SlideShare a Scribd company logo
1 of 25
Writekraft Research & Publications LLP
(All Rights Reserved)
WATERSHED
CHARACTERIZATION
AND
MANAGEMENT PLANNING
IN WULAR
CATCHMENT
Writekraft Research & Publications LLP
(Regd. No. AAI-1261)
Corporate Office: 67, UGF, Ganges Nagar (SRGP), 365 Hairis Ganj, Tatmill Chauraha, Kanpur, 208004
Phone: 0512-2328181
Mobile: 7753818181, 9838033084
Email: info@writekraft.com
Web: www.writekraft.com
Writekraft Research & Publications LLP
(All Rights Reserved)
CHAPTER - 1
INTRODUCTION
Writekraft Research & Publications LLP
(Regd. No. AAI-1261)
Corporate Office: 67, UGF, Ganges Nagar (SRGP), 365 Hairis Ganj, Tatmill Chauraha, Kanpur, 208004
Phone: 0512-2328181
Mobile: 7753818181, 9838033084
Email: info@writekraft.com
Web: www.writekraft.com
Writekraft Research & Publications LLP
(All Rights Reserved)
Chapter – 1 Introduction
History of human impact on environment is as old as human existence.
Contrary to this the human conscience about the accelerating negative
impact on natural environment arose only after the threshold of
development reached and the deteriorating environment started to roll
back on human existence. The evolution of man to a sophisticated designer
utilizing his intellect to transform the natural endowments to continuously
cherish his desire of comfort and prosperity has been beautifully summed
up in the first proclamation in chapter 1 of Stockholm Conference, 1972
“Man is both creature and moulder of his environment, which gives him
physical sustenance and affords him the opportunity for intellectual, moral,
social and spiritual growth. In the long and tortuous evolution of the human
race on this planet a stage has been reached when, through the rapid
acceleration of science and technology, man has acquired the power to
transform his environment in countless ways and on an unprecedented
scale---” Subsequently, the population-environment relationship was
debated by many scholars. Significant among them was Ehrlich and Holdren,
1974 who propounded that the human impact (I) on the environment is
Writekraft Research & Publications LLP
(Regd. No. AAI-1261)
Corporate Office: 67, UGF, Ganges Nagar (SRGP), 365 Hairis Ganj, Tatmill Chauraha, Kanpur, 208004
Phone: 0512-2328181
Mobile: 7753818181, 9838033084
Email: info@writekraft.com
Web: www.writekraft.com
Writekraft Research & Publications LLP
(All Rights Reserved)
the product of population (P), resource consumption (A) and
technology (T) and emphasized that population size and growth as the most
urgent IPAT factor, whereas Commoner, 1972 argued that production
technologies were the
dominant reason for environmental degradation.
The United Nations Conference on Environment and Development
held in Rio de Janeiro, Brazil, in 1992 was a milestone in the evolution of an
international consensus on the relationships among population,
development and environment, based on the concept of sustainable
development articulated by the WCED, 1987.
Writekraft Research & Publications LLP
(Regd. No. AAI-1261)
Corporate Office: 67, UGF, Ganges Nagar (SRGP), 365 Hairis Ganj, Tatmill Chauraha, Kanpur, 208004
Phone: 0512-2328181
Mobile: 7753818181, 9838033084
Email: info@writekraft.com
Web: www.writekraft.com
Chapter – 1 Introduction
The World Commission on Environment and Development defined
sustainable development as that which meets the needs of the present
without compromising the ability of future generations to meet their own
needs. Sustainability refers to the qualitative and quantitative continuity in
the use of a resource. It attempts to balance the often-conflicting ideals of
economic growth and maintaining environmental quality and viability
(Skidmore et al., 1997). Sustainable development is defined by the United
Nations Department of Economic and Social Affairs as having three pillars:
social, economic, and environmental. The social pillar refers to meeting the
basic needs of society, such as health and education, and protecting human
rights. The economic component refers to efficiently managing the economy
to meet material needs. The environmental component is concerned with
the conservation and enhancement of the physical and biological resource
base and ecosystems.
1.1. Watershed as a Geographical Unit of Study
A watershed represents a topographically defined area that
is drained by a stream system, representing a smaller upstream
catchment, which is a constituent of a larger river basin. This
landscape encompasses both surface and groundwater supplies,
in addition to related terrestrial and community resources. The
watershed is being viewed as a place based and ecological entity,
as well as a socioeconomic and political unit to be utilized for
management planning, conservation strategies and
implementation purposes.
Watershed is thus a development unit in which all the natural
resources like soil, water, geomorphology and land use are in harmony
there by facilitating adoption of holistic approach to problem solving.
Watershed is considered to be the ideal unit for analysis and management of
natural resources for planning (Akhouri, 1996). The soil, vegetation and
water are the basic resources, which interact and establish in a watershed.
Hence, all these three resources have to be managed collectively and in an
integrated way. The Physiography of the land, slope and nature of soil cover,
land use
• cover, hydro geomorphology, climate, socio-economic and legal aspects
etc. and the hydrological features of the land area determine the productive
interaction between these natural resources. Watersheds can also be
repositories of global environmental benefits, such as biodiversity and
carbon sequestration. Moreover, upper watersheds
2
Chapter – 1 Introduction
are linked, through water flows to downstream land and coastal areas
far from the steep terrains where water flows are generated.
A watershed represents a unique geo-physical unit within which water
moves continuously in a cycle that begins with precipitation. Land use
activities that affect climate, landform, soil or vegetation also impact the
natural distribution of water within the watershed landscape. Activities, such
as urbanization and agricultural practices, can alter the slope of land and
channel form; pave over or compact soils; remove vegetation; and have many
other effects. These effects all result in changes in the water balance. That is,
they can change the proportion of rainwater that flows overland relative to
that stored, evaporated, infiltrated or taken up by plants and transpired.
1.2. Watershed Degradation Descriptors
The degradation of land and water resources due to the complex interactions
within a watershed can have far-reaching and unwanted impacts on the environment
beyond the impacts on soil and water resources and the related economic activities.
These impacts on the broader environment may include climate change, global
warming, loss of biodiversity, impaired energy cycles, food crisis etc and may also
have a direct or indirect cost for different sectors of the economy, including tourism
and services generated by biodiversity.
The exponential increase in population has fueled a significant demographic
shift. In 1950, only 30% of the world’s population was found in urban areas; however,
the projected five billion urban dwellers will represent 60% of the world’s population
by 2030 (United Nations, 2002). The term “urbanization” describes an increase in
human habitation linked with increased per capita energy and resource consumption
and extensive landscape modification (McDonnell and Pickett, 1990). Urbanizing
regions pose increasing challenges to ecosystems health and functioning.
Urbanization affects the structure and function of Earth’s ecosystems through the
transformation of the natural landscape, alteration of biophysical processes and
habitat, and modification of major biogeochemical cycles. These changes in turn
affect the ecosystem’s capacity to deliver important services to the human population
and support human well-being (Alberti, 2010).
3
Chapter – 1 Introduction
Land cover changes are the result of interactions between biophysical
and socioeconomic processes and factors (Turner et al., 1989). Agriculture
can have a detrimental effect on water quality leading to acute problems such
as erosion, Salinization, diffuse pollution by nutrients and pesticides (Zalidis
et al., 2002). Empirical studies have shown the dominant influence of land
cover (e.g. forest, agriculture, urban) in determining the amount of nitrogen
(N) and phosphorus (P) in rivers, lakes, and estuaries (Hunsaker, 1992).
Soil erosion by water is the most significant land degradation
problem worldwide (Eswaran et al., 2001; Deng et al., 2009). Soil erosion
creates strong environmental impacts and high economic costs through
its effect on agricultural production, infrastructure and water quality
(Pimentel et al., 1995; Lal, 1998), directly affecting human quality of life
and threatening human safety. Soil conservation actions should therefore
serve to improve the ecological and socio-economic environment.
Water quality is one of the fundamental components of a healthy watershed
because it integrates important geomorphic, hydrologic and some of the biological
processes of a watershed. Alteration of any one of these processes will affect one or
more water quality parameters. Hence changes in water quality indicate a change in
some aspect of the terrestrial, riparian or in-channel ecosystem. Generally, the
concentration or load of nitrogen and phosphorus in receiving waters increases as
the amount of agriculture or urban land increases in a watershed (Parry, 1998).
1.3. Watershed Management
Watershed management is the integrated use of land, vegetation and water in a
geographically discrete drainage area for the benefit of its residents, with the objective of
protecting or conserving the hydrologic services that the watershed provides and of
reducing or avoiding negative downstream or groundwater impacts. The key
characteristics of a watershed that drive management approaches are the integration of
land and water resources, the causal link between upstream land and water use and
downstream impacts and externalities, the typical nexus in upland areas of developing
countries between resource depletion and poverty, and the multiplicity of stakeholders.
Watershed management approaches need to be adapted to the local
4
Chapter – 1 Introduction
situation and to changes in natural resource use and climate. Watershed
management interventions may bring local, regional and global environmental
benefits. An integrated approach to natural resource management at the
watershed level would ideally address the complex system dynamics in
watersheds and would achieve global environmental benefits.
The first generation of watershed management projects in developing countries in
the 1970’s and 1980’s applied a soil and water planning approach to watersheds that
emphasized engineering works aimed at specific on-site and downstream physical
outcomes. By the end of the 1980’s, the comparative failure of this “engineering-led”
approach was clear, and a major rethinking of watershed management approaches was
undertaken by national and international agencies. The 1990s represented a new departure
for watershed management programs supported by the international community in
developing countries. Although engineering solutions were not excluded where
appropriate, the emphasis was placed more on farming systems and on participatory and
demand-driven approaches. National policies on watershed management have tended to
develop in a pragmatic and iterative fashion, with early setbacks over engineering-
dominated approaches being succeeded by tests of community-based approaches and by
technology packages targeting sustainable changes in land and water use practices that
brought profit to stakeholders.
Judicious management of land and water resources requires in-depth
knowledge of the dynamic behavior of the watershed. Water is the best index of
watershed management and thus provides an excellent monitoring mechanism.
Watershed management is not so much about managing natural resources, but about
managing human activity as it affects these resources. The drainage area of the river
provides the natural boundary for managing and mitigating human and environmental
interactions. The watershed management process can be seen as a continuum that
includes producing a plan, implementing it, monitoring its effectiveness, and
evaluating and updating it. Despite the difficulties, the process is valuable because it
promotes a systematic and logical way of thinking and a framework for making
decisions with regard to water and land use. Land use planning and management at
the watershed level is a multi-objective resource management problem because it
deals with human activities within the watershed that are motivated by multiple and
5
Chapter – 1 Introduction
often conflicting objectives and constraints, such as farm income enhancement, soil
and water resource protection, urban development and drinking water supply (Prato et
al., 1995). In recent years, there has been a growing consensus that an effective way
to control sediment deposition, non-point source pollution and enhance the long-term
sustainability of agriculture and rural communities can be achieved through
integrated planning and management.
Watershed management programs may, for example, include conservation of
existing natural areas, regeneration of native vegetation and replanting indigenous
species; creating ecological corridors for wildlife; establishing buffers for
biodiversity; or choosing trees with a good carbon sequestration potential. These
programs may bring local, regional and global benefits. However, there may be
tradeoffs. For example, planting trees may be a global good, but trees may change the
local water balance. An integrated approach to natural resource management at the
watershed level would ideally address the complex system dynamics in watersheds
and achieve global environmental benefits where feasible. IWM planning is a
comprehensive multi-resource management planning process, involving all
stakeholders within the watershed, who together as a group, cooperatively work
towards identifying the resource issues and concerns of the watershed, as well as
develop and implement watershed plan with solutions that are environmentally,
socially and economically sustainable.
The relationship between society and ecosystems should be harmonized at
the watershed scale, and the ecosystem and society should be treated as integrated
systems. To determine the ongoing human–nature interactions in order to develop
policy for regional sustainable development, an interdisciplinary approach and
system theory should be used (Boulanger and Brechet, 2005). It is necessary for
scientists to employ sound ecological principles and provide interdisciplinary ideas
for decision makers (Naiman et al., 1998).
The systems approach in spatio-temporal nature of geography has allowed the
use of most advanced technologies to usher a methodological revolution particularly
in context of sustainable development paradigm. The ability to study the complex
spatial and temporal interrelations of various phenomena in digital format on a
6
Chapter – 1 Introduction
computer through the advanced satellite technology has helped tremendously in
adopting a watershed approach in environmental management. Remote sensing has
become an indispensable scientific tool for mapping and monitoring of natural
resources. The advent of computer and spatial data in digital form has powered the
development of geographic information systems (GIS) and the proliferation of digital
elevation models (DEMs) and digital maps of soils, vegetation, rivers, roads, as well as
other information for much of the developed world and of land cover with a variety of
remote sensing devices that operate across the electromagnetic spectrum (Jensen,
2000) has become standard.
The integration of information derived from remotely sensed data into GIS and
their analysis can be considered as the primary tool for efficient acquisition of input
parameters needed for distributed hydrological modelling (Meijerink et al., 1994).
Hydrological Modeling has revolutionized methodology in mapping the environmental
complexity and determining the factors and enormity of environmental degradation.
The integration of Remote Sensing, GIS and Modeling has led to the continuous
monitoring of earth and its processes.
1.4. Significance of the Study
People rarely intend to create environmental problems. The result was the sum of a
myriad of seemingly miniscule individual actions... [but] motive is irrelevant to
environmental impacts (Schneider, 1996). The anthropogenic modification of the
hydrological cycle by deforestation, urbanization and irrigation has led to degradation,
over exploitation, and wastage of water resources resulting in higher risks to human
health, economic and social development as well as to the functioning of ecosystems and
the preservation of the environment. The deterioration and dwindling of lake ecosystems
has been increasing at an alarming rate, due to various ecological stresses caused largely
by the activities of man. The rapid development within watersheds due to anthropogenic
activities has had negative ecological consequences on ecosystem structures, processes,
and functions. For lake aquatic ecosystems, human activities in the watershed can lead to
loss of important species and functional groups, high nutrient turnover, low resistance,
high porosity of nutrients and sediments and the loss of productivity. Thus, it is necessary
to restore aquatic ecosystems based on the
7
Chapter – 1 Introduction
understanding of the link between watershed changes and the
corresponding effects on the aquatic ecosystem.
Watershed is a bio-geo-physical unit in which, interdependence of renewable and
non-renewable resources from environment are closeted. A watershed is used as a unit for
planning and management of land, water and other resources, and the inter-related factors
such as physical, biological, technological, socio-economic, cultural etc. are considered
collectively in a system framework. Scientific management of soil, water and vegetation on
watershed basis is, therefore, very important to arrest rapid siltation in rivers, lakes and
estuaries. Integrated watershed management has been accepted as the most rational
approach in preventing deterioration of ecosystem, restoration of degraded lands and
improving the overall productivity for sustained use.
The goal of sustainable management is to maintain the ecological functions of
landscapes under increasing human aspirations and pressures. Increasing population
pressure has resulted in a considerable degree of land transformation and
environmental deterioration leading to a decline in the availability of land. In order to
optimize the use of available land and to meet the multiple demands of food, fodder,
fuel wood etc, a proper planning and management of land and water resources is a
basic prerequisite, which is possible through watershed-based programmes.
Wular Catchment is facing severe stress of increasing
population followed by unplanned utilization and management of
natural resources. Proper planning and utilization of the run-off water
is essential for its effective management and sustainable development.
The Wular Lake is important both from ecological and economic point of view.
Wular Lake has become polluted and is shrinking in size due to siltation, caused by
sediment yield transported by different rivers into the lake. Its sustainable
development and management can help to restore it as the largest fresh water
resource in the region and a vast reserve of biodiversity.
Population pressure within the Wular Catchment has led to conflicting
interests leading to land degradation hence sediment and nutrient loading into the
aquatic systems in the catchment, mainly from non-point source pollution. The
sediments from the catchment are conveyed to the lake via the rivers and streams,
8
Chapter – 1 Introduction
while the atmospheric pollutants are adsorbed and deposited on the lake surface in
dry form (gases and particles) and in wet form carried by rain. Activities causing
diffuse pollution include: high population growth, unplanned human settlement,
deforestation, intensive farming, livestock keeping, wetlands encroachment, urban
agriculture, quarrying and infrastructure. A comprehensive evaluation and integrated
water resources management is presented for Wular Catchment using remote sensing
and GIS techniques with a view to develop natural resources on sustainable basis.
1.5. Objectives
/ To characterize the watersheds on the basis of the Geophysical, Socio-
economic and Land use/ Land cover dynamics in Wular Catchment.
/ To study the Physico – chemical characteristics of water in Wular Lake.
/ To estimate the Potential Soil Loss in Wular Catchment at watershed level.
/ To prepare a Potential Groundwater Infiltration Zonation map in
the Wular Catchment.
/ To develop an Integrated Watershed Prioritization Index to
accentuate the watershed management in Wular Catchment.
9
Chapter – 1 Introduction
1.6. Literature Review
The watershed characterization and management planning is a
multidisciplinary study involving parameterization of varied components
of a watershed to assess their complex interaction and impact of extrinsic
factors of which human impact is an indispensable factor. Thus the
literature has been reviewed and arranged according to the different
parameters studied and integrated for watershed management planning.
Singh and Sarangi, 2008 studied the hypsometry of two drainage basins, viz,
Sainj and Tirthan with their sub basins in the Kullu district of Himachal Pradesh and
concluded that the Sainj watershed and ten of its sub basins are more prone to
erosion in comparison to Tirthan and its five sub basins. Singh, Sarangi, and Sharma,
2008 validated their earlier results with recorded sediment yield data of 24 years
(1981– 2004) corroborated that the average annual sediment yield during this period
for Sainj watershed (0.53 Mt) was more than that of the Tirthan watershed (0.3 Mt)
suggested watershed prioritization to conserve soil and water systems. Singh, 2008,
studied the hypsometry of actively deforming Mohand anticline ridge in the frontal
part of NW Himalaya. Sivakumar, Biju, and Deshmukh, 2011 while analyzing the
hypsometry of Varattaru river basin, both suggested suitable locations for controlling
further erosion, reducing the runoff and increases the groundwater.
Sorensen, Zinko, and Seibert, 2005 obtained the topographic wetness index
(TWI), by varying indices to quantify topographic control on hydrological processes
for two separate boreal forest sites in northern Sweden. Grabs, Seibert, Bishop and
Laudon, 2009 using simulation modeling of distributed catchments; predicted the
spatial distribution of wetlands significantly better than the TWI. Ruhoff, Castro and
Risso, 2011 by using distribution functions and their statistics and cell by cell
comparison of DEMs showed significant differences between different flow-direction
algorithms. Lanni, McDonnell and Rigon, 2011 developed new dynamic topographic
index based on Boussine sq equation (BEq) solver to show correlations of TWI and
the patterns of soil water storage around the world; found it more accurate than the
previous one and able to capture both the upslope and down slope controls on water
flow and approximates storage dynamics across scales.
10
Chapter – 1 Introduction
The works of Mather and Doornkamp, 1970, Gregory, 1978, and Gardiner, 1978
in terrain characterization studies, especially on spatial variability of morphometric
parameters, are considered immensely important. Morphometric analysis was also
employed for characterizing watersheds (Nag, 1998; Vittala, Govindaiah and Gowda,
2004; Vijith and Satheesh, 2006; Rudraiah, Govindaiah, and Vittala, 2008; Al Saud,
2009; Rao, Latha, Kumar and Krishna, 2010; Bagyaraj and Gurugnanam, 2011; Arpita
and Kumar, 2009; Magesh and Chandrasekar, 2010), for the prioritization of
watersheds (Nooka Ratnam et al., 2005; Thakkar and Dhiman, 2007; Mishra and
Nagarajan 2010; Londhe, Nathawat and Subudhi, 2010; Kanth and Hassan, 2012), for
formulation of Watershed Management Plans (Pakhmode, Kulkarni and Deolankar,
2003; Javed et al., 2009; Thomas, Joseph and Thrivikramaji, 2010), for flood
assessment and vulnerability (Ozdemir and Bird, 2009).
Li, Peterson, Liu and Qian, 2001; Helmschrot and Flugel, 2002; Xiuwan, 2002;
Vasconcelos, Mussa, Araujo and Diniz, 2002; Nash et al., 2003; Zeng, Sui and Ben,
2005; Mengistu and Salami, 2007, Fan, Weng and Wang, 2007 and Kanth and Hassan,
2010 have used GIS and remote sensing techniques to assess the changing land
use/land cover. Karia, Porwal, Roy and Sandhya, 2001; Rao and Pant, 2001 have
adopted remote sensing and GIS techniques in change detection analysis and
resource appraisal. Similar works have been done by Singh and Mahavir, 2003; Singh
et al., 2005; Mahajan and Panwar, 2005; Shetty, Nandagiri, Thokchom and Rajesh,
2005; Solanke et al., 2005; Chakraborty, Dutta and Chandrasekharan 2001; Joshi,
Rawat, Padaliya and Roy, 2005; Chauhan and Nayak, 2005; Narumalani, Mishra and
Rothwell, 2004 and Choudhary, Saroha and Yadav, 2008.
The increased concentration of phosphate in water bodies is mainly
caused by addition of phosphorus rich sewage (Edmondson, 1970). While
working on the temperature, oxygen and nutrient distribution pattern in Lake
Erie, Burns, 1976, pointed out that nitrate and nitrite levels decrease during
summer, while ammonia level remained constant during the this period.
The Universal Soil Loss Equation (USLE) is the best known and most widely
used soil erosion model. The USLE has been used for natural resource management
planning. Zhang et al., 2010 in their work identified the soil conservation priority
11
Chapter – 1 Introduction
regions based on the soil erosion risk assessment. The USLE has been used in
simulations on basins with varying drainage area (Fistikoglu and Harmancioglu,
2002; Onyando, Kisoyan and Chemelil, 2005; Erdogan, Erpul and Bayramin, 2007;
Dabral, Baithuri and Pandey, 2008), so that researchers can compare simulated
soil loss with acceptable values for the same kinds of soil. In Kashmir Valley
USLE has been used by Kanth and Bhat, 1991, who found that nearly one third of
the Kashmir Valley is under the threat of moderate to severe erosion problem;
Soil erosion intensity zones were delineated for Liddar basin by Ahmad and
Kanth, 2007; Sheikh, Palria, and Alam, 2011 integrated USLE and GIS for a micro
watershed of Liddar Catchment integrating USLE with RS and GIS. They found
that average soil loss was highest (26 t ha
-1
year
-1
) in agriculture area and lowest
soil loss rate was found in forest area (0.99 t ha
-1
year
-1
).
Randhir, Connor, Penner and Goodwin, 2001 have developed a watershed level
prioritization model for a wide variety of land protection and land use decisions.
Gergel et al., 2002 emphasized on ecological concepts by viewing the multiple
potential roles of landscape and reviewing historical role of ecology in planning Leitao
and Adhern, 2002 and Said et al., 2006 were also of the same opinion. Wicham and
Wade, 2002 found land cover composition a principal factor in controlling the amount
of nitrogen and phosphorus in watersheds Ahn, Mizugaki, Nakamura and Nakamura,
2006 found deforestation, channelization, road construction as well as agricultural
development responsible for increased sedimentation. Bouraoui, Benabdullah, Jrad
and Bidoglio, 2005 studying the potential impact of land management scenarios
applied the SWAT (Soil and Water Assessment Tool) model find out irrigated crop
introduced significant changes on nitrate concentration in surface water. Wolsink,
2006 describes the shift in the water management policy from mere technocratic
methods to integrated water management emphasizing on the local aspirations in
spatial planning and land use decisions. Kanth and Hassan, 2010 carried out
watershed prioritization for natural resource management by integrating land use/land
cover, drainage morphometry and socio economic parameters in the Wular
Catchment.
ha, Madan and Chawdary, 2007 Teixeira et al., 2008 gave the management
plans for groundwater sustainability using RS and GIS, while as Raghu and Reddy,
12
Chapter – 1 Introduction
2011 and Saxena and Prasad, 2008, revealed site specific recommendation on ground
water prospects to develop irrigation facilities in the area, Babu, Prasad and Rajeev,
1999 have suggested a Catchment Treatment Plan in Neyyar wild life sanctuary,
Kerala employing a multi-thematic analysis based on different parameters of slope,
land use/land cover, drainage, relative relief and soil using Remote Sensing and GIS.
13
CONCLUSION AND
SUGGESTIONS
Chapter – 8 Conclusion and Suggestions
8.1. Conclusion
The Wular Catchment is a complex geophysical unit with highly
differentiated topography and a thorough highland-lowland interaction. The
geophysical characterization clearly depicted the dominant control of landscape
elements like altitude, slope, aspect on the location and magnitude of the
degradational processes of the Wular Catchment. The altitude varies from about
1600 meters near Wular Lake to about 5000 meters near Harmukh range. The
mountainous landscape (>2000 meters) covers 50% while as the low lying flood
plains and foothills constitute 50% of the Wular Catchment. The slope also varies
greatly in the Wular Catchment with the gentle slope (<5
o
) constituting 31%, the
moderate and moderately steep (21.30%) and steep to escarpments cover 47.7%.
While as significant negative growth has occurred in dense forest (-25.08%),
water body (-23.92%) and wetland (-23.87%). The significant increase in built-up,
agricultural land and wasteland and the decrease in wetlands and forests indicate
severe deterioration in environmental conditions. hese changes transformed the
natural landscape into human-dominated landscape characterized by increased built
up, deforestation, steep-slope farming etc and establishment of developmental
projects like Kishenganga hydroelectric project.
The positive changes in vegetation have mostly occurred in the
Wular Periphery (+39.15 km
2
), Wular Lake (+42.4 km
2
), 1EM2a (+18.45
km
2
) and 1EW2b (+12.75 km
2
). The biomass increase is also explained
by the change in the land use from paddy land to the horticulture and
the conversion of forests to the grasslands and wastelands.
The Socio-economic condition of a region is of vital significance in balancing
the increasing human needs and environmental degradation. The population growth
in the Wular Catchment is high and has shown a fourfold increase from 1961 (93486)
to 2011 (389741) registering a growth of +316.9%. The watersheds which have high
physiological density in 2011 are 1EM2c (14449.06) and 1EE2c (3051.43). The density
and distribution of population in the Wular Catchment is greatly controlled by
resource potentiality and economic growth. The majority of people in the Wular
Catchment is of productive age group (57.4%) employed mostly in the primary sector
119
Chapter – 8 Conclusion and Suggestions
(57.5%) leading to the problem of resource degradation. The workers are mostly
engaged in farm sector and its allied activities which provide limited employment
opportunities. The potential work force is 57.76% in the Wular Catchment while as the
actual workers constitute only 28.4% of the total population. This clearly shows a low
work participation and high unemployment. The daily consumption of fuel wood in the
Wular Catchment is 4886 quintals which is quite high indicating the high dependence
on forests and less use of alternate sources of energy like kerosene oil, biogas, solar
energy, LPG etc
The Universal Soil Loss Equation (USLE) (Wischmeier and Smith, 1978) has
been used with combination of remote sensing and GIS technique to calculate soil
loss for mapping and assessment of erosion risk for natural resources management
planning, allowing to modify land-use properly and implement management strategies
more sustainably in the long-term. The Wular Catchment constitutes 10.95% under
very high soil loss zone, while as the watersheds having highest proportion under this
category are 1EM2b (25.78%), 1EE2a (25.10%) and 1EM1a (23.26%). The high values of
soil loss are the result of the combination of steep slopes with high LS factor, sparse
vegetation and barren surfaces due to human activities, such as forest clearance for
the habitation. This region is also characterized by high rainfall erosivity, low soil
erodibility and absence of the erosion control practice. The high, moderate and slight
soil loss covers 23.13%, 20.16% and 38.92% of the Wular Catchment respectively. The
advantage of the GIS-USLE approach is its ability to predict soil loss over large areas
due to the interpolation capabilities. It was therefore possible to circumvent the
constraint of limited field data on soil loss factor controls at meso- and macro-scale,
by capturing and overlaying the USLE parameters in a GIS.
The very high potential groundwater infiltration zone in Wular Catchment is
characterized by suitable surface and subsurface conditions like occurrence of
lineaments, permeable rock masses, good vegetation cover, low drainage density and
high rainfall. This zone with the highest potential of aquifer recharge covers an area of
74.94 (6.24%). The watersheds constituting the highest proportion in the very high
infiltration zone are 1EW2b, 1EOb2 and 1EOa1 respectively. 1EOb2 is mostly covered
by sandstone and limestone with loamy surface.1EOb1 has a high lineament
120
Chapter – 8 Conclusion and Suggestions
density. Both the watersheds have a considerable area under piedmont zone with low
drainage density. 1EOb2 is mostly covered by gentle slopes while as 1EOa1 has also
a significant area under gentle to moderately steep slopes. The Wular Catchment has
an area of 275.54 km
2
under the high zone of aquifer recharge constituting 22.95% of
the total area. The highest proportion of area under this zone is in 1EE1a (46.30%),
1EOb2 (42.64%), 1EOb1 (36.78%) and 1EOa2 (28.70%) respectively.
These characteristics are mostly attributed to the presence of urban
centre of Bandipora in this watershed. Moreover, this watershed has more
than 26% of area under very high and severe soil loss zone and 63% of area
has lower potential for groundwater infiltration. These watersheds have high
susceptibility to degradation and thus have attained the highest priority for
application of management strategies for land and water conservation.
8.2. Suggestions
The present study has employed integrated approach to identify and assess
the critical areas on the watershed level which need immediate attention to arrest the
unsuitable processes which are responsible for rampant degradation of the Wular
Catchment. The study has helped in devising the following strategies for controlling
the spiraling degradation processes of the Wular Catchment.
• The differential population density and distribution has put the available resource
base and the general environment of Wular Catchment under tremendous stress.
Thus there is an urgent need to arrest the fast growth of human population as the
achievements of planning are neutralized by the large addition of population every
year. The population pressure on agricultural land in the Wular Catchment is
intense not only in densely populated areas, where arithmetic population densities
are higher but equally intense on sparsely populated areas because of the
limitations imposed by the environment on cultivation. Therefore, the sparsely
populated areas need not to be overlooked in the developmental efforts simply
because of their population size, but deserve greater attention due to their
inaccessibility and backwardness.
• Diversification of economy will enable people to move from primary to
secondary or tertiary sectors and consequently will reduce the burden from
121
Chapter – 8 Conclusion and Suggestions
lumbering, fishing and subsistence agriculture. Productivity enhancement and
livelihoods shall be given priority along with conservation measures. Resource
development and usage should be planned in such a way to provide local
/ Human resource development in rural areas and increased non-
farm employment opportunities will reduce pressure on land.
/ Non – conventional sources of energy like solar lights, biogas should
be provided to the inhabitants to reduce the burden on forests.
Furthermore, easy accessibility and availability of L.P.G should be
ensured to cater the increasing energy demands of the area.
/ The participation of local communities is crucial in planning and
management of Wular Catchment on long term basis. Ensuring
participation of all stakeholders requires understanding of their needs
and sharing of authority and responsibility for resource management.
/ Capacity Building and training of all functionaries and stakeholders involved
in the watershed programme implementation should be carried out with
definite action plan and requisite professionalism and competence.
/ Development of ecotourism in the Wular Catchment will help in improving
the environment and providing economic benefits to the local communities.
← One of the major problems in Wular Catchment is the conversion of dense
forests into the sparse forests. The main reasons for this change are
deforestation for timber smuggling and fuel wood extraction; fragmentation of
forest area for developmental works. Afforestation and reforestation
programmes should be launched in the affected areas. Furthermore, stringent
measures should be devised to stop illegal timber extraction and associated
activities. Reducing pressure on forests through provision of alternate
sources of energy is also a viable option.
(PPP) Improvement of water quality will restore the aesthetic value
of the Wular Lake and will render it fit for drinking purposes.
Furthermore, the dependence on Wular Lake for various economic
activities makes water quality enhancement more important.
122
Chapter – 8 Conclusion and Suggestions
• The treatment of water for sewage from adjoining settlements by
establishment of STP’s at critical points is extremely important
to regulate the water quality of the Wular Lake.
• The water quality improvement for the specific agro-eco-regions in
the watersheds may be enhanced by targeting Best Management
Practices (BMPs) in the areas that generate the most pollution.
• The selective removal of the weeds and flushing of the lake will
help in reducing the biomass in the Wular Lake.
• Public awareness campaigns for water quality management and
sustainability issues should be organized in the study area.
Agronomic practices for soil and water conservation help to intercept
rain drops and reduce the splash effect, help to obtain a better intake
of water rate by the soil by improving the content of organic matter and
soil structure, help to retard and reduce the overland runoff through
the use of contour cultivation, mulches and mixed-cropping.
• A simple practice of farming across the slope, keeping the same
level as far as possible and is called as contour farming.
• Surface mulches are used to prevent soil from blowing and being washed
away, to reduce evaporation, increase infiltration and to improve soil
• It provides a continuous cover of the land. It provides protection
against soil erosion and assures more than one crops to the farmer.
• : This includes the addition of organic manures to the soil by legume inter-
planting (crop and grazing land; induced fertility), green manure
(cropland), applying manure / compost / residues (organic fertilizers).
Engineering Measures: The engineering measures play a very vital role in
controlling erosion on agricultural land. They are adopted to supplement the
agronomical practices when the latter alone are not adequately effective.
/ Terraces are earth embankments constructed across the slope
to intercept surface runoff and convey it to a stable outlet at a
non-erosive velocity, and to shorten the slope length.
/ The eroding and the deepening of gully beds can be prevented with gully
plugs. Gully plugs protect the gully beds by reducing the speed of runoff
123
Chapter – 8 Conclusion and Suggestions
water, redistributing it, increasing its percolation, encouraging silting
and improving the soil moisture regime for establishing a plant cover.
• Small dams made from locally available materials such as earth, wooden
planks, brush woods or loose rock, are built across gullies to trap sediments
and thereby reduce channel depth and slope and are used in association with
agronomic treatment of surrounding land where grasses, trees and shrubs are
planted.
• This includes identification, protection and enhancement of significant natural
features including, headwaters, groundwater recharge and discharge areas,
wetlands, vegetated stream buffers and forest areas, while considering
historical and current human activities impacting the system.
• The government should expand its interests in watershed management beyond
flood and erosion control operations to achieve maintenance and enhancement of
ground and surface water (both quality and quantity) for all users.
• Water harvesting is another potential method for augmentation of ground
water resources. The various structures and the criteria for the selection of
their locations are given below: weathered zone / loose material / fractures.
In areas where transmissivity of the upper strata is poor, for
example in shale underlain by sandstones.
Around the habitations where drainage does not exist, for
example water divide areas, hill/plateau tops, etc.
• groundwater prospects map on the watershed basis should be put to use as a
suitable data base for developing a ground water based drinking water
security plan for a habitation or for a group of habitations.
Writekraft Research & Publications LLP
(All Rights Reserved)
To Order Full/Complete PhD Thesis
1 Thesis (Qualitative/Quantitative Study with SPSS) & PPT with Turnitin Plagiarism
Report (<10% Plagiarism)
In Just Rs. 45000 INR*
Contact@
Writekraft Research & Publications LLP
(Regd. No. AAI-1261)
Mobile: 7753818181, 9838033084
Email: info@writekraft.com
Web: www.writekraft.com
Writekraft Research & Publications LLP
(Regd. No. AAI-1261)
Corporate Office: 67, UGF, Ganges Nagar (SRGP), 365 Hairis Ganj, Tatmill Chauraha, Kanpur,
208004
Phone: 0512-2328181
Mobile: 7753818181, 9838033084
Email: info@writekraft.com
Web: www.writekraft.com

More Related Content

What's hot

Sustainability-08-00254 - Human -Nature for Climate Action
Sustainability-08-00254 - Human -Nature for Climate ActionSustainability-08-00254 - Human -Nature for Climate Action
Sustainability-08-00254 - Human -Nature for Climate ActionHelen Santiago Fink
 
SIEUSOIL Newsletter
SIEUSOIL Newsletter SIEUSOIL Newsletter
SIEUSOIL Newsletter SIEUSOIL
 
Monitoring and Assesment of Landslide from Agastmuni to Sonprayag
Monitoring and Assesment of Landslide from Agastmuni to SonprayagMonitoring and Assesment of Landslide from Agastmuni to Sonprayag
Monitoring and Assesment of Landslide from Agastmuni to Sonprayagpaperpublications3
 
Role of watershed management in reducing soil erosion zewde a
Role of watershed management in reducing soil erosion zewde aRole of watershed management in reducing soil erosion zewde a
Role of watershed management in reducing soil erosion zewde azewde alemayehu
 
New and Improved Aqueduct Water Risk Atlas: Exploring Aqueduct 3.0
New and Improved Aqueduct Water Risk Atlas: Exploring Aqueduct 3.0New and Improved Aqueduct Water Risk Atlas: Exploring Aqueduct 3.0
New and Improved Aqueduct Water Risk Atlas: Exploring Aqueduct 3.0World Resources Institute (WRI)
 
Environment and Economy Interaction
Environment and Economy InteractionEnvironment and Economy Interaction
Environment and Economy InteractionVivek Patidar
 
Conserving biodiversity a case study on Uttara Kannada, India.
Conserving biodiversity a case study on Uttara Kannada, India.Conserving biodiversity a case study on Uttara Kannada, India.
Conserving biodiversity a case study on Uttara Kannada, India.Arghyadeep Saha
 
Environmental issues emerging from increase in population
Environmental issues emerging from increase in populationEnvironmental issues emerging from increase in population
Environmental issues emerging from increase in populationDevansh Tiwari
 
Environment geography question and answers
Environment geography  question and answersEnvironment geography  question and answers
Environment geography question and answersArghyadeep Saha
 
Climate Refugees: Uncertainty and Insecurity
Climate Refugees: Uncertainty and InsecurityClimate Refugees: Uncertainty and Insecurity
Climate Refugees: Uncertainty and InsecurityJosh Gellers
 
effects of economic growth on environment
effects of economic growth on environmenteffects of economic growth on environment
effects of economic growth on environmentKamaljit Singh
 

What's hot (14)

Sustainability-08-00254 - Human -Nature for Climate Action
Sustainability-08-00254 - Human -Nature for Climate ActionSustainability-08-00254 - Human -Nature for Climate Action
Sustainability-08-00254 - Human -Nature for Climate Action
 
SIEUSOIL Newsletter
SIEUSOIL Newsletter SIEUSOIL Newsletter
SIEUSOIL Newsletter
 
Monitoring and Assesment of Landslide from Agastmuni to Sonprayag
Monitoring and Assesment of Landslide from Agastmuni to SonprayagMonitoring and Assesment of Landslide from Agastmuni to Sonprayag
Monitoring and Assesment of Landslide from Agastmuni to Sonprayag
 
Economical sustainability of landscape
Economical sustainability of landscapeEconomical sustainability of landscape
Economical sustainability of landscape
 
Role of watershed management in reducing soil erosion zewde a
Role of watershed management in reducing soil erosion zewde aRole of watershed management in reducing soil erosion zewde a
Role of watershed management in reducing soil erosion zewde a
 
New and Improved Aqueduct Water Risk Atlas: Exploring Aqueduct 3.0
New and Improved Aqueduct Water Risk Atlas: Exploring Aqueduct 3.0New and Improved Aqueduct Water Risk Atlas: Exploring Aqueduct 3.0
New and Improved Aqueduct Water Risk Atlas: Exploring Aqueduct 3.0
 
Environment and Economy Interaction
Environment and Economy InteractionEnvironment and Economy Interaction
Environment and Economy Interaction
 
Conserving biodiversity a case study on Uttara Kannada, India.
Conserving biodiversity a case study on Uttara Kannada, India.Conserving biodiversity a case study on Uttara Kannada, India.
Conserving biodiversity a case study on Uttara Kannada, India.
 
Environmental issues emerging from increase in population
Environmental issues emerging from increase in populationEnvironmental issues emerging from increase in population
Environmental issues emerging from increase in population
 
disaster management ppt
disaster management pptdisaster management ppt
disaster management ppt
 
Environment geography question and answers
Environment geography  question and answersEnvironment geography  question and answers
Environment geography question and answers
 
Climate Refugees: Uncertainty and Insecurity
Climate Refugees: Uncertainty and InsecurityClimate Refugees: Uncertainty and Insecurity
Climate Refugees: Uncertainty and Insecurity
 
effects of economic growth on environment
effects of economic growth on environmenteffects of economic growth on environment
effects of economic growth on environment
 
Unit 4 d) Environment and Development
Unit 4 d) Environment and DevelopmentUnit 4 d) Environment and Development
Unit 4 d) Environment and Development
 

Similar to Watershed Management Plan for Wular Catchment

Environmentalism.docx
Environmentalism.docxEnvironmentalism.docx
Environmentalism.docxEmyWatson1
 
Impact of Land-use and Land-cover Change Dynamics on Flooding: A Case Study o...
Impact of Land-use and Land-cover Change Dynamics on Flooding: A Case Study o...Impact of Land-use and Land-cover Change Dynamics on Flooding: A Case Study o...
Impact of Land-use and Land-cover Change Dynamics on Flooding: A Case Study o...IRJET Journal
 
A Review on the Sedimentation Problem in River Basins
A Review on the Sedimentation Problem in River BasinsA Review on the Sedimentation Problem in River Basins
A Review on the Sedimentation Problem in River Basinsijtsrd
 
Land cover transition and fragmentation of River Ogba catchment in Benin City...
Land cover transition and fragmentation of River Ogba catchment in Benin City...Land cover transition and fragmentation of River Ogba catchment in Benin City...
Land cover transition and fragmentation of River Ogba catchment in Benin City...Glory Enaruvbe
 
ENVIRONMENTAL CONCERNS AND SUSTAINABLE DEVELOPMENT - WITH SPECIAL REFERENCE T...
ENVIRONMENTAL CONCERNS AND SUSTAINABLE DEVELOPMENT - WITH SPECIAL REFERENCE T...ENVIRONMENTAL CONCERNS AND SUSTAINABLE DEVELOPMENT - WITH SPECIAL REFERENCE T...
ENVIRONMENTAL CONCERNS AND SUSTAINABLE DEVELOPMENT - WITH SPECIAL REFERENCE T...vijay kumar sarabu
 
Environmental impact assessment [autosave]
Environmental impact assessment  [autosave]Environmental impact assessment  [autosave]
Environmental impact assessment [autosave]Thomas Ayalew
 
Advancing the Use of Earth Observation Systems for the Assessment of Sustaina...
Advancing the Use of Earth Observation Systems for the Assessment of Sustaina...Advancing the Use of Earth Observation Systems for the Assessment of Sustaina...
Advancing the Use of Earth Observation Systems for the Assessment of Sustaina...rsmahabir
 
causes and effects of environmental degradation
 causes and effects of environmental degradation causes and effects of environmental degradation
causes and effects of environmental degradationBhuvanesvari srinivasan
 
Climate change adaptation mainstreaming at the sub national level developmen...
Climate change adaptation mainstreaming at the sub  national level developmen...Climate change adaptation mainstreaming at the sub  national level developmen...
Climate change adaptation mainstreaming at the sub national level developmen...Alexander Decker
 
S Ramage GEO UN-GGIM HLF Mexico Nov 2017
S Ramage GEO UN-GGIM HLF Mexico Nov 2017S Ramage GEO UN-GGIM HLF Mexico Nov 2017
S Ramage GEO UN-GGIM HLF Mexico Nov 2017Steven Ramage
 
The Environmental and Socio-Economic Implication of Residential Buildings in...
 The Environmental and Socio-Economic Implication of Residential Buildings in... The Environmental and Socio-Economic Implication of Residential Buildings in...
The Environmental and Socio-Economic Implication of Residential Buildings in...ty0385
 
Ecological approaches in planning for sustainable cities A review of the lite...
Ecological approaches in planning for sustainable cities A review of the lite...Ecological approaches in planning for sustainable cities A review of the lite...
Ecological approaches in planning for sustainable cities A review of the lite...GJESM Publication
 
Climate change in context of sustainable development
Climate change in context of sustainable developmentClimate change in context of sustainable development
Climate change in context of sustainable developmentsajid ali
 
IRJET - Analysis of Land Degraded in Maitha Block of Kanpur Dehat District us...
IRJET - Analysis of Land Degraded in Maitha Block of Kanpur Dehat District us...IRJET - Analysis of Land Degraded in Maitha Block of Kanpur Dehat District us...
IRJET - Analysis of Land Degraded in Maitha Block of Kanpur Dehat District us...IRJET Journal
 
T12 majdi gouja nena exec summary
T12 majdi gouja nena exec summaryT12 majdi gouja nena exec summary
T12 majdi gouja nena exec summaryNENAwaterscarcity
 
Healthy Ecosystems, Healthy People
Healthy Ecosystems, Healthy PeopleHealthy Ecosystems, Healthy People
Healthy Ecosystems, Healthy PeopleNaturalEngland
 
IRJET- Hydrogeochemistry and Environmental Implication of Periyar River S...
IRJET-  	  Hydrogeochemistry and Environmental Implication of Periyar River S...IRJET-  	  Hydrogeochemistry and Environmental Implication of Periyar River S...
IRJET- Hydrogeochemistry and Environmental Implication of Periyar River S...IRJET Journal
 
Lubchenco_etal_2015_Sustainibility_rooted_in_science
Lubchenco_etal_2015_Sustainibility_rooted_in_scienceLubchenco_etal_2015_Sustainibility_rooted_in_science
Lubchenco_etal_2015_Sustainibility_rooted_in_scienceJessica Reimer
 

Similar to Watershed Management Plan for Wular Catchment (20)

Environmentalism.docx
Environmentalism.docxEnvironmentalism.docx
Environmentalism.docx
 
Impact of Land-use and Land-cover Change Dynamics on Flooding: A Case Study o...
Impact of Land-use and Land-cover Change Dynamics on Flooding: A Case Study o...Impact of Land-use and Land-cover Change Dynamics on Flooding: A Case Study o...
Impact of Land-use and Land-cover Change Dynamics on Flooding: A Case Study o...
 
A Review on the Sedimentation Problem in River Basins
A Review on the Sedimentation Problem in River BasinsA Review on the Sedimentation Problem in River Basins
A Review on the Sedimentation Problem in River Basins
 
Land cover transition and fragmentation of River Ogba catchment in Benin City...
Land cover transition and fragmentation of River Ogba catchment in Benin City...Land cover transition and fragmentation of River Ogba catchment in Benin City...
Land cover transition and fragmentation of River Ogba catchment in Benin City...
 
ENVIRONMENTAL CONCERNS AND SUSTAINABLE DEVELOPMENT - WITH SPECIAL REFERENCE T...
ENVIRONMENTAL CONCERNS AND SUSTAINABLE DEVELOPMENT - WITH SPECIAL REFERENCE T...ENVIRONMENTAL CONCERNS AND SUSTAINABLE DEVELOPMENT - WITH SPECIAL REFERENCE T...
ENVIRONMENTAL CONCERNS AND SUSTAINABLE DEVELOPMENT - WITH SPECIAL REFERENCE T...
 
Environmental impact assessment [autosave]
Environmental impact assessment  [autosave]Environmental impact assessment  [autosave]
Environmental impact assessment [autosave]
 
Advancing the Use of Earth Observation Systems for the Assessment of Sustaina...
Advancing the Use of Earth Observation Systems for the Assessment of Sustaina...Advancing the Use of Earth Observation Systems for the Assessment of Sustaina...
Advancing the Use of Earth Observation Systems for the Assessment of Sustaina...
 
causes and effects of environmental degradation
 causes and effects of environmental degradation causes and effects of environmental degradation
causes and effects of environmental degradation
 
Climate change adaptation mainstreaming at the sub national level developmen...
Climate change adaptation mainstreaming at the sub  national level developmen...Climate change adaptation mainstreaming at the sub  national level developmen...
Climate change adaptation mainstreaming at the sub national level developmen...
 
Ad04605205216
Ad04605205216Ad04605205216
Ad04605205216
 
Ijciet 06 10_007
Ijciet 06 10_007Ijciet 06 10_007
Ijciet 06 10_007
 
S Ramage GEO UN-GGIM HLF Mexico Nov 2017
S Ramage GEO UN-GGIM HLF Mexico Nov 2017S Ramage GEO UN-GGIM HLF Mexico Nov 2017
S Ramage GEO UN-GGIM HLF Mexico Nov 2017
 
The Environmental and Socio-Economic Implication of Residential Buildings in...
 The Environmental and Socio-Economic Implication of Residential Buildings in... The Environmental and Socio-Economic Implication of Residential Buildings in...
The Environmental and Socio-Economic Implication of Residential Buildings in...
 
Ecological approaches in planning for sustainable cities A review of the lite...
Ecological approaches in planning for sustainable cities A review of the lite...Ecological approaches in planning for sustainable cities A review of the lite...
Ecological approaches in planning for sustainable cities A review of the lite...
 
Climate change in context of sustainable development
Climate change in context of sustainable developmentClimate change in context of sustainable development
Climate change in context of sustainable development
 
IRJET - Analysis of Land Degraded in Maitha Block of Kanpur Dehat District us...
IRJET - Analysis of Land Degraded in Maitha Block of Kanpur Dehat District us...IRJET - Analysis of Land Degraded in Maitha Block of Kanpur Dehat District us...
IRJET - Analysis of Land Degraded in Maitha Block of Kanpur Dehat District us...
 
T12 majdi gouja nena exec summary
T12 majdi gouja nena exec summaryT12 majdi gouja nena exec summary
T12 majdi gouja nena exec summary
 
Healthy Ecosystems, Healthy People
Healthy Ecosystems, Healthy PeopleHealthy Ecosystems, Healthy People
Healthy Ecosystems, Healthy People
 
IRJET- Hydrogeochemistry and Environmental Implication of Periyar River S...
IRJET-  	  Hydrogeochemistry and Environmental Implication of Periyar River S...IRJET-  	  Hydrogeochemistry and Environmental Implication of Periyar River S...
IRJET- Hydrogeochemistry and Environmental Implication of Periyar River S...
 
Lubchenco_etal_2015_Sustainibility_rooted_in_science
Lubchenco_etal_2015_Sustainibility_rooted_in_scienceLubchenco_etal_2015_Sustainibility_rooted_in_science
Lubchenco_etal_2015_Sustainibility_rooted_in_science
 

More from WriteKraft Dissertations

Talent management practices in manufacturing industries in and around chennai...
Talent management practices in manufacturing industries in and around chennai...Talent management practices in manufacturing industries in and around chennai...
Talent management practices in manufacturing industries in and around chennai...WriteKraft Dissertations
 
Synchronous e learning for human resource management [www.writekraft.com]
Synchronous e learning for human resource management [www.writekraft.com]Synchronous e learning for human resource management [www.writekraft.com]
Synchronous e learning for human resource management [www.writekraft.com]WriteKraft Dissertations
 
Supply chain management of vegetable marketing [www.writekraft.com]
Supply chain management of vegetable marketing [www.writekraft.com]Supply chain management of vegetable marketing [www.writekraft.com]
Supply chain management of vegetable marketing [www.writekraft.com]WriteKraft Dissertations
 
Role of management education in promoting entrepreneurship [www.writekraft.com]
Role of management education in promoting entrepreneurship [www.writekraft.com]Role of management education in promoting entrepreneurship [www.writekraft.com]
Role of management education in promoting entrepreneurship [www.writekraft.com]WriteKraft Dissertations
 
Talent management practices in it sectors an analytical study of bangalore ba...
Talent management practices in it sectors an analytical study of bangalore ba...Talent management practices in it sectors an analytical study of bangalore ba...
Talent management practices in it sectors an analytical study of bangalore ba...WriteKraft Dissertations
 
A study on talent management in it industry [www.writekraft.com]
A study on talent management in it industry [www.writekraft.com]A study on talent management in it industry [www.writekraft.com]
A study on talent management in it industry [www.writekraft.com]WriteKraft Dissertations
 
A study on inventory management system [www.writekraft.com]
A study on inventory management system [www.writekraft.com]A study on inventory management system [www.writekraft.com]
A study on inventory management system [www.writekraft.com]WriteKraft Dissertations
 
A study on country commodity and currency exposure of export management in in...
A study on country commodity and currency exposure of export management in in...A study on country commodity and currency exposure of export management in in...
A study on country commodity and currency exposure of export management in in...WriteKraft Dissertations
 
A study of problems of small scale industries in jalgaon district [www.writek...
A study of problems of small scale industries in jalgaon district [www.writek...A study of problems of small scale industries in jalgaon district [www.writek...
A study of problems of small scale industries in jalgaon district [www.writek...WriteKraft Dissertations
 
A study on logistics cost management in inland container depots with special ...
A study on logistics cost management in inland container depots with special ...A study on logistics cost management in inland container depots with special ...
A study on logistics cost management in inland container depots with special ...WriteKraft Dissertations
 
Synchronous e learning for human resource management [www.writekraft.com]
Synchronous e learning for human resource management [www.writekraft.com]Synchronous e learning for human resource management [www.writekraft.com]
Synchronous e learning for human resource management [www.writekraft.com]WriteKraft Dissertations
 
Role of management education in promoting entrepreneurship [www.writekraft.com]
Role of management education in promoting entrepreneurship [www.writekraft.com]Role of management education in promoting entrepreneurship [www.writekraft.com]
Role of management education in promoting entrepreneurship [www.writekraft.com]WriteKraft Dissertations
 
Risk management in agriculture [www.writekraft.com]
Risk management in agriculture [www.writekraft.com]Risk management in agriculture [www.writekraft.com]
Risk management in agriculture [www.writekraft.com]WriteKraft Dissertations
 
Resource management in neyveli lignite corporation limited [www.writekraft.com]
Resource management in neyveli lignite corporation limited [www.writekraft.com]Resource management in neyveli lignite corporation limited [www.writekraft.com]
Resource management in neyveli lignite corporation limited [www.writekraft.com]WriteKraft Dissertations
 

More from WriteKraft Dissertations (20)

Starting a ph d www
Starting a ph d                   wwwStarting a ph d                   www
Starting a ph d www
 
Ph ds through m phil www
Ph ds through m phil     wwwPh ds through m phil     www
Ph ds through m phil www
 
Ph d research proposals www
Ph d research proposals                                              wwwPh d research proposals                                              www
Ph d research proposals www
 
Ph d eligibility criteria www
Ph d eligibility criteria                  wwwPh d eligibility criteria                  www
Ph d eligibility criteria www
 
Ph d applications www
Ph d applications    wwwPh d applications    www
Ph d applications www
 
Formatting of research pape
Formatting of research papeFormatting of research pape
Formatting of research pape
 
Talent management practices in manufacturing industries in and around chennai...
Talent management practices in manufacturing industries in and around chennai...Talent management practices in manufacturing industries in and around chennai...
Talent management practices in manufacturing industries in and around chennai...
 
Synchronous e learning for human resource management [www.writekraft.com]
Synchronous e learning for human resource management [www.writekraft.com]Synchronous e learning for human resource management [www.writekraft.com]
Synchronous e learning for human resource management [www.writekraft.com]
 
Supply chain management of vegetable marketing [www.writekraft.com]
Supply chain management of vegetable marketing [www.writekraft.com]Supply chain management of vegetable marketing [www.writekraft.com]
Supply chain management of vegetable marketing [www.writekraft.com]
 
Role of management education in promoting entrepreneurship [www.writekraft.com]
Role of management education in promoting entrepreneurship [www.writekraft.com]Role of management education in promoting entrepreneurship [www.writekraft.com]
Role of management education in promoting entrepreneurship [www.writekraft.com]
 
Talent management practices in it sectors an analytical study of bangalore ba...
Talent management practices in it sectors an analytical study of bangalore ba...Talent management practices in it sectors an analytical study of bangalore ba...
Talent management practices in it sectors an analytical study of bangalore ba...
 
A study on talent management in it industry [www.writekraft.com]
A study on talent management in it industry [www.writekraft.com]A study on talent management in it industry [www.writekraft.com]
A study on talent management in it industry [www.writekraft.com]
 
A study on inventory management system [www.writekraft.com]
A study on inventory management system [www.writekraft.com]A study on inventory management system [www.writekraft.com]
A study on inventory management system [www.writekraft.com]
 
A study on country commodity and currency exposure of export management in in...
A study on country commodity and currency exposure of export management in in...A study on country commodity and currency exposure of export management in in...
A study on country commodity and currency exposure of export management in in...
 
A study of problems of small scale industries in jalgaon district [www.writek...
A study of problems of small scale industries in jalgaon district [www.writek...A study of problems of small scale industries in jalgaon district [www.writek...
A study of problems of small scale industries in jalgaon district [www.writek...
 
A study on logistics cost management in inland container depots with special ...
A study on logistics cost management in inland container depots with special ...A study on logistics cost management in inland container depots with special ...
A study on logistics cost management in inland container depots with special ...
 
Synchronous e learning for human resource management [www.writekraft.com]
Synchronous e learning for human resource management [www.writekraft.com]Synchronous e learning for human resource management [www.writekraft.com]
Synchronous e learning for human resource management [www.writekraft.com]
 
Role of management education in promoting entrepreneurship [www.writekraft.com]
Role of management education in promoting entrepreneurship [www.writekraft.com]Role of management education in promoting entrepreneurship [www.writekraft.com]
Role of management education in promoting entrepreneurship [www.writekraft.com]
 
Risk management in agriculture [www.writekraft.com]
Risk management in agriculture [www.writekraft.com]Risk management in agriculture [www.writekraft.com]
Risk management in agriculture [www.writekraft.com]
 
Resource management in neyveli lignite corporation limited [www.writekraft.com]
Resource management in neyveli lignite corporation limited [www.writekraft.com]Resource management in neyveli lignite corporation limited [www.writekraft.com]
Resource management in neyveli lignite corporation limited [www.writekraft.com]
 

Recently uploaded

Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonJericReyAuditor
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfakmcokerachita
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,Virag Sontakke
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 

Recently uploaded (20)

Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lesson
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdf
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 

Watershed Management Plan for Wular Catchment

  • 1. Writekraft Research & Publications LLP (All Rights Reserved) WATERSHED CHARACTERIZATION AND MANAGEMENT PLANNING IN WULAR CATCHMENT Writekraft Research & Publications LLP (Regd. No. AAI-1261) Corporate Office: 67, UGF, Ganges Nagar (SRGP), 365 Hairis Ganj, Tatmill Chauraha, Kanpur, 208004 Phone: 0512-2328181 Mobile: 7753818181, 9838033084 Email: info@writekraft.com Web: www.writekraft.com
  • 2. Writekraft Research & Publications LLP (All Rights Reserved) CHAPTER - 1 INTRODUCTION Writekraft Research & Publications LLP (Regd. No. AAI-1261) Corporate Office: 67, UGF, Ganges Nagar (SRGP), 365 Hairis Ganj, Tatmill Chauraha, Kanpur, 208004 Phone: 0512-2328181 Mobile: 7753818181, 9838033084 Email: info@writekraft.com Web: www.writekraft.com
  • 3. Writekraft Research & Publications LLP (All Rights Reserved) Chapter – 1 Introduction History of human impact on environment is as old as human existence. Contrary to this the human conscience about the accelerating negative impact on natural environment arose only after the threshold of development reached and the deteriorating environment started to roll back on human existence. The evolution of man to a sophisticated designer utilizing his intellect to transform the natural endowments to continuously cherish his desire of comfort and prosperity has been beautifully summed up in the first proclamation in chapter 1 of Stockholm Conference, 1972 “Man is both creature and moulder of his environment, which gives him physical sustenance and affords him the opportunity for intellectual, moral, social and spiritual growth. In the long and tortuous evolution of the human race on this planet a stage has been reached when, through the rapid acceleration of science and technology, man has acquired the power to transform his environment in countless ways and on an unprecedented scale---” Subsequently, the population-environment relationship was debated by many scholars. Significant among them was Ehrlich and Holdren, 1974 who propounded that the human impact (I) on the environment is Writekraft Research & Publications LLP (Regd. No. AAI-1261) Corporate Office: 67, UGF, Ganges Nagar (SRGP), 365 Hairis Ganj, Tatmill Chauraha, Kanpur, 208004 Phone: 0512-2328181 Mobile: 7753818181, 9838033084 Email: info@writekraft.com Web: www.writekraft.com
  • 4. Writekraft Research & Publications LLP (All Rights Reserved) the product of population (P), resource consumption (A) and technology (T) and emphasized that population size and growth as the most urgent IPAT factor, whereas Commoner, 1972 argued that production technologies were the dominant reason for environmental degradation. The United Nations Conference on Environment and Development held in Rio de Janeiro, Brazil, in 1992 was a milestone in the evolution of an international consensus on the relationships among population, development and environment, based on the concept of sustainable development articulated by the WCED, 1987. Writekraft Research & Publications LLP (Regd. No. AAI-1261) Corporate Office: 67, UGF, Ganges Nagar (SRGP), 365 Hairis Ganj, Tatmill Chauraha, Kanpur, 208004 Phone: 0512-2328181 Mobile: 7753818181, 9838033084 Email: info@writekraft.com Web: www.writekraft.com
  • 5. Chapter – 1 Introduction The World Commission on Environment and Development defined sustainable development as that which meets the needs of the present without compromising the ability of future generations to meet their own needs. Sustainability refers to the qualitative and quantitative continuity in the use of a resource. It attempts to balance the often-conflicting ideals of economic growth and maintaining environmental quality and viability (Skidmore et al., 1997). Sustainable development is defined by the United Nations Department of Economic and Social Affairs as having three pillars: social, economic, and environmental. The social pillar refers to meeting the basic needs of society, such as health and education, and protecting human rights. The economic component refers to efficiently managing the economy to meet material needs. The environmental component is concerned with the conservation and enhancement of the physical and biological resource base and ecosystems. 1.1. Watershed as a Geographical Unit of Study A watershed represents a topographically defined area that is drained by a stream system, representing a smaller upstream catchment, which is a constituent of a larger river basin. This landscape encompasses both surface and groundwater supplies, in addition to related terrestrial and community resources. The watershed is being viewed as a place based and ecological entity, as well as a socioeconomic and political unit to be utilized for management planning, conservation strategies and implementation purposes. Watershed is thus a development unit in which all the natural resources like soil, water, geomorphology and land use are in harmony
  • 6. there by facilitating adoption of holistic approach to problem solving. Watershed is considered to be the ideal unit for analysis and management of natural resources for planning (Akhouri, 1996). The soil, vegetation and water are the basic resources, which interact and establish in a watershed. Hence, all these three resources have to be managed collectively and in an integrated way. The Physiography of the land, slope and nature of soil cover, land use • cover, hydro geomorphology, climate, socio-economic and legal aspects etc. and the hydrological features of the land area determine the productive interaction between these natural resources. Watersheds can also be repositories of global environmental benefits, such as biodiversity and carbon sequestration. Moreover, upper watersheds 2
  • 7. Chapter – 1 Introduction are linked, through water flows to downstream land and coastal areas far from the steep terrains where water flows are generated. A watershed represents a unique geo-physical unit within which water moves continuously in a cycle that begins with precipitation. Land use activities that affect climate, landform, soil or vegetation also impact the natural distribution of water within the watershed landscape. Activities, such as urbanization and agricultural practices, can alter the slope of land and channel form; pave over or compact soils; remove vegetation; and have many other effects. These effects all result in changes in the water balance. That is, they can change the proportion of rainwater that flows overland relative to that stored, evaporated, infiltrated or taken up by plants and transpired. 1.2. Watershed Degradation Descriptors The degradation of land and water resources due to the complex interactions within a watershed can have far-reaching and unwanted impacts on the environment beyond the impacts on soil and water resources and the related economic activities. These impacts on the broader environment may include climate change, global warming, loss of biodiversity, impaired energy cycles, food crisis etc and may also have a direct or indirect cost for different sectors of the economy, including tourism and services generated by biodiversity. The exponential increase in population has fueled a significant demographic shift. In 1950, only 30% of the world’s population was found in urban areas; however, the projected five billion urban dwellers will represent 60% of the world’s population by 2030 (United Nations, 2002). The term “urbanization” describes an increase in human habitation linked with increased per capita energy and resource consumption and extensive landscape modification (McDonnell and Pickett, 1990). Urbanizing regions pose increasing challenges to ecosystems health and functioning. Urbanization affects the structure and function of Earth’s ecosystems through the transformation of the natural landscape, alteration of biophysical processes and habitat, and modification of major biogeochemical cycles. These changes in turn affect the ecosystem’s capacity to deliver important services to the human population and support human well-being (Alberti, 2010). 3
  • 8. Chapter – 1 Introduction Land cover changes are the result of interactions between biophysical and socioeconomic processes and factors (Turner et al., 1989). Agriculture can have a detrimental effect on water quality leading to acute problems such as erosion, Salinization, diffuse pollution by nutrients and pesticides (Zalidis et al., 2002). Empirical studies have shown the dominant influence of land cover (e.g. forest, agriculture, urban) in determining the amount of nitrogen (N) and phosphorus (P) in rivers, lakes, and estuaries (Hunsaker, 1992). Soil erosion by water is the most significant land degradation problem worldwide (Eswaran et al., 2001; Deng et al., 2009). Soil erosion creates strong environmental impacts and high economic costs through its effect on agricultural production, infrastructure and water quality (Pimentel et al., 1995; Lal, 1998), directly affecting human quality of life and threatening human safety. Soil conservation actions should therefore serve to improve the ecological and socio-economic environment. Water quality is one of the fundamental components of a healthy watershed because it integrates important geomorphic, hydrologic and some of the biological processes of a watershed. Alteration of any one of these processes will affect one or more water quality parameters. Hence changes in water quality indicate a change in some aspect of the terrestrial, riparian or in-channel ecosystem. Generally, the concentration or load of nitrogen and phosphorus in receiving waters increases as the amount of agriculture or urban land increases in a watershed (Parry, 1998). 1.3. Watershed Management Watershed management is the integrated use of land, vegetation and water in a geographically discrete drainage area for the benefit of its residents, with the objective of protecting or conserving the hydrologic services that the watershed provides and of reducing or avoiding negative downstream or groundwater impacts. The key characteristics of a watershed that drive management approaches are the integration of land and water resources, the causal link between upstream land and water use and downstream impacts and externalities, the typical nexus in upland areas of developing countries between resource depletion and poverty, and the multiplicity of stakeholders. Watershed management approaches need to be adapted to the local 4
  • 9. Chapter – 1 Introduction situation and to changes in natural resource use and climate. Watershed management interventions may bring local, regional and global environmental benefits. An integrated approach to natural resource management at the watershed level would ideally address the complex system dynamics in watersheds and would achieve global environmental benefits. The first generation of watershed management projects in developing countries in the 1970’s and 1980’s applied a soil and water planning approach to watersheds that emphasized engineering works aimed at specific on-site and downstream physical outcomes. By the end of the 1980’s, the comparative failure of this “engineering-led” approach was clear, and a major rethinking of watershed management approaches was undertaken by national and international agencies. The 1990s represented a new departure for watershed management programs supported by the international community in developing countries. Although engineering solutions were not excluded where appropriate, the emphasis was placed more on farming systems and on participatory and demand-driven approaches. National policies on watershed management have tended to develop in a pragmatic and iterative fashion, with early setbacks over engineering- dominated approaches being succeeded by tests of community-based approaches and by technology packages targeting sustainable changes in land and water use practices that brought profit to stakeholders. Judicious management of land and water resources requires in-depth knowledge of the dynamic behavior of the watershed. Water is the best index of watershed management and thus provides an excellent monitoring mechanism. Watershed management is not so much about managing natural resources, but about managing human activity as it affects these resources. The drainage area of the river provides the natural boundary for managing and mitigating human and environmental interactions. The watershed management process can be seen as a continuum that includes producing a plan, implementing it, monitoring its effectiveness, and evaluating and updating it. Despite the difficulties, the process is valuable because it promotes a systematic and logical way of thinking and a framework for making decisions with regard to water and land use. Land use planning and management at the watershed level is a multi-objective resource management problem because it deals with human activities within the watershed that are motivated by multiple and 5
  • 10. Chapter – 1 Introduction often conflicting objectives and constraints, such as farm income enhancement, soil and water resource protection, urban development and drinking water supply (Prato et al., 1995). In recent years, there has been a growing consensus that an effective way to control sediment deposition, non-point source pollution and enhance the long-term sustainability of agriculture and rural communities can be achieved through integrated planning and management. Watershed management programs may, for example, include conservation of existing natural areas, regeneration of native vegetation and replanting indigenous species; creating ecological corridors for wildlife; establishing buffers for biodiversity; or choosing trees with a good carbon sequestration potential. These programs may bring local, regional and global benefits. However, there may be tradeoffs. For example, planting trees may be a global good, but trees may change the local water balance. An integrated approach to natural resource management at the watershed level would ideally address the complex system dynamics in watersheds and achieve global environmental benefits where feasible. IWM planning is a comprehensive multi-resource management planning process, involving all stakeholders within the watershed, who together as a group, cooperatively work towards identifying the resource issues and concerns of the watershed, as well as develop and implement watershed plan with solutions that are environmentally, socially and economically sustainable. The relationship between society and ecosystems should be harmonized at the watershed scale, and the ecosystem and society should be treated as integrated systems. To determine the ongoing human–nature interactions in order to develop policy for regional sustainable development, an interdisciplinary approach and system theory should be used (Boulanger and Brechet, 2005). It is necessary for scientists to employ sound ecological principles and provide interdisciplinary ideas for decision makers (Naiman et al., 1998). The systems approach in spatio-temporal nature of geography has allowed the use of most advanced technologies to usher a methodological revolution particularly in context of sustainable development paradigm. The ability to study the complex spatial and temporal interrelations of various phenomena in digital format on a 6
  • 11. Chapter – 1 Introduction computer through the advanced satellite technology has helped tremendously in adopting a watershed approach in environmental management. Remote sensing has become an indispensable scientific tool for mapping and monitoring of natural resources. The advent of computer and spatial data in digital form has powered the development of geographic information systems (GIS) and the proliferation of digital elevation models (DEMs) and digital maps of soils, vegetation, rivers, roads, as well as other information for much of the developed world and of land cover with a variety of remote sensing devices that operate across the electromagnetic spectrum (Jensen, 2000) has become standard. The integration of information derived from remotely sensed data into GIS and their analysis can be considered as the primary tool for efficient acquisition of input parameters needed for distributed hydrological modelling (Meijerink et al., 1994). Hydrological Modeling has revolutionized methodology in mapping the environmental complexity and determining the factors and enormity of environmental degradation. The integration of Remote Sensing, GIS and Modeling has led to the continuous monitoring of earth and its processes. 1.4. Significance of the Study People rarely intend to create environmental problems. The result was the sum of a myriad of seemingly miniscule individual actions... [but] motive is irrelevant to environmental impacts (Schneider, 1996). The anthropogenic modification of the hydrological cycle by deforestation, urbanization and irrigation has led to degradation, over exploitation, and wastage of water resources resulting in higher risks to human health, economic and social development as well as to the functioning of ecosystems and the preservation of the environment. The deterioration and dwindling of lake ecosystems has been increasing at an alarming rate, due to various ecological stresses caused largely by the activities of man. The rapid development within watersheds due to anthropogenic activities has had negative ecological consequences on ecosystem structures, processes, and functions. For lake aquatic ecosystems, human activities in the watershed can lead to loss of important species and functional groups, high nutrient turnover, low resistance, high porosity of nutrients and sediments and the loss of productivity. Thus, it is necessary to restore aquatic ecosystems based on the 7
  • 12. Chapter – 1 Introduction understanding of the link between watershed changes and the corresponding effects on the aquatic ecosystem. Watershed is a bio-geo-physical unit in which, interdependence of renewable and non-renewable resources from environment are closeted. A watershed is used as a unit for planning and management of land, water and other resources, and the inter-related factors such as physical, biological, technological, socio-economic, cultural etc. are considered collectively in a system framework. Scientific management of soil, water and vegetation on watershed basis is, therefore, very important to arrest rapid siltation in rivers, lakes and estuaries. Integrated watershed management has been accepted as the most rational approach in preventing deterioration of ecosystem, restoration of degraded lands and improving the overall productivity for sustained use. The goal of sustainable management is to maintain the ecological functions of landscapes under increasing human aspirations and pressures. Increasing population pressure has resulted in a considerable degree of land transformation and environmental deterioration leading to a decline in the availability of land. In order to optimize the use of available land and to meet the multiple demands of food, fodder, fuel wood etc, a proper planning and management of land and water resources is a basic prerequisite, which is possible through watershed-based programmes. Wular Catchment is facing severe stress of increasing population followed by unplanned utilization and management of natural resources. Proper planning and utilization of the run-off water is essential for its effective management and sustainable development. The Wular Lake is important both from ecological and economic point of view. Wular Lake has become polluted and is shrinking in size due to siltation, caused by sediment yield transported by different rivers into the lake. Its sustainable development and management can help to restore it as the largest fresh water resource in the region and a vast reserve of biodiversity. Population pressure within the Wular Catchment has led to conflicting interests leading to land degradation hence sediment and nutrient loading into the aquatic systems in the catchment, mainly from non-point source pollution. The sediments from the catchment are conveyed to the lake via the rivers and streams, 8
  • 13. Chapter – 1 Introduction while the atmospheric pollutants are adsorbed and deposited on the lake surface in dry form (gases and particles) and in wet form carried by rain. Activities causing diffuse pollution include: high population growth, unplanned human settlement, deforestation, intensive farming, livestock keeping, wetlands encroachment, urban agriculture, quarrying and infrastructure. A comprehensive evaluation and integrated water resources management is presented for Wular Catchment using remote sensing and GIS techniques with a view to develop natural resources on sustainable basis. 1.5. Objectives / To characterize the watersheds on the basis of the Geophysical, Socio- economic and Land use/ Land cover dynamics in Wular Catchment. / To study the Physico – chemical characteristics of water in Wular Lake. / To estimate the Potential Soil Loss in Wular Catchment at watershed level. / To prepare a Potential Groundwater Infiltration Zonation map in the Wular Catchment. / To develop an Integrated Watershed Prioritization Index to accentuate the watershed management in Wular Catchment. 9
  • 14. Chapter – 1 Introduction 1.6. Literature Review The watershed characterization and management planning is a multidisciplinary study involving parameterization of varied components of a watershed to assess their complex interaction and impact of extrinsic factors of which human impact is an indispensable factor. Thus the literature has been reviewed and arranged according to the different parameters studied and integrated for watershed management planning. Singh and Sarangi, 2008 studied the hypsometry of two drainage basins, viz, Sainj and Tirthan with their sub basins in the Kullu district of Himachal Pradesh and concluded that the Sainj watershed and ten of its sub basins are more prone to erosion in comparison to Tirthan and its five sub basins. Singh, Sarangi, and Sharma, 2008 validated their earlier results with recorded sediment yield data of 24 years (1981– 2004) corroborated that the average annual sediment yield during this period for Sainj watershed (0.53 Mt) was more than that of the Tirthan watershed (0.3 Mt) suggested watershed prioritization to conserve soil and water systems. Singh, 2008, studied the hypsometry of actively deforming Mohand anticline ridge in the frontal part of NW Himalaya. Sivakumar, Biju, and Deshmukh, 2011 while analyzing the hypsometry of Varattaru river basin, both suggested suitable locations for controlling further erosion, reducing the runoff and increases the groundwater. Sorensen, Zinko, and Seibert, 2005 obtained the topographic wetness index (TWI), by varying indices to quantify topographic control on hydrological processes for two separate boreal forest sites in northern Sweden. Grabs, Seibert, Bishop and Laudon, 2009 using simulation modeling of distributed catchments; predicted the spatial distribution of wetlands significantly better than the TWI. Ruhoff, Castro and Risso, 2011 by using distribution functions and their statistics and cell by cell comparison of DEMs showed significant differences between different flow-direction algorithms. Lanni, McDonnell and Rigon, 2011 developed new dynamic topographic index based on Boussine sq equation (BEq) solver to show correlations of TWI and the patterns of soil water storage around the world; found it more accurate than the previous one and able to capture both the upslope and down slope controls on water flow and approximates storage dynamics across scales. 10
  • 15. Chapter – 1 Introduction The works of Mather and Doornkamp, 1970, Gregory, 1978, and Gardiner, 1978 in terrain characterization studies, especially on spatial variability of morphometric parameters, are considered immensely important. Morphometric analysis was also employed for characterizing watersheds (Nag, 1998; Vittala, Govindaiah and Gowda, 2004; Vijith and Satheesh, 2006; Rudraiah, Govindaiah, and Vittala, 2008; Al Saud, 2009; Rao, Latha, Kumar and Krishna, 2010; Bagyaraj and Gurugnanam, 2011; Arpita and Kumar, 2009; Magesh and Chandrasekar, 2010), for the prioritization of watersheds (Nooka Ratnam et al., 2005; Thakkar and Dhiman, 2007; Mishra and Nagarajan 2010; Londhe, Nathawat and Subudhi, 2010; Kanth and Hassan, 2012), for formulation of Watershed Management Plans (Pakhmode, Kulkarni and Deolankar, 2003; Javed et al., 2009; Thomas, Joseph and Thrivikramaji, 2010), for flood assessment and vulnerability (Ozdemir and Bird, 2009). Li, Peterson, Liu and Qian, 2001; Helmschrot and Flugel, 2002; Xiuwan, 2002; Vasconcelos, Mussa, Araujo and Diniz, 2002; Nash et al., 2003; Zeng, Sui and Ben, 2005; Mengistu and Salami, 2007, Fan, Weng and Wang, 2007 and Kanth and Hassan, 2010 have used GIS and remote sensing techniques to assess the changing land use/land cover. Karia, Porwal, Roy and Sandhya, 2001; Rao and Pant, 2001 have adopted remote sensing and GIS techniques in change detection analysis and resource appraisal. Similar works have been done by Singh and Mahavir, 2003; Singh et al., 2005; Mahajan and Panwar, 2005; Shetty, Nandagiri, Thokchom and Rajesh, 2005; Solanke et al., 2005; Chakraborty, Dutta and Chandrasekharan 2001; Joshi, Rawat, Padaliya and Roy, 2005; Chauhan and Nayak, 2005; Narumalani, Mishra and Rothwell, 2004 and Choudhary, Saroha and Yadav, 2008. The increased concentration of phosphate in water bodies is mainly caused by addition of phosphorus rich sewage (Edmondson, 1970). While working on the temperature, oxygen and nutrient distribution pattern in Lake Erie, Burns, 1976, pointed out that nitrate and nitrite levels decrease during summer, while ammonia level remained constant during the this period. The Universal Soil Loss Equation (USLE) is the best known and most widely used soil erosion model. The USLE has been used for natural resource management planning. Zhang et al., 2010 in their work identified the soil conservation priority 11
  • 16. Chapter – 1 Introduction regions based on the soil erosion risk assessment. The USLE has been used in simulations on basins with varying drainage area (Fistikoglu and Harmancioglu, 2002; Onyando, Kisoyan and Chemelil, 2005; Erdogan, Erpul and Bayramin, 2007; Dabral, Baithuri and Pandey, 2008), so that researchers can compare simulated soil loss with acceptable values for the same kinds of soil. In Kashmir Valley USLE has been used by Kanth and Bhat, 1991, who found that nearly one third of the Kashmir Valley is under the threat of moderate to severe erosion problem; Soil erosion intensity zones were delineated for Liddar basin by Ahmad and Kanth, 2007; Sheikh, Palria, and Alam, 2011 integrated USLE and GIS for a micro watershed of Liddar Catchment integrating USLE with RS and GIS. They found that average soil loss was highest (26 t ha -1 year -1 ) in agriculture area and lowest soil loss rate was found in forest area (0.99 t ha -1 year -1 ). Randhir, Connor, Penner and Goodwin, 2001 have developed a watershed level prioritization model for a wide variety of land protection and land use decisions. Gergel et al., 2002 emphasized on ecological concepts by viewing the multiple potential roles of landscape and reviewing historical role of ecology in planning Leitao and Adhern, 2002 and Said et al., 2006 were also of the same opinion. Wicham and Wade, 2002 found land cover composition a principal factor in controlling the amount of nitrogen and phosphorus in watersheds Ahn, Mizugaki, Nakamura and Nakamura, 2006 found deforestation, channelization, road construction as well as agricultural development responsible for increased sedimentation. Bouraoui, Benabdullah, Jrad and Bidoglio, 2005 studying the potential impact of land management scenarios applied the SWAT (Soil and Water Assessment Tool) model find out irrigated crop introduced significant changes on nitrate concentration in surface water. Wolsink, 2006 describes the shift in the water management policy from mere technocratic methods to integrated water management emphasizing on the local aspirations in spatial planning and land use decisions. Kanth and Hassan, 2010 carried out watershed prioritization for natural resource management by integrating land use/land cover, drainage morphometry and socio economic parameters in the Wular Catchment. ha, Madan and Chawdary, 2007 Teixeira et al., 2008 gave the management plans for groundwater sustainability using RS and GIS, while as Raghu and Reddy, 12
  • 17. Chapter – 1 Introduction 2011 and Saxena and Prasad, 2008, revealed site specific recommendation on ground water prospects to develop irrigation facilities in the area, Babu, Prasad and Rajeev, 1999 have suggested a Catchment Treatment Plan in Neyyar wild life sanctuary, Kerala employing a multi-thematic analysis based on different parameters of slope, land use/land cover, drainage, relative relief and soil using Remote Sensing and GIS. 13
  • 19. Chapter – 8 Conclusion and Suggestions 8.1. Conclusion The Wular Catchment is a complex geophysical unit with highly differentiated topography and a thorough highland-lowland interaction. The geophysical characterization clearly depicted the dominant control of landscape elements like altitude, slope, aspect on the location and magnitude of the degradational processes of the Wular Catchment. The altitude varies from about 1600 meters near Wular Lake to about 5000 meters near Harmukh range. The mountainous landscape (>2000 meters) covers 50% while as the low lying flood plains and foothills constitute 50% of the Wular Catchment. The slope also varies greatly in the Wular Catchment with the gentle slope (<5 o ) constituting 31%, the moderate and moderately steep (21.30%) and steep to escarpments cover 47.7%. While as significant negative growth has occurred in dense forest (-25.08%), water body (-23.92%) and wetland (-23.87%). The significant increase in built-up, agricultural land and wasteland and the decrease in wetlands and forests indicate severe deterioration in environmental conditions. hese changes transformed the natural landscape into human-dominated landscape characterized by increased built up, deforestation, steep-slope farming etc and establishment of developmental projects like Kishenganga hydroelectric project. The positive changes in vegetation have mostly occurred in the Wular Periphery (+39.15 km 2 ), Wular Lake (+42.4 km 2 ), 1EM2a (+18.45 km 2 ) and 1EW2b (+12.75 km 2 ). The biomass increase is also explained by the change in the land use from paddy land to the horticulture and the conversion of forests to the grasslands and wastelands. The Socio-economic condition of a region is of vital significance in balancing the increasing human needs and environmental degradation. The population growth in the Wular Catchment is high and has shown a fourfold increase from 1961 (93486) to 2011 (389741) registering a growth of +316.9%. The watersheds which have high physiological density in 2011 are 1EM2c (14449.06) and 1EE2c (3051.43). The density and distribution of population in the Wular Catchment is greatly controlled by resource potentiality and economic growth. The majority of people in the Wular Catchment is of productive age group (57.4%) employed mostly in the primary sector 119
  • 20. Chapter – 8 Conclusion and Suggestions (57.5%) leading to the problem of resource degradation. The workers are mostly engaged in farm sector and its allied activities which provide limited employment opportunities. The potential work force is 57.76% in the Wular Catchment while as the actual workers constitute only 28.4% of the total population. This clearly shows a low work participation and high unemployment. The daily consumption of fuel wood in the Wular Catchment is 4886 quintals which is quite high indicating the high dependence on forests and less use of alternate sources of energy like kerosene oil, biogas, solar energy, LPG etc The Universal Soil Loss Equation (USLE) (Wischmeier and Smith, 1978) has been used with combination of remote sensing and GIS technique to calculate soil loss for mapping and assessment of erosion risk for natural resources management planning, allowing to modify land-use properly and implement management strategies more sustainably in the long-term. The Wular Catchment constitutes 10.95% under very high soil loss zone, while as the watersheds having highest proportion under this category are 1EM2b (25.78%), 1EE2a (25.10%) and 1EM1a (23.26%). The high values of soil loss are the result of the combination of steep slopes with high LS factor, sparse vegetation and barren surfaces due to human activities, such as forest clearance for the habitation. This region is also characterized by high rainfall erosivity, low soil erodibility and absence of the erosion control practice. The high, moderate and slight soil loss covers 23.13%, 20.16% and 38.92% of the Wular Catchment respectively. The advantage of the GIS-USLE approach is its ability to predict soil loss over large areas due to the interpolation capabilities. It was therefore possible to circumvent the constraint of limited field data on soil loss factor controls at meso- and macro-scale, by capturing and overlaying the USLE parameters in a GIS. The very high potential groundwater infiltration zone in Wular Catchment is characterized by suitable surface and subsurface conditions like occurrence of lineaments, permeable rock masses, good vegetation cover, low drainage density and high rainfall. This zone with the highest potential of aquifer recharge covers an area of 74.94 (6.24%). The watersheds constituting the highest proportion in the very high infiltration zone are 1EW2b, 1EOb2 and 1EOa1 respectively. 1EOb2 is mostly covered by sandstone and limestone with loamy surface.1EOb1 has a high lineament 120
  • 21. Chapter – 8 Conclusion and Suggestions density. Both the watersheds have a considerable area under piedmont zone with low drainage density. 1EOb2 is mostly covered by gentle slopes while as 1EOa1 has also a significant area under gentle to moderately steep slopes. The Wular Catchment has an area of 275.54 km 2 under the high zone of aquifer recharge constituting 22.95% of the total area. The highest proportion of area under this zone is in 1EE1a (46.30%), 1EOb2 (42.64%), 1EOb1 (36.78%) and 1EOa2 (28.70%) respectively. These characteristics are mostly attributed to the presence of urban centre of Bandipora in this watershed. Moreover, this watershed has more than 26% of area under very high and severe soil loss zone and 63% of area has lower potential for groundwater infiltration. These watersheds have high susceptibility to degradation and thus have attained the highest priority for application of management strategies for land and water conservation. 8.2. Suggestions The present study has employed integrated approach to identify and assess the critical areas on the watershed level which need immediate attention to arrest the unsuitable processes which are responsible for rampant degradation of the Wular Catchment. The study has helped in devising the following strategies for controlling the spiraling degradation processes of the Wular Catchment. • The differential population density and distribution has put the available resource base and the general environment of Wular Catchment under tremendous stress. Thus there is an urgent need to arrest the fast growth of human population as the achievements of planning are neutralized by the large addition of population every year. The population pressure on agricultural land in the Wular Catchment is intense not only in densely populated areas, where arithmetic population densities are higher but equally intense on sparsely populated areas because of the limitations imposed by the environment on cultivation. Therefore, the sparsely populated areas need not to be overlooked in the developmental efforts simply because of their population size, but deserve greater attention due to their inaccessibility and backwardness. • Diversification of economy will enable people to move from primary to secondary or tertiary sectors and consequently will reduce the burden from 121
  • 22. Chapter – 8 Conclusion and Suggestions lumbering, fishing and subsistence agriculture. Productivity enhancement and livelihoods shall be given priority along with conservation measures. Resource development and usage should be planned in such a way to provide local / Human resource development in rural areas and increased non- farm employment opportunities will reduce pressure on land. / Non – conventional sources of energy like solar lights, biogas should be provided to the inhabitants to reduce the burden on forests. Furthermore, easy accessibility and availability of L.P.G should be ensured to cater the increasing energy demands of the area. / The participation of local communities is crucial in planning and management of Wular Catchment on long term basis. Ensuring participation of all stakeholders requires understanding of their needs and sharing of authority and responsibility for resource management. / Capacity Building and training of all functionaries and stakeholders involved in the watershed programme implementation should be carried out with definite action plan and requisite professionalism and competence. / Development of ecotourism in the Wular Catchment will help in improving the environment and providing economic benefits to the local communities. ← One of the major problems in Wular Catchment is the conversion of dense forests into the sparse forests. The main reasons for this change are deforestation for timber smuggling and fuel wood extraction; fragmentation of forest area for developmental works. Afforestation and reforestation programmes should be launched in the affected areas. Furthermore, stringent measures should be devised to stop illegal timber extraction and associated activities. Reducing pressure on forests through provision of alternate sources of energy is also a viable option. (PPP) Improvement of water quality will restore the aesthetic value of the Wular Lake and will render it fit for drinking purposes. Furthermore, the dependence on Wular Lake for various economic activities makes water quality enhancement more important. 122
  • 23. Chapter – 8 Conclusion and Suggestions • The treatment of water for sewage from adjoining settlements by establishment of STP’s at critical points is extremely important to regulate the water quality of the Wular Lake. • The water quality improvement for the specific agro-eco-regions in the watersheds may be enhanced by targeting Best Management Practices (BMPs) in the areas that generate the most pollution. • The selective removal of the weeds and flushing of the lake will help in reducing the biomass in the Wular Lake. • Public awareness campaigns for water quality management and sustainability issues should be organized in the study area. Agronomic practices for soil and water conservation help to intercept rain drops and reduce the splash effect, help to obtain a better intake of water rate by the soil by improving the content of organic matter and soil structure, help to retard and reduce the overland runoff through the use of contour cultivation, mulches and mixed-cropping. • A simple practice of farming across the slope, keeping the same level as far as possible and is called as contour farming. • Surface mulches are used to prevent soil from blowing and being washed away, to reduce evaporation, increase infiltration and to improve soil • It provides a continuous cover of the land. It provides protection against soil erosion and assures more than one crops to the farmer. • : This includes the addition of organic manures to the soil by legume inter- planting (crop and grazing land; induced fertility), green manure (cropland), applying manure / compost / residues (organic fertilizers). Engineering Measures: The engineering measures play a very vital role in controlling erosion on agricultural land. They are adopted to supplement the agronomical practices when the latter alone are not adequately effective. / Terraces are earth embankments constructed across the slope to intercept surface runoff and convey it to a stable outlet at a non-erosive velocity, and to shorten the slope length. / The eroding and the deepening of gully beds can be prevented with gully plugs. Gully plugs protect the gully beds by reducing the speed of runoff 123
  • 24. Chapter – 8 Conclusion and Suggestions water, redistributing it, increasing its percolation, encouraging silting and improving the soil moisture regime for establishing a plant cover. • Small dams made from locally available materials such as earth, wooden planks, brush woods or loose rock, are built across gullies to trap sediments and thereby reduce channel depth and slope and are used in association with agronomic treatment of surrounding land where grasses, trees and shrubs are planted. • This includes identification, protection and enhancement of significant natural features including, headwaters, groundwater recharge and discharge areas, wetlands, vegetated stream buffers and forest areas, while considering historical and current human activities impacting the system. • The government should expand its interests in watershed management beyond flood and erosion control operations to achieve maintenance and enhancement of ground and surface water (both quality and quantity) for all users. • Water harvesting is another potential method for augmentation of ground water resources. The various structures and the criteria for the selection of their locations are given below: weathered zone / loose material / fractures. In areas where transmissivity of the upper strata is poor, for example in shale underlain by sandstones. Around the habitations where drainage does not exist, for example water divide areas, hill/plateau tops, etc. • groundwater prospects map on the watershed basis should be put to use as a suitable data base for developing a ground water based drinking water security plan for a habitation or for a group of habitations.
  • 25. Writekraft Research & Publications LLP (All Rights Reserved) To Order Full/Complete PhD Thesis 1 Thesis (Qualitative/Quantitative Study with SPSS) & PPT with Turnitin Plagiarism Report (<10% Plagiarism) In Just Rs. 45000 INR* Contact@ Writekraft Research & Publications LLP (Regd. No. AAI-1261) Mobile: 7753818181, 9838033084 Email: info@writekraft.com Web: www.writekraft.com Writekraft Research & Publications LLP (Regd. No. AAI-1261) Corporate Office: 67, UGF, Ganges Nagar (SRGP), 365 Hairis Ganj, Tatmill Chauraha, Kanpur, 208004 Phone: 0512-2328181 Mobile: 7753818181, 9838033084 Email: info@writekraft.com Web: www.writekraft.com