SlideShare a Scribd company logo
1 of 160
Download to read offline
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 1.
2
20 kg, 3.75 m/sm g= =
( )( )20 3.75W mg= = 75 NW =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 2.
At all latitudes, 2.000 kgm =
(a) ( )2 2
0 , 9.7807 1 0.0053 sin 9.7807 m/sgφ φ= ° = + =
( )( )2.000 9.7807W mg= = 19.56 NW =
(b) ( )2 2
45 , 9.7807 1 0.0053 sin 45 9.8066 m/sgφ = ° = + ° =
( )( )2.000 9.8066W mg= = 19.61 NW =
(c) ( )2 2
60 , 9.7807 1 0.0053 sin 60 9.8196 m/sgφ = ° = + ° =
( )( )2.000 9.8196W mg= = 19.64 NW =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 3.
Assume 2
32.2 ft/sg =
W
m
g
=
: s
W
F ma W F a
g
Σ = − =
7
1 or
2
1 1
32.2
s
s
a F
W F W
ag
g
 
− = = = 
  − −
7.46 lbW =
27.4635
0.232 lb s /ft
32.2
W
m
g
= = = ⋅
: s
W
F ma F W a
g
Σ = − =
1
2
7.46 1
32.2
s
a
F W
g
 
= + 
 
 
= + 
 
7.92 lbsF =
For the balance system B,
0 0: 0w pM bF bFΣ = − =
w pF F=
But, 1w w
a
F W
g
 
= + 
 
and 1p p
a
F W
g
 
= + 
 
so that and
p
w p w
W
W W m
g
= = 2
0.232 lb s /ftwm = ⋅
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 4.
Periodic time: 12 h 43200 sτ = =
Radius of Earth: 6
3960 mi 20.9088 10 ft= = ×R
Radius of orbit: 6
3960 12580 16540 mi 87.33 10 ftr = + = = ×
Velocity of satellite:
( )( )6
2 87.33 102
43200
r
v
ππ
τ
×
= =
3
12.7019 10 ft/s= ×
It is given that 3
750 10 lb s= × ⋅mv
(a)
3
2
3
750 10
59.046 lb s /ft
12.7019 10
mv
m
v
×
= = = ⋅
×
2
59.0 lb s /ftm = ⋅
(b) ( )( )59.046 32.2 1901 lb= = =W mg
1901 lb=W
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 5.
+
40
: 10 10 10 20 40
32.2
y y yF ma a= + + + − =∑
( )( ) 232.2 10
8.05 ft/s
40
ya = =
y
dv dy dv dv
a v
dt dt dy dy
= = =
y yvdv a d=
2
0 0
1
2
v v
y y yvdv a d v a y= =∫ ∫
( )( )( )2 2 8.05 1.5yv a y= = 4.91 ft/sv =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 6.
Data: 0 108 km/h 30 m/s, 75 mfv x= = =
(a) Assume constant acceleration. constant= = =
dv dv
a v
dx dt
0
0
0
fx
v
vdv adx=∫ ∫
2
0
1
2
fv a x− =
( )
( )( )
2
20 30
6 m/s
2 2 75f
v
a
x
= − = − = −
0
0
0
ft
v
dv adt=∫ ∫
0 fv at− =
0 30
6
f
v
t
a
−
= − =
−
5.00 sft =
(b) + 0: 0yF N W= − =∑
N W=
:xF ma N maµ= − =∑
ma ma a
N W g
µ = − = − = −
( )6
9.81
µ
−
= − 0.612µ =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 7.
(a) : sinfF ma F W maα= − + =∑
sin
sin= − + = − +
f fF FW
a g
m m m
α
α
( )2 27500 N
9.81 m/s sin 4 4.6728 m/s
1400 kg
= − + ° = −
2
4.6728 m/sa = 4°
0 88 km/h 24.444 m/s= =v
From kinematics,
dv
a v
dx
=
0
0
0
fx
v
adx vdv=∫ ∫
2
0
1
2
fa x v= −
( )
( )( )
22
0 24.444
2 2 4.6728
f
v
x
a
= − = −
−
63.9 mfx =
+
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 8.
(a) Coefficient of static friction.
0: 0yF N WΣ = − = N W=
0 70 mi/h 102.667 ft/sv = =
( )
2 2
0
0
2 2
t
v v
a s s− = −
( )
( )
( )( )
22 2
20
0
0 102.667
31.001 ft/s
2 2 170
t
v v
a
s s
−−
= = = −
−
For braking without skidding , so that | |s s tN m aµ µ µ= =
:t t s tF ma N maµΣ = − =
31.001
32.2
t t
s
ma a
W g
µ = − = − = 0.963sµ =
(b) Stopping distance with skidding.
Use ( )( )0.80 0.963 0.770kµ µ= = =
:t k tF ma N maµΣ = = −
2
24.801 ft/sk
t k
N
a g
m
µ
µ= − = − = −
Since acceleration is constant,
( )
( )
( )( )
22 2
0
0
0 102.667
2 2 24.801t
v v
s s
a
−−
− = =
−
0 212 fts s− =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 9.
For the thrust phase, : t
W
F ma F W ma a
g
Σ = − = =
( ) 22
1 32.2 1 289.8 ft/s
0.2
tF
a g
W
   
= − = − =   
   
At 1 s,t =
( )( )289.8 1 289.8 ft/sv at= = =
( )( )221 1
289.8 1 144.9 ft
2 2
y at= = =
For the free flight phase, 1 s.t > 32.2 ft/sa g= − = −
( ) ( )( )1 1 289.8 32.2 1v v a t t= + − = + − −
At
289.8
0, 1 9.00 s, 10.00 s
32.2
v t t= − = = =
( ) ( )2 2
1 1 12 2v v a y y g y y− = − = − −
( )
( )( )
22 2
1
1
0 289.8
1304.1 ft
2 2 32.2
v v
y y
g
−−
− = − = − =
(a) max 1304.1 144.9y h= = + 1449 fth =
(b) As already determined, 10.00 st =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 10.
Kinematics: Uniformly accelerated motion. ( )0 00, 0x v= =
( )( )
( )
2 2
0 0 2 2
2 101 2
, or 1.25 m/s
2 4
x
x x v t at a
t
= + + = = =
0: sin50 cos20 0yF N P mgΣ = − ° − ° =
sin50 cos20N P mg= ° + °
: cos50 sin 20xF ma P mg N maµΣ = ° − ° − =
or ( )cos50 sin 20 sin50 cos20P mg P mg maµ° − ° − ° + ° =
( )sin 20 cos20
cos50 sin50
ma mg
P
µ
µ
+ ° + °
=
° − °
For motion impending, set 0 and 0.30.sa µ µ= = =
( )( ) ( )( )( )40 0 40 9.81 sin 20 0.30cos20
593 N
cos50 0.30sin50
P
+ ° + °
= =
° − °
For motion with 2
1.25 m/s , use 0.25.ka µ µ= = =
( )( ) ( )( )( )40 1.25 40 9.81 sin 20 0.25cos20
cos50 0.25sin50
P
+ ° + °
=
° − °
612 NP =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 11.
Calculation of braking force/mass ( )/bF m from data for level pavement.
0 100 km/hr 27.778 m/sv = =
( )
2 2
0
0
2 2
v v
a x x− = −
( )
( )
( )( )
22 2
0
0
2
0 27.778
2 2 60
6.43 m/s
v v
a
x x
−−
= =
−
= −
br:xF ma F maΣ = − =
2br
6.43 m/s
F
a
m
= − =
(a) Going up a 6° incline. ( )6θ = °
br: sinF ma F mg maθΣ = − − =
br
sin
F
a g
m
θ= − −
2
6.43 9.81sin 6 7.455 m/s= − − ° = −
( )
( )( )
22 2
0
0
0 27.778
2 2 7.455
v v
x x
a
−−
− = =
−
0 51.7 mx x− =
(b) Going down a 2% incline. ( )tan 0.02, 1.145θ θ= − = − °
br: sinF ma F mg maθΣ = − − =
br
sin
F
a g
m
θ= − −
( ) 2
6.43 9.81sin 1.145 6.234 m/s= − − − ° = −
( )
( )( )
22 2
0
0
0 27.778
2 2 6.234
v v
x x
a
−−
− = =
−
0 61.9 mx x− =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 12.
Let the positive directions of Ax and Bx be down the incline.
Constraint of the cable: 3 constantA Bx x+ =
1
3 0 or
3
A B B Aa a a a+ = = −
For block A: : sin30A A AF ma m g T m aΣ = ° − = (1)
For block B: : sin30 3B B B B AF ma m g T m a m aΣ = ° − = = − (2)
Eliminating T and solving for ,Aa
g
( )3 sin30 3
3
 
− ° = + 
 
B
A B A A
m
m g m g m a
( ) ( )3 sin30 30 8 sin30
0.33673
3 /3 30 2.667
A BA
A B
m ma
g m m
− ° − °
= = =
+ +
(a) ( )( ) 2
0.33673 9.81 3.30 m/sAa = = 2
3.30 m/sA =a 30°
( ) 21
3.30 1.101 m/s
3
= − = −Ba 2
1.101 m/sB =a 30°
(b) Using equation (1),
( )( )( )sin30 10 9.81 sin30 0.33673A
A
a
T m g
g
 
= ° − = ° − 
 
16.02 NT =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 13.
Let the positive directions of Ax and Bx be down the incline.
Constraint of the cable: 3 constantA Bx x+ =
3 0A Ba a+ =
1
3
B Aa a= −
Block A: 0: cos30 0y A AF N m gΣ = − ° =
: sin30x A A A AF ma m g N T m aµΣ = ° − − =
Eliminate .AN
( )sin30 cos30A A Am g T m aµ° − ° − =
Block B: 0: cos30 0y B BF N m gΣ = − ° =
: sin30 3
3
B A
B B B B
m a
F ma m g N T m aµΣ = ° + − = = −
Eliminate .BN
( )sin30 cos30 3
3
B A
B
m a
m g Tµ° + ° − = −
Eliminate T.
( ) ( )3 sin30 3 cos30 3
3
B
A B A B A A
m
m g m g m g m g m aµ
 
− ° − + ° = + 
 
Check the value of sµ required for static equilibrium. Set 0Aa = and
solve for .µ
( )
( )
( )
( )
3 sin30 75 20
tan30 0.334.
3 cos30 75 20
A B
A B
m m
m m
µ
− ° −
= = ° =
+ ° +
Since 0.25 0.334,sµ = < sliding occurs.
Calculate Aa
g
for sliding. Use 0.20.kµ µ= =
continued
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
( ) ( )
( ) ( )( )
3 sin30 3 cos30
3 /3
30 8 sin30 0.20 30 8 cos30
0.13525
30 2.667
A B A BA
A B
m m m ma
g m m
µ− ° − + °
=
+
− ° − + °
= =
+
(a) ( )( ) 2
0.13525 9.81 1.327 m/s= =Aa 2
1.327 m/sA =a 30°
( ) 21
1.327 0.442 m/s
3
 
= − = − 
 
Ba 2
0.442 m/sB =a 30°
(b) ( )
( )( )( ) ( )( )
sin30 cos30
10 9.81 sin30 0.20cos30 10 1.327
= ° − ° −
= ° − ° −
A A AT m g m aµ
18.79 N=T
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 14.
Data: 2
2
55000 lb
1708.1 lb s /ft
32.2 ft/s
Am = = ⋅
2
2
44000 lb
1366.5 lb s /ft
32.2 ft/s
Bm = = ⋅
0 55 mi/h 80.667 ft/sv = − = −
(a) Use both cars together as a free body. Consider horizontal force components only. Both cars have same
acceleration.
:x x b b A x B xF ma F F m a m a= − − = +∑ ∑
27000 7000
4.5534 m/s
1708.1 1366.5
b b
x
A B
F F
a
m m
+ +
= = =
+ +
x
dv
a v
dx
=
0
2
0 0
0
2
= =∫ ∫
fx
x x fv
v
a dx vdv a x
( )
( )( )
22
0 80.667
751 ft
2 2 4.5534
f
x
v
x
a
−
= − = − = −
715 ft to the left
(b) Use car A as free body. Fc = coupling force.
:x x c b A xF ma F F m a= − =∑ ∑
( )( )1708.1 4.5534 7000 778 lb= − = + =c A x bF m a F
778 lb tensioncF =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 15.
Data: 2
2
55000 lb
1708.1 lb s /ft
32.2 ft/s
Am = = ⋅
2
2
44000 lb
1366.5 lb s /ft
32.2 ft/s
Bm = = ⋅
0 55 mi/h 80.667 ft/sv = − = −
(a) Use both cars together as a free body. Consider horizontal force components only. Both cars have same
acceleration.
:x x b b A x B xF ma F F m a m a= − − = +∑ ∑
27000
2.2767 m/s
1708.1 1366.5
b
x
A B
F
a
m m
= = =
+ +
x
dv
a v
dx
=
0
2
0 0
0
2
= =∫ ∫
fx
x x fv
v
a dx vdv a x
( )
( )( )
22
0 80.667
1429 ft
2 2 2.2767
f
x
v
x
a
−
= − = − =
1429 ft to the left
(b) Use car B as a free body. Fc = coupling force.
:x x c B xF ma F m a= − =∑ ∑
( )( )1366.5 2.2767 3110 lbcF− = =
3110 lb. compressioncF =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 16.
Constraint of cable: ( )2 A B A A Bx x x x x+ − = + = constant.
0, orA B B Aa a a a+ = = −
Assume that block A moves down and block B moves up.
Block B: 0: cos 0y AB BF N W θΣ = − =
: sin B
x AB B B
W
F ma T N W a
g
µ θΣ = − + + =
Eliminate ABN and .Ba
( )sin cos B A
B B B
a a
T W W W
g g
θ µ θ− + + = = −
Block A: 0: cos 0y A AB AF N N W θΣ = − − =
( )cos cosA AB A B AN N W W Wθ θ= + = +
: sin A
x A A A AB A A
W
F m a T W F F a
g
θΣ = − + − − =
( )sin cos sin cosA
B B A B
a
W W W W
g
θ µ θ θ µ θ− + − + −
( )cos A
B A A
a
W W W
g
µ θ− + =
( ) ( ) ( )sin 3 cos A
A B A B A B
a
W W W W W W
g
θ µ θ− − + = +
Check the condition of impending motion.
0.20, 0,s A B sa aµ µ θ θ= = = = =
( ) ( )sin 0.20 3 cos 0A B s A B sW W W Wθ θ− − + =
continued
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
( ) ( )( )0.20 3 0.20 128
tan 0.40
64
A B
s
A B
W W
W W
θ
+
= = =
−
21.8 25 .sθ θ= ° < = ° The blocks move.
Calculate Aa
g
using 0.15 and 25 .kµ µ θ= = = °
( ) ( )sin 3 cosA B k A BA
A B
W W W Wa
g W W
θ µ θ− − +
=
+
( )( )64sin 25 0.15 128 cos25
0.10048
96
° − °
= =
( )( ) 2
0.10048 32.2 3.24 ft/sAa = =
(a) 2
3.24 ft/sBa = − 2
3.24 ft/sB =a 25° !
(b) ( )sin cos A
B B
a
T W W
g
θ µ θ= + +
( ) ( )( )16 sin 25 0.15cos25 16 0.10048= ° + ° +
10.54 lbT = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 17.
Constraint of cable: ( )2 constant.A B A A Bx x x x x+ − = + =
0, orA B B Aa a a a+ = = −
Assume that block A moves down and block B moves up.
Block B: 0: cos 0y AB BF N W θΣ = − =
x : sin B
x AB B B
W
F ma T N W a
g
µ θΣ = − + + =
Eliminate ABN and .Ba
( )sin cos B A
B B B
a a
T W W W
g g
θ µ θ− + + = = −
Block A: 0: cos sin 0y A AB AF N N W Pθ θΣ = − − + =
cos sinA AB AN N W Pθ θ= + −
( )cos sinB AW W Pθ θ= + −
: sin cos A
x A A A AB A A
W
F m a T W F F P a
g
θ θΣ = − + − − + =
( )sin cos sin cosA
B B A B
a
W W W W
g
θ µ θ θ µ θ− + − + −
( )cos sin cos A
B A A
a
W W P P W
g
µ θ µ θ θ− + + + =
( ) ( ) ( ) ( )sin 3 cos sin cos A
A B A B A B
a
W W W W P W W
g
θ µ θ µ θ θ− − + + + = +
Check the condition of impending motion.
0.20, 0, 25s A Ba aµ µ θ= = = = = °
( ) ( ) ( )sin 3 cos sin cos 0A B s A B s sW W W W Pθ µ θ µ θ θ− − + + + =
continued
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
( ) ( )3 cos sin
sin cos
s A B A B
s
s
W W W W
P
µ θ θ
µ θ θ
+ − −
=
+
( )( )0.20 128 cos25 64 sin 25
3.88 lb 10 lb
0.20 sin 25 cos25
° − °
= = − <
° + °
Blocks will move with 10 lb.P =
Calculate Aa
g
using 0.15, 25 , and 10 lb.k Pµ µ θ= = = ° =
( ) ( ) ( )sin 3 cos sin cosA B k A B kA
A B
W W W W Pa
g W W
θ µ θ µ θ θ− − + + +
=
+
( )( ) ( )( )64 sin 25 0.15 128 cos25 10 0.15sin 25 cos25
96
° − ° + ° + °
=
0.20149=
( )( ) 2
0.20149 32.2 6.49 ft/sAa = =
(a) 2
6.49 ft/s ,Ba = − 2
6.49 ft/sB =a 25° !
(b) ( )sin cos A
B B
a
T W W
g
θ µ θ= + +
( ) ( )( )16 sin 25 0.15cos25 16 0.20149= ° + ° +
12.16 lb.T = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 18.
Assume B A>a a so that the boxes separate. Boxes are slipping.
kµ µ=
0: cos15 0yF N mgΣ = − ° =
cos15N mg= °
: sin15x kF ma N mg maµΣ = − ° =
cos15 sin15kmg mg maµ ° − ° =
( )cos15 sin15 ,ka g µ= ° − ° independent of m.
For box A, 0.30kµ =
( )9.81 0.30cos15 sin15Aa = ° − ° or 2
0.304 m/sA =a 15°
For box B, 0.32kµ =
( )9.81 0.32cos15 sin15Ba = ° − ° or 2
0.493 m/sB =a 15°
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 19.
Let y be positive downward position for all blocks.
Constraint of cable attached to mass A: 3 constantA By y+ =
3 0A Ba a+ = or 3A Ba a= −
Constraint of cable attached to mass C: constantC By y+ =
0C Ba a+ = or C Ba a= −
For each block :F maΣ =
Block A: , or 3A A A A A A A A A A BW T m a T W m a W m a− = = − = −
Block C: , orC C C C C C C C C C BW T m a T W m a W m a− = = − = −
Block B: 3B A C B BW T T m a− − =
( ) ( )3 3B A A B C C B B BW W m a W m a m a− − − − =
or
3 60 60 20
0.076923
9 60 180 20
B B A C
B A C
a W W W
g W W W
− − − −
= = = −
+ + + +
(a) Accelerations. ( )( ) 2
0.076923 32.2 2.477 ft/s= − = −Ba 2
2.48 ft/sB =a
( )( ) 2
3 2.477 7.431 ft/sAa = − − = 2
7.43 ft/sA =a
( ) 2
2.477 2.477 ft/sCa = − − = 2
2.48 ft/sC =a
(b) Tensions. ( )
20
20 7.43
32.2
AT = − 15.38 lbAT =
( )
20
20 2.477
32.2
CT = − 18.46 lbCT =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 20.
Let y be positive downward for both blocks.
Constraint of cable: constantA By y+ =
0A Ba a+ = or B Aa a= −
For blocks A and B, :F maΣ =
Block A: A
A A
W
W T a
g
− = or A
A A
W
T W a
g
= −
Block B: B B
B B A
W W
P W T a a
g g
+ − = = −
A B
B A A A
W W
P W W a a
g g
+ − + = −
Solving for , A B
A A
A B
W W P
a a g
W W
− −
=
+
(1)
( ) ( ) ( )22
0 0 0
2 with 0A A A A A Av v a y y v − = − = 
( )0
2A A A Av a y y = −  (2)
( ) ( )0 0
with 0A A A Av v a t v− = =
A
A
v
t
a
= (3)
continued
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
(a) Acceleration of block A.
System (1): 100 lb, 50 lb, 0A BW W P= = =
By formula (1), ( ) ( )1
100 50
32.2
100 50
Aa
−
=
+
( ) 2
1
10.73 ft/sA =a !!!!
System (2): 100 lb, 0, 50 lbA BW W P= = =
By formula (1), ( ) ( )2
100 50
32.2
100
Aa
−
= ( ) 2
2
16.10 ft/sA =a !!!!
System (3): 1100 lb, 1050 lb, 0A BW W P= = =
By formula (1), ( ) ( )3
1100 1050
32.2
1100 1050
Aa
−
=
+
( ) 2
3
0.749 ft/sA =a !!!!
(b) ( )0
at 5 ft. Use formula (2).A A Av y y− =
System (1): ( ) ( )( )( )1
2 10.73 5Av = ( )1
10.36 ft/sAv = !!!!
System (2): ( ) ( )( )( )2
2 16.10 5Av = ( )2
12.69 ft/sAv = !!!!
System (3): ( ) ( )( )( )3
2 0.749 5Av = ( )3
2.74 ft/sAv = !!!!
(c) Time at 10 ft/s. Use formula (3).Av =
System (1): 1
10
10.73
t = 1 0.932 st = !!!!
System (2): 2
10
16.10
t = 2 0.621 st = !!!!
System (3): 3
10
0.749
t = 3 13.35 st = !!!!
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 21.
(a) Maximum acceleration. The cable secures the upper beam; only the lower beam can move.
For the upper beam, 10: 0yF N WΣ = − =
1N W mg= =
For the lower beam, 2 10: 0yF N N WΣ = − − = or 2 2N W=
( )1 2: 0.25 0.30 0.25 0.60xF ma N N W maΣ = + = + =
( )( ) 2
0.85 0.85 32.2 23.37 ft/s
W
a
m
= = = 2
27.4 ft/s=a !
For the upper beam, 1: 0.25xF ma T N maΣ = − =
( )( ) ( )
3000
0.25 0.25 3000 23.37 2927 lb
32.2
 
= + = + = 
 
T W ma 2930 lbT = !
(b) Maximum deceleration of trailer.
Case 1: Assume that only the top beam slips. As in Part (a) 1 .N mg=
: 0.25F ma W maΣ = =
2
0.25 8.05 ft/sa g= =
continued
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Case 2: Assume that both beams slip. As before 2 2 .=N W
( ) ( )( ) ( )2 : 0.30 2 2Σ = =F m a W m a
2
0.30 9.66 ft/sa g= =
The smaller deceleration value governs. 2
8.05 ft/sa = !!!!
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 22.
Since both blocks move together, they have a common acceleration. Use
blocks A and B together as a free body.
:F maΣ = Σ
( )sin30 sin30A B A BP m g m g m m a− ° − ° = +
500
sin30 9.81 sin30
50A B
P
a g
m m
= − ° = − °
+
2
5.095 m/s=
Use block B as a free body.
cos30 : cos30B f BF m a F m aΣ = ° = °
( )( )10 5.095 cos30 44.124 NfF = ° =
sin30 : sin30B B B BF m a N m g m aΣ = ° − = °
( ) ( )sin30 10 9.81 5.095 sin30B BN m g a= + ° = + °
123.575 N=
Minimum coefficient of static friction:
min
44.124
123.575
f
B
F
N
µ = = min 0.357µ =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 23.
(a) Kinematics of the belt. 0ov =
1. Acceleration phase with 2
1 3.2 m/sa =
( )( )1 1 1 0 3.2 1.5 4.8 m/sov v a t= + = + =
( )( )22
1 1 1 1
1 1
0 0 3.2 1.5 3.6 m
2 2
o ox x v t a t= + + = + + =
2. Deceleration phase. 2 0v = since the belt stops.
( )2 2
2 1 2 2 12v v a x x− = −
( )
( )
( )
22 2
2 1
2
2 1
0 4.8
11.52
2 2 4.6 3.6
v v
a
x x
−−
= = = −
− −
2
2 11.52 m/s=a
2 1
2 1
2
0 4.8
0.41667 s
11.52
v v
t t
a
− −
− = = =
−
(b) Motion of the package.
1. Acceleration phase. Assume no slip. ( ) 2
1
3.2 m/spa =
0: 0 oryF N W N W mgΣ = − = = =
( )1
:x f pF ma F m aΣ = =
The required friction force is .fF
The available friction force is 0.35 0.35sN W mgµ = =
( ) ( )( ) 2
1
0.35 9.81 3.43 m/sf s
p s
F N
a g
m m
µ
µ= < = = =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Since 2 2
3.2 m/s 3.43 m/s ,< the package does not slip.
( ) ( )11 1
4.8 m/s and 3.6 m.p pv v x= = =
2. Deceleration phase. Assume no slip. ( ) 2
2
11.52 m/spa = −
( )2
:x f pF ma F m aΣ = − =
( ) 2
2
11.52 m/sf
p
F
a
m
= = −
2 2
3.43 m/s 11.52 m/ss s
s
N mg
g
m m
µ µ
µ= = = <
Since the available friction force sNµ is less than the required
friction force fF for no slip, the package does slip.
( ) 2
2
11.52 m/s ,p f ka F Nµ< =
( ) ( )2 2
:x p k pF m a N m aµΣ = − =
( ) ( )( ) 2
2
0.25 9.81 2.4525 m/sk
p k
N
a g
m
µ
µ= − = − = − = −
( ) ( ) ( ) ( ) ( )( ) 2
2 12 1 2
4.8 2.4525 0.41667 3.78 m/sp p pv v a t t= + − = + − =
( ) ( ) ( ) ( ) ( ) ( )2 2
2 1 2 12 1 1 2
1
2
p p p px x v t t a t t= + − + −
( )( ) ( )( )21
3.6 4.8 0.41667 2.4525 0.41667 5.387 m
2
= + + − =
Position of package relative to the belt
( ) 22
5.387 4.6 0.787px x− = − = /belt 0.787 mpx =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 24.
Acceleration 1:a Impending slip. 1 1 10.30 NsF Nµ= =
1 1: sin65y A y A AF m a N W m aΣ = − = °
1 1 sin 65A AN W m a= + °
( )1 sin65Am g a= + °
1 1: cos65x A x AF m a F m aΣ = = °
1 sF Nµ= or ( )1 1cos65 0.30 sin65A Am a m g a° = + °
( )( ) 2
1
0.30
1.990 9.81 19.53 m/s
cos65 0.30sin65
g
a = = =
° − °
2
1 19.53 m/s=a 65°
Deceleration 2 :a Impending slip. 2 2 20.30 NSF Nµ= =
1 2: sin 65y y A AF ma N W m aΣ = − = − °
1 2 sin65A AN W m a= − °
2 2: cos65x x AF ma F m aΣ = = °
2 2SF Nµ= or ( )2 2cos65 0.30 cos65A Am a m g a° = − °
( )( ) 2
2
0.30
0.432 9.81 4.24 m/s
cos65 0.30sin 65
g
a = = =
° + °
2
2 4.24 m/s=a 65°
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 25.
Let Pa be the acceleration of the plywood, Ta be the acceleration of the
truck, and /P Ta be the acceleration of the plywood relative to the truck.
(a) Find the value of Ta so that the relative motion of the plywood with
respect to the truck is impending. P Ta a= and
1 1 10.40 NsF Nµ= =
1: cos20 sin 20y P y P P TF m a N W m aΣ = − ° = − °
( )1 cos20 sin 20P TN m g a= ° − °
1: sin 20 cos20x x P P TF ma F W m aΣ = − ° = °
( )1 sin 20 cos20P TF m g a= ° + °
( ) ( )sin 20 cos20 0.40 cos20 sin 20P T P Tm g a m g a° + ° = ° − °
( )
( )( )
0.40cos20 sin 20
0.03145 9.81 0.309
cos20 0.40sin 20
Ta g
° − °
= = =
° + °
2
0.309 m/sT =a s
(b) ( ) ( ) 2 2
/ / / / /
1 1
0 0
2 2
P T P T P T P T P To
x x v t a t a t= + + = + +
( )( )
( )
2/
/ 2 2
2 12
12.5 m/s ,
0.4
P T
P T
x
a
t
= = = 2
/ 12.5 m/sP T =a 20°
( )/P T P T Ta= + = → +a a a ( 2
12.5 m/s )20°
:y P yF m a=
2 cos20 sin 20P P TN W m a− ° = − °
( )2 cos20 sin 20P TN m g a= ° − °
continued
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
:x xF maΣ = Σ
2 /sin 20 cos20P P T P P TF W m a m a− ° = ° −
( )2 /sin 20 cos20P T P TF m g a a= ° + ° −
For sliding with friction 2 2 20.30 NkF Nµ= =
( ) ( )/sin 20 cos20 0.30 cos20 sin 20P T P T P Tm g a a m g a° + ° − = ° + °
( ) /0.30cos20 sin 20
cos20 0.30sin 20
P T
T
g a
a
° − ° +
=
° + °
( )( ) ( )( )0.05767 9.81 0.9594 12.5 11.43= − + =
2
11.43 m/sT =a
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 26.
At maximum speed 0.a = 2
0 0 0F kv= = 0
2
0
F
k
v
=
When the propellers are reversed, 0F is reversed.
2
0:xF ma F kv maΣ = − − =
2
0 0 2
0
v
F F ma
v
− − = ( )2 20
02
0
F
a v v
mv
− +
( )
2
0
2 2
0 0
vdv mv vdv
dx
a F v v
= =
+
0
2
00
2 20
0 0
x
v
mv vdv
dx
F v v
= −
+
∫ ∫
( ) ( )0
2 2 20
2 2 2 20 0 0
0 0 0
0 0 0
1
ln ln ln 2 ln 2
2 2 2v
mv mv mv
x v v v v
F F F
 = − + = − − =
 
2
0 0
0
0.347
m v
x
F
=
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 27.
:F ma P kv maΣ = − =
dv P kv
a
dt m
−
= =
( ) ( )0 0 0
ln ln ln
vt v m dv m m
dt P kv P kv P
P kv k k
 = = − − = − − − −
∫ ∫
ln or ln
m P kv P kv kt
t
k P m m
− −
= − = −
( )/ /
or 1kt m kt mP kv P
e v e
m k
− −−
= = −
/
0
0 0
tt
t kt mPt P k
x v dt e
k k m
− 
= = − −  ∫
( ) ( )/ /
1 1kt m kt mPt P Pt P
e e
k m k m
− −
= + − = − −
, which is linear.
Pt kv
x
k m
= −
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 28.
Let y be the position coordinate of the projectile measured upward
from the ground. The velocity and acceleration a taken to positive
upward. 2
.D kv=
(a) Upward motion. :yF maΣ =
D mg ma− − =
2
2
2
D kv
a g g
m m
dv kv k mg
v g v
dy m m k
  
= − + = − +       
   
= − + = − +       
2
vdv k
dy
mg mv
k
= −
+
0
0
02
h
v
vdv k
dy
mg mv
k
= −
+
∫ ∫
0
0
21
ln
2 v
mg kh
v
k m
 
+ = − 
 
2
0
2
0
1 1
ln ln 1
2 2
mg
kv khk
mg mg mv
k
 
= − + = −  
 +
( )( )
( )( )
( )( )
22
0 0.0024 904
ln 1 ln 1
2 2 0.0024 4 9.81
m kv
h
k mg
  
 = + = +       
335.36 m= 335 mh =
continued
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
(b) Downward motion. :F maΣ =
D mg ma− =
2
2
2
D kv
a g g
m m
dv kv k mg
v g v
dy m m k
= − = −
 
= − = − − 
 
2
vdv k
dy
mg mv
k
= −
−
0
0
fv
h
vdv k
dy
mg m
= −∫ ∫
2
0
1
ln
2
fv
mg kh
v
k m
 
− = 
 
2
1
ln
2
f
mg
v
khk
mg m
k
 
− 
− = 
  
 
2
2
ln 1
fkv kh
mg m
 
 − = −
 
 
2
2
1
f kh/mkv
e
mg
−
− =
( )2
1 kh/m
f
mg
v e
k
−
= ± −
( )( ) ( )( )( )2 0.0024 335.36 /44 9.81
1
0.0024
fv e
− = −  
73.6 m/s= 73.6 m/sfv =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 29.
Choose the origin at point C, and let x be positive to the right. Then x is a
position coordinate of the slider B, and 0x is its initial value. Let L be the
stretched length of the spring. Then, from the right triangle
2 2
L x= +
The elongation of the spring is ,e L= − and the magnitude of the force
exerted by the spring is
( )2 2
sF ke k x= = + −
By geometry,
2 2
cos
x
x
θ =
+
: cosx x sF ma F maθΣ = − =
( )2 2
2 2
x
k x ma
x
− + − =
+
2 2
k x
a x
m x
 
= − −  
+ 
0
0
0
v
x
v dv a dx=∫ ∫
0
0
0
02 2 2 2
2 2
0
1 1
2 2
v
x
x
k x k
v x dx x x
m mx
   
= − − = − − +      + 
∫
2 2 2 2 2
0 0
1 1
0
2 2
k
v x x
m
 
= − − − + + 
 
( )2 2 2 2 2
0 02 2
k
v x x
m
= + − +
( )2 2 2 2 2
0 02
k
x x
m
 = + − + +
  
( )2 2
0answer:
k
v x
m
= + −
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 30.
Let yA, yB, and yC be the position coordinates of blocks A, B, and C respectively measured downward from the
upper support. Then the corresponding velocities and accelerations are positive downward.
Constraint of cable: 2 constantA B A B Cy y y y y− + + + =
Differentiating twice, 2 0A B A B Ca a a a a− + + + =
2 0A B Ca a a+ + = (1)
Draw free body diagrams of each of the blocks.
Block A. : 2A A AF ma m g T m aΣ = − =
2
A
A
T
a g
m
= − (2)
Block B. : B B BF ma m g T m aΣ = − =
B
B
T
a g
m
= − (3)
Block C. : C C CF ma m g T m aΣ = − =
C
C
T
a g
m
= − (4)
Substitute (2), (3) and (4) into (1).
2
2 0
A B C
T T T
g g g
m m m
    
− + − + − =    
     
4 1 1
4 0
A B C
g T
m m m
 
− + + = 
 
( )( )
4 1 1
4 9.81 0 65.4 N
10 10 10
T T
 
− + + = = 
 
Substitute into (2),
( )( ) 22 65.4
9.81 3.27 m/s
10
Aa = − = −
(a) Change in position. ( ) 2
0
1
2
A A Ay y a t− =
( ) ( )( )2
0
1
3.27 0.5 0.409 m
2
A Ay y− = − = −
0.409 my∆ = !!!!
(b) Tension in the cable. 65.4 NT = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 31.
98.1 N= =A AW m g 49.05 NB BW m g= =
Assume that block B slides downward relative to block A. Then the friction
force 1F is directed as shown. Its magnitude is
1 1 10.10 N .kF Nµ= =
1 10: cos30 0, cos30 49.05cos30 42.48 N.y B BF N W N WΣ = − ° = = ° = ° =
( )( )1 0.10 42.48 4.248 N.F = =
1: sin30x B B B B BF m a W F m aΣ = ° − =
( ) ( ) 2
1
1 1
sin30 49.05sin30 4.248 4.055 m/s
5
B B
B
a W F
m
= ° − = ° − =
Assume that block A slides downward relative to the fixed plane. The
friction force 2F is directed as shown. Its magnitude is
2 2 20.20 N .kF Nµ= =
2 1 20: cos30 0, 42.48 98.1cos30 127.44 N.y AF N N W N= − − ° = = + ° =
( )( )2 0.20 127.44 25.49 NF = =
2 1: sin30x A A A A AF m a W F F m aΣ = ° − + =
( )2 1
1
sin30A A
A
a W F F
m
= ° − +
( ) 21
98.1sin30 25.49 4.248 2.781 m/s
10
= ° − + =
2
/ 4.055 2.781 1.274 m/sB A B Aa a a= − = − =
Since both /B Aa and Aa are positive, the directions of relative motion are
as assumed above.
(a) Acceleration of block A. 2
2.78 m/sA =a 30°
(b) Velocity of B relative to A at 0.5 s.t =
( )( )/ / 1.274 0.5= =B A B Av a t / 0.637 m/sB A =v 30°
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 32.
Let the positive direction for position coordinates, velocities, and accelerations be to the right. Let the origin
lie at the fixed anchor.
Constraint of cable: ( ) ( ) ( )3 constantC A C B Bx x x x x− + − + − =
4 2 3 0C B Aa a a− − = (1)
:x xF maΣ =
Block A:
3 3
3 or
20
A A A
A
T T
T m a a g
m
= = = (2)
Block B:
2 2
2 or
10
B B B
B
T T
T m a a g
m
= = = (3)
Block C:
4 4
4 or
20 20
C C C
P T P T
P T m a a g
− −
− = = = (4)
Substituting (2), (3), and (4) into (1),
4 2 3
4 2 3 0
20 10 20
P T T T−     
− − =     
     
16 4 9 4
20 10 20 20
P
T
 
+ + = 
 
( ) ( )( )0.12121 0.12121 50 6.0605 lbT P= = =
(a) From (2),
( )( )( ) 23 6.0605 32.2
29.3 ft/s
20
Aa = = 2
29.3 ft/sA =a
From (3),
( )( )( ) 22 6.0605 32.2
39.0 ft/s
10
Ba = = 2
39.0 ft/sB =a
From (4),
( )( ) ( ) 2
41.5 ft/s
20
50 4 6.0605 32.2
Ca
 − = = 2
41.5 m/sC =a
(b) As determined above, 6.06 lbT =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 33.
2 220 10
0.62112 lb s / ft, 0.31056 lb s / ft
32.2 32.2
A C Bm m m= = = ⋅ = = ⋅
Let the positive direction for position coordinates, velocities, and
accelerations be to the right. Let the origin lie at the fixed anchor.
Constraint of cable: ( ) ( ) ( )3 constantC A C B Bx x x x x− + − + − =
4 2 3 0C B Aa a a− − = (1)
Block A: 0: 0y A AF N WΣ = − =
,A A A k A AN W F N Wκµ µ= = =
: 3x A x A A AF m a T F m aΣ = − =
3 3
0.20k A
A
A A
T W T
a g
m m
µ−
= = − (2)
Block B: ,B B B k BN W F Wµ= =
: 2x B B B B BF m a T F m aΣ = − =
2 2
0.20k B
B
B B
T W T
a g
m m
µ−
= = − (3)
Block C: ,C C C k CN W F Wµ= =
: 4x C A C C CF m a P T F m aΣ = − − = (4)
Kinematics: ( ) ( ) 2 2
0 0
1 1
0
2 2
C C C C Cx x v a t a t= + + = +
( ) ( )( )
( )
0 2
2 2
2 2 2.4
30 ft/s
0.4
C C
C
x x
a
t
 − = = = (5)
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Substitute (2), (3) and (5) into (1).
( )( ) ( ) ( )
2 3
4 30 2 0.20 3 0.20
0.31056 0.62112
T T
g g
   
− − − −      
( )( ) ( ) ( )( ) ( ) ( )( )
2 3
4 30 2 0.2 32.2 3 0.2 32.2
0.31056 0.62112
T T   
= − − − −   
   
120 27.37 32.2 0T= − + = 5.5608 lbT =
From (4), 4 C C CP T F m a= + +
( )( ) ( )( ) ( )( )4 5.5608 0.20 20 0.62112 30= + +
44.877 lb=
From (2),
( )( )
( )( ) 23 5.5608
0.20 32.2 20.42 ft/s
0.62112
Aa = − =
From (3),
( )( )
( )( ) 22 5.5608
0.20 32.2 29.37 ft/s
0.31056
Ba = − =
(a) Acceleration vectors. 2
20.4 ft/sA =a
2
29.4 ft/sB =a
2
30 ft/sC =a
Since , , andA B Ca a a are to the right, the friction forces
, , andA B CF F F are to the left as assumed.
(b) Tension in the cable. 5.56 lbT =
(c) Force P. 44.9 lb=P
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 34.
Let the positive direction of x and y be those shown in the sketch, and let
the origin lie at the cable anchor.
Constraint of cable: / /constant or 0,A B A A B Ax y a a+ = + = where
the positive directions of /andA B Aa a are respectively the x and the y
directions. Then /B A Aa a= − (1)
First note that (/B A B A Aa= + =a a a ) ( /20 B Aa° + )20°
Block B: ( ) : sin 20x B B B AB B Ax
F m a m g N m aΣ = ° − =
sin 20B A AB Bm a N m g+ = °
15 50.328A ABa N+ = (2)
( ) /: cos20y B B B B B Ay
F m a m g T m aΣ = ° − =
/ cos20B B A Bm a T m g+ = °
/15 138.276B Aa T+ = (3)
Block A: AAABAAAx amTNgmamF =++°=Σ 20sin:
sin 20A A AB Am a N T m g− + = °
25 83.880A ABa N T− + = (4)
Eliminate /B Aa using Eq. (1), then add Eq. (4) to Eq. (2) and
subtract Eq. (3).
2 2
55 4.068 or 0.0740 m/s , 0.0740 m/sA A Aa a= − = − =a 20° !!!!
From Eq. (1), 2
/ 0.0740 m/sB Aa =
From Eq. (3), 137.2 NT = 137.2 NT = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 35.
Motion of B relative to A. Particle B is constrained to move on a circular
path with its center at point A. ( )/B A t
a is the component of /B Aa lying
along the circle, say to the left in the diagram and ( )/B A n
a is directed
toward point A. Initially, / 0,B A =a since the system starts from rest.
(a) (/B A B A Aa= + =a a a ) ( /25 B Aa° + )
Crate B: /: 0 cos25x x B B A B AF ma m a m aΣ = Σ = − °
/ cos25 0.4cos25 0.363B A Aa a= ° = ° =
2
/ 0.363 m/sB A =a
( ) : sin 25y B B AB B B Ay
F m a T m g m a= − = °
( )sin 25AB B AT m g a= + °
( )250 9.81 0.4sin 25 2495 N= + ° =
(b) Trolley A: :A AF m aΣ =
( )sin 25CD AB A A AT T m g m a− + ° =
( )sin 25CD AB A A AT T m g m a= + ° +
( )( ) ( )( )2495 20 9.81 sin 25 20 0.4 = + ° + 
1145 NCDT =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 36.
The ball moves at constant speed on a circle of radius
sinLρ θ=
Acceleration (toward center of circle).
2
v
a
ρ
=
+ :y yF maΣ = cos 0− =T Wθ
cos
=
W
T
θ
:y xF maΣ = sinT maθ =
sin
cos
W
θ
θ
2
mv
ρ
=
2
sin
mv
L θ
=
(a) tan sinθ θ =
2
mv
WL
=
2
v
gL
=
( )
( )( )
2
1.5
0.38226
9.81 0.6
=
34.21θ = ° 34.2θ = °
(b)
cos cos
W mg
T
θ θ
= =
( )( )2 9.81
cos34.21
=
°
23.7 N=T
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 37.
Let ρ be the radius of the horizontal circle. The length of the wire is
1 2sin sin
L
ρ ρ
θ θ
= + . Solving for ,ρ 1 2
1 2
sin sin
sin sin
L θ θ
ρ
θ θ
=
+
1 20: cos cos 0yF T T mgθ θΣ = + − =
1 2cos cos
mg
T
θ θ
=
+
2
1 2: sin sinx x n
mv
F ma T T maθ θ
ρ
Σ = + = =
( ) ( )2
1 2 1 2
1 2 1 2
sin sin sin sin
cos cos sin sin
mg mv
L
θ θ θ θ
θ θ θ θ
+ +
=
+
( )( )2 2 21 2
1 2
sin sin sin60 sin30
2 9.81 6.2193 m /s
cos cos cos60 cos30
v Lg
θ θ
θ θ
° °
= = =
+ ° + °
2.49 m/sv =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 38.
3 1 2 50 25 25θ θ θ= − = ° − ° = °
1 2
1
2 3 3
sin
or
sin sin sin
d d θ
θ θ θ
= =
( )( )( )
2 1
1 1
3
sin sin
sin
sin
4 sin 25 sin50
3.0642 ft
sin 25
d θ θ
ρ θ
θ
= =
° °
= =
°
2 10: cos cos 0y AC BCF T T Wθ θΣ = + − = (1)
2
2 1: sin sinx x AC BC
Wv
F ma T T
g
θ θ
ρ
Σ = + = (2)
Case 1: 0.BCT = 2cos 0ACT Wθ − = or
2cos
AC
W
T
θ
=
2
2 2sin tanAC
Wv
T W
g
θ θ
ρ
= =
( )( )2
2tan 32.2 3.0642 tan 25v gρ θ= = ° 2 2
46.01 ft /s=
6.78 ft/sv =
Case 2: 0.ACT = 1
1
cos 0 or
cos
BC BC
W
T W Tθ
θ
− = =
2
1 1sin tanBC
Wv
T W
g
θ θ
ρ
= =
( )( )2 2 2
1tan 32.2 3.0642 tan50 117.59 ft /sv gρ θ= = ° =
10.84 ft/sv = 6.78 ft/s 10.84 ft/sv≤ ≤
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 39.
(a) 0: sin 0yF T WθΣ = − =
16
sin sin60
W
T
θ
= =
°
or 18.48 lbT =
(b)
2
: cosx n
v
F ma T mθ
ρ
Σ = =
2 cos cos
sin
T W
v
m m
ρ θ ρ θ
θ
= =
( )( ) 2 23 32.2
55.77 ft /s
tan tan60
gρ
θ
= = =
°
7.47 ft/sv =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 40.
2
, 1 tan or 45
2
r dy
y r
dx
θ θ= = = = = °
0: cos 0yF N mgθΣ = − =
cos
mg
N
θ
=
: sinx x nF ma N maθΣ = =
2
tan
v
mg m
r
θ =
2
tanv gr θ=
(a) ( )( )( )2 2 2
9.81 1 1.0000 9.81 m /sv = = 3.13 m/sv =
(b)
( )( )1 9.81
cos45 cos45
mg
N = =
° °
13.87 N=N
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 41.
Geometry
( ) ( ) ( )( )( )
2 2 2
2 2 2
2 cos30
0.3 0.6 2 0.3 0.6 cos30 0.13823 m
0.37179 m
OC OB BC OB OC
OC
= + − °
= + − ° =
=
sin30 sin
OC OB
β
=
°
( )0.3 sin30sin30
sin 0.40345
0.37179
OB
OC
β
°°
= = =
23.79β = °
Acceleration components: 2
1.3 m/sta =
( )22 2
21
1.667 m/s
0.6
C
n
BC
v v
a
ρ
= = = =
Mass 1 kgm =
( )( ): cos 1 1.3 1.3t tF ma N βΣ = = =
1.3
1.421 N
cos23.79
= =
°
N
( )( ): sin 1 1.667 1.667n nF ma T N βΣ = − = =
(a) 1.667 1.421 sin 23.79T = + ° 2.24 N=T
(b) Force exerted by rod on collar is 1.421 N ( )30 53.8β° + = °
Force exerted by collar on rod: 1.421 N 53.8°
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 42.
( )( )0.5 9.81 4.905 NW mg= = =
150 mm 0.150 mρ = =
0: cos20 cos30 0y DA DEF T T WΣ = ° − ° − =
0.93969 0.86603 4.905DA DET T− =
0.92160 5.2198DA DET T= + (1a)
1.08506 5.6638DE DAT T= − (1b)
2
20.5
: sin 20 sin30
0.150
x n DA DE
mv
F ma T T v
ρ
Σ = = ° + ° =
2
0.10261 0.15DA DEv T T= + (2)
Try 75 N. By Eq. (1 ), 75.72 N 75 N (unacceptable)DA DET b T= = >
Try 75 N. By Eq. (1 ), 74.34 N 75 N (acceptable)DE DAT a T= = <
By Eq. (2), ( )( ) ( )( )2 2 2
0.10261 74.34 0.15 75 18.877 m /sv = + =
4.34 mv =
Try ( ) ( )0. By Eq. 1 , 5.6638 unacceptableDA DET b T= = −
Try ( ) ( )0. By Eq. 1 , 5.2198 acceptableDE DAT a T= =
By Eq. (2), ( )( ) ( )( )2 2 2
0.10261 5.2198 0.15 0 0.5356 m /sv = + =
0.732 m/sv =
For 0 , , , 75 N,BA BC DA DET T T T≤ ≤ 0.732 m/s 4.34 m/sv≤ ≤
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 43.
( )( )5 9.81 49.05 NW mg= = =
0.9 mρ =
0: cos40 cos15 0y CA CBF T T WΣ = ° − ° − =
0.76604 0.96593 49.05CA CBT T W− = =
0.79307 50.780CB CAT T= − (1a)
1.26093 64.030CA CBT T= + (1b)
2
: sin 40 sin15x x CA CB n
mv
F ma T T ma
ρ
Σ = ° + ° = =
( )
( )
2
sin40 sin15
0.9
sin40 sin15
5
0.115702 0.046587
CA CB
CA CB
CA CB
v T T
m
T T
T T
ρ
= ° + °
= ° + °
= + (2)
Try 116 N. By (1 ), 210.3 N (unacceptable)CB CAT b T= =
Try 116 N. By (1 ), 41.216 N (acceptable)CA CBT a T= =
By (2), ( )( ) ( )( )2 2 2
0.115702 116 0.046587 41.216 15.34 m /sv = + =
3.92 m/sv =
Try ( ) ( )0. By 1 , 50.78 N unacceptableCA CBT a T= = −
Try ( ) ( )0. By 1 , 64.03 N acceptableCB CAT b T= =
By (2), ( )( )2 2 2
0.115702 64.030 0 7.408 m /sv = + =
2.72 m/sv =
For 0 , 116 N,CA CBT T≤ ≤ 2.72 m/s 3.92 m/sv≤ ≤
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 44.
(a) Before wire AB is cut. 0a =
0 :xFΣ = cos50 cos70 0AB CDT T− ° + ° = (1)
0 :yFΣ = sin50 sin70 0° + ° − =AB CDT T W (2)
Solving (1) and (2) simultaneously,
0.395=ABT W 0.742=CDT W
(b) Immediately after wire AB is cut. 0, 0ABT v= =
2
0n
v
a
ρ
= =
0 :n nF ma= =
cos20 0CDT W− ° =
cos20CDT W= °
0.940CDT W=
+
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 45.
:y yF maΣ =
2
n
mv
N mg ma
ρ
− = − = −
2
mv
N mg
ρ
= −
:x xF maΣ =
t tF ma=
At onset of slipping, t sF Nµ=
2
s
t s
mv
ma mgµ
ρ
 
= −  
 
( )2 2 20.150
0.300 9.81 2.883 m /s
0.75
t
s
s
a
v gρ
µ
   
= − = − =     
1.6979 m/ssv =
Time at slipping.
1.6979
0.150
s
s
t
v
t
a
= = 11.32 sst =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 46.
Angle change over arc AB.
8
0.13963 rad
180
θ π
°
= =
°
Length of arc: ( ) ( )4 (5280) 0.13963 2949 ftABs ρθ= = =
(0.5)(5280) 2640 ft, 2949 2640 5589 ftBC ACs s= = = + =
( )
( )( )
2 2
480 5589
540 0
2
2 2
2949
540 0
2 2 2
480 540
or 5589
2 2
5.475 ft/s
540
or 5.475 2949
2 2
259300 ft /s 509.2 ft/s
B
t t
t
v B
t
B B
v dv a ds a
a
v
v dv a ds
v v
= − =
= −
= − = −
= =
∫ ∫
∫ ∫
Mass of passenger: 2200
6.211 lb s /ft
32.2
= = ⋅m
Just before point B. 509.2 ft/s, (4)(5280) = 21120 ftv ρ= =
( )22
2509.2
12.277 ft/s
21120
n
v
a
ρ
= = =
( ) ( )( )1 11
: 200 6.211 12.277 123.75 lby nF N W m a NΣ = − = − = − =
( ) ( )( )1
: 0.6221 5.474 34.01 lbx t t tF F ma FΣ = = = − = −
Just after point B. 509.2 ft/s, , 0nv aρ= = ∞ =
20 : 0yF N WΣ = − = 2 200 lbN W= =
( )( ): 6.211 5.475 34.01 lbx t t tF ma F maΣ = = = − = −
tF does not change.
N increases by 76.25 lb
magnitude of change of force = 76.3 lb
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 47.
( ) ( )2
3 180 m, 3 180 2 m/s,
ds
s t t v t
dt
= − = = −
2
6 m/s (4)(5280) 21120 ft= = − = =t
dv
a
dt
ρ
Length of arc AB. ( )
8
21120 2949 ft
180
AB ABs
π
ρθ
°
= = =
°
0
B AB
A
v s
tv
v dv a ds=∫ ∫
( )( )( )
2 2
2 2 2
2 or 2 540 2 6 2949
2 2
B A
t AB B A t AB
v v
a s v v a s− = = + = + −
256212,= 506.2 ft/sBv =
For passenger, 2165
165 lb, 5.124 lb s /ft
32.2
= = = = ⋅
W
W m
g
2
: cosn
mv
F ma W Nθ
ρ
Σ = − =
2
cos
mv
N W θ
ρ
= − (1)
: sint tF ma P W maθΣ = − =
sin tP W maθ= + (2)
(a) Just after point A, 0, 180 m/s, 8t v θ= = = °
From Eq. (1),
( )( )2
5.124 540
165cos8 92.65 lb
21120
N = ° − =
From Eq. (2), ( )( )165sin8 5.124 6 7.78 lbP = ° + − = −
2 2 92.65
93.0 lb, tan 11.909, 85.2
7.78
F N P β β= + = = = = °
8 77.2β − ° = ° 93.0 lb=F 77.2°
(b) At point B. 0, 506.2 ft/svθ = =
From Eq. (1),
( )( )2
5.124 506.2
165 102.83 lb
21120
N = − =
From Eq. (2), ( )( )5.124 6 30.74 lbP = − = −
( ) ( )
2 2 102.83
102.83 30.74 107.3 lb, tan 3.345, 73.4
30.74
= + = = = = °F β β
107.3 lb=F 73.4°
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 48.
(a) 160 km/h 44.44 m/sv = =
Wheels do not touch the road.
2
: /y nF ma mg mv ρΣ = − − = −
( )22 44.44
201.4
9.81
v
g
ρ = = =
201 mρ =
(b) 80 km/h 22.22 m/sv = =
70 kgm = for passenger
:y nF maΣ = −
2
mv
N mg
ρ
− = −
2
v
N m g
ρ
 
= −  
 
( )
2
22.22
70 9.81
201.4
 
= −  
 
515 NN =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 49.
0.2 kg, (0.2)(9.81) 1.962 N= = = =m W mg
: cost t tF ma W maθΣ = =
cos cost
W
a g
m
θ θ= =
0 0 0
v s
t tv
v dv a ds a rd
θ
θ= =∫ ∫ ∫
2 2
0 0
1 1
cos sin
2 2
v v g rd gr
θ
θ θ θ− = =∫
2 2
0 2 sin , where 0.6 m for 0 90v v gr rθ θ= + = ≤ ≤ °
max when the cord touches the peg or 90 .v v θ= = °
2 2
max 0 2v v gr= + (1)
When the cord touches the peg, the radius of curvature of the path
becomes 0.3 m.ρ =
2
max
max:y n
mv
F ma T W
ρ
Σ = − =
( )2
max maxv T W
m
ρ
= − (2)
Eliminating 2
maxv from equations (1) and (2),
( ) ( )( )
( )( )( )max2
0
0.3 10 1.962
2 2 9.81 6.0
0.2
T W
v gr
m
ρ − −
= − = −
2 2
0.285 m /s= 0 0.534 m/s=v
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 50.
Mass of block B. 2
2
0.5lb
0.015528lb s /ft
32.2ft/s
= = ⋅Bm
Acceleration of block B.
2 2
2(9ft/s)
27ft/s
3ft
= = =n
v
a
ρ
0ta = since v = constant.
:F ma∑ =
sin nQ P W θ ma− − = −
sin nQ = P + W θ ma−
But, 0.Q ≥ sin 0nP W maθ+ − >
(0.015528)(27) 0.3
sin
0.5 0.5
nma P
W W
θ ≥ − = −
sin 0.2385θ ≥
13.8 166.2θ° ≤ ≤ °
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 51.
At position A, the vertical component of apparent weight is shown as .AN
:n A n
W
F ma N W a
g
Σ = − =
( ) 2380 120
32.2 69.77 ft/s
120
A
n
N W
a g
W
− −
= = =
( )( )2 3 2 2
3600 69.77 251.2 10 ft /sA nv aρ= = = ×
At position C, the vertical component of apparent weight is shown
as .CN
:n C n
W
F ma N W a
g
Σ = + =
( ) 280 120
32.2 53.67 ft/s
120
C
n
N W
a g
W
+ +
= = =
( )( )2 3 2 2
3600 53.67 193.2 10 ft /sC nv aρ= = = ×
Length of arc ABC:
( )3600 11310 ftACs πρ π= = =
Calculate ,ta using 2 2
2C A t ACv v a s− =
( )( )
2 2 3 3
2
193.2 10 251.2 10
2 2 11310
2.562 ft/s
C A
t
AC
v v
a
s
− × − ×
= =
= −
At position B, ( )3600 5655 ft
2 2
ABs
π π
ρ= = =
( )( )( )2 2 3 3 2 2
2 251.2 10 2 2.562 5655 222.2 10 ft /sB A t ABv v a s= + = × + − = ×
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Effective forces at B:
2 3
120 222.2 10
230 lb
32.2 3600
B
n
W v
ma
g ρ
×
= = =
( )
120
2.562 9.5 lb
32.2
t t
W
ma a
g
= = − = −
:tF maΣ =
or 120 9.5 110.5 lbt tP W ma P W ma− = = + = − =
: 230 lbn B nF ma N maΣ = = =
Force exerted by seat:
2 2 2 2
230 110.5 255 lbBF N P= + = + =
110.5
tan
230
β = 25.7β = °
255 lb=F 25.7°
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 52.
The road reaction consists of normal component N and friction
component F. The resultant R makes angle sφ with the normal.
Case 1: maxv v=
( )0: cos 0y sF R mgθ φΣ = + − =
( )cos s
mg
R
θ φ
=
+
( ): sinx n s nF ma R maθ φΣ = + =
( )tann sma mg θ φ= +
( )
2
max
tan s
v
g
r
θ φ= +
( )max tan sv gr θ φ= +
Case 2: minv v=
( )0: cos 0y sF R mgθ φΣ = − − =
( )cos s
mg
R
θ φ
=
−
( ): sinx n s nF ma R maθ φΣ = − =
( )tann sma mg θ φ= −
( )
2
min
tan s
v
g
r
θ φ= −
( )min tan sv gr θ φ= −
( ) ( )tan tans sgr v grθ φ θ φ− ≤ ≤ +
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 53.
Weight. W mg=
Acceleration.
2
v
a
ρ
=
:∑ =x xF ma sin cosF W = maθ θ+
2
cos sin
mv
F mgθ θ
ρ
= − (1)
:y yF ma∑ = cos sinN W maθ θ− =
2
sin cos
mv
N = mgθ θ
ρ
+ (2)
(a) Banking angle. Rated speed 180 km/h 50 m/s.v = = 0F = at rated speed.
2
0 cos sin
mv
mgθ θ
ρ
= −
2 2
(50)
tan = 1.2742
(200)(9.81)
v
g
θ
ρ
= =
51.875θ = ° 51.9θ = °
(b) Slipping outward. 320km/h 88.889 m/sv = =
F Nµ=
2
2
cos sin
sin cos
F v g
N v g
θ ρ θ
µ
θ ρ θ
−
= =
+
2
2
(88.889) cos51.875 (200)(9.81)sin51.875
=
(88.889) sin51.875 (200)(9.81)cos51.875
µ
°− °
°+ °
0.44899= 0.449µ =
continued
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
(c) Minimum speed. = −F Nµ
2
2
cos sin
sin cos
v g
v g
θ ρ θ
µ
θ ρ θ
−
− =
+
2 (sin cos )
cos sin
g
v
ρ θ µ θ
θ µ θ
−
=
+
(200)(9.81)(sin51.875 0.44899cos51.875 )
cos51.875 0.44899sin51.875
° − °
=
° + °
2 2
1029.87m /s=
32.09m/sv = 115.5 km/h=v
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 54.
Rated speed: 75 mi/h 110 ft/s, 125 mi/h 183.33 ft/sRv = = =
From Sample Problem 12.6,
( )22
2 110
tan or 2674 ft
tan 32.2 tan8
R
R
v
v g
g
ρ θ ρ
θ
= = = =
°
Let the x-axis be parallel to the floor of the car.
( ) ( ): sin cosx x s nF ma F W maθ φ θ φΣ = + + = +
( )
2
cos
mv
θ φ
ρ
= +
(a) 0.φ =
( ) ( )
( )
( )( )
2
2
cos sin
183.33
cos8 sin8
32.2 2674
0.247
s
v
F W
g
W
W
θ φ θ φ
ρ
 
= + − + 
 
 
 = ° − °
  
= 0.247sF W= !
(b) For 0,sF =
( ) ( )
2
cos sin 0
v
g
θ φ θ φ
ρ
+ − + =
( )
( )
( )( )
22
183.33
tan 0.39035
32.2 2674
v
g
θ φ
ρ
+ = = =
21.3θ φ+ = °
21.3 8φ = ° − ° 13.3φ = ° !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 55.
Rated speed: 75 mi/h 110 ft/s, 125 mi/h 183.33 ft/sRv = = =
From Sample Problem 12.6,
( )22
2 110
tan or 2674 ft
tan 32.2 tan8
R
R
v
v g
g
ρ θ ρ
θ
= = = =
°
Let the x-axis be parallel to the floor of the car.
( ) ( ): sin cosx x s nF ma F W maθ φ θ φΣ = + + = +
( )
2
cos
mv
θ φ
ρ
= +
Solving for ,sF ( ) ( )
2
cos sins
v
F W
g
θ φ θ φ
ρ
 
= + − + 
 
Now
( )
( )( )
22
183.33
0.39035 and 0.12
32.2 2674
s
v
F W
gρ
= = = so that
( ) ( )0.12 0.39035 cos sinW W θ φ θ φ = + − + 
Let ( ) ( ) 2
sin . Then, cos 1 .u uθ φ θ φ= + + = −
2 2
0.12 0.39035 1 or 0.39035 1 0.12u u u u= − − − = +
Squaring both sides, ( )2 2
0.15237 1 0.0144 0.24u u u− = + +
or 2
1.15237 0.24 0.13797 0u u+ + =
The positive root of the quadratic equation is 0.2572.u =
Then, 1
sin 14.90uθ φ −
+ = = °
14.90 14.90 8φ θ= ° − = ° − ° 6.90φ = ° !!!!
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 56.
If the collar is not sliding, it moves at constant speed on a circle of radius sin .rρ θ= v ρω=
Normal acceleration.
2 2 2
2
( sin )n
v
a r
ρ ω
θ ω
ρ ρ
= = =
:y yF ma∑ =
cos 0N mgθ − =
cos
mg
N
θ
=
:x xF maΣ =
sinN maθ =
2sin
( sin )
cos
mg
m r
θ
θ ω
θ
=
Either sin 0θ =
or 2
cos
g
r
θ
ω
=
0 or 180θ = ° °
or 2
9.81
cos 0.3488
(0.5)(7.5)
θ = =
0 , 180 , and 69.6θ = ° ° °
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 57.
If the collar is not sliding, it moves at constant speed on a circle of radius sin .rρ θ= v ρω=
From Prob. 12.56 500mm 0.500m, 7.5rad/s,r ω= = =
250g 0.250 kg.m = =
Normal acceleration:
2 2 2
2
( sin )n
v
a r
ρ ω
θ ω
ρ ρ
= = =
FΣ = :ma
2
sin ( sin ) cosF mg m rθ θ ω θ− = −
2
( cos )sinF m g rω θ θ= −
FΣ = :ma
2
cos ( sin ) sinN mg m rθ θ ω θ− =
2 2
( cos ) sin )N m g rθ ω θ= +
(a) 75 .θ = ° 2
(0.25) 9.81 (0.500 cos75 )(7.5) sin75F  = − ° ° 
0.61112 N=
2 2
(0.25) 9.81cos75 (0.500sin 75 )(7.5)N  = °+ ° 
7.1950 N=
(0.25)(7.1950) 1.7987 N= =sNµ
Since ,sF Nµ< the collar does not slide.
0.611 NF = 75°
continued
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
(b) 40 .θ = ° 2
(0.25) 9.81 (0.500cos40 )(7.5) sin 40F  = − ° ° 
1.8858 N= −
2 2
(0.25) 9.81cos40 (0.500sin 40 )(7.5)N  = ° + ° 
4.7839 N=
(0.25)(4.7839) 1.1960 N= =sNµ
Since ,> sF Nµ the collar slides.
Since the collar is sliding, .kF Nµ=
nF∑ = + :ma
cos sinnN mg maθ θ− =
2
cos ( sin ) sinN mg m rθ θ ω θ= +
2 2
cos ( sin )m g rθ θ ω = + 
2 2
(0.25) 9.81cos40 (0.500sin 40 )(7.5) = °+ ° 
4.7839 N=
(0.20)(4.7839) 0.957 N= = =kF Nµ
0.957 N=F 40°
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 58.
Draw the free body diagrams of the block B when the arm is at 150 .θ = °
2
0, 32.2 ft/stv a g= = =
: sin30 0t tF ma W NΣ = − ° + =
sin30N W= °
2 2
: cos30n n
v Wv
F ma W F m
gρ ρ
Σ = ° − = =
2
cos30
Wv
F W
gρ
= ° −
Form the ratio
F
N
, and set it equal to sµ for impending slip.
( )22
cos30 4.2 /(1)(32.2)cos30 /
sin30 sin30
s
F v g
N
ρ
µ
° −° −
= = =
° °
0.636sµ =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 59.
Let β be the slope angle of the dish.
1
tan
6
dy
r
dr
β = =
At 6ft, tan 1 or 45r β β= = = °
Draw free body sketches of the sphere.
0: cos sin 0y sF N N Wβ µ βΣ = − − =
cos sins
W
N
β µ β
=
−
2 2
: sin cosn n s
mv Wv
F ma N N
g
β µ β
ρ ρ
Σ = + = =
( ) 2sin cos
cos sin
s
s
W N Wv
g
β µ β
β µ β ρ
+
=
−
( )( )2 2 2sin cos sin 45 0.5cos45
6 32.2 579.6 ft /s
cos sin cos45 0.5sin 45
s
s
v g
β µ β
ρ
β µ β
+ ° + °
= = =
− ° − °
24.1 ft/sv =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 60.
Uniformly accelerated motion on a circular path.
5
5 in. ft
2 12
D
ρ = = =
6
6 60 10
60 10 oz lb
16
W
−
− ×
= × =
2
32.2 ft/sg =
9 2
116.46 10 lb s /ft
W
m
g
−
= = ×
(a) For uniformly accelerated motion,
( )( )0 0 12 4tv v a t= + = +
48 ft/sv =
(b) ( )( )9 6
: 116.46 10 12 1.3975 10 lb.t t tF ma F − −
Σ = = × = ×
( )( )292 116.46 10 48
:
5/12
n n n n
mv
F ma F ma
ρ
−
×
Σ = = = =
6
644.0 10 lb−
= ×
Magnitude of force:
( ) ( )2 22 2 6
10 644.0 1.3975t nF F F −
= + = +
lb10644 6−
×=F
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 61.
Uniformly accelerated motion on a circular path. 8 ftρ =
0 tv v a t= +
( )( )0 0.75 12 9 ft/s= + =
0.75
: 0.0233
32.2
t
t t t t
W a
F ma a F W W W
g g
= = = = =
( )
( )( )
22
9
: 0.3144
32.2 8
n n n
WWv
F ma F W
gρ
= = = =
2 2
0.315t nF F F W= + =
This is the friction force available to cause the trunk to slide.
The normal force N is calculated from equilibrium of forces in the
vertical direction.
0: 0yF N WΣ = − = N W=
Since sliding is impending, 0.315s
F
W
µ = = 0.315sµ =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 62.
For constant speed, 0ta =
2
with 0.7 m/s, 0.2 mB
n B
v
a v ρ
ρ
= = =
: cosx x nF ma F ma θΣ = =
: sin siny y n nF ma N W ma N mg maθ θΣ = − = − = −
Ratio
2
cos cos cos
sin sin sin
n
n
n B
F ma
g gN mg ma
a v
θ θ θ
ρθ θ θ
= = =
− − −
With
( )( )
( )2 2
9.81 0.2 cos
4.0041, the ratio becomes
4.0041 sin0.7B
g F
Nv
ρ θ
θ
= = =
−
For no impending slide,
cos
4.0041 sin
s
F
N
θ
µ
θ
≥ =
−
To find the value of θ for which the ratio is maximum set the
derivative with respect to θ equal to zero.
( )2
cos 1 4.0041sin
0
4.0041 sin 4.0041 sin
d
d
θ θ
θ θ θ
± − 
= ± = 
−  −
1
sin 0.24974
4.0041
θ = =
cos14.446
14.446 , 0.258
4.0041 0.24974
F
N
θ
°
= ° = =
−
180 14.446 165.554 , 0.258
F
N
θ = ° − ° = ° =
(a) Minimum value of sµ for no slip. ( )min
0.258sµ =
(b) Corresponding values of .θ 14.5 and 165.5θ = ° °
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 63.
For constant speed, 0ta =
2
with 0.7 m/s, 0.2 mB
n B
v
a v ρ
ρ
= = =
: cosx x nF ma F ma θΣ = =
: sin siny y n nF ma N W ma N mg maθ θΣ = − = − = −
Ratio
2
cos cos cos
sin sin sin
n
n
n B
F ma
g gN mg ma
a v
θ θ θ
ρθ θ θ
= = =
− − −
Let 2
cos
so that
sinB
g F
u
N uv
ρ θ
θ
= =
−
Determine the value of θ at which F/N is maximum.
( )( )
( ) ( )
2
2 2
cos sin sincos 1 sin
0
sin sin sin
ud u
d u u u
θ θ θθ θ
θ θ θ θ
− − − 
= = = 
−  − −
The corresponding ratio .
F
N
2 1
1 2
1 sin
tan
cos1
F u u
N u u u
θ
θ
θ
− −
− −
± − ±
= = = ± = ±
− −
(a) For impending sliding to the left: tan 0.35s
F
N
θ µ= = =
( )
2
1
arctan 0.35 19.29 , sin ,Bv
u
g
θ θ
ρ
−
= = ° = =
( )( )2 2 2
9.81 0.2 sin19.29 0.648 m /sBv = ° =
0.805 m/sBv =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
For impending motion to the right: tan 0.35s
F
N
θ µ= − = =
( )arctan 0.35 160.71θ = − = °
2
1 2
sin ,
v
u
g
θ
ρ
−
= = ( )( )2 2 2
9.81 0.2 sin160.71 0.648 m /sBv = ° =
0.805 m/s=
(b) For impending sliding to the left, 19.3θ = °
For impending sliding to the right, 160.7θ = °
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 64.
Consider the motion of one electron. For the horizontal motion, let 0x =
at the left edge of the plate and x = l at the right edge of the plate. At the
screen,
2
x L= +
l
Horizontal motion: There are no horizontal forces acting on the electron so
that 0.xa =
Let 1 0t = when the electron passes the left edge of the plate, 1t t= when
it passes the right edge, and 2t t= when it impacts on the screen. For
uniform horizontal motion,
0 1 2
0 0 0
, so that and .
2
L
x v t t t
v v v
= = = +
l l
Vertical motion: The gravity force acting on the electron is neglected since
we are interested in the deflection produced by the electric force. While the
electron is between plates ( )10 ,t t≤ ≤ the vertical force on the electron is
/ .yF eV d= After it passes the plates ( )1 2 ,t t t≤ ≤ it is zero.
For 10 ,t t≤ ≤ :
y
y y y
F eV
F ma a
m md
Σ = = =
( )0
0y y y
eVt
v v a t
md
= + = +
( )
2
2
0 0
1
0 0
2 2
y y
eVt
y y v t a t
md
= + + = + +
At ( )
2
1 1
1 11
, and
2
y
eVt eVt
t t v y
md md
= = =
For 1 2, 0yt t t a≤ ≤ =
( ) ( )1 11yy y v t t= + −
At 2t t= ( ) ( )2 1 2 11yy y v t tδ= = + −
( )
2
1 1 1
2 1 2 1
1
2 2
eVt eVt eVt
t t t t
md md md
δ
 
= + − = − 
 
0 0 0 0
1
2 2
eV L
mdv v v v
 
= + − 
 
l l l
or 2
0
eV
mdv
L
δ =
l
!!!!
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 65.
Consider the motion of one electron. For the horizontal motion, let 0x =
at the left edge of the plate and x = l at the right edge of the plate. At the
screen,
2
x L= +
l
Horizontal motion: There are no horizontal forces acting on the electron so
that 0.xa =
Let 1 0t = when the electron passes the left edge of the plate, 1t t= when
it passes the right edge, and 2t t= when it impacts on the screen. For
uniform horizontal motion,
0 1 2
0 0 0
, so that and .
2
L
x v t t t
v v v
= = = +
l l
Vertical motion: The gravity force acting on the electron is neglected since
we are interested in the deflection produced by the electric force. While the
electron is between the plates ( )10 ,t t≤ ≤ the vertical force on the
electron is / .yF eV d= After it passes the plates ( )1 2 ,t t t≤ ≤
it is zero.
For 10 ,t t≤ ≤ :
y
y y y
F eV
F ma a
m md
Σ = = =
( )0
0y y y
eVt
v v a t
md
= + = +
( )
2
2
0 0
1
0 0
2 2
y y
eVt
y y v t a t
md
= + + = + +
At
2
1 2
0 0
, ,
2
eV
t t y
v mdv
= =
ll
But 0.075 0.425
2
d
y d d< − =
So that
2
2
0
0.425
2
eV
d
mdv
<
l
2
2 2 2
0 0
1
1.176
0.425 2
d eV eV
mv mv
> =
l 2
0
1.085
d eV
mv
>
l
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 66.
30 , 2 rad/s, 0θ θ θ= ° = =& &&
0.6 m,r W mg= =
Block B: Only force is weight
cos30 , sin30rF W F Wθ= ° = − °
(a) ( )2 :F ma m r rθ θ θ θ= = +&& &&
sin30
2 sin30
F mg
r r r g r
m m
θθ θ θ θ
°
= − = − − = − ° −& && && &&&
( ) ( )( )
( )( )
9.81 sin30 0.6 0sin30
1.226 m/s
2 2 2
g r
r
θ
θ
° +° +
= − = − = −
&&
&
&
/ rod 1.226 m/sB =v 60°
(b) ( )2
:r rF ma m r rθ= = − &&&
( )( ) ( )
2 2
2 2
cos30
cos30
0.6 2 9.81 cos30 10.90 m/s
rF mg
r r r r g
m m
θ θ θ
°
= + = + = + °
= + ° =
& & &&&
2
/ rod 10.90 m/sB =a 60°
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 67.
2
45 , 0.8 m, 10 rad/srθ θ= ° = =
0, 0,rv r v r W mgθ θ= = = = =
(a) ( ): cos45 2F ma N W m r rθ θ θ θΣ = − ° = +
( )cos45 2N mg m r rθ θ= ° + +
( )( )(0.5)(9.81)cos45 0.5 0.8 10 0 = ° + + 
7.468= 7.47 NN = 45°
(b) ( )2
: sin 45r rF ma mg m r rθΣ = ° = −
2 2
sin 45 sin 45
mg
r r g r
m
θ θ= ° + = ° +
( ) 2
9.81 sin 45 0 6.937 m/s= ° + =
2
/ rod 6.94 m/sB =a 45°
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 68.
Use radial and transverse components of acceleration.
2 3 2
3 ft 2 radr t t tθ= − =
2
6 3 ft/s 4 rad/sr t t tθ= − =
2 2
6 6 ft/s 4 rad/sr t θ= − =
2 2 3 2
6 6 (3 )(16 )ra r r t t t tθ= − = − − −
5 4 2
16 48 6 6 ft/st t t= − − +
2 3 2
2 (3 )(4) (2)(6 3 )(4 )a r r t t t t tθ θ θ= + = − + −
2 3 2
60 28 ft/st t= −
Mass: 24
0.12422 lb s /ft
32.2
= = = ⋅
W
m
g
(a) 0.t = 2
6 ft/secra =
0aθ =
Apply Newton’s second law.
(0.12422)(6)r rF ma= = 0.745 lbrF =
(0.12422)(0)F maθ θ= = 0Fθ =
(b) 1t = s. 2
32 ft/sra = −
2
32 ft/saθ =
Apply Newton’s second law.
(0.12422)( 32)r rF ma= = − 3.98 lbrF = −
(0.12422)(32)F maθ θ= = 3.98 lbFθ =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 69.
Use radial and transverse components of acceleration.
6(1 cos2 ) ft 2 radr t tπ θ π= + =
12 sin 2 ft/s 2 rad/sr tπ π θ π= − =
2 2
24 cos2 ft/s 0r tπ π θ= − =
2 2 2
24 cos2 (6 6cos2 )(2 )ra r r t tθ π π π π= − = − − +
2 2 2
24 48 cos2 ft/stπ π π= − −
2 0 (2)( 12 sin 2 )(2 )a r r tθ θ θ π π π= + = + −
2
48 sin 2 tπ π= −
Mass: 21
0.031056 lb s /ft
32.2
W
m
g
= = = ⋅
(a) 0.t = 2
710.61 ft/sra = −
0aθ =
Apply Newton’s second law.
(0.031056)(710.61)r rF ma= = 22.1 lbrF = −
0F maθ θ= = 0Fθ =
(b) 0.75 s.t = 2
236.87 ft/sra = −
2
473.74 ft/saθ =
Apply Newton’s second law.
(0.031056)( 236.87)r rF ma= = − 7.36 lbrF = −
(0.031056)(473.74)F maθ θ= = 14.71 lbFθ =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 70.
Kinematics: 1.5 ft/s, 0
dr
r r
dt
= = =
0 0
or 1.5 ft
r t
dr r dt r t= =∫ ∫
2
0.8 rad/s, 0.8 rad/stθ θ= =
( )( )22 3 2
0 1.5 0.8 0.96 ft/sra r r t t tθ= − = − = −
( )( ) ( )( )( ) 2
2 1.5 0.8 2 1.5 0.8 3.6 ft/sa r r t t tθ θ θ= + = + =
Kinetics: Sketch the free body diagrams for the collar.
:r r rF ma T maΣ = − =
:F ma Q maθ θ θΣ = =
Set T Q= to obtain the required time.
orr rma ma a aθ θ− = − =
Using the calculated expressions
3 2 23.6
0.96 3.6 , 3.75 s
0.96
t t t= = =
1.936 st =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 71.
2
10 rad/s, 10 rad/stθ θ= =& &&
2
0.5/32.2 0.015528 lb s /ftm = = "
Before cable breaks: and 0.rF T r= − =&&
( )2
:r rF ma T m r rθ= − = − &&&
( )( )
2 2 2 20 4
or 171.733 rad /s
0.015528 1.5
mr T
mr mr T
mr
θ θ
+ +
= + = = =
&&& &&&
13.105 rad/sθ =&
Immediately after the cable breaks: 0, 0rF r= =&
(a) Acceleration of B relative to the rod.
( ) ( )( )22 2 2
0 or 1.5 13.105 257.6 ft/sm r r r rθ θ− = = = =& &&& &&
2
/ rod 258 ft/sB =a radially outward !
(b) Transverse component of the force.
( ): 2F ma F m r rθ θ θ θ θ= = +&& &&
( ) ( )( ) ( )( )( )0.015528 1.5 10 2 0 12 0.233 + =  0.233 lbFθ = !
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 72.
2
15 rad/s, 230 g 0.230 kg, 0, 9 N, 12 m/sm F rθθ θ= = = = = = −
Due to the spring, , 60 N/mrF kr k= − =
( )2
:r r rF F ma kr m r rθΣ = = − = −
( )2
k m r mrθ− = −
(a) Radial coordinate.
( )( )
( )( )2 2
0.230 12
60 0.230 15
mr
r
k mθ
−
= − = −
− −
0.33455 m= 335 mmr =
( ): 2F ma F m r rθ θ θ θ θΣ = = +
2
F
r r
m
θ
θ θ= −
( )( )( )
9 0
1.304 m/s
2 2 0.230 15
F mr
r
m
θ θ
θ
− −
= = =
(b) Radial component of velocity. rv r= 1.304 m/srv =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 73.
At point A.
2 2
2(3.8)
115.52 m/s
0.125
= = =n
v
a
ρ
125
tan 22.62
175 125
= − = − °
+
θ θ
+ : cos22.6Σ = ° =s tF ma F ma
2cos22.6 70cos22.62
43.077 m/s
1.5
s
t
F
a
m
° °
= = =
Acceleration vector.
2 2
n ta a a= +
2 2 2
115.52 43.077 123.29 m/s= + =
115.52
tan
43.077
φ = 69.55φ = °
22.62 46.93φ − ° = °
cos46.93ra a= °
2
123.29cos46.93 84.2 m/s= ° = in negative r-direction
2
84.2 m/sra = −
sin 46.93a aθ = °
123.29sin 46.93= °
2
90.1 m/saθ =
Draw the free body diagram of the collar.
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 74.
Let r and θ be polar coordinates of block A as shown, and let By be the
position coordinate (positive downward, origin at the pulley) for the
rectilinear motion of block B.
Constraint of cable: constant,Br y+ =
0, 0 orB B Br v r a r a+ = + = = − (1)
For block A, + : cos or sec (2)A A
x A A A A
W W
F m a T a T a
g g
θ θΣ = = =
For block B, : (3)B B
y B B B
W W
F a W T a
g g
Σ = − =
Adding Eq. (1) to Eq. (2) to eliminate T, secA B
B A B
W W
W a a
g g
θ= + (4)
Radial and transverse components of .Aa
Use either the scalar product of vectors or the triangle construction
shown, being careful to note the positive directions of the components.
2
cosr A r Ar r a aθ θ− = = ⋅ = −a e (5)
Noting that initially 0,θ = using Eq. (1) to eliminate ,r and changing
signs gives
cosB Aa a θ= (6)
Substituting Eq. (6) into Eq. (4) and solving for ,Aa
( )( ) 250 32.2
17.991 ft/s
sec cos 40sec30 50cos30
B
A
A B
W g
a
W Wθ θ
= = =
+ ° + °
From Eq. (6), 2
17.991cos30 15.581 ft/sBa = ° =
(a) From Eq. (2), ( )( )40/32.2 17.991 sec30 25.81T = ° = 25.8 lbT =
(b) Acceleration of block A. 2
17.99 ft/sA =a
(c) Acceleration of block B. 2
15.58 ft/sB =a
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 75.
Let r and θ be polar coordinates of block A as shown, and let By be the
position coordinate (positive downward, origin at the pulley) for the
rectilinear motion of block B.
Radial and transverse components of .Av
Use either the scalar product of vectors or the triangle construction
shown, being careful to note the positive directions of the components.
cos30
6cos30 5.19615 ft/s
r A r Ar v v= = ⋅ = − °
= − ° = −
v e
sin30
6sin30 3 ft/s
A Ar v vθ θθ = = ⋅ = − °
= ° =
v e
3
1.25 rad/s
2.4
v
r
θ
θ = = =
Constraint of cable: constant,Br y+ =
0, 0 orB B Br v r a r a+ = + = = − (1)
For block A, + : cos or secA A
x A A A A
W W
F m a T a T a
g g
θ θΣ = = = (2)
For block B, :B B
y B B B
W W
F a W T a
g g
Σ = − = (3)
Adding Eq. (1) to Eq. (2) to eliminate T, secA B
B A B
W W
W a a
g g
θ= + (4)
Radial and transverse components of .Aa
Use a method similar to that used for the components of velocity.
2
cosr A r Ar r a aθ θ− = = ⋅ = −a e (5)
Using Eq. (1) to eliminate r and changing signs gives
2
cosB Aa a rθ θ= − (6)
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Substituting Eq. (6) into Eq. (4) and solving for ,Aa
( ) ( ) ( )( )22
2
50 32.2 2.4 1.25
20.086 ft/s
sec cos 40sec30 50cos30
B
A
A B
W g r
a
W W
θ
θ θ
 ++   = = =
+ ° + °
From Eq. (6), ( )( )2 2
20.086cos30 2.4 1.25 13.645 ft/sBa = ° − =
(a) From Eq. (2), ( )( )40/32.2 20.086 sec30 28.8T = ° = 28.8 lbT =
(b) Acceleration of block A. 2
20.1 ft/sA =a
(c) Acceleration of block B. 2
13.65 ft/sB =a
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 76.
Since the particle moves under a central force, constant.h =
Using Eq. (12.27), 2
0 0 0h r h r vθ= = =
or 0 0 0 0 0
2 2
00
cos2
cos2
r v r v v
rr r
θ
θ θ= = =
Radial component of velocity.
( )
0
0 3/ 2
sin 2
cos2 cos2
r
dr d r
v r r
d d
θ
θ θ θ
θ θ θ θ
 
= = = = 
 
( )
0
0 3/ 2
sin 2
cos2
cos2
v
r
r
θ
θ
θ
= 0
sin 2
cos2
rv v
θ
θ
=
Transverse component of velocity.
0 0
0
cos2
h r v
v
r r
θ θ= = 0 cos2v vθ θ=
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 77.
Since the particle moves under a central force, constant.h =
Using Eq. (12.27), 2
0 0 0h r h r vθ= = = or 0 0 0 0
2 2
00
cos2
cos2nr v r v v
rr r
θ
θ θ= = =
Differentiating the expression for r with respect to time,
( ) ( )
0 0
0 0 03/ 2 3/ 2
0
sin 2 sin 2 sin 2
cos2
cos2 cos2cos2 cos2
dr d r v
r r r v
d d r
θ θ θ
θ θ θ θ
θ θ θ θθ θ
 
= = = = = 
 
Differentiating again,
( )
2 2 2 2 2
0
0 0 3/ 2
0
sin 2 2cos 2 sin 2 2cos 2 sin 2
cos2 cos2cos2
dr d v
r v v
d d r
θ θ θ θ θ
θ θ θ
θ θ θ θθ
+ + 
= = = = 
 
(a) 0
0
0
sin2
sin 2
cos2
r
v r
v r v
r
θ
θ
θ
= = = 0
0
cos2
v r
v r
r
θ θ θ= =
( ) ( )2 2 2 20
0
sin 2 cos 2r
v r
v v v
r
θ θ θ= + = + 0
0
v r
v
r
=
2 2 2 2
2 20 0 0
2
0 0
2cos 2 sin 2
cos 2
cos2 cos2
r
v r v
a r r
r r
θ θ
θ θ
θ θ
+
= − = −
2 2 2 2
0 0 0
2
0 00
cos 2 sin 2
cos2 cos2
v v v r
r rr
θ θ
θ θ
+
= = =
2
0
2
0
:r r
mv r
F ma
r
= =
2
0
2
0
r
mv r
F
r
=
Since the particle moves under a central force, 0aθ =
continued
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Magnitude of acceleration:
2
2 2 0
2
0
r
v r
a a a
r
θ= + =
Tangential component of acceleration.
2
0 0 0
2
0 0 0
sin 2t
dv d v r v v r
a r
dt dt r r r
θ
 
= = = = 
 
Normal component of acceleration.
2 2
22 20 0
2 2
0 0
cos2
1 sin 2t t
v r v r
a a a
r r
θ
θ= − = − =
But
2
0
cos 2
r
r
θ
 
=  
 
Hence,
2
0
n
v
a
r
=
(b) But
22 2 2
0
2 2
0 0
orn
n
v v v r r
a
a r v
ρ
ρ
= = = ⋅
3
2
0
r
r
ρ =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 78.
Since the particle moves under a central force, constant.h =
Using Eq. (12.27), 2
0 0 0h r h r vθ= = =
or 0 0 0 0 0
2 2 22
00 coscos
r v r v v
r rr
θ
θθ
= = =
Radial component of velocity. ( ) ( )0 0cos sinr
d
v r r r
dt
θ θ θ= = = −
Transverse component of velocity. ( )0 cosv r rθ θ θ θ= =
Speed. 2 2 0 0
0 2
0 cos
r
r v
v v v r
r
θ θ
θ
= + = = 0
2
cos
v
v
θ
=
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 79.
Since the particle moves under a central force, constanth =
Using Eq. (12.27), 2
0 0 0h r h r vθ= = = 0 0 0 0 0
2 2 22
00 coscos
r v r v v
r rr
θ
θθ
= = =
Radial component of velocity. ( ) ( )0cos sinr o
d
v r r r
dt
θ θ θ= = = −
Transverse component of velocity. ( )0 cosv r rθ θ θ θ= =
Speed. 2 2 0 0 0
0 2 2
0 cos cos
r
r v v
v v v r
r
θ θ
θ θ
= + = = =
Tangential component of acceleration.
( )( ) 2
0 0 0
0 3 3 2 5
0 0
2 sin 2 sin 2 sin
cos cos cos cos
t
dv v v v
a v
dt r r
θ θ θ θ
θ θ θ θ
− −
= = = ⋅ =
Tangential component of force.
2
0
5
0
2 sin
:
cos
t t t
mv
F ma F
r
θ
θ
= =
(a) 0, 0tFθ = = 0tF =
(b) 0
5
2 sin 45
45 ,
cos 45
t
mv
Fθ
°
= ° =
°
2
0
0
8
t
mv
F
r
=
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 80.
For gravitational force and a circular orbit,
2
2
orr
GMm mv GM
F v
r rr
= = =
Let τ be the periodic time to complete one orbit.
2 or 2
GM
v r r
r
τ π τ π= =
Solving for ,τ
3/ 2
2 r
GM
π
τ =
But, 3 3/ 24
, hence 2
3 3
M R GM G R
π
π ρ ρ= =
Then,
3/ 2
3 r
G R
π
τ
ρ
 
=  
 
Using 3r R= as given leads to
3/ 2 3
3 9
G G
π π
τ
ρ ρ
= = ( )1/ 2
9 /Gτ π ρ=
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 81.
For gravitational force and a circular orbit,
2
2
orr
GMm mv GM
F v
r rr
= = =
Let τ be the period time to complete one orbit.
But
2
2 2 2 2
2 or 4
GM
v r v r
r
τ
τ π τ π= = =
Then
1/3
2 2
3
2 2
or
4 4
GM GM
r r
τ τ
π π
 
= =   
 
Data: 3
23.934 h 86.1624 10 sτ = = ×
(a) In SI units: 2 6
9.81 m/s , 6.37 10 mg R= = ×
( )( )
2
2 6 12 3 2
9.81 6.37 10 398.06 10 m /sGM gR= = × = ×
( )( )
1/3
2
12 3
6
2
398.06 10 86.1624 10
42.145 10 m
4
r
π
 
× × = = × 
  
altitude 6
35.775 10h r R= − = × 35800 kmh =
In US units: 2 6
32.2 ft/s , 3960 mi 20.909 10 ftg R= = = ×
( )( )
2
2 6 15 3 2
32.2 20.909 10 14.077 10 ft /sGM gR= = × = ×
( )( )
1/3
2
15 3
6
2
14.077 10 86.1624 10
138.334 10 ft
4
r
π
 
× × = = × 
  
altitude 6
117.425 10 fth r R= − = × 22200 mih =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
(b) In SI units:
12
3
6
398.06 10
3.07 10 m/s
42.145 10
GM
v
r
×
= = = ×
×
3.07 km/sv =
In US units:
15
3
6
14.077 10
10.09 10 ft/s
138.334 10
GM
v
r
×
= = = ×
×
3
10.09 10 ft/sv = ×
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 82.
For gravitational force and a circular orbit,
2
2
orr
GMm mv GM
F v
r rr
= = =
Let τ be the periodic time to complete one orbit.
2 or 2
GM
v r r
r
τ π τ π= =
from which
2 3
2
4 r
GM
π
τ
=
But
2 3
2
2 2
4
, hence,
r
GM gR g
R
π
τ
= = (1)
Solving for ,r
1/ 3
2 2
2
4
gR
r
τ
π
 
=   
 
Data: 9
417,000 mi 2.202 10 ftr = = ×
6
44,400 mi 234.4 10 ftR = = ×
3
3.551 days 85.224 h 306.8 10 sτ = = = ×
Using (1),
( )
( ) ( )
3
2 9
2
2 2
3 6
4 2.202 10
81.5 ft/s
306.8 10 234.4 10
g
π ×
= =
× ×
2
81.5 ft/sg =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 83.
Let M be the mass of the sun and m the mass of Venus.
For the circular orbit of Venus,
2
2
2 n
GMm mv
ma GM rv
rr
= = =
where r is radius of the orbit.
Data: 6 9
67.2 10 mi 354.8 10 ftr = × = ×
3 3
78.3 10 mi/h 114.84 10 ft/sv = × = ×
( )( )
2
9 3 21 3 2
354.8 10 114.84 10 4.6792 10 ft /sGM = × × = ×
(a) Mass of sun.
21 3 2
9 4 4
4.6792 10 ft /s
34.4 10 ft /lb s
GM
M
G −
×
= =
× ⋅
27 2
136.0 10 lb s /ftM = × ⋅
(b) At the surface of the sun, 3 9
432 10 mi 22.81 10 ftR = × = ×
2
GMm
mg
R
=
( )
21
2 2
9
4.6792 10
22.81 10
GM
g
R
×
= =
×
2
899 ft/sg =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 84.
For gravitational force and a circular orbit,
2
2
orr
GMm mv GM
F v
r rr
= = =
But
2
3
2
2 2
, hence, or
4
r r GM GM
v r
r
π π τ
τ τ π
= = =
Solving for r,
1/ 3
2
2
(1)
4
GM
r
τ
π
 
=   
 
( )
1/31/3 222
2
2 2
44 GMGM
v GM
r GM
ππ
τ τ
  
 = = =       
1/ 3
2
(2)
GM
v
π
τ
 
=  
 
For earth: 6 2
6.37 10 m, 9.81 m/sR g= × =
( )( )
2
2 6 12 3 2
9.81 6.37 10 398.06 10 m /sGM gR= = × = ×
For Jupiter: ( )( )12 15
319 398.06 10 126.98 10GM = × = ×
(a) For Ganymede: 3
7.15 days 171.6 h 617.76 10 sτ = = = ×
By Eq. (1),
( )( )
1/ 3
2
15 3
9
2
126.98 10 617.76 10
1.071 10 m
4
r
π
 
× × = = × 
  
6
1.071 10 kmr = ×
(b) For Callisto: 6
16.69 days 400.56 h 1.4420 10 sτ = = = ×
By Eq. (2),
( )
1/ 3
12
3
6
2 126.98 10
8.209 10 m/s
1.4420 10
v
π ×
 = = ×
 ×
 
8.21 km/sv =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 85.
For gravitational force and a circular orbit,
2
2
orr
GMm mv GM
F v
r rr
= = =
Let τ be the periodic time to complete one orbit.
2 or 2
GM
v r r
r
τ π τ π= =
Solving for r,
1/3
2
2
4
GM
r
τ
π
 
=   
 
For earth, 6 2
6370 km 6.37 10 m, 9.81 m/sR g= = × =
( )( )
2
2 6 12 3 2
9.81 6.37 10 398.06 10 m /sGM gR= = × = ×
Data: 120 min 7200 sτ = =
( )( )
1/ 3
212
6
2
398.06 10 7200
8.055 10 m
4
r
π
 ×
 = = ×
 
 
(a) altitude 6
1.685 10 mh r R= − = × 1685 kmh =
(b)
6
6
6.37 10
cos 0.7908
8.055 10
R
r
θ
×
= = =
×
37.74θ = °
( )( )75.48 72002
1509.6 s
360 360
ABt
θ
τ= = =
°
25.2 minABt =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 86.
2 2n n
GMm GM
ma a
r r
= =
( )( )9 4 4 21 2
34.4 10 ft /lb s 5.03 10 lb s /ftGM −
= × ⋅ × ⋅
12 3 2
173.032 10 ft /s= ×
(a) At the surface of the moon, na g=
6
1080 mi 5.7024 10 ftr R= = = ×
( )( )
( )
9 4 4 21 2
2 2
6
34.4 10 ft /lb s 5.03 10 lb s /ft
5.7024 10 ft
GM
g
R
−
× ⋅ × ⋅
= =
×
2
5.32 ft/sg =
(b) Orbit of space vehicle.
6
1080 200 1280 mi 6.7584 10 ftr = + = = ×
2
2n
v GM
a
r r
= =
GM
v
r
=
3/2
2 2r r
v GM
π π
τ = =
( )
3/2
6
3
12
2 6.7584 10
8.3923 10 s
173.032 10
π
τ
×
= = ×
×
2.33 hτ =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 87.
2
2 n
GMm mv
ma
rr
= = 2 GM
v
r
=
2 r
v
π
τ
=
2 2
2
4 r GM
r
π
τ
=
3
2 2
constant
4
r GM
τ π
= =
Tethys: 3 6
183.3 10 mi 967.8 10 ftr = × = ×
3
1.888 days 163.12 10 sτ = = ×
( )
( )
3
6
15 3 2
2 2
3
967.8 10
34.068 10 ft /s
4 163.12 10
GM
π
×
= = ×
×
Rhea: 3
4.52 days 390.53 10 sτ = = ×
3 2
2
4
GM
r τ
π
=
( )( )
2
15 3 27 3
34.068 10 390.53 10 5.1958 10 ft= × × = ×
(a) 9
1.732 10 ftr = × 3
328 10 mir = ×
(b) Mass of Saturn.
2
2
4
4
GM
M
G
π
π
 
=  
 
( )2 15
24
9
4 34.068 10
39.1 10
34.4 10
π
−
×
= = ×
×
24 2
39.1 10 lb s /ftM = × ⋅
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 88.
Parabola AB.
6
6370 km 6.37 10 mR = = ×
6
6370 960 7330 km 7.33 10 mAr = + = = ×
6
6370 8300 14670 km 14.67 10 mBr = + = = ×
( )A A B Bmr v mr v θ
=
( )
( )( )6 3
3
6
7.33 10 10.4 10
5.196 10 m/s
14.67 10
A A
B
B
r v
v
rθ
× ×
= = = ×
×
0, 0A Ax y= =
6
14.67 10 mB Bx r= = ×
6
7.33 10 mB Ay r= = ×
For a parabolic trajectory, 2
y kx= from which 2
B
B
y
k
x
=
Differentiating with respect to x, 2
2
2 B
B
dy y x
kx
dx x
= =
At point B,
( )( )6
6
2 7.33 102
tan 1.0000
14.67 10
B
B
dy y
dx x
φ
×
= = = =
×
45φ = °
( ) 3
35.196 10
7.349 10 m/s
sin 45 sin 45
B
B
v
v θ ×
= = = ×
° °
3
7.35 10 m/sB = ×v 45°
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 89.
For earth, 6
3960 mi 20.909 10 ftR = = × ( ) ( )( )
2
2 6 15 3 2
earth
32.2 20.909 10 14.077 10 ft /sGM gR= = × = ×
For sun, ( ) ( )( )3 15 21 3 2
sun
332.8 10 14.077 10 4.6849 10 ft /sGM = × × = ×
For circular orbit of earth, 6 9
92.96 10 mi 490.8 10 ftEr = × = ×
( ) 21
3sun
9
4.6849 10
97.70 10 ft/s
490.8 10
E
E
GM
v
r
×
= = = ×
×
For transfer orbit AB, 6 9
, 141.5 10 mi 747.12 10 ftA E B Mr r r r= = = × = ×
( ) ( )( )3
97.70 10 1.83 5280 107.36 ft/sA E A
v v v= + ∆ = × + =
A A B Bmr v mr v=
( )( )9 3
3
490.8 10 107.36 10
70.527 ft/s
747.12 10
A A
B
B
r v
v
r
× ×
= = =
×
For circular orbit of Mars, 6 9
141.5 10 mi = 747.12 10 ftMr = × ×
( ) 21
3sun
9
4.6849 10
79.187 10 ft/s
747.12 10
M
M
GM
v
r
×
= = = ×
×
Speed increase at B.
( ) 3 3 3
79.187 10 70.527 10 8.660 10 ft/sM BB
v v v∆ = − = × − × = ×
( ) 1.640 mi/sB
v∆ =
COSMOS: Complete Online Solutions Manual Organization System
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.
Chapter 12, Solution 90.
Circular orbits:
GM
v
r
=
6
1400 mi 7.392 10 ftAr = = ×
( )
( )( )9 21
3
61
34.4 10 5.03 10
4.8382 10 ft/s
7.392 10
Av
−
× ×
= = ×
×
6
1300 mi 6.864 10 ftBr = = ×
( )
( )( )9 21
3
62
34.4 10 5.03 10
5.0208 10 ft/s
6.864 10
Bv
−
× ×
= = ×
×
(a) Transfer orbit AB.
( ) ( ) ( ) 3 3
2 1
4.8382 10 86 4.7522 10 ft/sA A A
v v v= + ∆ = × − = ×
( ) ( )2 1A A B Bmr v mr v=
( )
( ) ( )( )6 3
32
31
7.392 10 4.7522 10
5.1178 10 ft/s
6.864 10
A A
B
B
r v
v
r
× ×
= = = ×
×
( ) 3
1
5.12 10 ft/sBv = ×
(b) Speed change at B.
( ) ( ) ( ) 3 3
2 1
5.0208 10 ft/s 5.1178 10 ft/s 97.0 ft/sB B Bv v v∆ = − = × − × = −
Speed reduction at B. 97.0 ft/sBv∆ =
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12
Capitulo 12

More Related Content

What's hot

Assignment shear and bending
Assignment shear and bendingAssignment shear and bending
Assignment shear and bendingYatin Singh
 
6 shearing stresses- Mechanics of Materials - 4th - Beer
6 shearing stresses- Mechanics of Materials - 4th - Beer6 shearing stresses- Mechanics of Materials - 4th - Beer
6 shearing stresses- Mechanics of Materials - 4th - BeerNhan Tran
 
7 stress transformations
7 stress transformations7 stress transformations
7 stress transformationsMohamed Yaser
 
Fluid mechanics 2nd edition hibbeler solutions manual
Fluid mechanics 2nd edition hibbeler solutions manualFluid mechanics 2nd edition hibbeler solutions manual
Fluid mechanics 2nd edition hibbeler solutions manualGyn172
 
9 beam deflection- Mechanics of Materials - 4th - Beer
9 beam deflection- Mechanics of Materials - 4th - Beer9 beam deflection- Mechanics of Materials - 4th - Beer
9 beam deflection- Mechanics of Materials - 4th - BeerNhan Tran
 
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)Jahidur Rahman
 
Structural analysis (method of sections)
Structural analysis (method of sections)Structural analysis (method of sections)
Structural analysis (method of sections)physics101
 
190620__1-_Aurel_tr_analysis_equaljoints_praga.pdf
190620__1-_Aurel_tr_analysis_equaljoints_praga.pdf190620__1-_Aurel_tr_analysis_equaljoints_praga.pdf
190620__1-_Aurel_tr_analysis_equaljoints_praga.pdfSumitSaha80142
 
Ch06 07 pure bending &amp; transverse shear
Ch06 07 pure bending &amp; transverse shearCh06 07 pure bending &amp; transverse shear
Ch06 07 pure bending &amp; transverse shearDario Ch
 
Numerical modeling of concrete in Abaqus
Numerical modeling of concrete in Abaqus Numerical modeling of concrete in Abaqus
Numerical modeling of concrete in Abaqus Harish Kant Soni
 
Solutions manual for engineering mechanics dynamics 13th edition by hibbeler
Solutions manual for engineering mechanics dynamics 13th edition by hibbelerSolutions manual for engineering mechanics dynamics 13th edition by hibbeler
Solutions manual for engineering mechanics dynamics 13th edition by hibbelertable3252
 
Hibbeler chapter5
Hibbeler chapter5Hibbeler chapter5
Hibbeler chapter5laiba javed
 
Chapter 11 kinematics of particles
Chapter 11 kinematics of particlesChapter 11 kinematics of particles
Chapter 11 kinematics of particlesRogin Beldeneza
 
Hibbeler Statics solution - Chapter 7 (2)
Hibbeler Statics solution - Chapter 7 (2)Hibbeler Statics solution - Chapter 7 (2)
Hibbeler Statics solution - Chapter 7 (2)meritonberisha50702
 
Solution manual for mechanics of materials 10th edition hibbeler sample
Solution manual for mechanics of materials 10th edition hibbeler  sampleSolution manual for mechanics of materials 10th edition hibbeler  sample
Solution manual for mechanics of materials 10th edition hibbeler samplezammok
 
Basement wall design
Basement wall designBasement wall design
Basement wall designCETCBIM
 
Steel penstock
Steel penstockSteel penstock
Steel penstockhasanp
 
Hibbeler engineering mechanics_dynamics_12th_solucionario
Hibbeler engineering mechanics_dynamics_12th_solucionarioHibbeler engineering mechanics_dynamics_12th_solucionario
Hibbeler engineering mechanics_dynamics_12th_solucionarioCaleb Rangel
 

What's hot (20)

Assignment shear and bending
Assignment shear and bendingAssignment shear and bending
Assignment shear and bending
 
6 shearing stresses- Mechanics of Materials - 4th - Beer
6 shearing stresses- Mechanics of Materials - 4th - Beer6 shearing stresses- Mechanics of Materials - 4th - Beer
6 shearing stresses- Mechanics of Materials - 4th - Beer
 
7 stress transformations
7 stress transformations7 stress transformations
7 stress transformations
 
Fluid mechanics 2nd edition hibbeler solutions manual
Fluid mechanics 2nd edition hibbeler solutions manualFluid mechanics 2nd edition hibbeler solutions manual
Fluid mechanics 2nd edition hibbeler solutions manual
 
9 beam deflection- Mechanics of Materials - 4th - Beer
9 beam deflection- Mechanics of Materials - 4th - Beer9 beam deflection- Mechanics of Materials - 4th - Beer
9 beam deflection- Mechanics of Materials - 4th - Beer
 
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)
 
Structural analysis (method of sections)
Structural analysis (method of sections)Structural analysis (method of sections)
Structural analysis (method of sections)
 
190620__1-_Aurel_tr_analysis_equaljoints_praga.pdf
190620__1-_Aurel_tr_analysis_equaljoints_praga.pdf190620__1-_Aurel_tr_analysis_equaljoints_praga.pdf
190620__1-_Aurel_tr_analysis_equaljoints_praga.pdf
 
Ch06 07 pure bending &amp; transverse shear
Ch06 07 pure bending &amp; transverse shearCh06 07 pure bending &amp; transverse shear
Ch06 07 pure bending &amp; transverse shear
 
Chapter 6
Chapter 6Chapter 6
Chapter 6
 
Numerical modeling of concrete in Abaqus
Numerical modeling of concrete in Abaqus Numerical modeling of concrete in Abaqus
Numerical modeling of concrete in Abaqus
 
Solutions manual for engineering mechanics dynamics 13th edition by hibbeler
Solutions manual for engineering mechanics dynamics 13th edition by hibbelerSolutions manual for engineering mechanics dynamics 13th edition by hibbeler
Solutions manual for engineering mechanics dynamics 13th edition by hibbeler
 
Hibbeler chapter5
Hibbeler chapter5Hibbeler chapter5
Hibbeler chapter5
 
Chapter 11 kinematics of particles
Chapter 11 kinematics of particlesChapter 11 kinematics of particles
Chapter 11 kinematics of particles
 
Hibbeler Statics solution - Chapter 7 (2)
Hibbeler Statics solution - Chapter 7 (2)Hibbeler Statics solution - Chapter 7 (2)
Hibbeler Statics solution - Chapter 7 (2)
 
R 2
R 2R 2
R 2
 
Solution manual for mechanics of materials 10th edition hibbeler sample
Solution manual for mechanics of materials 10th edition hibbeler  sampleSolution manual for mechanics of materials 10th edition hibbeler  sample
Solution manual for mechanics of materials 10th edition hibbeler sample
 
Basement wall design
Basement wall designBasement wall design
Basement wall design
 
Steel penstock
Steel penstockSteel penstock
Steel penstock
 
Hibbeler engineering mechanics_dynamics_12th_solucionario
Hibbeler engineering mechanics_dynamics_12th_solucionarioHibbeler engineering mechanics_dynamics_12th_solucionario
Hibbeler engineering mechanics_dynamics_12th_solucionario
 

Similar to Capitulo 12

solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica...
 solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica... solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica...Sohar Carr
 
problemas resueltas estatica 2parte
problemas resueltas estatica 2parteproblemas resueltas estatica 2parte
problemas resueltas estatica 2parteQuintana Excélsior
 
Sol cap 03 edicion 8
Sol cap 03   edicion 8Sol cap 03   edicion 8
Sol cap 03 edicion 8Luisa Lopez
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...Sohar Carr
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...Sohar Carr
 
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.haide bautista
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...Sohar Carr
 
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdfSolucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdfAntonellaMeaurio
 
Solucion ejercicios beer
Solucion ejercicios beerSolucion ejercicios beer
Solucion ejercicios beerLeomari Garcia
 
Problemas resueltos rozamiento
Problemas resueltos rozamientoProblemas resueltos rozamiento
Problemas resueltos rozamientoPablo Rivas
 
Solución al ejercicio 2
Solución al ejercicio 2Solución al ejercicio 2
Solución al ejercicio 2Jesthiger Cohil
 
Solucionario Mecanica Racional Since Capt2
Solucionario Mecanica Racional Since Capt2Solucionario Mecanica Racional Since Capt2
Solucionario Mecanica Racional Since Capt2Nela Marte
 
Problemas de estatica resueltas 1a parte
Problemas de estatica resueltas 1a parteProblemas de estatica resueltas 1a parte
Problemas de estatica resueltas 1a parteQuintana Excélsior
 
2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsionrro7560
 

Similar to Capitulo 12 (20)

solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica...
 solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica... solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica...
 
problemas resueltas estatica 2parte
problemas resueltas estatica 2parteproblemas resueltas estatica 2parte
problemas resueltas estatica 2parte
 
Sol cap 03 edicion 8
Sol cap 03   edicion 8Sol cap 03   edicion 8
Sol cap 03 edicion 8
 
Cap 03
Cap 03Cap 03
Cap 03
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
 
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
 
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdfSolucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
 
Sol cap 10 edicion 8
Sol cap 10   edicion 8Sol cap 10   edicion 8
Sol cap 10 edicion 8
 
BEER Cap 05 Solucionario
BEER Cap 05 SolucionarioBEER Cap 05 Solucionario
BEER Cap 05 Solucionario
 
Solucion ejercicios beer
Solucion ejercicios beerSolucion ejercicios beer
Solucion ejercicios beer
 
Problemas resueltos rozamiento
Problemas resueltos rozamientoProblemas resueltos rozamiento
Problemas resueltos rozamiento
 
Ejercicio dos
Ejercicio dosEjercicio dos
Ejercicio dos
 
Solución al ejercicio 2
Solución al ejercicio 2Solución al ejercicio 2
Solución al ejercicio 2
 
Solucionario Mecanica Racional Since Capt2
Solucionario Mecanica Racional Since Capt2Solucionario Mecanica Racional Since Capt2
Solucionario Mecanica Racional Since Capt2
 
Cap 02
Cap 02Cap 02
Cap 02
 
Cap 02
Cap 02Cap 02
Cap 02
 
Problemas de estatica resueltas 1a parte
Problemas de estatica resueltas 1a parteProblemas de estatica resueltas 1a parte
Problemas de estatica resueltas 1a parte
 
2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion
 

Recently uploaded

原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degreeyuu sss
 
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024CristobalHeraud
 
Cosumer Willingness to Pay for Sustainable Bricks
Cosumer Willingness to Pay for Sustainable BricksCosumer Willingness to Pay for Sustainable Bricks
Cosumer Willingness to Pay for Sustainable Bricksabhishekparmar618
 
Call Girls in Ashok Nagar Delhi ✡️9711147426✡️ Escorts Service
Call Girls in Ashok Nagar Delhi ✡️9711147426✡️ Escorts ServiceCall Girls in Ashok Nagar Delhi ✡️9711147426✡️ Escorts Service
Call Girls in Ashok Nagar Delhi ✡️9711147426✡️ Escorts Servicejennyeacort
 
Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)
Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)
Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)jennyeacort
 
原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档208367051
 
Design principles on typography in design
Design principles on typography in designDesign principles on typography in design
Design principles on typography in designnooreen17
 
办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一
办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一
办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一F La
 
Call In girls Bhikaji Cama Place 🔝 ⇛8377877756 FULL Enjoy Delhi NCR
Call In girls Bhikaji Cama Place 🔝 ⇛8377877756 FULL Enjoy Delhi NCRCall In girls Bhikaji Cama Place 🔝 ⇛8377877756 FULL Enjoy Delhi NCR
Call In girls Bhikaji Cama Place 🔝 ⇛8377877756 FULL Enjoy Delhi NCRdollysharma2066
 
Call Girls In Safdarjung Enclave 24/7✡️9711147426✡️ Escorts Service
Call Girls In Safdarjung Enclave 24/7✡️9711147426✡️ Escorts ServiceCall Girls In Safdarjung Enclave 24/7✡️9711147426✡️ Escorts Service
Call Girls In Safdarjung Enclave 24/7✡️9711147426✡️ Escorts Servicejennyeacort
 
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档208367051
 
VIP Call Girls Service Bhagyanagar Hyderabad Call +91-8250192130
VIP Call Girls Service Bhagyanagar Hyderabad Call +91-8250192130VIP Call Girls Service Bhagyanagar Hyderabad Call +91-8250192130
VIP Call Girls Service Bhagyanagar Hyderabad Call +91-8250192130Suhani Kapoor
 
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一Fi L
 
call girls in Harsh Vihar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Harsh Vihar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Harsh Vihar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Harsh Vihar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degreeyuu sss
 
Introduction-to-Canva-and-Graphic-Design-Basics.pptx
Introduction-to-Canva-and-Graphic-Design-Basics.pptxIntroduction-to-Canva-and-Graphic-Design-Basics.pptx
Introduction-to-Canva-and-Graphic-Design-Basics.pptxnewslab143
 
Mookuthi is an artisanal nose ornament brand based in Madras.
Mookuthi is an artisanal nose ornament brand based in Madras.Mookuthi is an artisanal nose ornament brand based in Madras.
Mookuthi is an artisanal nose ornament brand based in Madras.Mookuthi
 
Passbook project document_april_21__.pdf
Passbook project document_april_21__.pdfPassbook project document_april_21__.pdf
Passbook project document_april_21__.pdfvaibhavkanaujia
 
8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR
8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR
8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCRdollysharma2066
 
西北大学毕业证学位证成绩单-怎么样办伪造
西北大学毕业证学位证成绩单-怎么样办伪造西北大学毕业证学位证成绩单-怎么样办伪造
西北大学毕业证学位证成绩单-怎么样办伪造kbdhl05e
 

Recently uploaded (20)

原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
 
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
 
Cosumer Willingness to Pay for Sustainable Bricks
Cosumer Willingness to Pay for Sustainable BricksCosumer Willingness to Pay for Sustainable Bricks
Cosumer Willingness to Pay for Sustainable Bricks
 
Call Girls in Ashok Nagar Delhi ✡️9711147426✡️ Escorts Service
Call Girls in Ashok Nagar Delhi ✡️9711147426✡️ Escorts ServiceCall Girls in Ashok Nagar Delhi ✡️9711147426✡️ Escorts Service
Call Girls in Ashok Nagar Delhi ✡️9711147426✡️ Escorts Service
 
Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)
Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)
Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)
 
原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档
 
Design principles on typography in design
Design principles on typography in designDesign principles on typography in design
Design principles on typography in design
 
办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一
办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一
办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一
 
Call In girls Bhikaji Cama Place 🔝 ⇛8377877756 FULL Enjoy Delhi NCR
Call In girls Bhikaji Cama Place 🔝 ⇛8377877756 FULL Enjoy Delhi NCRCall In girls Bhikaji Cama Place 🔝 ⇛8377877756 FULL Enjoy Delhi NCR
Call In girls Bhikaji Cama Place 🔝 ⇛8377877756 FULL Enjoy Delhi NCR
 
Call Girls In Safdarjung Enclave 24/7✡️9711147426✡️ Escorts Service
Call Girls In Safdarjung Enclave 24/7✡️9711147426✡️ Escorts ServiceCall Girls In Safdarjung Enclave 24/7✡️9711147426✡️ Escorts Service
Call Girls In Safdarjung Enclave 24/7✡️9711147426✡️ Escorts Service
 
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档
 
VIP Call Girls Service Bhagyanagar Hyderabad Call +91-8250192130
VIP Call Girls Service Bhagyanagar Hyderabad Call +91-8250192130VIP Call Girls Service Bhagyanagar Hyderabad Call +91-8250192130
VIP Call Girls Service Bhagyanagar Hyderabad Call +91-8250192130
 
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
 
call girls in Harsh Vihar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Harsh Vihar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Harsh Vihar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Harsh Vihar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
 
Introduction-to-Canva-and-Graphic-Design-Basics.pptx
Introduction-to-Canva-and-Graphic-Design-Basics.pptxIntroduction-to-Canva-and-Graphic-Design-Basics.pptx
Introduction-to-Canva-and-Graphic-Design-Basics.pptx
 
Mookuthi is an artisanal nose ornament brand based in Madras.
Mookuthi is an artisanal nose ornament brand based in Madras.Mookuthi is an artisanal nose ornament brand based in Madras.
Mookuthi is an artisanal nose ornament brand based in Madras.
 
Passbook project document_april_21__.pdf
Passbook project document_april_21__.pdfPassbook project document_april_21__.pdf
Passbook project document_april_21__.pdf
 
8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR
8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR
8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR
 
西北大学毕业证学位证成绩单-怎么样办伪造
西北大学毕业证学位证成绩单-怎么样办伪造西北大学毕业证学位证成绩单-怎么样办伪造
西北大学毕业证学位证成绩单-怎么样办伪造
 

Capitulo 12

  • 1. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 1. 2 20 kg, 3.75 m/sm g= = ( )( )20 3.75W mg= = 75 NW =
  • 2. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 2. At all latitudes, 2.000 kgm = (a) ( )2 2 0 , 9.7807 1 0.0053 sin 9.7807 m/sgφ φ= ° = + = ( )( )2.000 9.7807W mg= = 19.56 NW = (b) ( )2 2 45 , 9.7807 1 0.0053 sin 45 9.8066 m/sgφ = ° = + ° = ( )( )2.000 9.8066W mg= = 19.61 NW = (c) ( )2 2 60 , 9.7807 1 0.0053 sin 60 9.8196 m/sgφ = ° = + ° = ( )( )2.000 9.8196W mg= = 19.64 NW =
  • 3. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 3. Assume 2 32.2 ft/sg = W m g = : s W F ma W F a g Σ = − = 7 1 or 2 1 1 32.2 s s a F W F W ag g   − = = =    − − 7.46 lbW = 27.4635 0.232 lb s /ft 32.2 W m g = = = ⋅ : s W F ma F W a g Σ = − = 1 2 7.46 1 32.2 s a F W g   = +      = +    7.92 lbsF = For the balance system B, 0 0: 0w pM bF bFΣ = − = w pF F= But, 1w w a F W g   = +    and 1p p a F W g   = +    so that and p w p w W W W m g = = 2 0.232 lb s /ftwm = ⋅
  • 4. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 4. Periodic time: 12 h 43200 sτ = = Radius of Earth: 6 3960 mi 20.9088 10 ft= = ×R Radius of orbit: 6 3960 12580 16540 mi 87.33 10 ftr = + = = × Velocity of satellite: ( )( )6 2 87.33 102 43200 r v ππ τ × = = 3 12.7019 10 ft/s= × It is given that 3 750 10 lb s= × ⋅mv (a) 3 2 3 750 10 59.046 lb s /ft 12.7019 10 mv m v × = = = ⋅ × 2 59.0 lb s /ftm = ⋅ (b) ( )( )59.046 32.2 1901 lb= = =W mg 1901 lb=W
  • 5. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 5. + 40 : 10 10 10 20 40 32.2 y y yF ma a= + + + − =∑ ( )( ) 232.2 10 8.05 ft/s 40 ya = = y dv dy dv dv a v dt dt dy dy = = = y yvdv a d= 2 0 0 1 2 v v y y yvdv a d v a y= =∫ ∫ ( )( )( )2 2 8.05 1.5yv a y= = 4.91 ft/sv =
  • 6. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 6. Data: 0 108 km/h 30 m/s, 75 mfv x= = = (a) Assume constant acceleration. constant= = = dv dv a v dx dt 0 0 0 fx v vdv adx=∫ ∫ 2 0 1 2 fv a x− = ( ) ( )( ) 2 20 30 6 m/s 2 2 75f v a x = − = − = − 0 0 0 ft v dv adt=∫ ∫ 0 fv at− = 0 30 6 f v t a − = − = − 5.00 sft = (b) + 0: 0yF N W= − =∑ N W= :xF ma N maµ= − =∑ ma ma a N W g µ = − = − = − ( )6 9.81 µ − = − 0.612µ =
  • 7. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 7. (a) : sinfF ma F W maα= − + =∑ sin sin= − + = − + f fF FW a g m m m α α ( )2 27500 N 9.81 m/s sin 4 4.6728 m/s 1400 kg = − + ° = − 2 4.6728 m/sa = 4° 0 88 km/h 24.444 m/s= =v From kinematics, dv a v dx = 0 0 0 fx v adx vdv=∫ ∫ 2 0 1 2 fa x v= − ( ) ( )( ) 22 0 24.444 2 2 4.6728 f v x a = − = − − 63.9 mfx = +
  • 8. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 8. (a) Coefficient of static friction. 0: 0yF N WΣ = − = N W= 0 70 mi/h 102.667 ft/sv = = ( ) 2 2 0 0 2 2 t v v a s s− = − ( ) ( ) ( )( ) 22 2 20 0 0 102.667 31.001 ft/s 2 2 170 t v v a s s −− = = = − − For braking without skidding , so that | |s s tN m aµ µ µ= = :t t s tF ma N maµΣ = − = 31.001 32.2 t t s ma a W g µ = − = − = 0.963sµ = (b) Stopping distance with skidding. Use ( )( )0.80 0.963 0.770kµ µ= = = :t k tF ma N maµΣ = = − 2 24.801 ft/sk t k N a g m µ µ= − = − = − Since acceleration is constant, ( ) ( ) ( )( ) 22 2 0 0 0 102.667 2 2 24.801t v v s s a −− − = = − 0 212 fts s− =
  • 9. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 9. For the thrust phase, : t W F ma F W ma a g Σ = − = = ( ) 22 1 32.2 1 289.8 ft/s 0.2 tF a g W     = − = − =        At 1 s,t = ( )( )289.8 1 289.8 ft/sv at= = = ( )( )221 1 289.8 1 144.9 ft 2 2 y at= = = For the free flight phase, 1 s.t > 32.2 ft/sa g= − = − ( ) ( )( )1 1 289.8 32.2 1v v a t t= + − = + − − At 289.8 0, 1 9.00 s, 10.00 s 32.2 v t t= − = = = ( ) ( )2 2 1 1 12 2v v a y y g y y− = − = − − ( ) ( )( ) 22 2 1 1 0 289.8 1304.1 ft 2 2 32.2 v v y y g −− − = − = − = (a) max 1304.1 144.9y h= = + 1449 fth = (b) As already determined, 10.00 st =
  • 10. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 10. Kinematics: Uniformly accelerated motion. ( )0 00, 0x v= = ( )( ) ( ) 2 2 0 0 2 2 2 101 2 , or 1.25 m/s 2 4 x x x v t at a t = + + = = = 0: sin50 cos20 0yF N P mgΣ = − ° − ° = sin50 cos20N P mg= ° + ° : cos50 sin 20xF ma P mg N maµΣ = ° − ° − = or ( )cos50 sin 20 sin50 cos20P mg P mg maµ° − ° − ° + ° = ( )sin 20 cos20 cos50 sin50 ma mg P µ µ + ° + ° = ° − ° For motion impending, set 0 and 0.30.sa µ µ= = = ( )( ) ( )( )( )40 0 40 9.81 sin 20 0.30cos20 593 N cos50 0.30sin50 P + ° + ° = = ° − ° For motion with 2 1.25 m/s , use 0.25.ka µ µ= = = ( )( ) ( )( )( )40 1.25 40 9.81 sin 20 0.25cos20 cos50 0.25sin50 P + ° + ° = ° − ° 612 NP =
  • 11. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 11. Calculation of braking force/mass ( )/bF m from data for level pavement. 0 100 km/hr 27.778 m/sv = = ( ) 2 2 0 0 2 2 v v a x x− = − ( ) ( ) ( )( ) 22 2 0 0 2 0 27.778 2 2 60 6.43 m/s v v a x x −− = = − = − br:xF ma F maΣ = − = 2br 6.43 m/s F a m = − = (a) Going up a 6° incline. ( )6θ = ° br: sinF ma F mg maθΣ = − − = br sin F a g m θ= − − 2 6.43 9.81sin 6 7.455 m/s= − − ° = − ( ) ( )( ) 22 2 0 0 0 27.778 2 2 7.455 v v x x a −− − = = − 0 51.7 mx x− = (b) Going down a 2% incline. ( )tan 0.02, 1.145θ θ= − = − ° br: sinF ma F mg maθΣ = − − = br sin F a g m θ= − − ( ) 2 6.43 9.81sin 1.145 6.234 m/s= − − − ° = − ( ) ( )( ) 22 2 0 0 0 27.778 2 2 6.234 v v x x a −− − = = − 0 61.9 mx x− =
  • 12. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 12. Let the positive directions of Ax and Bx be down the incline. Constraint of the cable: 3 constantA Bx x+ = 1 3 0 or 3 A B B Aa a a a+ = = − For block A: : sin30A A AF ma m g T m aΣ = ° − = (1) For block B: : sin30 3B B B B AF ma m g T m a m aΣ = ° − = = − (2) Eliminating T and solving for ,Aa g ( )3 sin30 3 3   − ° = +    B A B A A m m g m g m a ( ) ( )3 sin30 30 8 sin30 0.33673 3 /3 30 2.667 A BA A B m ma g m m − ° − ° = = = + + (a) ( )( ) 2 0.33673 9.81 3.30 m/sAa = = 2 3.30 m/sA =a 30° ( ) 21 3.30 1.101 m/s 3 = − = −Ba 2 1.101 m/sB =a 30° (b) Using equation (1), ( )( )( )sin30 10 9.81 sin30 0.33673A A a T m g g   = ° − = ° −    16.02 NT =
  • 13. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 13. Let the positive directions of Ax and Bx be down the incline. Constraint of the cable: 3 constantA Bx x+ = 3 0A Ba a+ = 1 3 B Aa a= − Block A: 0: cos30 0y A AF N m gΣ = − ° = : sin30x A A A AF ma m g N T m aµΣ = ° − − = Eliminate .AN ( )sin30 cos30A A Am g T m aµ° − ° − = Block B: 0: cos30 0y B BF N m gΣ = − ° = : sin30 3 3 B A B B B B m a F ma m g N T m aµΣ = ° + − = = − Eliminate .BN ( )sin30 cos30 3 3 B A B m a m g Tµ° + ° − = − Eliminate T. ( ) ( )3 sin30 3 cos30 3 3 B A B A B A A m m g m g m g m g m aµ   − ° − + ° = +    Check the value of sµ required for static equilibrium. Set 0Aa = and solve for .µ ( ) ( ) ( ) ( ) 3 sin30 75 20 tan30 0.334. 3 cos30 75 20 A B A B m m m m µ − ° − = = ° = + ° + Since 0.25 0.334,sµ = < sliding occurs. Calculate Aa g for sliding. Use 0.20.kµ µ= = continued
  • 14. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ( ) ( ) ( ) ( )( ) 3 sin30 3 cos30 3 /3 30 8 sin30 0.20 30 8 cos30 0.13525 30 2.667 A B A BA A B m m m ma g m m µ− ° − + ° = + − ° − + ° = = + (a) ( )( ) 2 0.13525 9.81 1.327 m/s= =Aa 2 1.327 m/sA =a 30° ( ) 21 1.327 0.442 m/s 3   = − = −    Ba 2 0.442 m/sB =a 30° (b) ( ) ( )( )( ) ( )( ) sin30 cos30 10 9.81 sin30 0.20cos30 10 1.327 = ° − ° − = ° − ° − A A AT m g m aµ 18.79 N=T
  • 15. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 14. Data: 2 2 55000 lb 1708.1 lb s /ft 32.2 ft/s Am = = ⋅ 2 2 44000 lb 1366.5 lb s /ft 32.2 ft/s Bm = = ⋅ 0 55 mi/h 80.667 ft/sv = − = − (a) Use both cars together as a free body. Consider horizontal force components only. Both cars have same acceleration. :x x b b A x B xF ma F F m a m a= − − = +∑ ∑ 27000 7000 4.5534 m/s 1708.1 1366.5 b b x A B F F a m m + + = = = + + x dv a v dx = 0 2 0 0 0 2 = =∫ ∫ fx x x fv v a dx vdv a x ( ) ( )( ) 22 0 80.667 751 ft 2 2 4.5534 f x v x a − = − = − = − 715 ft to the left (b) Use car A as free body. Fc = coupling force. :x x c b A xF ma F F m a= − =∑ ∑ ( )( )1708.1 4.5534 7000 778 lb= − = + =c A x bF m a F 778 lb tensioncF =
  • 16. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 15. Data: 2 2 55000 lb 1708.1 lb s /ft 32.2 ft/s Am = = ⋅ 2 2 44000 lb 1366.5 lb s /ft 32.2 ft/s Bm = = ⋅ 0 55 mi/h 80.667 ft/sv = − = − (a) Use both cars together as a free body. Consider horizontal force components only. Both cars have same acceleration. :x x b b A x B xF ma F F m a m a= − − = +∑ ∑ 27000 2.2767 m/s 1708.1 1366.5 b x A B F a m m = = = + + x dv a v dx = 0 2 0 0 0 2 = =∫ ∫ fx x x fv v a dx vdv a x ( ) ( )( ) 22 0 80.667 1429 ft 2 2 2.2767 f x v x a − = − = − = 1429 ft to the left (b) Use car B as a free body. Fc = coupling force. :x x c B xF ma F m a= − =∑ ∑ ( )( )1366.5 2.2767 3110 lbcF− = = 3110 lb. compressioncF =
  • 17. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 16. Constraint of cable: ( )2 A B A A Bx x x x x+ − = + = constant. 0, orA B B Aa a a a+ = = − Assume that block A moves down and block B moves up. Block B: 0: cos 0y AB BF N W θΣ = − = : sin B x AB B B W F ma T N W a g µ θΣ = − + + = Eliminate ABN and .Ba ( )sin cos B A B B B a a T W W W g g θ µ θ− + + = = − Block A: 0: cos 0y A AB AF N N W θΣ = − − = ( )cos cosA AB A B AN N W W Wθ θ= + = + : sin A x A A A AB A A W F m a T W F F a g θΣ = − + − − = ( )sin cos sin cosA B B A B a W W W W g θ µ θ θ µ θ− + − + − ( )cos A B A A a W W W g µ θ− + = ( ) ( ) ( )sin 3 cos A A B A B A B a W W W W W W g θ µ θ− − + = + Check the condition of impending motion. 0.20, 0,s A B sa aµ µ θ θ= = = = = ( ) ( )sin 0.20 3 cos 0A B s A B sW W W Wθ θ− − + = continued
  • 18. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ( ) ( )( )0.20 3 0.20 128 tan 0.40 64 A B s A B W W W W θ + = = = − 21.8 25 .sθ θ= ° < = ° The blocks move. Calculate Aa g using 0.15 and 25 .kµ µ θ= = = ° ( ) ( )sin 3 cosA B k A BA A B W W W Wa g W W θ µ θ− − + = + ( )( )64sin 25 0.15 128 cos25 0.10048 96 ° − ° = = ( )( ) 2 0.10048 32.2 3.24 ft/sAa = = (a) 2 3.24 ft/sBa = − 2 3.24 ft/sB =a 25° ! (b) ( )sin cos A B B a T W W g θ µ θ= + + ( ) ( )( )16 sin 25 0.15cos25 16 0.10048= ° + ° + 10.54 lbT = !
  • 19. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 17. Constraint of cable: ( )2 constant.A B A A Bx x x x x+ − = + = 0, orA B B Aa a a a+ = = − Assume that block A moves down and block B moves up. Block B: 0: cos 0y AB BF N W θΣ = − = x : sin B x AB B B W F ma T N W a g µ θΣ = − + + = Eliminate ABN and .Ba ( )sin cos B A B B B a a T W W W g g θ µ θ− + + = = − Block A: 0: cos sin 0y A AB AF N N W Pθ θΣ = − − + = cos sinA AB AN N W Pθ θ= + − ( )cos sinB AW W Pθ θ= + − : sin cos A x A A A AB A A W F m a T W F F P a g θ θΣ = − + − − + = ( )sin cos sin cosA B B A B a W W W W g θ µ θ θ µ θ− + − + − ( )cos sin cos A B A A a W W P P W g µ θ µ θ θ− + + + = ( ) ( ) ( ) ( )sin 3 cos sin cos A A B A B A B a W W W W P W W g θ µ θ µ θ θ− − + + + = + Check the condition of impending motion. 0.20, 0, 25s A Ba aµ µ θ= = = = = ° ( ) ( ) ( )sin 3 cos sin cos 0A B s A B s sW W W W Pθ µ θ µ θ θ− − + + + = continued
  • 20. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ( ) ( )3 cos sin sin cos s A B A B s s W W W W P µ θ θ µ θ θ + − − = + ( )( )0.20 128 cos25 64 sin 25 3.88 lb 10 lb 0.20 sin 25 cos25 ° − ° = = − < ° + ° Blocks will move with 10 lb.P = Calculate Aa g using 0.15, 25 , and 10 lb.k Pµ µ θ= = = ° = ( ) ( ) ( )sin 3 cos sin cosA B k A B kA A B W W W W Pa g W W θ µ θ µ θ θ− − + + + = + ( )( ) ( )( )64 sin 25 0.15 128 cos25 10 0.15sin 25 cos25 96 ° − ° + ° + ° = 0.20149= ( )( ) 2 0.20149 32.2 6.49 ft/sAa = = (a) 2 6.49 ft/s ,Ba = − 2 6.49 ft/sB =a 25° ! (b) ( )sin cos A B B a T W W g θ µ θ= + + ( ) ( )( )16 sin 25 0.15cos25 16 0.20149= ° + ° + 12.16 lb.T = !
  • 21. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 18. Assume B A>a a so that the boxes separate. Boxes are slipping. kµ µ= 0: cos15 0yF N mgΣ = − ° = cos15N mg= ° : sin15x kF ma N mg maµΣ = − ° = cos15 sin15kmg mg maµ ° − ° = ( )cos15 sin15 ,ka g µ= ° − ° independent of m. For box A, 0.30kµ = ( )9.81 0.30cos15 sin15Aa = ° − ° or 2 0.304 m/sA =a 15° For box B, 0.32kµ = ( )9.81 0.32cos15 sin15Ba = ° − ° or 2 0.493 m/sB =a 15°
  • 22. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 19. Let y be positive downward position for all blocks. Constraint of cable attached to mass A: 3 constantA By y+ = 3 0A Ba a+ = or 3A Ba a= − Constraint of cable attached to mass C: constantC By y+ = 0C Ba a+ = or C Ba a= − For each block :F maΣ = Block A: , or 3A A A A A A A A A A BW T m a T W m a W m a− = = − = − Block C: , orC C C C C C C C C C BW T m a T W m a W m a− = = − = − Block B: 3B A C B BW T T m a− − = ( ) ( )3 3B A A B C C B B BW W m a W m a m a− − − − = or 3 60 60 20 0.076923 9 60 180 20 B B A C B A C a W W W g W W W − − − − = = = − + + + + (a) Accelerations. ( )( ) 2 0.076923 32.2 2.477 ft/s= − = −Ba 2 2.48 ft/sB =a ( )( ) 2 3 2.477 7.431 ft/sAa = − − = 2 7.43 ft/sA =a ( ) 2 2.477 2.477 ft/sCa = − − = 2 2.48 ft/sC =a (b) Tensions. ( ) 20 20 7.43 32.2 AT = − 15.38 lbAT = ( ) 20 20 2.477 32.2 CT = − 18.46 lbCT =
  • 23. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 20. Let y be positive downward for both blocks. Constraint of cable: constantA By y+ = 0A Ba a+ = or B Aa a= − For blocks A and B, :F maΣ = Block A: A A A W W T a g − = or A A A W T W a g = − Block B: B B B B A W W P W T a a g g + − = = − A B B A A A W W P W W a a g g + − + = − Solving for , A B A A A B W W P a a g W W − − = + (1) ( ) ( ) ( )22 0 0 0 2 with 0A A A A A Av v a y y v − = − =  ( )0 2A A A Av a y y = −  (2) ( ) ( )0 0 with 0A A A Av v a t v− = = A A v t a = (3) continued
  • 24. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (a) Acceleration of block A. System (1): 100 lb, 50 lb, 0A BW W P= = = By formula (1), ( ) ( )1 100 50 32.2 100 50 Aa − = + ( ) 2 1 10.73 ft/sA =a !!!! System (2): 100 lb, 0, 50 lbA BW W P= = = By formula (1), ( ) ( )2 100 50 32.2 100 Aa − = ( ) 2 2 16.10 ft/sA =a !!!! System (3): 1100 lb, 1050 lb, 0A BW W P= = = By formula (1), ( ) ( )3 1100 1050 32.2 1100 1050 Aa − = + ( ) 2 3 0.749 ft/sA =a !!!! (b) ( )0 at 5 ft. Use formula (2).A A Av y y− = System (1): ( ) ( )( )( )1 2 10.73 5Av = ( )1 10.36 ft/sAv = !!!! System (2): ( ) ( )( )( )2 2 16.10 5Av = ( )2 12.69 ft/sAv = !!!! System (3): ( ) ( )( )( )3 2 0.749 5Av = ( )3 2.74 ft/sAv = !!!! (c) Time at 10 ft/s. Use formula (3).Av = System (1): 1 10 10.73 t = 1 0.932 st = !!!! System (2): 2 10 16.10 t = 2 0.621 st = !!!! System (3): 3 10 0.749 t = 3 13.35 st = !!!!
  • 25. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 21. (a) Maximum acceleration. The cable secures the upper beam; only the lower beam can move. For the upper beam, 10: 0yF N WΣ = − = 1N W mg= = For the lower beam, 2 10: 0yF N N WΣ = − − = or 2 2N W= ( )1 2: 0.25 0.30 0.25 0.60xF ma N N W maΣ = + = + = ( )( ) 2 0.85 0.85 32.2 23.37 ft/s W a m = = = 2 27.4 ft/s=a ! For the upper beam, 1: 0.25xF ma T N maΣ = − = ( )( ) ( ) 3000 0.25 0.25 3000 23.37 2927 lb 32.2   = + = + =    T W ma 2930 lbT = ! (b) Maximum deceleration of trailer. Case 1: Assume that only the top beam slips. As in Part (a) 1 .N mg= : 0.25F ma W maΣ = = 2 0.25 8.05 ft/sa g= = continued
  • 26. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Case 2: Assume that both beams slip. As before 2 2 .=N W ( ) ( )( ) ( )2 : 0.30 2 2Σ = =F m a W m a 2 0.30 9.66 ft/sa g= = The smaller deceleration value governs. 2 8.05 ft/sa = !!!!
  • 27. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 22. Since both blocks move together, they have a common acceleration. Use blocks A and B together as a free body. :F maΣ = Σ ( )sin30 sin30A B A BP m g m g m m a− ° − ° = + 500 sin30 9.81 sin30 50A B P a g m m = − ° = − ° + 2 5.095 m/s= Use block B as a free body. cos30 : cos30B f BF m a F m aΣ = ° = ° ( )( )10 5.095 cos30 44.124 NfF = ° = sin30 : sin30B B B BF m a N m g m aΣ = ° − = ° ( ) ( )sin30 10 9.81 5.095 sin30B BN m g a= + ° = + ° 123.575 N= Minimum coefficient of static friction: min 44.124 123.575 f B F N µ = = min 0.357µ =
  • 28. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 23. (a) Kinematics of the belt. 0ov = 1. Acceleration phase with 2 1 3.2 m/sa = ( )( )1 1 1 0 3.2 1.5 4.8 m/sov v a t= + = + = ( )( )22 1 1 1 1 1 1 0 0 3.2 1.5 3.6 m 2 2 o ox x v t a t= + + = + + = 2. Deceleration phase. 2 0v = since the belt stops. ( )2 2 2 1 2 2 12v v a x x− = − ( ) ( ) ( ) 22 2 2 1 2 2 1 0 4.8 11.52 2 2 4.6 3.6 v v a x x −− = = = − − − 2 2 11.52 m/s=a 2 1 2 1 2 0 4.8 0.41667 s 11.52 v v t t a − − − = = = − (b) Motion of the package. 1. Acceleration phase. Assume no slip. ( ) 2 1 3.2 m/spa = 0: 0 oryF N W N W mgΣ = − = = = ( )1 :x f pF ma F m aΣ = = The required friction force is .fF The available friction force is 0.35 0.35sN W mgµ = = ( ) ( )( ) 2 1 0.35 9.81 3.43 m/sf s p s F N a g m m µ µ= < = = =
  • 29. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Since 2 2 3.2 m/s 3.43 m/s ,< the package does not slip. ( ) ( )11 1 4.8 m/s and 3.6 m.p pv v x= = = 2. Deceleration phase. Assume no slip. ( ) 2 2 11.52 m/spa = − ( )2 :x f pF ma F m aΣ = − = ( ) 2 2 11.52 m/sf p F a m = = − 2 2 3.43 m/s 11.52 m/ss s s N mg g m m µ µ µ= = = < Since the available friction force sNµ is less than the required friction force fF for no slip, the package does slip. ( ) 2 2 11.52 m/s ,p f ka F Nµ< = ( ) ( )2 2 :x p k pF m a N m aµΣ = − = ( ) ( )( ) 2 2 0.25 9.81 2.4525 m/sk p k N a g m µ µ= − = − = − = − ( ) ( ) ( ) ( ) ( )( ) 2 2 12 1 2 4.8 2.4525 0.41667 3.78 m/sp p pv v a t t= + − = + − = ( ) ( ) ( ) ( ) ( ) ( )2 2 2 1 2 12 1 1 2 1 2 p p p px x v t t a t t= + − + − ( )( ) ( )( )21 3.6 4.8 0.41667 2.4525 0.41667 5.387 m 2 = + + − = Position of package relative to the belt ( ) 22 5.387 4.6 0.787px x− = − = /belt 0.787 mpx =
  • 30. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 24. Acceleration 1:a Impending slip. 1 1 10.30 NsF Nµ= = 1 1: sin65y A y A AF m a N W m aΣ = − = ° 1 1 sin 65A AN W m a= + ° ( )1 sin65Am g a= + ° 1 1: cos65x A x AF m a F m aΣ = = ° 1 sF Nµ= or ( )1 1cos65 0.30 sin65A Am a m g a° = + ° ( )( ) 2 1 0.30 1.990 9.81 19.53 m/s cos65 0.30sin65 g a = = = ° − ° 2 1 19.53 m/s=a 65° Deceleration 2 :a Impending slip. 2 2 20.30 NSF Nµ= = 1 2: sin 65y y A AF ma N W m aΣ = − = − ° 1 2 sin65A AN W m a= − ° 2 2: cos65x x AF ma F m aΣ = = ° 2 2SF Nµ= or ( )2 2cos65 0.30 cos65A Am a m g a° = − ° ( )( ) 2 2 0.30 0.432 9.81 4.24 m/s cos65 0.30sin 65 g a = = = ° + ° 2 2 4.24 m/s=a 65°
  • 31. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 25. Let Pa be the acceleration of the plywood, Ta be the acceleration of the truck, and /P Ta be the acceleration of the plywood relative to the truck. (a) Find the value of Ta so that the relative motion of the plywood with respect to the truck is impending. P Ta a= and 1 1 10.40 NsF Nµ= = 1: cos20 sin 20y P y P P TF m a N W m aΣ = − ° = − ° ( )1 cos20 sin 20P TN m g a= ° − ° 1: sin 20 cos20x x P P TF ma F W m aΣ = − ° = ° ( )1 sin 20 cos20P TF m g a= ° + ° ( ) ( )sin 20 cos20 0.40 cos20 sin 20P T P Tm g a m g a° + ° = ° − ° ( ) ( )( ) 0.40cos20 sin 20 0.03145 9.81 0.309 cos20 0.40sin 20 Ta g ° − ° = = = ° + ° 2 0.309 m/sT =a s (b) ( ) ( ) 2 2 / / / / / 1 1 0 0 2 2 P T P T P T P T P To x x v t a t a t= + + = + + ( )( ) ( ) 2/ / 2 2 2 12 12.5 m/s , 0.4 P T P T x a t = = = 2 / 12.5 m/sP T =a 20° ( )/P T P T Ta= + = → +a a a ( 2 12.5 m/s )20° :y P yF m a= 2 cos20 sin 20P P TN W m a− ° = − ° ( )2 cos20 sin 20P TN m g a= ° − ° continued
  • 32. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. :x xF maΣ = Σ 2 /sin 20 cos20P P T P P TF W m a m a− ° = ° − ( )2 /sin 20 cos20P T P TF m g a a= ° + ° − For sliding with friction 2 2 20.30 NkF Nµ= = ( ) ( )/sin 20 cos20 0.30 cos20 sin 20P T P T P Tm g a a m g a° + ° − = ° + ° ( ) /0.30cos20 sin 20 cos20 0.30sin 20 P T T g a a ° − ° + = ° + ° ( )( ) ( )( )0.05767 9.81 0.9594 12.5 11.43= − + = 2 11.43 m/sT =a
  • 33. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 26. At maximum speed 0.a = 2 0 0 0F kv= = 0 2 0 F k v = When the propellers are reversed, 0F is reversed. 2 0:xF ma F kv maΣ = − − = 2 0 0 2 0 v F F ma v − − = ( )2 20 02 0 F a v v mv − + ( ) 2 0 2 2 0 0 vdv mv vdv dx a F v v = = + 0 2 00 2 20 0 0 x v mv vdv dx F v v = − + ∫ ∫ ( ) ( )0 2 2 20 2 2 2 20 0 0 0 0 0 0 0 0 1 ln ln ln 2 ln 2 2 2 2v mv mv mv x v v v v F F F  = − + = − − =   2 0 0 0 0.347 m v x F =
  • 34. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 27. :F ma P kv maΣ = − = dv P kv a dt m − = = ( ) ( )0 0 0 ln ln ln vt v m dv m m dt P kv P kv P P kv k k  = = − − = − − − − ∫ ∫ ln or ln m P kv P kv kt t k P m m − − = − = − ( )/ / or 1kt m kt mP kv P e v e m k − −− = = − / 0 0 0 tt t kt mPt P k x v dt e k k m −  = = − −  ∫ ( ) ( )/ / 1 1kt m kt mPt P Pt P e e k m k m − − = + − = − − , which is linear. Pt kv x k m = −
  • 35. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 28. Let y be the position coordinate of the projectile measured upward from the ground. The velocity and acceleration a taken to positive upward. 2 .D kv= (a) Upward motion. :yF maΣ = D mg ma− − = 2 2 2 D kv a g g m m dv kv k mg v g v dy m m k    = − + = − +            = − + = − +        2 vdv k dy mg mv k = − + 0 0 02 h v vdv k dy mg mv k = − + ∫ ∫ 0 0 21 ln 2 v mg kh v k m   + = −    2 0 2 0 1 1 ln ln 1 2 2 mg kv khk mg mg mv k   = − + = −    + ( )( ) ( )( ) ( )( ) 22 0 0.0024 904 ln 1 ln 1 2 2 0.0024 4 9.81 m kv h k mg     = + = +        335.36 m= 335 mh = continued
  • 36. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (b) Downward motion. :F maΣ = D mg ma− = 2 2 2 D kv a g g m m dv kv k mg v g v dy m m k = − = −   = − = − −    2 vdv k dy mg mv k = − − 0 0 fv h vdv k dy mg m = −∫ ∫ 2 0 1 ln 2 fv mg kh v k m   − =    2 1 ln 2 f mg v khk mg m k   −  − =       2 2 ln 1 fkv kh mg m    − = −     2 2 1 f kh/mkv e mg − − = ( )2 1 kh/m f mg v e k − = ± − ( )( ) ( )( )( )2 0.0024 335.36 /44 9.81 1 0.0024 fv e − = −   73.6 m/s= 73.6 m/sfv =
  • 37. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 29. Choose the origin at point C, and let x be positive to the right. Then x is a position coordinate of the slider B, and 0x is its initial value. Let L be the stretched length of the spring. Then, from the right triangle 2 2 L x= + The elongation of the spring is ,e L= − and the magnitude of the force exerted by the spring is ( )2 2 sF ke k x= = + − By geometry, 2 2 cos x x θ = + : cosx x sF ma F maθΣ = − = ( )2 2 2 2 x k x ma x − + − = + 2 2 k x a x m x   = − −   +  0 0 0 v x v dv a dx=∫ ∫ 0 0 0 02 2 2 2 2 2 0 1 1 2 2 v x x k x k v x dx x x m mx     = − − = − − +      +  ∫ 2 2 2 2 2 0 0 1 1 0 2 2 k v x x m   = − − − + +    ( )2 2 2 2 2 0 02 2 k v x x m = + − + ( )2 2 2 2 2 0 02 k x x m  = + − + +    ( )2 2 0answer: k v x m = + −
  • 38. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 30. Let yA, yB, and yC be the position coordinates of blocks A, B, and C respectively measured downward from the upper support. Then the corresponding velocities and accelerations are positive downward. Constraint of cable: 2 constantA B A B Cy y y y y− + + + = Differentiating twice, 2 0A B A B Ca a a a a− + + + = 2 0A B Ca a a+ + = (1) Draw free body diagrams of each of the blocks. Block A. : 2A A AF ma m g T m aΣ = − = 2 A A T a g m = − (2) Block B. : B B BF ma m g T m aΣ = − = B B T a g m = − (3) Block C. : C C CF ma m g T m aΣ = − = C C T a g m = − (4) Substitute (2), (3) and (4) into (1). 2 2 0 A B C T T T g g g m m m      − + − + − =           4 1 1 4 0 A B C g T m m m   − + + =    ( )( ) 4 1 1 4 9.81 0 65.4 N 10 10 10 T T   − + + = =    Substitute into (2), ( )( ) 22 65.4 9.81 3.27 m/s 10 Aa = − = − (a) Change in position. ( ) 2 0 1 2 A A Ay y a t− = ( ) ( )( )2 0 1 3.27 0.5 0.409 m 2 A Ay y− = − = − 0.409 my∆ = !!!! (b) Tension in the cable. 65.4 NT = !
  • 39. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 31. 98.1 N= =A AW m g 49.05 NB BW m g= = Assume that block B slides downward relative to block A. Then the friction force 1F is directed as shown. Its magnitude is 1 1 10.10 N .kF Nµ= = 1 10: cos30 0, cos30 49.05cos30 42.48 N.y B BF N W N WΣ = − ° = = ° = ° = ( )( )1 0.10 42.48 4.248 N.F = = 1: sin30x B B B B BF m a W F m aΣ = ° − = ( ) ( ) 2 1 1 1 sin30 49.05sin30 4.248 4.055 m/s 5 B B B a W F m = ° − = ° − = Assume that block A slides downward relative to the fixed plane. The friction force 2F is directed as shown. Its magnitude is 2 2 20.20 N .kF Nµ= = 2 1 20: cos30 0, 42.48 98.1cos30 127.44 N.y AF N N W N= − − ° = = + ° = ( )( )2 0.20 127.44 25.49 NF = = 2 1: sin30x A A A A AF m a W F F m aΣ = ° − + = ( )2 1 1 sin30A A A a W F F m = ° − + ( ) 21 98.1sin30 25.49 4.248 2.781 m/s 10 = ° − + = 2 / 4.055 2.781 1.274 m/sB A B Aa a a= − = − = Since both /B Aa and Aa are positive, the directions of relative motion are as assumed above. (a) Acceleration of block A. 2 2.78 m/sA =a 30° (b) Velocity of B relative to A at 0.5 s.t = ( )( )/ / 1.274 0.5= =B A B Av a t / 0.637 m/sB A =v 30°
  • 40. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 32. Let the positive direction for position coordinates, velocities, and accelerations be to the right. Let the origin lie at the fixed anchor. Constraint of cable: ( ) ( ) ( )3 constantC A C B Bx x x x x− + − + − = 4 2 3 0C B Aa a a− − = (1) :x xF maΣ = Block A: 3 3 3 or 20 A A A A T T T m a a g m = = = (2) Block B: 2 2 2 or 10 B B B B T T T m a a g m = = = (3) Block C: 4 4 4 or 20 20 C C C P T P T P T m a a g − − − = = = (4) Substituting (2), (3), and (4) into (1), 4 2 3 4 2 3 0 20 10 20 P T T T−      − − =            16 4 9 4 20 10 20 20 P T   + + =    ( ) ( )( )0.12121 0.12121 50 6.0605 lbT P= = = (a) From (2), ( )( )( ) 23 6.0605 32.2 29.3 ft/s 20 Aa = = 2 29.3 ft/sA =a From (3), ( )( )( ) 22 6.0605 32.2 39.0 ft/s 10 Ba = = 2 39.0 ft/sB =a From (4), ( )( ) ( ) 2 41.5 ft/s 20 50 4 6.0605 32.2 Ca  − = = 2 41.5 m/sC =a (b) As determined above, 6.06 lbT =
  • 41. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 33. 2 220 10 0.62112 lb s / ft, 0.31056 lb s / ft 32.2 32.2 A C Bm m m= = = ⋅ = = ⋅ Let the positive direction for position coordinates, velocities, and accelerations be to the right. Let the origin lie at the fixed anchor. Constraint of cable: ( ) ( ) ( )3 constantC A C B Bx x x x x− + − + − = 4 2 3 0C B Aa a a− − = (1) Block A: 0: 0y A AF N WΣ = − = ,A A A k A AN W F N Wκµ µ= = = : 3x A x A A AF m a T F m aΣ = − = 3 3 0.20k A A A A T W T a g m m µ− = = − (2) Block B: ,B B B k BN W F Wµ= = : 2x B B B B BF m a T F m aΣ = − = 2 2 0.20k B B B B T W T a g m m µ− = = − (3) Block C: ,C C C k CN W F Wµ= = : 4x C A C C CF m a P T F m aΣ = − − = (4) Kinematics: ( ) ( ) 2 2 0 0 1 1 0 2 2 C C C C Cx x v a t a t= + + = + ( ) ( )( ) ( ) 0 2 2 2 2 2 2.4 30 ft/s 0.4 C C C x x a t  − = = = (5)
  • 42. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Substitute (2), (3) and (5) into (1). ( )( ) ( ) ( ) 2 3 4 30 2 0.20 3 0.20 0.31056 0.62112 T T g g     − − − −       ( )( ) ( ) ( )( ) ( ) ( )( ) 2 3 4 30 2 0.2 32.2 3 0.2 32.2 0.31056 0.62112 T T    = − − − −        120 27.37 32.2 0T= − + = 5.5608 lbT = From (4), 4 C C CP T F m a= + + ( )( ) ( )( ) ( )( )4 5.5608 0.20 20 0.62112 30= + + 44.877 lb= From (2), ( )( ) ( )( ) 23 5.5608 0.20 32.2 20.42 ft/s 0.62112 Aa = − = From (3), ( )( ) ( )( ) 22 5.5608 0.20 32.2 29.37 ft/s 0.31056 Ba = − = (a) Acceleration vectors. 2 20.4 ft/sA =a 2 29.4 ft/sB =a 2 30 ft/sC =a Since , , andA B Ca a a are to the right, the friction forces , , andA B CF F F are to the left as assumed. (b) Tension in the cable. 5.56 lbT = (c) Force P. 44.9 lb=P
  • 43. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 34. Let the positive direction of x and y be those shown in the sketch, and let the origin lie at the cable anchor. Constraint of cable: / /constant or 0,A B A A B Ax y a a+ = + = where the positive directions of /andA B Aa a are respectively the x and the y directions. Then /B A Aa a= − (1) First note that (/B A B A Aa= + =a a a ) ( /20 B Aa° + )20° Block B: ( ) : sin 20x B B B AB B Ax F m a m g N m aΣ = ° − = sin 20B A AB Bm a N m g+ = ° 15 50.328A ABa N+ = (2) ( ) /: cos20y B B B B B Ay F m a m g T m aΣ = ° − = / cos20B B A Bm a T m g+ = ° /15 138.276B Aa T+ = (3) Block A: AAABAAAx amTNgmamF =++°=Σ 20sin: sin 20A A AB Am a N T m g− + = ° 25 83.880A ABa N T− + = (4) Eliminate /B Aa using Eq. (1), then add Eq. (4) to Eq. (2) and subtract Eq. (3). 2 2 55 4.068 or 0.0740 m/s , 0.0740 m/sA A Aa a= − = − =a 20° !!!! From Eq. (1), 2 / 0.0740 m/sB Aa = From Eq. (3), 137.2 NT = 137.2 NT = !
  • 44. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 35. Motion of B relative to A. Particle B is constrained to move on a circular path with its center at point A. ( )/B A t a is the component of /B Aa lying along the circle, say to the left in the diagram and ( )/B A n a is directed toward point A. Initially, / 0,B A =a since the system starts from rest. (a) (/B A B A Aa= + =a a a ) ( /25 B Aa° + ) Crate B: /: 0 cos25x x B B A B AF ma m a m aΣ = Σ = − ° / cos25 0.4cos25 0.363B A Aa a= ° = ° = 2 / 0.363 m/sB A =a ( ) : sin 25y B B AB B B Ay F m a T m g m a= − = ° ( )sin 25AB B AT m g a= + ° ( )250 9.81 0.4sin 25 2495 N= + ° = (b) Trolley A: :A AF m aΣ = ( )sin 25CD AB A A AT T m g m a− + ° = ( )sin 25CD AB A A AT T m g m a= + ° + ( )( ) ( )( )2495 20 9.81 sin 25 20 0.4 = + ° +  1145 NCDT =
  • 45. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 36. The ball moves at constant speed on a circle of radius sinLρ θ= Acceleration (toward center of circle). 2 v a ρ = + :y yF maΣ = cos 0− =T Wθ cos = W T θ :y xF maΣ = sinT maθ = sin cos W θ θ 2 mv ρ = 2 sin mv L θ = (a) tan sinθ θ = 2 mv WL = 2 v gL = ( ) ( )( ) 2 1.5 0.38226 9.81 0.6 = 34.21θ = ° 34.2θ = ° (b) cos cos W mg T θ θ = = ( )( )2 9.81 cos34.21 = ° 23.7 N=T
  • 46. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 37. Let ρ be the radius of the horizontal circle. The length of the wire is 1 2sin sin L ρ ρ θ θ = + . Solving for ,ρ 1 2 1 2 sin sin sin sin L θ θ ρ θ θ = + 1 20: cos cos 0yF T T mgθ θΣ = + − = 1 2cos cos mg T θ θ = + 2 1 2: sin sinx x n mv F ma T T maθ θ ρ Σ = + = = ( ) ( )2 1 2 1 2 1 2 1 2 sin sin sin sin cos cos sin sin mg mv L θ θ θ θ θ θ θ θ + + = + ( )( )2 2 21 2 1 2 sin sin sin60 sin30 2 9.81 6.2193 m /s cos cos cos60 cos30 v Lg θ θ θ θ ° ° = = = + ° + ° 2.49 m/sv =
  • 47. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 38. 3 1 2 50 25 25θ θ θ= − = ° − ° = ° 1 2 1 2 3 3 sin or sin sin sin d d θ θ θ θ = = ( )( )( ) 2 1 1 1 3 sin sin sin sin 4 sin 25 sin50 3.0642 ft sin 25 d θ θ ρ θ θ = = ° ° = = ° 2 10: cos cos 0y AC BCF T T Wθ θΣ = + − = (1) 2 2 1: sin sinx x AC BC Wv F ma T T g θ θ ρ Σ = + = (2) Case 1: 0.BCT = 2cos 0ACT Wθ − = or 2cos AC W T θ = 2 2 2sin tanAC Wv T W g θ θ ρ = = ( )( )2 2tan 32.2 3.0642 tan 25v gρ θ= = ° 2 2 46.01 ft /s= 6.78 ft/sv = Case 2: 0.ACT = 1 1 cos 0 or cos BC BC W T W Tθ θ − = = 2 1 1sin tanBC Wv T W g θ θ ρ = = ( )( )2 2 2 1tan 32.2 3.0642 tan50 117.59 ft /sv gρ θ= = ° = 10.84 ft/sv = 6.78 ft/s 10.84 ft/sv≤ ≤
  • 48. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 39. (a) 0: sin 0yF T WθΣ = − = 16 sin sin60 W T θ = = ° or 18.48 lbT = (b) 2 : cosx n v F ma T mθ ρ Σ = = 2 cos cos sin T W v m m ρ θ ρ θ θ = = ( )( ) 2 23 32.2 55.77 ft /s tan tan60 gρ θ = = = ° 7.47 ft/sv =
  • 49. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 40. 2 , 1 tan or 45 2 r dy y r dx θ θ= = = = = ° 0: cos 0yF N mgθΣ = − = cos mg N θ = : sinx x nF ma N maθΣ = = 2 tan v mg m r θ = 2 tanv gr θ= (a) ( )( )( )2 2 2 9.81 1 1.0000 9.81 m /sv = = 3.13 m/sv = (b) ( )( )1 9.81 cos45 cos45 mg N = = ° ° 13.87 N=N
  • 50. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 41. Geometry ( ) ( ) ( )( )( ) 2 2 2 2 2 2 2 cos30 0.3 0.6 2 0.3 0.6 cos30 0.13823 m 0.37179 m OC OB BC OB OC OC = + − ° = + − ° = = sin30 sin OC OB β = ° ( )0.3 sin30sin30 sin 0.40345 0.37179 OB OC β °° = = = 23.79β = ° Acceleration components: 2 1.3 m/sta = ( )22 2 21 1.667 m/s 0.6 C n BC v v a ρ = = = = Mass 1 kgm = ( )( ): cos 1 1.3 1.3t tF ma N βΣ = = = 1.3 1.421 N cos23.79 = = ° N ( )( ): sin 1 1.667 1.667n nF ma T N βΣ = − = = (a) 1.667 1.421 sin 23.79T = + ° 2.24 N=T (b) Force exerted by rod on collar is 1.421 N ( )30 53.8β° + = ° Force exerted by collar on rod: 1.421 N 53.8°
  • 51. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 42. ( )( )0.5 9.81 4.905 NW mg= = = 150 mm 0.150 mρ = = 0: cos20 cos30 0y DA DEF T T WΣ = ° − ° − = 0.93969 0.86603 4.905DA DET T− = 0.92160 5.2198DA DET T= + (1a) 1.08506 5.6638DE DAT T= − (1b) 2 20.5 : sin 20 sin30 0.150 x n DA DE mv F ma T T v ρ Σ = = ° + ° = 2 0.10261 0.15DA DEv T T= + (2) Try 75 N. By Eq. (1 ), 75.72 N 75 N (unacceptable)DA DET b T= = > Try 75 N. By Eq. (1 ), 74.34 N 75 N (acceptable)DE DAT a T= = < By Eq. (2), ( )( ) ( )( )2 2 2 0.10261 74.34 0.15 75 18.877 m /sv = + = 4.34 mv = Try ( ) ( )0. By Eq. 1 , 5.6638 unacceptableDA DET b T= = − Try ( ) ( )0. By Eq. 1 , 5.2198 acceptableDE DAT a T= = By Eq. (2), ( )( ) ( )( )2 2 2 0.10261 5.2198 0.15 0 0.5356 m /sv = + = 0.732 m/sv = For 0 , , , 75 N,BA BC DA DET T T T≤ ≤ 0.732 m/s 4.34 m/sv≤ ≤
  • 52. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 43. ( )( )5 9.81 49.05 NW mg= = = 0.9 mρ = 0: cos40 cos15 0y CA CBF T T WΣ = ° − ° − = 0.76604 0.96593 49.05CA CBT T W− = = 0.79307 50.780CB CAT T= − (1a) 1.26093 64.030CA CBT T= + (1b) 2 : sin 40 sin15x x CA CB n mv F ma T T ma ρ Σ = ° + ° = = ( ) ( ) 2 sin40 sin15 0.9 sin40 sin15 5 0.115702 0.046587 CA CB CA CB CA CB v T T m T T T T ρ = ° + ° = ° + ° = + (2) Try 116 N. By (1 ), 210.3 N (unacceptable)CB CAT b T= = Try 116 N. By (1 ), 41.216 N (acceptable)CA CBT a T= = By (2), ( )( ) ( )( )2 2 2 0.115702 116 0.046587 41.216 15.34 m /sv = + = 3.92 m/sv = Try ( ) ( )0. By 1 , 50.78 N unacceptableCA CBT a T= = − Try ( ) ( )0. By 1 , 64.03 N acceptableCB CAT b T= = By (2), ( )( )2 2 2 0.115702 64.030 0 7.408 m /sv = + = 2.72 m/sv = For 0 , 116 N,CA CBT T≤ ≤ 2.72 m/s 3.92 m/sv≤ ≤
  • 53. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 44. (a) Before wire AB is cut. 0a = 0 :xFΣ = cos50 cos70 0AB CDT T− ° + ° = (1) 0 :yFΣ = sin50 sin70 0° + ° − =AB CDT T W (2) Solving (1) and (2) simultaneously, 0.395=ABT W 0.742=CDT W (b) Immediately after wire AB is cut. 0, 0ABT v= = 2 0n v a ρ = = 0 :n nF ma= = cos20 0CDT W− ° = cos20CDT W= ° 0.940CDT W= +
  • 54. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 45. :y yF maΣ = 2 n mv N mg ma ρ − = − = − 2 mv N mg ρ = − :x xF maΣ = t tF ma= At onset of slipping, t sF Nµ= 2 s t s mv ma mgµ ρ   = −     ( )2 2 20.150 0.300 9.81 2.883 m /s 0.75 t s s a v gρ µ     = − = − =      1.6979 m/ssv = Time at slipping. 1.6979 0.150 s s t v t a = = 11.32 sst =
  • 55. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 46. Angle change over arc AB. 8 0.13963 rad 180 θ π ° = = ° Length of arc: ( ) ( )4 (5280) 0.13963 2949 ftABs ρθ= = = (0.5)(5280) 2640 ft, 2949 2640 5589 ftBC ACs s= = = + = ( ) ( )( ) 2 2 480 5589 540 0 2 2 2 2949 540 0 2 2 2 480 540 or 5589 2 2 5.475 ft/s 540 or 5.475 2949 2 2 259300 ft /s 509.2 ft/s B t t t v B t B B v dv a ds a a v v dv a ds v v = − = = − = − = − = = ∫ ∫ ∫ ∫ Mass of passenger: 2200 6.211 lb s /ft 32.2 = = ⋅m Just before point B. 509.2 ft/s, (4)(5280) = 21120 ftv ρ= = ( )22 2509.2 12.277 ft/s 21120 n v a ρ = = = ( ) ( )( )1 11 : 200 6.211 12.277 123.75 lby nF N W m a NΣ = − = − = − = ( ) ( )( )1 : 0.6221 5.474 34.01 lbx t t tF F ma FΣ = = = − = − Just after point B. 509.2 ft/s, , 0nv aρ= = ∞ = 20 : 0yF N WΣ = − = 2 200 lbN W= = ( )( ): 6.211 5.475 34.01 lbx t t tF ma F maΣ = = = − = − tF does not change. N increases by 76.25 lb magnitude of change of force = 76.3 lb
  • 56. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 47. ( ) ( )2 3 180 m, 3 180 2 m/s, ds s t t v t dt = − = = − 2 6 m/s (4)(5280) 21120 ft= = − = =t dv a dt ρ Length of arc AB. ( ) 8 21120 2949 ft 180 AB ABs π ρθ ° = = = ° 0 B AB A v s tv v dv a ds=∫ ∫ ( )( )( ) 2 2 2 2 2 2 or 2 540 2 6 2949 2 2 B A t AB B A t AB v v a s v v a s− = = + = + − 256212,= 506.2 ft/sBv = For passenger, 2165 165 lb, 5.124 lb s /ft 32.2 = = = = ⋅ W W m g 2 : cosn mv F ma W Nθ ρ Σ = − = 2 cos mv N W θ ρ = − (1) : sint tF ma P W maθΣ = − = sin tP W maθ= + (2) (a) Just after point A, 0, 180 m/s, 8t v θ= = = ° From Eq. (1), ( )( )2 5.124 540 165cos8 92.65 lb 21120 N = ° − = From Eq. (2), ( )( )165sin8 5.124 6 7.78 lbP = ° + − = − 2 2 92.65 93.0 lb, tan 11.909, 85.2 7.78 F N P β β= + = = = = ° 8 77.2β − ° = ° 93.0 lb=F 77.2° (b) At point B. 0, 506.2 ft/svθ = = From Eq. (1), ( )( )2 5.124 506.2 165 102.83 lb 21120 N = − = From Eq. (2), ( )( )5.124 6 30.74 lbP = − = − ( ) ( ) 2 2 102.83 102.83 30.74 107.3 lb, tan 3.345, 73.4 30.74 = + = = = = °F β β 107.3 lb=F 73.4°
  • 57. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 48. (a) 160 km/h 44.44 m/sv = = Wheels do not touch the road. 2 : /y nF ma mg mv ρΣ = − − = − ( )22 44.44 201.4 9.81 v g ρ = = = 201 mρ = (b) 80 km/h 22.22 m/sv = = 70 kgm = for passenger :y nF maΣ = − 2 mv N mg ρ − = − 2 v N m g ρ   = −     ( ) 2 22.22 70 9.81 201.4   = −     515 NN =
  • 58. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 49. 0.2 kg, (0.2)(9.81) 1.962 N= = = =m W mg : cost t tF ma W maθΣ = = cos cost W a g m θ θ= = 0 0 0 v s t tv v dv a ds a rd θ θ= =∫ ∫ ∫ 2 2 0 0 1 1 cos sin 2 2 v v g rd gr θ θ θ θ− = =∫ 2 2 0 2 sin , where 0.6 m for 0 90v v gr rθ θ= + = ≤ ≤ ° max when the cord touches the peg or 90 .v v θ= = ° 2 2 max 0 2v v gr= + (1) When the cord touches the peg, the radius of curvature of the path becomes 0.3 m.ρ = 2 max max:y n mv F ma T W ρ Σ = − = ( )2 max maxv T W m ρ = − (2) Eliminating 2 maxv from equations (1) and (2), ( ) ( )( ) ( )( )( )max2 0 0.3 10 1.962 2 2 9.81 6.0 0.2 T W v gr m ρ − − = − = − 2 2 0.285 m /s= 0 0.534 m/s=v
  • 59. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 50. Mass of block B. 2 2 0.5lb 0.015528lb s /ft 32.2ft/s = = ⋅Bm Acceleration of block B. 2 2 2(9ft/s) 27ft/s 3ft = = =n v a ρ 0ta = since v = constant. :F ma∑ = sin nQ P W θ ma− − = − sin nQ = P + W θ ma− But, 0.Q ≥ sin 0nP W maθ+ − > (0.015528)(27) 0.3 sin 0.5 0.5 nma P W W θ ≥ − = − sin 0.2385θ ≥ 13.8 166.2θ° ≤ ≤ °
  • 60. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 51. At position A, the vertical component of apparent weight is shown as .AN :n A n W F ma N W a g Σ = − = ( ) 2380 120 32.2 69.77 ft/s 120 A n N W a g W − − = = = ( )( )2 3 2 2 3600 69.77 251.2 10 ft /sA nv aρ= = = × At position C, the vertical component of apparent weight is shown as .CN :n C n W F ma N W a g Σ = + = ( ) 280 120 32.2 53.67 ft/s 120 C n N W a g W + + = = = ( )( )2 3 2 2 3600 53.67 193.2 10 ft /sC nv aρ= = = × Length of arc ABC: ( )3600 11310 ftACs πρ π= = = Calculate ,ta using 2 2 2C A t ACv v a s− = ( )( ) 2 2 3 3 2 193.2 10 251.2 10 2 2 11310 2.562 ft/s C A t AC v v a s − × − × = = = − At position B, ( )3600 5655 ft 2 2 ABs π π ρ= = = ( )( )( )2 2 3 3 2 2 2 251.2 10 2 2.562 5655 222.2 10 ft /sB A t ABv v a s= + = × + − = ×
  • 61. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Effective forces at B: 2 3 120 222.2 10 230 lb 32.2 3600 B n W v ma g ρ × = = = ( ) 120 2.562 9.5 lb 32.2 t t W ma a g = = − = − :tF maΣ = or 120 9.5 110.5 lbt tP W ma P W ma− = = + = − = : 230 lbn B nF ma N maΣ = = = Force exerted by seat: 2 2 2 2 230 110.5 255 lbBF N P= + = + = 110.5 tan 230 β = 25.7β = ° 255 lb=F 25.7°
  • 62. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 52. The road reaction consists of normal component N and friction component F. The resultant R makes angle sφ with the normal. Case 1: maxv v= ( )0: cos 0y sF R mgθ φΣ = + − = ( )cos s mg R θ φ = + ( ): sinx n s nF ma R maθ φΣ = + = ( )tann sma mg θ φ= + ( ) 2 max tan s v g r θ φ= + ( )max tan sv gr θ φ= + Case 2: minv v= ( )0: cos 0y sF R mgθ φΣ = − − = ( )cos s mg R θ φ = − ( ): sinx n s nF ma R maθ φΣ = − = ( )tann sma mg θ φ= − ( ) 2 min tan s v g r θ φ= − ( )min tan sv gr θ φ= − ( ) ( )tan tans sgr v grθ φ θ φ− ≤ ≤ +
  • 63. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 53. Weight. W mg= Acceleration. 2 v a ρ = :∑ =x xF ma sin cosF W = maθ θ+ 2 cos sin mv F mgθ θ ρ = − (1) :y yF ma∑ = cos sinN W maθ θ− = 2 sin cos mv N = mgθ θ ρ + (2) (a) Banking angle. Rated speed 180 km/h 50 m/s.v = = 0F = at rated speed. 2 0 cos sin mv mgθ θ ρ = − 2 2 (50) tan = 1.2742 (200)(9.81) v g θ ρ = = 51.875θ = ° 51.9θ = ° (b) Slipping outward. 320km/h 88.889 m/sv = = F Nµ= 2 2 cos sin sin cos F v g N v g θ ρ θ µ θ ρ θ − = = + 2 2 (88.889) cos51.875 (200)(9.81)sin51.875 = (88.889) sin51.875 (200)(9.81)cos51.875 µ °− ° °+ ° 0.44899= 0.449µ = continued
  • 64. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (c) Minimum speed. = −F Nµ 2 2 cos sin sin cos v g v g θ ρ θ µ θ ρ θ − − = + 2 (sin cos ) cos sin g v ρ θ µ θ θ µ θ − = + (200)(9.81)(sin51.875 0.44899cos51.875 ) cos51.875 0.44899sin51.875 ° − ° = ° + ° 2 2 1029.87m /s= 32.09m/sv = 115.5 km/h=v
  • 65. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 54. Rated speed: 75 mi/h 110 ft/s, 125 mi/h 183.33 ft/sRv = = = From Sample Problem 12.6, ( )22 2 110 tan or 2674 ft tan 32.2 tan8 R R v v g g ρ θ ρ θ = = = = ° Let the x-axis be parallel to the floor of the car. ( ) ( ): sin cosx x s nF ma F W maθ φ θ φΣ = + + = + ( ) 2 cos mv θ φ ρ = + (a) 0.φ = ( ) ( ) ( ) ( )( ) 2 2 cos sin 183.33 cos8 sin8 32.2 2674 0.247 s v F W g W W θ φ θ φ ρ   = + − +       = ° − °    = 0.247sF W= ! (b) For 0,sF = ( ) ( ) 2 cos sin 0 v g θ φ θ φ ρ + − + = ( ) ( ) ( )( ) 22 183.33 tan 0.39035 32.2 2674 v g θ φ ρ + = = = 21.3θ φ+ = ° 21.3 8φ = ° − ° 13.3φ = ° !
  • 66. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 55. Rated speed: 75 mi/h 110 ft/s, 125 mi/h 183.33 ft/sRv = = = From Sample Problem 12.6, ( )22 2 110 tan or 2674 ft tan 32.2 tan8 R R v v g g ρ θ ρ θ = = = = ° Let the x-axis be parallel to the floor of the car. ( ) ( ): sin cosx x s nF ma F W maθ φ θ φΣ = + + = + ( ) 2 cos mv θ φ ρ = + Solving for ,sF ( ) ( ) 2 cos sins v F W g θ φ θ φ ρ   = + − +    Now ( ) ( )( ) 22 183.33 0.39035 and 0.12 32.2 2674 s v F W gρ = = = so that ( ) ( )0.12 0.39035 cos sinW W θ φ θ φ = + − +  Let ( ) ( ) 2 sin . Then, cos 1 .u uθ φ θ φ= + + = − 2 2 0.12 0.39035 1 or 0.39035 1 0.12u u u u= − − − = + Squaring both sides, ( )2 2 0.15237 1 0.0144 0.24u u u− = + + or 2 1.15237 0.24 0.13797 0u u+ + = The positive root of the quadratic equation is 0.2572.u = Then, 1 sin 14.90uθ φ − + = = ° 14.90 14.90 8φ θ= ° − = ° − ° 6.90φ = ° !!!!
  • 67. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 56. If the collar is not sliding, it moves at constant speed on a circle of radius sin .rρ θ= v ρω= Normal acceleration. 2 2 2 2 ( sin )n v a r ρ ω θ ω ρ ρ = = = :y yF ma∑ = cos 0N mgθ − = cos mg N θ = :x xF maΣ = sinN maθ = 2sin ( sin ) cos mg m r θ θ ω θ = Either sin 0θ = or 2 cos g r θ ω = 0 or 180θ = ° ° or 2 9.81 cos 0.3488 (0.5)(7.5) θ = = 0 , 180 , and 69.6θ = ° ° °
  • 68. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 57. If the collar is not sliding, it moves at constant speed on a circle of radius sin .rρ θ= v ρω= From Prob. 12.56 500mm 0.500m, 7.5rad/s,r ω= = = 250g 0.250 kg.m = = Normal acceleration: 2 2 2 2 ( sin )n v a r ρ ω θ ω ρ ρ = = = FΣ = :ma 2 sin ( sin ) cosF mg m rθ θ ω θ− = − 2 ( cos )sinF m g rω θ θ= − FΣ = :ma 2 cos ( sin ) sinN mg m rθ θ ω θ− = 2 2 ( cos ) sin )N m g rθ ω θ= + (a) 75 .θ = ° 2 (0.25) 9.81 (0.500 cos75 )(7.5) sin75F  = − ° °  0.61112 N= 2 2 (0.25) 9.81cos75 (0.500sin 75 )(7.5)N  = °+ °  7.1950 N= (0.25)(7.1950) 1.7987 N= =sNµ Since ,sF Nµ< the collar does not slide. 0.611 NF = 75° continued
  • 69. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (b) 40 .θ = ° 2 (0.25) 9.81 (0.500cos40 )(7.5) sin 40F  = − ° °  1.8858 N= − 2 2 (0.25) 9.81cos40 (0.500sin 40 )(7.5)N  = ° + °  4.7839 N= (0.25)(4.7839) 1.1960 N= =sNµ Since ,> sF Nµ the collar slides. Since the collar is sliding, .kF Nµ= nF∑ = + :ma cos sinnN mg maθ θ− = 2 cos ( sin ) sinN mg m rθ θ ω θ= + 2 2 cos ( sin )m g rθ θ ω = +  2 2 (0.25) 9.81cos40 (0.500sin 40 )(7.5) = °+ °  4.7839 N= (0.20)(4.7839) 0.957 N= = =kF Nµ 0.957 N=F 40°
  • 70. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 58. Draw the free body diagrams of the block B when the arm is at 150 .θ = ° 2 0, 32.2 ft/stv a g= = = : sin30 0t tF ma W NΣ = − ° + = sin30N W= ° 2 2 : cos30n n v Wv F ma W F m gρ ρ Σ = ° − = = 2 cos30 Wv F W gρ = ° − Form the ratio F N , and set it equal to sµ for impending slip. ( )22 cos30 4.2 /(1)(32.2)cos30 / sin30 sin30 s F v g N ρ µ ° −° − = = = ° ° 0.636sµ =
  • 71. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 59. Let β be the slope angle of the dish. 1 tan 6 dy r dr β = = At 6ft, tan 1 or 45r β β= = = ° Draw free body sketches of the sphere. 0: cos sin 0y sF N N Wβ µ βΣ = − − = cos sins W N β µ β = − 2 2 : sin cosn n s mv Wv F ma N N g β µ β ρ ρ Σ = + = = ( ) 2sin cos cos sin s s W N Wv g β µ β β µ β ρ + = − ( )( )2 2 2sin cos sin 45 0.5cos45 6 32.2 579.6 ft /s cos sin cos45 0.5sin 45 s s v g β µ β ρ β µ β + ° + ° = = = − ° − ° 24.1 ft/sv =
  • 72. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 60. Uniformly accelerated motion on a circular path. 5 5 in. ft 2 12 D ρ = = = 6 6 60 10 60 10 oz lb 16 W − − × = × = 2 32.2 ft/sg = 9 2 116.46 10 lb s /ft W m g − = = × (a) For uniformly accelerated motion, ( )( )0 0 12 4tv v a t= + = + 48 ft/sv = (b) ( )( )9 6 : 116.46 10 12 1.3975 10 lb.t t tF ma F − − Σ = = × = × ( )( )292 116.46 10 48 : 5/12 n n n n mv F ma F ma ρ − × Σ = = = = 6 644.0 10 lb− = × Magnitude of force: ( ) ( )2 22 2 6 10 644.0 1.3975t nF F F − = + = + lb10644 6− ×=F
  • 73. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 61. Uniformly accelerated motion on a circular path. 8 ftρ = 0 tv v a t= + ( )( )0 0.75 12 9 ft/s= + = 0.75 : 0.0233 32.2 t t t t t W a F ma a F W W W g g = = = = = ( ) ( )( ) 22 9 : 0.3144 32.2 8 n n n WWv F ma F W gρ = = = = 2 2 0.315t nF F F W= + = This is the friction force available to cause the trunk to slide. The normal force N is calculated from equilibrium of forces in the vertical direction. 0: 0yF N WΣ = − = N W= Since sliding is impending, 0.315s F W µ = = 0.315sµ =
  • 74. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 62. For constant speed, 0ta = 2 with 0.7 m/s, 0.2 mB n B v a v ρ ρ = = = : cosx x nF ma F ma θΣ = = : sin siny y n nF ma N W ma N mg maθ θΣ = − = − = − Ratio 2 cos cos cos sin sin sin n n n B F ma g gN mg ma a v θ θ θ ρθ θ θ = = = − − − With ( )( ) ( )2 2 9.81 0.2 cos 4.0041, the ratio becomes 4.0041 sin0.7B g F Nv ρ θ θ = = = − For no impending slide, cos 4.0041 sin s F N θ µ θ ≥ = − To find the value of θ for which the ratio is maximum set the derivative with respect to θ equal to zero. ( )2 cos 1 4.0041sin 0 4.0041 sin 4.0041 sin d d θ θ θ θ θ ± −  = ± =  −  − 1 sin 0.24974 4.0041 θ = = cos14.446 14.446 , 0.258 4.0041 0.24974 F N θ ° = ° = = − 180 14.446 165.554 , 0.258 F N θ = ° − ° = ° = (a) Minimum value of sµ for no slip. ( )min 0.258sµ = (b) Corresponding values of .θ 14.5 and 165.5θ = ° °
  • 75. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 63. For constant speed, 0ta = 2 with 0.7 m/s, 0.2 mB n B v a v ρ ρ = = = : cosx x nF ma F ma θΣ = = : sin siny y n nF ma N W ma N mg maθ θΣ = − = − = − Ratio 2 cos cos cos sin sin sin n n n B F ma g gN mg ma a v θ θ θ ρθ θ θ = = = − − − Let 2 cos so that sinB g F u N uv ρ θ θ = = − Determine the value of θ at which F/N is maximum. ( )( ) ( ) ( ) 2 2 2 cos sin sincos 1 sin 0 sin sin sin ud u d u u u θ θ θθ θ θ θ θ θ − − −  = = =  −  − − The corresponding ratio . F N 2 1 1 2 1 sin tan cos1 F u u N u u u θ θ θ − − − − ± − ± = = = ± = ± − − (a) For impending sliding to the left: tan 0.35s F N θ µ= = = ( ) 2 1 arctan 0.35 19.29 , sin ,Bv u g θ θ ρ − = = ° = = ( )( )2 2 2 9.81 0.2 sin19.29 0.648 m /sBv = ° = 0.805 m/sBv =
  • 76. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. For impending motion to the right: tan 0.35s F N θ µ= − = = ( )arctan 0.35 160.71θ = − = ° 2 1 2 sin , v u g θ ρ − = = ( )( )2 2 2 9.81 0.2 sin160.71 0.648 m /sBv = ° = 0.805 m/s= (b) For impending sliding to the left, 19.3θ = ° For impending sliding to the right, 160.7θ = °
  • 77. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 64. Consider the motion of one electron. For the horizontal motion, let 0x = at the left edge of the plate and x = l at the right edge of the plate. At the screen, 2 x L= + l Horizontal motion: There are no horizontal forces acting on the electron so that 0.xa = Let 1 0t = when the electron passes the left edge of the plate, 1t t= when it passes the right edge, and 2t t= when it impacts on the screen. For uniform horizontal motion, 0 1 2 0 0 0 , so that and . 2 L x v t t t v v v = = = + l l Vertical motion: The gravity force acting on the electron is neglected since we are interested in the deflection produced by the electric force. While the electron is between plates ( )10 ,t t≤ ≤ the vertical force on the electron is / .yF eV d= After it passes the plates ( )1 2 ,t t t≤ ≤ it is zero. For 10 ,t t≤ ≤ : y y y y F eV F ma a m md Σ = = = ( )0 0y y y eVt v v a t md = + = + ( ) 2 2 0 0 1 0 0 2 2 y y eVt y y v t a t md = + + = + + At ( ) 2 1 1 1 11 , and 2 y eVt eVt t t v y md md = = = For 1 2, 0yt t t a≤ ≤ = ( ) ( )1 11yy y v t t= + − At 2t t= ( ) ( )2 1 2 11yy y v t tδ= = + − ( ) 2 1 1 1 2 1 2 1 1 2 2 eVt eVt eVt t t t t md md md δ   = + − = −    0 0 0 0 1 2 2 eV L mdv v v v   = + −    l l l or 2 0 eV mdv L δ = l !!!!
  • 78. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 65. Consider the motion of one electron. For the horizontal motion, let 0x = at the left edge of the plate and x = l at the right edge of the plate. At the screen, 2 x L= + l Horizontal motion: There are no horizontal forces acting on the electron so that 0.xa = Let 1 0t = when the electron passes the left edge of the plate, 1t t= when it passes the right edge, and 2t t= when it impacts on the screen. For uniform horizontal motion, 0 1 2 0 0 0 , so that and . 2 L x v t t t v v v = = = + l l Vertical motion: The gravity force acting on the electron is neglected since we are interested in the deflection produced by the electric force. While the electron is between the plates ( )10 ,t t≤ ≤ the vertical force on the electron is / .yF eV d= After it passes the plates ( )1 2 ,t t t≤ ≤ it is zero. For 10 ,t t≤ ≤ : y y y y F eV F ma a m md Σ = = = ( )0 0y y y eVt v v a t md = + = + ( ) 2 2 0 0 1 0 0 2 2 y y eVt y y v t a t md = + + = + + At 2 1 2 0 0 , , 2 eV t t y v mdv = = ll But 0.075 0.425 2 d y d d< − = So that 2 2 0 0.425 2 eV d mdv < l 2 2 2 2 0 0 1 1.176 0.425 2 d eV eV mv mv > = l 2 0 1.085 d eV mv > l
  • 79. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 66. 30 , 2 rad/s, 0θ θ θ= ° = =& && 0.6 m,r W mg= = Block B: Only force is weight cos30 , sin30rF W F Wθ= ° = − ° (a) ( )2 :F ma m r rθ θ θ θ= = +&& && sin30 2 sin30 F mg r r r g r m m θθ θ θ θ ° = − = − − = − ° −& && && &&& ( ) ( )( ) ( )( ) 9.81 sin30 0.6 0sin30 1.226 m/s 2 2 2 g r r θ θ ° +° + = − = − = − && & & / rod 1.226 m/sB =v 60° (b) ( )2 :r rF ma m r rθ= = − &&& ( )( ) ( ) 2 2 2 2 cos30 cos30 0.6 2 9.81 cos30 10.90 m/s rF mg r r r r g m m θ θ θ ° = + = + = + ° = + ° = & & &&& 2 / rod 10.90 m/sB =a 60°
  • 80. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 67. 2 45 , 0.8 m, 10 rad/srθ θ= ° = = 0, 0,rv r v r W mgθ θ= = = = = (a) ( ): cos45 2F ma N W m r rθ θ θ θΣ = − ° = + ( )cos45 2N mg m r rθ θ= ° + + ( )( )(0.5)(9.81)cos45 0.5 0.8 10 0 = ° + +  7.468= 7.47 NN = 45° (b) ( )2 : sin 45r rF ma mg m r rθΣ = ° = − 2 2 sin 45 sin 45 mg r r g r m θ θ= ° + = ° + ( ) 2 9.81 sin 45 0 6.937 m/s= ° + = 2 / rod 6.94 m/sB =a 45°
  • 81. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 68. Use radial and transverse components of acceleration. 2 3 2 3 ft 2 radr t t tθ= − = 2 6 3 ft/s 4 rad/sr t t tθ= − = 2 2 6 6 ft/s 4 rad/sr t θ= − = 2 2 3 2 6 6 (3 )(16 )ra r r t t t tθ= − = − − − 5 4 2 16 48 6 6 ft/st t t= − − + 2 3 2 2 (3 )(4) (2)(6 3 )(4 )a r r t t t t tθ θ θ= + = − + − 2 3 2 60 28 ft/st t= − Mass: 24 0.12422 lb s /ft 32.2 = = = ⋅ W m g (a) 0.t = 2 6 ft/secra = 0aθ = Apply Newton’s second law. (0.12422)(6)r rF ma= = 0.745 lbrF = (0.12422)(0)F maθ θ= = 0Fθ = (b) 1t = s. 2 32 ft/sra = − 2 32 ft/saθ = Apply Newton’s second law. (0.12422)( 32)r rF ma= = − 3.98 lbrF = − (0.12422)(32)F maθ θ= = 3.98 lbFθ =
  • 82. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 69. Use radial and transverse components of acceleration. 6(1 cos2 ) ft 2 radr t tπ θ π= + = 12 sin 2 ft/s 2 rad/sr tπ π θ π= − = 2 2 24 cos2 ft/s 0r tπ π θ= − = 2 2 2 24 cos2 (6 6cos2 )(2 )ra r r t tθ π π π π= − = − − + 2 2 2 24 48 cos2 ft/stπ π π= − − 2 0 (2)( 12 sin 2 )(2 )a r r tθ θ θ π π π= + = + − 2 48 sin 2 tπ π= − Mass: 21 0.031056 lb s /ft 32.2 W m g = = = ⋅ (a) 0.t = 2 710.61 ft/sra = − 0aθ = Apply Newton’s second law. (0.031056)(710.61)r rF ma= = 22.1 lbrF = − 0F maθ θ= = 0Fθ = (b) 0.75 s.t = 2 236.87 ft/sra = − 2 473.74 ft/saθ = Apply Newton’s second law. (0.031056)( 236.87)r rF ma= = − 7.36 lbrF = − (0.031056)(473.74)F maθ θ= = 14.71 lbFθ =
  • 83. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 70. Kinematics: 1.5 ft/s, 0 dr r r dt = = = 0 0 or 1.5 ft r t dr r dt r t= =∫ ∫ 2 0.8 rad/s, 0.8 rad/stθ θ= = ( )( )22 3 2 0 1.5 0.8 0.96 ft/sra r r t t tθ= − = − = − ( )( ) ( )( )( ) 2 2 1.5 0.8 2 1.5 0.8 3.6 ft/sa r r t t tθ θ θ= + = + = Kinetics: Sketch the free body diagrams for the collar. :r r rF ma T maΣ = − = :F ma Q maθ θ θΣ = = Set T Q= to obtain the required time. orr rma ma a aθ θ− = − = Using the calculated expressions 3 2 23.6 0.96 3.6 , 3.75 s 0.96 t t t= = = 1.936 st =
  • 84. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 71. 2 10 rad/s, 10 rad/stθ θ= =& && 2 0.5/32.2 0.015528 lb s /ftm = = " Before cable breaks: and 0.rF T r= − =&& ( )2 :r rF ma T m r rθ= − = − &&& ( )( ) 2 2 2 20 4 or 171.733 rad /s 0.015528 1.5 mr T mr mr T mr θ θ + + = + = = = &&& &&& 13.105 rad/sθ =& Immediately after the cable breaks: 0, 0rF r= =& (a) Acceleration of B relative to the rod. ( ) ( )( )22 2 2 0 or 1.5 13.105 257.6 ft/sm r r r rθ θ− = = = =& &&& && 2 / rod 258 ft/sB =a radially outward ! (b) Transverse component of the force. ( ): 2F ma F m r rθ θ θ θ θ= = +&& && ( ) ( )( ) ( )( )( )0.015528 1.5 10 2 0 12 0.233 + =  0.233 lbFθ = !
  • 85. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 72. 2 15 rad/s, 230 g 0.230 kg, 0, 9 N, 12 m/sm F rθθ θ= = = = = = − Due to the spring, , 60 N/mrF kr k= − = ( )2 :r r rF F ma kr m r rθΣ = = − = − ( )2 k m r mrθ− = − (a) Radial coordinate. ( )( ) ( )( )2 2 0.230 12 60 0.230 15 mr r k mθ − = − = − − − 0.33455 m= 335 mmr = ( ): 2F ma F m r rθ θ θ θ θΣ = = + 2 F r r m θ θ θ= − ( )( )( ) 9 0 1.304 m/s 2 2 0.230 15 F mr r m θ θ θ − − = = = (b) Radial component of velocity. rv r= 1.304 m/srv =
  • 86. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 73. At point A. 2 2 2(3.8) 115.52 m/s 0.125 = = =n v a ρ 125 tan 22.62 175 125 = − = − ° + θ θ + : cos22.6Σ = ° =s tF ma F ma 2cos22.6 70cos22.62 43.077 m/s 1.5 s t F a m ° ° = = = Acceleration vector. 2 2 n ta a a= + 2 2 2 115.52 43.077 123.29 m/s= + = 115.52 tan 43.077 φ = 69.55φ = ° 22.62 46.93φ − ° = ° cos46.93ra a= ° 2 123.29cos46.93 84.2 m/s= ° = in negative r-direction 2 84.2 m/sra = − sin 46.93a aθ = ° 123.29sin 46.93= ° 2 90.1 m/saθ = Draw the free body diagram of the collar.
  • 87. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 74. Let r and θ be polar coordinates of block A as shown, and let By be the position coordinate (positive downward, origin at the pulley) for the rectilinear motion of block B. Constraint of cable: constant,Br y+ = 0, 0 orB B Br v r a r a+ = + = = − (1) For block A, + : cos or sec (2)A A x A A A A W W F m a T a T a g g θ θΣ = = = For block B, : (3)B B y B B B W W F a W T a g g Σ = − = Adding Eq. (1) to Eq. (2) to eliminate T, secA B B A B W W W a a g g θ= + (4) Radial and transverse components of .Aa Use either the scalar product of vectors or the triangle construction shown, being careful to note the positive directions of the components. 2 cosr A r Ar r a aθ θ− = = ⋅ = −a e (5) Noting that initially 0,θ = using Eq. (1) to eliminate ,r and changing signs gives cosB Aa a θ= (6) Substituting Eq. (6) into Eq. (4) and solving for ,Aa ( )( ) 250 32.2 17.991 ft/s sec cos 40sec30 50cos30 B A A B W g a W Wθ θ = = = + ° + ° From Eq. (6), 2 17.991cos30 15.581 ft/sBa = ° = (a) From Eq. (2), ( )( )40/32.2 17.991 sec30 25.81T = ° = 25.8 lbT = (b) Acceleration of block A. 2 17.99 ft/sA =a (c) Acceleration of block B. 2 15.58 ft/sB =a
  • 88. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 75. Let r and θ be polar coordinates of block A as shown, and let By be the position coordinate (positive downward, origin at the pulley) for the rectilinear motion of block B. Radial and transverse components of .Av Use either the scalar product of vectors or the triangle construction shown, being careful to note the positive directions of the components. cos30 6cos30 5.19615 ft/s r A r Ar v v= = ⋅ = − ° = − ° = − v e sin30 6sin30 3 ft/s A Ar v vθ θθ = = ⋅ = − ° = ° = v e 3 1.25 rad/s 2.4 v r θ θ = = = Constraint of cable: constant,Br y+ = 0, 0 orB B Br v r a r a+ = + = = − (1) For block A, + : cos or secA A x A A A A W W F m a T a T a g g θ θΣ = = = (2) For block B, :B B y B B B W W F a W T a g g Σ = − = (3) Adding Eq. (1) to Eq. (2) to eliminate T, secA B B A B W W W a a g g θ= + (4) Radial and transverse components of .Aa Use a method similar to that used for the components of velocity. 2 cosr A r Ar r a aθ θ− = = ⋅ = −a e (5) Using Eq. (1) to eliminate r and changing signs gives 2 cosB Aa a rθ θ= − (6)
  • 89. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Substituting Eq. (6) into Eq. (4) and solving for ,Aa ( ) ( ) ( )( )22 2 50 32.2 2.4 1.25 20.086 ft/s sec cos 40sec30 50cos30 B A A B W g r a W W θ θ θ  ++   = = = + ° + ° From Eq. (6), ( )( )2 2 20.086cos30 2.4 1.25 13.645 ft/sBa = ° − = (a) From Eq. (2), ( )( )40/32.2 20.086 sec30 28.8T = ° = 28.8 lbT = (b) Acceleration of block A. 2 20.1 ft/sA =a (c) Acceleration of block B. 2 13.65 ft/sB =a
  • 90. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 76. Since the particle moves under a central force, constant.h = Using Eq. (12.27), 2 0 0 0h r h r vθ= = = or 0 0 0 0 0 2 2 00 cos2 cos2 r v r v v rr r θ θ θ= = = Radial component of velocity. ( ) 0 0 3/ 2 sin 2 cos2 cos2 r dr d r v r r d d θ θ θ θ θ θ θ θ   = = = =    ( ) 0 0 3/ 2 sin 2 cos2 cos2 v r r θ θ θ = 0 sin 2 cos2 rv v θ θ = Transverse component of velocity. 0 0 0 cos2 h r v v r r θ θ= = 0 cos2v vθ θ=
  • 91. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 77. Since the particle moves under a central force, constant.h = Using Eq. (12.27), 2 0 0 0h r h r vθ= = = or 0 0 0 0 2 2 00 cos2 cos2nr v r v v rr r θ θ θ= = = Differentiating the expression for r with respect to time, ( ) ( ) 0 0 0 0 03/ 2 3/ 2 0 sin 2 sin 2 sin 2 cos2 cos2 cos2cos2 cos2 dr d r v r r r v d d r θ θ θ θ θ θ θ θ θ θ θθ θ   = = = = =    Differentiating again, ( ) 2 2 2 2 2 0 0 0 3/ 2 0 sin 2 2cos 2 sin 2 2cos 2 sin 2 cos2 cos2cos2 dr d v r v v d d r θ θ θ θ θ θ θ θ θ θ θ θθ + +  = = = =    (a) 0 0 0 sin2 sin 2 cos2 r v r v r v r θ θ θ = = = 0 0 cos2 v r v r r θ θ θ= = ( ) ( )2 2 2 20 0 sin 2 cos 2r v r v v v r θ θ θ= + = + 0 0 v r v r = 2 2 2 2 2 20 0 0 2 0 0 2cos 2 sin 2 cos 2 cos2 cos2 r v r v a r r r r θ θ θ θ θ θ + = − = − 2 2 2 2 0 0 0 2 0 00 cos 2 sin 2 cos2 cos2 v v v r r rr θ θ θ θ + = = = 2 0 2 0 :r r mv r F ma r = = 2 0 2 0 r mv r F r = Since the particle moves under a central force, 0aθ = continued
  • 92. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Magnitude of acceleration: 2 2 2 0 2 0 r v r a a a r θ= + = Tangential component of acceleration. 2 0 0 0 2 0 0 0 sin 2t dv d v r v v r a r dt dt r r r θ   = = = =    Normal component of acceleration. 2 2 22 20 0 2 2 0 0 cos2 1 sin 2t t v r v r a a a r r θ θ= − = − = But 2 0 cos 2 r r θ   =     Hence, 2 0 n v a r = (b) But 22 2 2 0 2 2 0 0 orn n v v v r r a a r v ρ ρ = = = ⋅ 3 2 0 r r ρ =
  • 93. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 78. Since the particle moves under a central force, constant.h = Using Eq. (12.27), 2 0 0 0h r h r vθ= = = or 0 0 0 0 0 2 2 22 00 coscos r v r v v r rr θ θθ = = = Radial component of velocity. ( ) ( )0 0cos sinr d v r r r dt θ θ θ= = = − Transverse component of velocity. ( )0 cosv r rθ θ θ θ= = Speed. 2 2 0 0 0 2 0 cos r r v v v v r r θ θ θ = + = = 0 2 cos v v θ =
  • 94. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 79. Since the particle moves under a central force, constanth = Using Eq. (12.27), 2 0 0 0h r h r vθ= = = 0 0 0 0 0 2 2 22 00 coscos r v r v v r rr θ θθ = = = Radial component of velocity. ( ) ( )0cos sinr o d v r r r dt θ θ θ= = = − Transverse component of velocity. ( )0 cosv r rθ θ θ θ= = Speed. 2 2 0 0 0 0 2 2 0 cos cos r r v v v v v r r θ θ θ θ = + = = = Tangential component of acceleration. ( )( ) 2 0 0 0 0 3 3 2 5 0 0 2 sin 2 sin 2 sin cos cos cos cos t dv v v v a v dt r r θ θ θ θ θ θ θ θ − − = = = ⋅ = Tangential component of force. 2 0 5 0 2 sin : cos t t t mv F ma F r θ θ = = (a) 0, 0tFθ = = 0tF = (b) 0 5 2 sin 45 45 , cos 45 t mv Fθ ° = ° = ° 2 0 0 8 t mv F r =
  • 95. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 80. For gravitational force and a circular orbit, 2 2 orr GMm mv GM F v r rr = = = Let τ be the periodic time to complete one orbit. 2 or 2 GM v r r r τ π τ π= = Solving for ,τ 3/ 2 2 r GM π τ = But, 3 3/ 24 , hence 2 3 3 M R GM G R π π ρ ρ= = Then, 3/ 2 3 r G R π τ ρ   =     Using 3r R= as given leads to 3/ 2 3 3 9 G G π π τ ρ ρ = = ( )1/ 2 9 /Gτ π ρ=
  • 96. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 81. For gravitational force and a circular orbit, 2 2 orr GMm mv GM F v r rr = = = Let τ be the period time to complete one orbit. But 2 2 2 2 2 2 or 4 GM v r v r r τ τ π τ π= = = Then 1/3 2 2 3 2 2 or 4 4 GM GM r r τ τ π π   = =      Data: 3 23.934 h 86.1624 10 sτ = = × (a) In SI units: 2 6 9.81 m/s , 6.37 10 mg R= = × ( )( ) 2 2 6 12 3 2 9.81 6.37 10 398.06 10 m /sGM gR= = × = × ( )( ) 1/3 2 12 3 6 2 398.06 10 86.1624 10 42.145 10 m 4 r π   × × = = ×     altitude 6 35.775 10h r R= − = × 35800 kmh = In US units: 2 6 32.2 ft/s , 3960 mi 20.909 10 ftg R= = = × ( )( ) 2 2 6 15 3 2 32.2 20.909 10 14.077 10 ft /sGM gR= = × = × ( )( ) 1/3 2 15 3 6 2 14.077 10 86.1624 10 138.334 10 ft 4 r π   × × = = ×     altitude 6 117.425 10 fth r R= − = × 22200 mih =
  • 97. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (b) In SI units: 12 3 6 398.06 10 3.07 10 m/s 42.145 10 GM v r × = = = × × 3.07 km/sv = In US units: 15 3 6 14.077 10 10.09 10 ft/s 138.334 10 GM v r × = = = × × 3 10.09 10 ft/sv = ×
  • 98. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 82. For gravitational force and a circular orbit, 2 2 orr GMm mv GM F v r rr = = = Let τ be the periodic time to complete one orbit. 2 or 2 GM v r r r τ π τ π= = from which 2 3 2 4 r GM π τ = But 2 3 2 2 2 4 , hence, r GM gR g R π τ = = (1) Solving for ,r 1/ 3 2 2 2 4 gR r τ π   =      Data: 9 417,000 mi 2.202 10 ftr = = × 6 44,400 mi 234.4 10 ftR = = × 3 3.551 days 85.224 h 306.8 10 sτ = = = × Using (1), ( ) ( ) ( ) 3 2 9 2 2 2 3 6 4 2.202 10 81.5 ft/s 306.8 10 234.4 10 g π × = = × × 2 81.5 ft/sg =
  • 99. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 83. Let M be the mass of the sun and m the mass of Venus. For the circular orbit of Venus, 2 2 2 n GMm mv ma GM rv rr = = = where r is radius of the orbit. Data: 6 9 67.2 10 mi 354.8 10 ftr = × = × 3 3 78.3 10 mi/h 114.84 10 ft/sv = × = × ( )( ) 2 9 3 21 3 2 354.8 10 114.84 10 4.6792 10 ft /sGM = × × = × (a) Mass of sun. 21 3 2 9 4 4 4.6792 10 ft /s 34.4 10 ft /lb s GM M G − × = = × ⋅ 27 2 136.0 10 lb s /ftM = × ⋅ (b) At the surface of the sun, 3 9 432 10 mi 22.81 10 ftR = × = × 2 GMm mg R = ( ) 21 2 2 9 4.6792 10 22.81 10 GM g R × = = × 2 899 ft/sg =
  • 100. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 84. For gravitational force and a circular orbit, 2 2 orr GMm mv GM F v r rr = = = But 2 3 2 2 2 , hence, or 4 r r GM GM v r r π π τ τ τ π = = = Solving for r, 1/ 3 2 2 (1) 4 GM r τ π   =      ( ) 1/31/3 222 2 2 2 44 GMGM v GM r GM ππ τ τ     = = =        1/ 3 2 (2) GM v π τ   =     For earth: 6 2 6.37 10 m, 9.81 m/sR g= × = ( )( ) 2 2 6 12 3 2 9.81 6.37 10 398.06 10 m /sGM gR= = × = × For Jupiter: ( )( )12 15 319 398.06 10 126.98 10GM = × = × (a) For Ganymede: 3 7.15 days 171.6 h 617.76 10 sτ = = = × By Eq. (1), ( )( ) 1/ 3 2 15 3 9 2 126.98 10 617.76 10 1.071 10 m 4 r π   × × = = ×     6 1.071 10 kmr = × (b) For Callisto: 6 16.69 days 400.56 h 1.4420 10 sτ = = = × By Eq. (2), ( ) 1/ 3 12 3 6 2 126.98 10 8.209 10 m/s 1.4420 10 v π ×  = = ×  ×   8.21 km/sv =
  • 101. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 85. For gravitational force and a circular orbit, 2 2 orr GMm mv GM F v r rr = = = Let τ be the periodic time to complete one orbit. 2 or 2 GM v r r r τ π τ π= = Solving for r, 1/3 2 2 4 GM r τ π   =      For earth, 6 2 6370 km 6.37 10 m, 9.81 m/sR g= = × = ( )( ) 2 2 6 12 3 2 9.81 6.37 10 398.06 10 m /sGM gR= = × = × Data: 120 min 7200 sτ = = ( )( ) 1/ 3 212 6 2 398.06 10 7200 8.055 10 m 4 r π  ×  = = ×     (a) altitude 6 1.685 10 mh r R= − = × 1685 kmh = (b) 6 6 6.37 10 cos 0.7908 8.055 10 R r θ × = = = × 37.74θ = ° ( )( )75.48 72002 1509.6 s 360 360 ABt θ τ= = = ° 25.2 minABt =
  • 102. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 86. 2 2n n GMm GM ma a r r = = ( )( )9 4 4 21 2 34.4 10 ft /lb s 5.03 10 lb s /ftGM − = × ⋅ × ⋅ 12 3 2 173.032 10 ft /s= × (a) At the surface of the moon, na g= 6 1080 mi 5.7024 10 ftr R= = = × ( )( ) ( ) 9 4 4 21 2 2 2 6 34.4 10 ft /lb s 5.03 10 lb s /ft 5.7024 10 ft GM g R − × ⋅ × ⋅ = = × 2 5.32 ft/sg = (b) Orbit of space vehicle. 6 1080 200 1280 mi 6.7584 10 ftr = + = = × 2 2n v GM a r r = = GM v r = 3/2 2 2r r v GM π π τ = = ( ) 3/2 6 3 12 2 6.7584 10 8.3923 10 s 173.032 10 π τ × = = × × 2.33 hτ =
  • 103. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 87. 2 2 n GMm mv ma rr = = 2 GM v r = 2 r v π τ = 2 2 2 4 r GM r π τ = 3 2 2 constant 4 r GM τ π = = Tethys: 3 6 183.3 10 mi 967.8 10 ftr = × = × 3 1.888 days 163.12 10 sτ = = × ( ) ( ) 3 6 15 3 2 2 2 3 967.8 10 34.068 10 ft /s 4 163.12 10 GM π × = = × × Rhea: 3 4.52 days 390.53 10 sτ = = × 3 2 2 4 GM r τ π = ( )( ) 2 15 3 27 3 34.068 10 390.53 10 5.1958 10 ft= × × = × (a) 9 1.732 10 ftr = × 3 328 10 mir = × (b) Mass of Saturn. 2 2 4 4 GM M G π π   =     ( )2 15 24 9 4 34.068 10 39.1 10 34.4 10 π − × = = × × 24 2 39.1 10 lb s /ftM = × ⋅
  • 104. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 88. Parabola AB. 6 6370 km 6.37 10 mR = = × 6 6370 960 7330 km 7.33 10 mAr = + = = × 6 6370 8300 14670 km 14.67 10 mBr = + = = × ( )A A B Bmr v mr v θ = ( ) ( )( )6 3 3 6 7.33 10 10.4 10 5.196 10 m/s 14.67 10 A A B B r v v rθ × × = = = × × 0, 0A Ax y= = 6 14.67 10 mB Bx r= = × 6 7.33 10 mB Ay r= = × For a parabolic trajectory, 2 y kx= from which 2 B B y k x = Differentiating with respect to x, 2 2 2 B B dy y x kx dx x = = At point B, ( )( )6 6 2 7.33 102 tan 1.0000 14.67 10 B B dy y dx x φ × = = = = × 45φ = ° ( ) 3 35.196 10 7.349 10 m/s sin 45 sin 45 B B v v θ × = = = × ° ° 3 7.35 10 m/sB = ×v 45°
  • 105. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 89. For earth, 6 3960 mi 20.909 10 ftR = = × ( ) ( )( ) 2 2 6 15 3 2 earth 32.2 20.909 10 14.077 10 ft /sGM gR= = × = × For sun, ( ) ( )( )3 15 21 3 2 sun 332.8 10 14.077 10 4.6849 10 ft /sGM = × × = × For circular orbit of earth, 6 9 92.96 10 mi 490.8 10 ftEr = × = × ( ) 21 3sun 9 4.6849 10 97.70 10 ft/s 490.8 10 E E GM v r × = = = × × For transfer orbit AB, 6 9 , 141.5 10 mi 747.12 10 ftA E B Mr r r r= = = × = × ( ) ( )( )3 97.70 10 1.83 5280 107.36 ft/sA E A v v v= + ∆ = × + = A A B Bmr v mr v= ( )( )9 3 3 490.8 10 107.36 10 70.527 ft/s 747.12 10 A A B B r v v r × × = = = × For circular orbit of Mars, 6 9 141.5 10 mi = 747.12 10 ftMr = × × ( ) 21 3sun 9 4.6849 10 79.187 10 ft/s 747.12 10 M M GM v r × = = = × × Speed increase at B. ( ) 3 3 3 79.187 10 70.527 10 8.660 10 ft/sM BB v v v∆ = − = × − × = × ( ) 1.640 mi/sB v∆ =
  • 106. COSMOS: Complete Online Solutions Manual Organization System Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. Chapter 12, Solution 90. Circular orbits: GM v r = 6 1400 mi 7.392 10 ftAr = = × ( ) ( )( )9 21 3 61 34.4 10 5.03 10 4.8382 10 ft/s 7.392 10 Av − × × = = × × 6 1300 mi 6.864 10 ftBr = = × ( ) ( )( )9 21 3 62 34.4 10 5.03 10 5.0208 10 ft/s 6.864 10 Bv − × × = = × × (a) Transfer orbit AB. ( ) ( ) ( ) 3 3 2 1 4.8382 10 86 4.7522 10 ft/sA A A v v v= + ∆ = × − = × ( ) ( )2 1A A B Bmr v mr v= ( ) ( ) ( )( )6 3 32 31 7.392 10 4.7522 10 5.1178 10 ft/s 6.864 10 A A B B r v v r × × = = = × × ( ) 3 1 5.12 10 ft/sBv = × (b) Speed change at B. ( ) ( ) ( ) 3 3 2 1 5.0208 10 ft/s 5.1178 10 ft/s 97.0 ft/sB B Bv v v∆ = − = × − × = − Speed reduction at B. 97.0 ft/sBv∆ =