫ﻴﻘﻴﺱ ﺍﻟﺘﻐﻴﺭ ﺍﻟﺫﻱ ﻭﻗﻊ ﻨﺘﻴﺠﺔ ﻤﺭﻭﺭ ﺍﻟﻤﻭﺠﺔ ﻓﻲ ﻨﻘﻁﺔ ﺨﺎﺼﺔ‬ ‫ﺍﻻﻨﺘﻘﺎل‬ ‫‪y‬‬ ‫ﺒﺎﻟﻨﺴﺒﺔ ﻟﻸﻤﻭﺍﺝ ﺍﻟﻤﻴﻜﺎﻨﻴﻜﻴﺔ، ﻴﻜﻭﻥ ﺍﻻﻨﺘﻘﺎل ﻫﻭ ﺍﻟﻤﺴﺎﻓﺔ ﺒﺎﻟﻤﺘﺭ‬ ‫ﺍﻟﺘﻲ ﻴﻘﻁﻌﻬﺎ ﺍﻟﺠﺴﻡ ﺍﻨﻁﻼﻗﺎ ﻤﻥ ﻭﻀﻌﻪ ﺍﻻﺒﺘﺩﺍﺌﻲ ﻗﺒل ﺍﻻﻀﻁﺭﺍﺏ.‬ ‫ﺇﻨﻪ ﺍﻻﻨﺘﻘﺎل ﺍﻷﻋﻅﻤﻲ ﺍﻨﻁﻼﻗﺎ ﻤﻥ ﺍﻟﻤﻭﻀﻊ ﺍﻟﻭﺴﻁﻲ. ﺇﺫﺍ ﻟﻡ ﻴﻔﻘﺩ‬ ‫ﺍﻟﺴﻌﺔ‬ ‫‪A‬‬ ‫ﺍﻟﺠﺴﻡ ﻁﺎﻗﺘﻪ ﻓﺈﻥ ﺍﻟﺴﻌﺔ ﺘﺒﻘﻰ ﺜﺎﺒﺘﺔ.‬ ‫ﺍﻟﺩﻭﺭ‬ ‫‪T‬‬ ‫ﺇﻨﻪ ﺍﻟﺯﻤﻥ ﺒﺎﻟﺜﺎﻨﻴﺔ ﻹﻨﺠﺎﺯ ﺍﻫﺘﺯﺍﺯﺓ ﻜﺎﻤﻠﺔ ﻟﻠﻤﺭﻭﺭ ﺒﻨﻘﻁﺔ ﻤﻌﻴﻨﺔ.‬ ‫ﺇﻨﻪ ﻋﺩﺩ ﺍﻻﻫﺘﺯﺍﺯﺍﺕ ﺍﻟﻤﻨﺠﺯﺓ ﻓﻲ ﺍﻟﺜﺎﻨﻴﺔ. ﺍﻟﻭﺤﺩﺓ ﺍﻟﻤﺴﺘﻌﻤﻠﺔ ﻫﻲ‬ ‫ﺍﻟﺘﻭﺍﺘﺭ‬ ‫‪f‬‬ ‫ﻫﻴﺭﺘﺯ )‪ .(Hz‬ﺘﻭﺍﺘﺭ‪ 50Hz‬ﻫﻴﺭﺘﺯ ﻴﻌﻨﻲ ﺃﻥ ﺨﻤﺴﻴﻥ ﺍﻫﺘﺯﺍﺯﺓ‬ ‫ﺘﺤﻘﻘﺕ ﻓﻲ ﻜل ﺜﺎﻨﻴﺔ.‬ ‫ﺇﻨﻬﺎ ﺃﻗﺼﺭ ﻤﺴﺎﻓﺔ ﻋﻠﻰ ﻁﻭل ﺍﻟﻤﻭﺠﺔ ﺒﻴﻥ ﻨﻘﻁﺘﻴﻥ ﻤﺘﻭﺍﻓﻘﺘﻴﻥ.‬ ‫"ﺍﻟﺘﻭﺍﻓﻕ" ﻴﻌﻨﻲ ﺃﻥ ﺍﻟﻨﻘﻁﺘﻴﻥ ﺘﺘﺤﺭﻜﺎﻥ ﺒﻨﻔﺱ ﺍﻟﻁﺭﻴﻘﺔ ﻓﻲ ﺍﻟﻔﻀﺎﺀ‬ ‫ﻁﻭل‬ ‫‪λ‬‬ ‫ﻭﻓﻲ ﺍﻟﺯﻤﻥ. ﻤﺜﻼ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ﻗﻤﺔ ﻭﺃﺨﺭﻯ ﺒﻴﻥ ﻤﻭﺠﺘﻴﻥ ﺃﻭ‬ ‫ﺍﻟﻤﻭﺠﺔ‬ ‫ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ﺍﻨﻀﻐﻁ ﻭﺁﺨﺭ ﻓﻲ ﺍﻷﻤﻭﺍﺝ ﺍﻟﺼﻭﺘﻴﺔ ﺘﻤﺜل ﺃﻁﻭﺍل‬ ‫ﻤﻭﺠﺎﺕ.‬ ‫ﺴﺭﻋﺔ‬ ‫ﺇﻨﻬﺎ ﺍﻟﺴﺭﻋﺔ)1-‪ (m.s‬ﺍﻟﺘﻲ ﺘﻤﺭ ﺒﻬﺎ ﺠﺒﻬﺔ ﺍﻟﻤﻭﺠﺔ ﺃﻤﺎﻡ ﻤﻼﺤﻅ‬ ‫ﺍﻨﺘﺸﺎﺭ‬ ‫‪v‬‬ ‫ﺴﺎﻜﻥ.‬ ‫ﺍﻟﻤﻭﺠﺔ‬
  • 10. ‫ﻴﺸﻜل ﺩﻭﺭ ﻭﺘﻭﺍﺘﺭ ﻤﻭﺠﺔ ﻤﻘﻠﻭﺏ ﺒﻌﻀﻬﻤﺎ ﺍﻟﺒﻌﺽ. ﻓﻤﺜﻼ ﺇﺫﺍ ﻜﺎﻥ ﺍﻟﺘﻭﺍﺘﺭ‬ ‫1‬ ‫1‬ ‫ﺜﺎﻨﻴﺔ.‬ ‫ﻴﺴﺎﻭﻱ ‪ ، 100Hz‬ﻴﻜﻭﻥ ﺍﻟﺩﻭﺭ ﻤﺴﺎﻭﻴﺎ ﻟـ = ‪ ، T‬ﺃﻱ‬ ‫001‬ ‫‪f‬‬ ‫‪λ‬‬ ‫=‪v‬‬ ‫ﺒﺎﻟﻨﺴﺒﺔ ﻟﻠﻤﻭﺠﺔ ﺍﻟﺠﻴﺒﻴﺔ ﺘﻜﻭﻥ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻭﺠﺔ: ‪= λ ⋅ f‬‬ ‫‪T‬‬ ‫‪y‬‬ ‫‪M‬‬ ‫‪N‬‬ ‫اﻟﻠﺤﻈﺔ ‪t‬‬ ‫ﺣﺎﻟﺔ اهﺘﺰاز أو اﺳﺘﻄﺎﻟﺔ‬ ‫0‬ ‫‪x‬‬ ‫ﻧﻘﻄﺘﻴﻦ ﺗﺒﻌﺪان ﻋﻦ ﺑﻌﻀﻬﺎ‬ ‫‪λ‬‬ ‫اﻟﺒﻌﺾ ﺑﻄﻮل ﻣﻮﺟﺔ ‪. λ‬‬ ‫‪y‬‬ ‫اﻟﻠﺤﻈﺔ '‪t‬‬ ‫0‬ ‫ﺗﻬﺘﺰ اﻟﻨﻘﻄﺘﺎن ﻋﻠﻰ ﺗﻮاﻓﻖ‬ ‫‪x‬‬ ‫‪M‬‬ ‫‪N‬‬ ‫‪y‬‬ ‫‪M‬‬ ‫‪P‬‬ ‫اﻟﻠﺤﻈﺔ ‪t‬‬ ‫0‬ ‫ﺣﺎﻟﺔ اهﺘﺰاز أو اﺳﺘﻄﺎﻟﺔ‬ ‫‪x‬‬ ‫ﻧﻘﻄﺘﻴﻦ ﺗﺒﻌﺪان ﻋﻦ ﺑﻌﻀﻬﺎ‬ ‫‪3λ‬‬ ‫‪y‬‬ ‫اﻟﻠﺤﻈﺔ '‪t‬‬ ‫اﻟﺒﻌﺾ ﺑﺜﻼﺛﺔ أﻃﻮال ﻣﻮﺟﺔ‬ ‫0‬ ‫‪. 3λ‬‬ ‫‪M‬‬ ‫‪P‬‬ ‫‪x‬‬ ‫ﺗﻬﺘﺰ اﻟﻨﻘﻄﺘﺎن ﻋﻠﻰ ﺗﻮاﻓﻖ‬ ‫‪yS‬‬ ‫اﻟﺘﻤﺜﻴﻞ اﻟﺒﻴﺎﻧﻲ ﻟﺘﻐﻴﺮ ﻣﻄﺎل‬ ‫‪t‬‬ ‫اﻟﻤﻨﺒﻊ ‪ S‬ﺑﺪﻻﻟﺔ اﻟﺰﻣﻦ.‬ ‫ﻤﺜﺎل :‬ ‫ﻨﺄﺨﺫ ﺤﺒﻼ ﻁﻭﻴﻼ ﻭﻨﺸﺩﻩ ﺃﻓﻘﻴﺎ ﺇﻟﻰ ﻨﻬﺎﻴﺔ ﺭﻨﺎﻨﺔ ﻜﻬﺭﺒﺎﺌﻴﺔ ﺘﻬﺘﺯ ﺒﺤﺭﻜﺔ ﺠﻴﺒﻴﺔ‬ ‫ﺘﻭﺍﺘﺭﻫﺎ ‪ . f = 100 Hz‬ﻨﺸﺩ ﺍﻟﻁﺭﻑ ﺍﻷﺨﺭ ﻟﻠﺤﺒل ﻓﻲ ﻗﻁﻌﺔ ﻤﻥ ﺍﻟﻔﻠﻴﻥ ﻟﺘﻔﺎﺩﻱ‬ ‫ﺍﻨﻌﻜﺎﺱ ﺍﻷﻤﻭﺍﺝ. ﻨﻌﺘﺒﺭ ﻨﻘﻁﺔ ‪ M‬ﻋﻠﻰ ﺍﻟﺤﺒل ﺘﺒﻌﺩ ﺒﻤﺴﺎﻓﺔ ‪ d = 1 m‬ﻋﻥ ﺍﻟﻤﻨﺒﻊ‬ ‫‪ . S‬ﺍﻟﻜﺘﻠﺔ ﺍﻟﺨﻁﻴﺔ ﻟﻬﺫﺍ ﺍﻟﺤﺒل ﻫﻲ 1–‪ µ = 100 g.m‬ﻭﻗﻴﻤﺔ ﺍﻟﻘﻭﺓ ﺍﻟﺘﻲ ﺘﺸﺩﻩ ﻫﻲ‬ ‫‪.F = 0,4 N‬‬
  • 11. ‫‪M‬‬ ‫‪O‬‬ ‫‪S‬‬ ‫1 . ﺃﺤﺴﺏ ﻗﻴﻤﺔ ﺍﻟﺴﺭﻋﺔ ﺍﻟﺘﻲ ﺘﻨﺘﺸﺭ ﺒﻬﺎ ﺍﻷﻤﻭﺍﺝ.‬ ‫2. ﺃﺤﺴﺏ ﺍﻟﻤﺩﺓ ﺍﻟﺯﻤﻨﻴﺔ ﺍﻟﺘﻲ ﻴﺴﺘﻐﺭﻗﻬﺎ ﺍﻻﻀﻁﺭﺍﺏ ﻟﻜﻲ ﻴﻘﻁﻊ ﺍﻟﻤﺴﺎﻓﺔ = ‪d‬‬ ‫‪.SM‬‬ ‫3 . ﻤﺜل ﺘﻐﻴﺭﺍﺕ ﻤﻁﺎل ﺍﻟﻨﻘﻁﺔ ‪ M‬ﺒﺩﻻﻟﺔ ﺍﻟﺯﻤﻥ.‬ ‫ﺘﺤﻠﻴل ﺍﻟﻤﺜﺎل:‬ ‫‪F‬‬ ‫=‪v‬‬ ‫1 . ﺴﺭﻋﺔ ﺍﻻﻨﺘﺸﺎﺭ ﻋﻠﻰ ﻁﻭل ﺤﺒل ﺘﻌﻁﻲ ﺒﺎﻟﻌﻼﻗﺔ:‬ ‫‪µ‬‬ ‫4 ,0‬ ‫= ‪ v‬ﻭﺍﻟﻨﺘﻴﺠﺔ ﺘﻜﻭﻥ: 1− ‪v = 2 m.s‬‬ ‫3−‬ ‫ﺍﻟﺘﻁﺒﻴﻕ ﺍﻟﻌﺩﺩﻱ:‬ ‫01. 001‬ ‫2 . ﺍﻟﻤﺩﺓ ﺍﻟﺯﻤﻨﻴﺔ ﺍﻟﺘﻲ ﻴﺴﺘﻐﺭﻗﻬﺎ ﺍﻻﻀﻁﺭﺍﺏ ﻟﻜﻲ ﻴﻘﻁﻊ ﺍﻟﻤﺴﺎﻓﺔ ‪d = SM‬‬ ‫‪d‬‬ ‫=‪τ‬‬ ‫ﺘﻌﻁﻰ ﺒﺎﻟﻌﻼﻗﺔ:‬ ‫‪v‬‬ ‫1‬ ‫=‪τ‬‬ ‫ﺍﻟﺘﻁﺒﻴﻕ ﺍﻟﻌﺩﺩﻱ: ‪= 0,5 s‬‬ ‫2‬ ‫‪yM‬‬ ‫3 . ﺭﺴﻡ ﺍﻟﺒﻴﺎﻥ :‬ ‫) ‪t (s‬‬ ‫‪τ = 0 ,5 s‬‬
  • 12. ‫2. 3. ﺘﺭﺍﻜﺏ ﻤﻭﺠﺘﻴﻨﺔ ﺠﻴﺒﻴﺘﻴﻥ : ﺍﻟﺘﺩﺍﺨل‬ ‫ﻋﻨﺩﻤﺎ ﺘﻠﺘﻘﻲ ﻤﻭﺠﺘﺎﻥ ﻤﻥ ﻨﻔﺱ ﺍﻟﻨﻭﻉ ﻓﺈﻨﻬﻤﺎ ﺘﺘﺩﺍﺨﻼﻥ، ﻭﻴﻤﻜﻥ ﺍﻟﺤﺼﻭل‬ ‫ﻋﻠﻰ ﺍﻟﻤﻭﺠﺔ ﺍﻟﻤﺤﺼﻠﺔ ﺒﺎﺴﺘﺨﺩﺍﻡ ﻤﺒﺩﺃ ﺍﻟﺘﺭﺍﻜﺏ. ﺇﻥ ﺍﻻﻀﻁﺭﺍﺏ ﺍﻟﻜﻠﻲ ﻓﻲ‬ ‫ﺃﻱ ﻤﻜﺎﻥ ﻭﻓﻲ ﺃﻱ ﺯﻤﺎﻥ ﺘﻠﺘﻘﻲ ﻓﻴﻪ ﺍﻟﻤﻭﺠﺘﺎﻥ ﻫﻭ ﺸﻌﺎﻉ ﻤﺠﻤﻭﻉ‬ ‫ﺍﻻﻀﻁﺭﺍﺒﻴﻥ ﺍﻟﻠﺫﻴﻥ ﻨﺘﺠﺎ ﻋﻥ ﻜل ﻤﻭﺠﺔ ﺒﻤﻔﺭﺩﻫﺎ. ﺇﺫﺍ ﻜﺎﻨﺕ ﻟﻠﻤﻭﺠﺘﻴﻥ ﻨﻔﺱ‬ ‫ﺍﻟﺴﻌﺔ ﻭﻨﻔﺱ ﺍﻟﺘﻭﺍﺘﺭ، ﻴﻜﻭﻥ ﺍﻟﺘﺩﺍﺨل ﺇﺫﻥ ﺒﻨﺎﺀ ﻓﻲ ﻜل ﻨﻘﻁﺔ ﻤﺜﻠﻤﺎ ﻴﻅﻬﺭﻩ‬ ‫ﹼ‬ ‫ﺍﻟﺒﻴﺎﻥ ﻜﻤﺎ ﺘﻌﺭﻀﻨﺎ ﻟﻪ ﺴﺎﺒﻘﺎ. ﻭﻓﻲ ﺤﺎﻟﺔ ﺍﻟﺘﺩﺍﺨل ﺍﻟﺒﻨﺎﺀ) ﻭﺜﻴﻘﺔ ‪ ( a‬ﺘﻜﻭﻥ‬ ‫ﹼ‬ ‫ﺍﻟﻤﻭﺠﺘﺎﻥ ﻤﺘﻭﺍﻓﻘﺘﻴﻥ. ﻓﻲ ﺤﺎﻟﺔ ﺍﻟﺘﺩﺍﺨل ﺍﻟﻬﺩﺍﻡ )ﻭﺜﻴﻘﺔ ‪ ،(b‬ﺘﻜﻭﻥ ﺍﻟﻤﻭﺠﺘﺎﻥ‬ ‫ﻋﻠﻰ ﺘﻌﺎﻜﺱ ﻓﻲ ﺍﻟﻁﻭﺭ، ﺃﻱ ﺍﻟﻔﺎﺭﻕ ﺒﻴﻨﻬﻤﺎ ﻫﻭ°081.‬ ‫اﻟﻮﺛﻴﻘﺔ )‪(a‬‬ ‫اﻟﻮﺛﻴﻘﺔ )‪(b‬‬ ‫اﻟﻤﻮﺟﺔ 1‬ ‫اﻟﻤﻮﺟﺔ 1‬ ‫اﻟﻤﻮﺟﺔ 2‬ ‫اﻟﻤﻮﺟﺔ 2‬ ‫ﺗﺪاﺧﻞ اﻟﻤﻮﺟﺘﻴﻦ)1( و )2(. ﺗﺪاﺧﻞ ﺑﻨﺎء‬ ‫ّ‬ ‫ﺗﺪاﺧﻞ اﻟﻤﻮﺟﺘﻴﻦ)1( و )2(. ﺗﺪاﺧﻞ هﺪام‬ ‫ﻴﻤﻜﻥ ﺤﺩﻭﺙ ﺤﺎﻟﺔ ﺨﺎﺼﺔ ﻋﻨﺩﻤﺎ ﺘﻠﺘﻘﻲ ﻤﻭﺠﺘﺎﻥ ﻟﻬﻤﺎ ﺍﻟﺨﺎﺼﻴﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ:‬ ‫– ﻨﻔﺱ ﺍﻟﺴﻌﺔ.‬ ‫– ﻨﻔﺱ ﺍﻟﺘﻭﺍﺘﺭ.‬ ‫– ﺍﻻﻨﺘﻘﺎل ﻓﻲ ﺠﻬﺘﻴﻥ ﻤﺘﻌﺎﻜﺴﺘﻴﻥ.‬ ‫ﻨﺤﺼل ﻀﻤﻥ ﻫﺫﻩ ﺍﻟﺸﺭﻭﻁ ﻋﻠﻰ ﻤﻭﺠﺔ ﻤﺴﺘﻘﺭﺓ.‬
  • 13. ‫ﻴﺒﺩﻭ ﺃﻥ ﺍﻟﺸﺭﻭﻁ ﺍﻟﻤﻁﻠﻭﺒﺔ ﻟﻠﺤﺼﻭل ﻋل ﺍﻟﻤﻭﺠﺔ ﺍﻟﻤﺴﺘﻘﺭﺓ ﻫﻲ ﺸﺭﻭﻁ‬ ‫ﺨﺎﺼﺔ، ﻭﻟﻜﻥ، ﺘﻅﻬﺭ ﻫﺫﻩ ﺍﻷﻤﻭﺍﺝ ﻓﻲ ﺍﻟﻭﺍﻗﻊ ﺒﺼﻭﺭﺓ ﻋﺎﺩﻴﺔ، ﻭﻴﺤﺼل‬ ‫‪‬‬ ‫ﻋﻠﻴﻬﺎ ﻋﻨﺩ ﺍﻨﻌﻜﺎﺱ ﻤﻭﺠﺔ ﻋﻠﻰ ﺤﺎﺠﺯ، ﻷﻥ ﺍﻟﻤﻭﺠﺔ ﺍﻟﻭﺍﺭﺩﺓ ﻭﺍﻟﻤﻭﺠﺔ‬ ‫ﺍﻟﻤﻨﻌﻜﺴﺔ ﺘﺘﺩﺍﺨﻼﻥ ﻹﻋﻁﺎﺀ ﺍﻟﻤﻭﺠﺔ ﺍﻟﻤﺴﺘﻘﺭﺓ. ﻗﺩ ﺘﻜﻭﻥ ﺃﺤﺴﻥ ﻁﺭﻴﻘﺔ‬ ‫ﻟﺘﺨﻴل ﻤﻭﺠﺔ ﻤﺴﺘﻘﺭﺓ ﻫﻲ ﺘﻠﻙ ﺍﻟﺘﻲ ﺘﻌﺒﺭ ﻋﻥ ﻤﻭﺠﺘﻴﻥ ﻋﺭﻀﻴﺘﻴﻥ ﺘﻨﺘﺸﺭﺍﻥ‬ ‫ﻓﻲ ﺠﻬﺘﻴﻥ ﻤﺘﻌﺎﻜﺴﺘﻴﻥ ﻋﻠﻰ ﻁﻭل ﺤﺒل ﻤﺸﺩﻭﺩ.‬ ‫ﺍﻟﻤﻭﺠﺔ ﺍﻟﻤﺴﺘﻘﺭﺓ ﺍﻟﻨﺎﺘﺠﺔ ﻋﻥ ﻤﻭﺠﺔ ﺠﻴﺒﻴﺔ ﺒﻴﻥ ﻨﻬﺎﻴﺘﻴﻥ ﻤﻘﻴﺩﺘﻴﻥ. ﻴﺠﺏ ﺃﻥ‬ ‫ﺘﻜﻭﻥ ﺍﻟﻤﺴﺎﻓﺔ ‪ L‬ﺍﻟﻔﺎﺼﻠﺔ ﺒﻴﻥ ﺍﻟﻨﻘﻁﺘﻴﻥ ﺍﻟﻤﻘﻴﺩﺘﻴﻥ ﻤﺴﺎﻭﻴﺔ ﻟﻤﻀﺎﻋﻑ 2 / ‪. λ‬‬ ‫ﻫﻨﺎﻙ ﻨﻘﺎﻁ ﻋﻠﻰ ﺍﻟﺤﺒل ﺘﺒﺩﻭ ﺴﺎﻜﻨﺔ ﺩﺍﺌﻤﺎ ﺘﺩﻋﻰ ﺍﻟﻌﻘﺩ. ﺘﺩﻋﻰ ﺍﻟﻨﻘﺎﻁ ﺍﻟﺘﻲ‬ ‫ﺘﻜﻭﻥ ﺴﻌﺔ ﺤﺭﻜﺘﻬﺎ ﺃﻋﻅﻤﻴﺔ ﺍﻟﺒﻁﻭﻥ.‬ ‫‪L‬‬ ‫2/‪λ‬‬ ‫ﺑﻄﻦ‬ ‫ﻋﻘﺪة‬ ‫ﺘﺩﻋﻰ ﺍﻟﻤﻭﺠﺔ ﺍﻟﻤﺴﺘﻘﺭﺓ ﺍﻟﻤﺤﺼﻠﺔ ﺒﻬﺫﺍ ﺍﻻﺴﻡ، ﻷﻥ ﺸﻜﻠﻬﺎ ﻴﺒﺩﻭ ﺜﺎﺒﺘﺎ ﻓﻲ‬ ‫ﺍﻟﻔﺭﺍﻍ، ﻭﺴﻌﺘﻬﺎ ﻫﻲ ﺍﻟﺘﻲ ﺘﺘﻐﻴﺭ.‬
  • 14. ‫ﺑﻄﻦ‬ ‫‪y‬‬ ‫‪x‬‬ ‫ﻋﻘﺪة‬ ‫ﻋﻘﺪة‬ ‫ﻋﻘﺪة‬ ‫ﻋﻘﺪة‬ ‫ﻓﻲ ﺤﺎﻟﺔ ﺁﻟﺔ ﻤﻭﺴﻴﻘﻴﺔ ﻴﺠﺏ ﺃﻥ ﻴﻜﻭﻥ ﻫﻨﺎﻙ ﻋﻨﺼﺭﺍﻥ ﻹﻨﺘﺎﺝ ﺼﻭﺕ ﻤﻭﺴﻴﻘﻲ:‬ ‫ﻤﻬﺘﺯ ﻭﻤﺘﺠﺎﻭﺏ. ﻓﻲ ﺤﺎﻟﺔ ﺍﻟﻜﻤﻨﺠﺔ ﻤﺜﻼ، ﻴﻤﺜل ﻭﺘﺭ ﺍﻟﻜﻤﻨﺠﺔ ﺍﻟﻤﻬﺘﺯ، ﻭﺼﻨﺩﻭﻗﻬﺎ‬ ‫ﺍﻟﺫﻱ ﻫﻭ ﻫﻴﻜل ﺍﻟﻜﻤﻨﺠﺔ ﻴﻤﺜل ﺍﻟﻤﺘﺠﺎﻭﺏ ﺍﻟﺫﻱ ﻴﻀﺨﻡ ﺍﻻﻫﺘﺯﺍﺯﺍﺕ ﻭﻴﺒﺜﻬﺎ ﻓﻲ‬ ‫ﺍﻟﻬﻭﺍﺀ.‬ ‫ﻴﺜﺒﺕ ﻭﺘﺭ ﺍﻟﻜﻤﻨﺠﺔ ﻓﻲ ﻨﻬﺎﻴﺘﻴﻥ. ﺘﻨﺸﺄ ﻤﻭﺠﺔ ﻤﺴﺘﻘﺭﺓ ﺤﻴﺙ ﺘﻜﻭﻥ ﺍﻟﻨﻘﺎﻁ ﺍﻟﺜﺎﺒﺘﺔ‬ ‫ﻤﻭﺍﻓﻘﺔ ﻟﻌﻘﺩ ﺍﻻﻫﺘﺯﺍﺯ. ﺘﻜﻭﻥ ﺍﻟﻤﻭﺠﺔ ﺍﻟﻤﺴﺘﻘﺭﺓ ﻋﺒﺎﺭﺓ ﻋﻥ ﻤﺠﻤﻭﻉ ﻤﻭﺠﺔ ﻭﺍﺭﺩﺓ‬ ‫ﺘﻭﺍﺘﺭﻫﺎ ‪ ، f‬ﻭﻤﻭﺠﺔ ﻤﻨﻌﻜﺴﺔ ﺒﻨﻔﺱ ﺍﻟﺘﻭﺍﺘﺭ‪ . f‬ﺘﺘﺸﻜل ﺍﻟﻤﻭﺠﺔ ﺍﻟﻤﺴﺘﻘﺭﺓ ﻋﻨﺩﻤﺎ‬ ‫ﺘﻜﻭﻥ ﺍﻟﻤﺴﺎﻓﺔ ﺍﻟﻜﻠﻴﺔ ﺍﻟﻤﻘﻁﻭﻋﺔ ‪ ،2 L‬ﺍﻟﺫﻫﺎﺏ ﻭﺍﻟﻌﻭﺩﺓ ﻋﻠﻰ ﻁﻭل ﺍﻟﺤﺒل ﻤﺴﺎﻭﻴﺔ‬ ‫ﻟﻤﻀﺎﻋﻑ ﺼﺤﻴﺢ ﻟﻁﻭل‬ ‫‪λ‬‬ ‫ﺍﻟﻤﻭﺠﺔ )‪ ،(n.λ‬ﻭﺒﺘﻌﺒﻴﺭ ﺁﺨﺭ ﻴﺠﺏ ﺃﻥ ﻴﻜﻭﻥ ﻁﻭل ﺍﻟﺤﺒل‪ L‬ﻤﺴﺎﻭﻴﺎ ﻟﻤﻀﺎﻋﻑ ،‬ ‫2‬ ‫‪λ‬‬ ‫أي ) ‪ .( L = n‬ﺇﻥ ﻫﺫﺍ ﻴﻔﺭﺽ ﻗﻴﻤﺎ ﻋﻠﻰ ﺍﻟﺘﻭﺍﺘﺭﺍﺕ‪ fn‬ﻟﻸﻤﻭﺍﺝ ﺍﻟﻤﺴﺘﻘﺭﺓ ﺍﻟﺘﻲ‬ ‫2‬ ‫ﻴﻤﻜﻥ ﺤﺩﻭﺜﻬﺎ ﺒﻴﻥ ﻨﻘﻁﺘﻴﻥ ﻤﺜﺒﺘﺘﻴﻥ.‬ ‫‪v‬‬ ‫‪v‬‬ ‫‪λ‬‬ ‫‪fn = n‬‬ ‫‪ L = n‬ﻭﻤﻨﻪ :‬ ‫‪ L = n‬ﻭﻤﻨﻪ:‬ ‫‪2L‬‬ ‫‪2f n‬‬ ‫2‬ ‫‪v‬‬ ‫= 1‪f‬‬ ‫ﻳﻜﻮن ﺗﻮاﺗﺮ اﻟﻤﻮﺟﺔ هﻮ إذن ﻣﻀﺎﻋﻔﺎ ﻟﻠﺘﻮاﺗﺮ‬ ‫‪2L‬‬ ‫ﻳﻌﻄﻲ اﻟﺠﺪول اﻟﺘﺎﻟﻲ ﻣﻘﺎرﻧﺔ ﻣﻊ اﻟﻤﻮﺟﺔ اﻟﻌﺎدﻳﺔ.‬
  • 15. ‫اﻟﻤﻮﺟﺔ اﻟﻤﺴﺘﻘﺮة‬ ‫اﻟﻤﻮﺟﺔ اﻟﻌﺎدﻳﺔ‬ ‫ﺟﻤﻴﻊ ﻧﻘﺎط اﻟﻤﻮﺟﺔ ﻟﻬﺎ ﺳﻌﺎت ﻣﺨﺘﻠﻔﺔ.‬ ‫ﺟﻤﻴﻊ ﻧﻘﺎط اﻟﻤﻮﺟﺔ ﻟﻬﺎ ﻧﻔﺲ‬ ‫اﻟﺴﻌﺔ‬ ‫اﻟﺴﻌﺔ اﻟﻌﻈﻤﻰ هﻲ ‪ 2A‬ﻓﻲ اﻟﺒﻄﻮن،‬ ‫اﻟﺴﻌﺔ‬ ‫ﺗﺴﺎوي اﻟﺼﻔﺮ ﻓﻲ اﻟﻌﻘﺪ.‬ ‫ﺗﻬﺘﺰ ﺟﻤﻴﻊ اﻟﻨﻘﺎط ﺑﻨﻔﺲ‬ ‫اﻟﺘﻮاﺗﺮ‬ ‫ﺗﻬﺘﺰ ﺟﻤﻴﻊ اﻟﻨﻘﺎط ﺑﻨﻔﺲ اﻟﺘﻮاﺗﺮ.‬ ‫اﻟﺘﻮاﺗﺮ‬ ‫ﻃﻮل‬ ‫ﺗﺴﺎوي ﺿﻌﻒ اﻟﻤﺴﺎﻓﺔ ﺑﻴﻦ ﻋﻘﺪﺗﻴﻦ‬ ‫هﻲ اﻟﻤﺴﺎﻓﺔ اﻷﻗﺼﺮ ﻋﻠﻰ‬ ‫اﻟﻤﻮﺟﺔ‬ ‫ﻣﺘﺘﺎﻟﻴﺘﻴﻦ )أو ﺑﻴﻦ ﺑﻄﻨﻴﻦ(‬ ‫اﻟﻤﻮﺟﺔ ﺑﻴﻦ ﻧﻘﻄﺘﻴﻦ ﻣﺘﻮاﻗﺘﺘﻴﻦ‬ ‫ﺟﻤﻴﻊ اﻟﻨﻘﺎط اﻟﻮاﻗﻌﺔ ﻋﻠﻰ‬ ‫ﺗﺘﺤﺮك ﺟﻤﻴﻊ اﻟﻨﻘﺎط ﺑﻴﻦ ﻋﻘﺪﺗﻴﻦ ﻣﺘﺘﺎﻟﻴﺘﻴﻦ‬ ‫اﻟﻄﻮر‬ ‫ﻃﻮل اﻟﻤﻮﺟﺔ ﻟﻬﺎ أﻃﻮار‬ ‫ﺑﻨﻔﺲ اﻟﻄﻮر.‬ ‫ﻣﺨﺘﻠﻔﺔ‬ ‫اﻟﻄﺎﻗﺔ ﻟﻴﺴﺖ ﻣﻨﻘﻮﻟﺔ ﺑﻮاﺳﻄﺔ اﻟﻤﻮﺟﺔ‬ ‫اﻟﻄﺎﻗﺔ‬ ‫اﻟﻄﺎﻗﺔ ﻣﻨﻘﻮﻟﺔ ﺑﻮاﺳﻄﺔ اﻟﻤﻮﺟﺔ‬ ‫وﻟﻜﻦ ﺗﻮﺟﺪ ﻃﺎﻗﺔ ﻣﻨﺴﻮﺑﺔ ﻟﻬﺎ‬