SlideShare a Scribd company logo
1 of 155
CORPORATE TRAINING
AND PLANNING
INJECTION MOULDING
CORPORATE TRAINING
AND PLANNING
Historical Background
• A single-action hydraulic injection machine was
designed in the U.S.A. in 1870 by Hyatt
• Heating-cylinder design was first recognised in a
patent issued to Adam Gastron in 1932.
• Large-scale development of injection moulding
machinery design towards the machines we
know today did not occur until the 1950's in
Germany
CORPORATE TRAINING
AND PLANNING
Injection Moulding Process
– Over View
Solid Wide neck, Flat Product is made
like bucket, cabinets, Automobile &
Industrial parts etc…. by injecting
molten thermoplastic material in to a
closed mould which is relatively cool.
CORPORATE TRAINING
AND PLANNING
Type of Injection Moulding
Machine
• Hand Injection Moulding M/C
• Plunger type Injection Moulding M/C
• Reciprocating Screw Type Injection
Moulding M/C
CORPORATE TRAINING
AND PLANNING
Hand Injection Moulding Machine
vertical machine consists of Barrel, Plunger,
Band Heaters along with energy regulator, Rack
& Pinion system for Injecting the material by the
plunger, a torpedo and nozzle.
CORPORATE TRAINING
AND PLANNING
Plunger Type Injection
Moulding Machine
Vertical & Horizontal Plunger Type Injection Moulding Machine
CORPORATE TRAINING
AND PLANNING
The Reciprocating Screw
• The feeding zone
• The compressing (or transition) zone
• The metering zone
CORPORATE TRAINING
AND PLANNING
Machine components
CORPORATE TRAINING
AND PLANNING
The Injection Process
• Plasticises the material by reciprocating Screw.
• Injects the molten material to a closed mould
– via a channel system of gates and runners.
• Cools the Mould.
• Refills the material for the next cycle.
• Ejects the Product.
• Closes the Mould for further cycle.
CORPORATE TRAINING
AND PLANNING
Injection Moulded Items
CORPORATE TRAINING
AND PLANNING
Injection Moulded Items
CORPORATE TRAINING
AND PLANNING
Injection Moulded Items
CORPORATE TRAINING
AND PLANNING
Advantages of Injection
Moulding Process
• Parts can be produced at high production rates.
• Large volume production is possible.
• Relatively low labour cost per unit is obtainable.
• Process is highly susceptible to automation.
• Parts require little or no finishing.
• Many different surfaces, colours, and finishes are
available.
• Good decoration is possible.
• For many shapes this process is the most economical way
to fabricate.
• Process permits the manufacture of very small parts which
are almost impossible to fabricate in quantities by other
methods.
CORPORATE TRAINING
AND PLANNING
Advantages of Injection
Moulding Process
• Minimal scrap loss result as runners, gates, and rejects
can be reground and reused.
• Same items can be moulded in different materials,
without changing the machine or mould in some cases.
• Close dimensional tolerances can be maintained.
• Parts can be moulded with metallic and non-metallic
inserts.
• Parts can be moulded in a combination of plastic and
such fillers as glass, asbestos, talc and carbon.
• The inherent properties of the material give many
advantages such as high strength-weight rates,
corrosion resistance, strength and clarity.
CORPORATE TRAINING
AND PLANNING
Limitations of Injection Moulding
• Intense industry competition often results in low profit
margins.
• Mould costs are high.
• Moulding machinery and auxiliary equipment costs are
high.
• Lack of knowledge about the fundamentals of the
process causes problems.
• Lack of knowledge about the long term properties of the
materials may result in long-term failures.
CORPORATE TRAINING
AND PLANNING
Machine operation sequence
The mould closes and the screw begins moving forward for
injection.
The cavity fills as the reciprocating screw moves forward, as a
plunger.
CORPORATE TRAINING
AND PLANNING
Machine operation sequence
The cavity is packed as the screw continuously moves forward.
The cavity cools as the gate freezes off and the screw begins to
retract to plasticize material for the next shot.
CORPORATE TRAINING
AND PLANNING
Machine operation sequence
The mould opens for part ejection
The mould closes and the next cycle begins
CORPORATE TRAINING
AND PLANNING
Injection Mould
CORPORATE TRAINING
AND PLANNING
Mould system
A typical (three-plate) moulding system
CORPORATE TRAINING
AND PLANNING
A two-plate mould. A three-plate mould.
The moulded system includes a delivery system and moulded parts.
CORPORATE TRAINING
AND PLANNING
Screw Used in Injection Moulding Machines
The screw has three zones with a ring-plunger assembly. The Feed Zone,
where the plastic first enters the screw and is conveyed along a constant
root diameter; the Transition Zone, where the plastic is conveyed,
compressed and melted along a root diameter that increases with a constant
taper; and the Metering Zone, where the melting of the plastic is completed
and the melt is conveyed forward along a constant root diameter reaching a
temperature and viscosity to form parts.
CORPORATE TRAINING
AND PLANNING
L/D RATIO
• The L/D ratio is the ratio of the flighted length (Effective
Length) of the screw to its outside diameter.
• Most injection screws use a 20:1 L/D ratio. But it may
range from 18:1 to 24:1
• In the case of Thermoset it may range from 12:1 to 16:1.
CORPORATE TRAINING
AND PLANNING
High L/D Ratio results the following ….
• More shear heat can be uniformly generated in the
plastic without degradation;
• Greater the opportunity for mixing, resulting in a better
homogeneity of the melt.
• Greater the residence time of the plastic in the barrel
possibly permitting faster cycles of larger shots.
CORPORATE TRAINING
AND PLANNING
COMPRESSION RATIO (CR)
• The ratio of the first flight depth of feed zone to the last
flight depth of meter zone ,
Or,
• First Channel Volume of feed zone to last channel
volume of metering zone,
• Typically ranges from 1.5:1 to 4.5:1 for most
thermoplastic materials.
• Most injection screws classified as general purpose have
a compression ratio of 2.5:1 to 3.0:1.
• Thermo set screws have a 1:1 ratio.
CORPORATE TRAINING
AND PLANNING
Higher the CR results the following ….
• Greater shear heat imparted to the resin
• Greater heat uniformity of the melt
• High Potential for creating stresses in some
resins
• High energy consumption
CORPORATE TRAINING
AND PLANNING
Back Pressure (Kg/Cm2
or bar)
Back pressure is the amount of pressure
exerted by the material ahead of the
screw, as the screw is pushed back in
preparation for the next shot.
Effect of Back Pressure
• More Homogeneous Mix
• Proper Melting
• More compact
• Sometime leads degradation
CORPORATE TRAINING
AND PLANNING
Injection Speed (cm/Sec)
The injection speed is the forward
speed of the screw during its injection
operation per unit time.
Effect of Injection Speed
• Easy Injection of Material
• Avoid Short-Shot
• Some times leads more orientation & burn
marks
CORPORATE TRAINING
AND PLANNING
Screw Rotation Speed
The screw rotation speed (RPM) is the rate at which the
plasticizing screw rotates.
The faster the screw rotation result the following ..
• Faster the material is compressed by the screw flights
• Increasing the amount of shear heating
• Low residence time, some less melting
CORPORATE TRAINING
AND PLANNING
Cushion
The cushion is the difference in the final forward position
of the screw and its maximum allowable forward
position.
• More Cushion results more residence time, some time
degrades.
• If the screw were allowed to travel its full stroke and stop
mechanically against the nozzle, the cushion would be
zero.
• With zero Cushion no hold on works.
• Typically a cushion of 3 to 6 mm is used.
CORPORATE TRAINING
AND PLANNING
Materials for Injection Moulding
• Acrylonitrile butadiene styrene (ABS)
• Acetal
• Acrylic
• Polycarbonate (PC)
• Polyester
• Polyethylene
• Fluoroplastic
• Polyimide
• Nylon
• Polyphenylene oxide
• Polypropylene (PP) **
• Polystyrene (PS)
• Polysulphone
• Polyvinyl chloride (PVC)
CORPORATE TRAINING
AND PLANNING
CORPORATE TRAINING
AND PLANNING
Molecules lie in a definite fashion or regular arrangement
CORPORATE TRAINING
AND PLANNING
CORPORATE TRAINING
AND PLANNING
Molecules fall in Crystalline & amorphous pattern
CORPORATE TRAINING
AND PLANNING
Amorphous Polymer has
CORPORATE TRAINING
AND PLANNING
CORPORATE TRAINING
AND PLANNING
While flowing in the channel or cavity of the Mould. As the melt
touches the surface of the mould its viscosity increases
because of lowering of melt temperature, So it slides on the
Surface and the Molecules gets oriented
CORPORATE TRAINING
AND PLANNING
CORPORATE TRAINING
AND PLANNING
CORPORATE TRAINING
AND PLANNING
CORPORATE TRAINING
AND PLANNING
Non Newtonian Plastics
CORPORATE TRAINING
AND PLANNING
Non Newtonian Plastics
CORPORATE TRAINING
AND PLANNING
CORPORATE TRAINING
AND PLANNING
Newtonian Plastic
CORPORATE TRAINING
AND PLANNING
CORPORATE TRAINING
AND PLANNING
CORPORATE TRAINING
AND PLANNING
CORPORATE TRAINING
AND PLANNING
CORPORATE TRAINING
AND PLANNING
CORPORATE TRAINING
AND PLANNING
Broad Molecular weight Distribution shows broad
Melting Points
CORPORATE TRAINING
AND PLANNING
Narrow Molecular weight Distribution shows sharp Melting Points
CORPORATE TRAINING
AND PLANNING
Plastic Product Properties can change 10% or more by
changing Process Conditions
CORPORATE TRAINING
AND PLANNING
CORPORATE TRAINING
AND PLANNING
CORPORATE TRAINING
AND PLANNING
CORPORATE TRAINING
AND PLANNING
CORPORATE TRAINING
AND PLANNING
CORPORATE TRAINING
AND PLANNING
CORPORATE TRAINING
AND PLANNING
CORPORATE TRAINING
AND PLANNING
CORPORATE TRAINING
AND PLANNING
CORPORATE TRAINING
AND PLANNING
CORPORATE TRAINING
AND PLANNING
During Refilling
CORPORATE TRAINING
AND PLANNING
During Injection
CORPORATE TRAINING
AND PLANNING
CORPORATE TRAINING
AND PLANNING
CORPORATE TRAINING
AND PLANNING
CORPORATE TRAINING
AND PLANNING
Additive Function Examples
Filler increase bulk density calcium carbonate,
talc, limestone
Plasticizer improve processability,
reduce product brittleness
phthalate esters,
phosphate esters
Antioxidant prevent polymer oxidation phenols, aromatic
amines
Colorant provide desired part
application color
oil-soluble dyes,
organic pigments
Flame
retardant
reduce polymer flammability antimony trioxide
Stabilizer stabilize polymer against
heat or UV light
carbon black,
hydroxybenzophenone
Reinforcement improve strength E-glass, S-glass,
carbon, Kevlar fibers
CORPORATE TRAINING
AND PLANNING
TOGGLE TYPE CLAMPING
• A toggle is mechanically device to amplify force.
• In a moulding machine, which consists of two bars
joined, together end to end with a pivot .
• The end of one bar is attached to a stationary platen,
and the other end of a second bar is attached to the
movable platen.
• When the mould is open, the toggle is in the shape of a
V.
• When pressure is applied to the pivot, the two bars form
a straight line.
CORPORATE TRAINING
AND PLANNING
TOGGLE TYPE CLAMPING
CORPORATE TRAINING
AND PLANNING
ADVANTAGE
• Low cost and lower horsepower needed to run.
• Positive clamp of the mould
DISADVANTAGE
• Do not read the clamp force.
• Clamping is more difficult.
• Higher maintenance as lubricant is provided.
TOGGLE TYPE CLAMPING
CORPORATE TRAINING
AND PLANNING
HYDRAULIC CLAMPING
• A clamping unit actuated by hydraulic cylinder, which is
directly connected to the moving, closed the mould. In
this case ram of hydraulic system is attached to moving
platen. There are two halves in hydraulic cylinder, which
is actually inlet and outlet of oil.
• When oil goes to the cylinder with pressure oil pushes
the ram to forward direction by which moving platen
moves and mould closed and when oil comes from the
cylinder the ram come back and mould is open.
CORPORATE TRAINING
AND PLANNING
HYDRAULIC CLAMPING
CORPORATE TRAINING
AND PLANNING
ADVANTAGE
• Clamp speed easily controlled and stopped at any point.
• Direct a read out of clamp force.
• Easy adjustment of clamped force and easy mould set
up.
• Low maintenance as part is self lubricated.
DISADVANTAGE
• It is higher cost and more expensive than toggle
system.
• None positive clamp.
HYDRAULIC CLAMPING
CORPORATE TRAINING
AND PLANNING
TIE-BAR LESS CLAMPING
• Tie-Bar less clamping system is basically Hydraulic
clamping system without any tie bar.
• The platen is moved on a rail system.
• The main advantage of this system there is no limitation
of mould platen size.
• As there is no tie bar so the mould dimension is not so
important.
• Also mounting of the mould is easy and it is very useful
when products eject from the mould is manual.
CORPORATE TRAINING
AND PLANNING
TIE-BAR LESS CLAMPING
CORPORATE TRAINING
AND PLANNING
TIE-BAR LESS CLAMPING
• Much larger mould mounting area.
• Larger stroke compared to the toggle type machines.
• Full machine capacity can be utilised.
• Smaller machines can mould larger components.
• Saves floor space.
• Saves electrical energy because of reduction in the size of machine.
• Has the capacity to reduce weight of the moulded component because tie-
bar stretching is not there.
• Machine becomes very flexible for future modification.
• Easy access to mould cavity's because of the absence of the tie bars.
• Robotic arm movement becomes easy.
• Fewer moving parts so lesser wear and tear so longer life for machines.
• Lower lubrication required.
• Removal of mould plates much simple.
• Greater stability.
CORPORATE TRAINING
AND PLANNING
Theoretical Calculation
CORPORATE TRAINING
AND PLANNING
Example 1: POM has an S.G. of 1.42. It is to be moulded in
an Injection Moulding Machine with a shot weight of 80 gms
(in PS).
This machine has a shot weight of 80 x 1.42 / 1.05 = 108.19
gms of POM.
Example 2: PP has an S.G. of 0.90. It is to be moulded in an
Injection Moulding Machine with a shot weight of 80 gms (in
PS).
This machine has a shot weight of 80 x 0.90 / 1.05 = 68.57
gms of PP.
CORPORATE TRAINING
AND PLANNING
Example 3: Figurines made of UPVC (S.G. 1.38) with a
combined weight of figurine plus runners of 40 gms. are to
be moulded. What size of machine is sufficient?
Shot weight in terms of PS = 40 x 1.05/1.38 = 30.43 gms.
Using the 85% guide line, the machine shot weight needed =
30.43/0.85 =35.80 gms.
Example 4: The same figurine in example 3 is to be moulded
in a big machine. What is the biggest machine that could be
used?
Using the 35% rule, the biggest machine that could be used
has a shot weight = 30.43/0.35 = 86.94 gms.
CORPORATE TRAINING
AND PLANNING
Projected area is calculated by multiplying
length times width.
Determining Projected Area
CORPORATE TRAINING
AND PLANNING
Projected Area = Length x Width
and multiplying that area by a clamp factor of between 2 and 8. Most
commonly factor 5 is used.
Clamp Force = Projected Area x 5
For every inch of depth the clamp force must be increased by
10%.
Determining Clamping Force
(Tonnes)
CORPORATE TRAINING
AND PLANNING
Example 5: What is the residence time of UPVC (S.G. 1.38) in a machine
with screw diameter of 55 mm, injection stroke of 250 mm, shot weight
(PS) of 567 g, and a cycle time of 10 s moulding shots weighing 260 g?
Volume of melt in the barrel is estimated to be two times the injection
volume = 2 * 3.1416 * 5.5 * 5.5 * 25 / 4 = 1188 cm3
Barrel residence time = 1188 * 1.38 * 10 / 260 = 63 s
Example 6: A GPPS cup of diameter 79 mm is to be moulded. The cup is
0.6 mm at its thinnest section. Find a conservative clamping force which
would be sufficient.
The projected area of the cup (and runner) is 3.1416 * 7.92 / 4 = 49 cm2.
This cup belongs to the thin wall domain. The conservative clamping force
is 0.62 * 49 = 30.4 tonnes.
CORPORATE TRAINING
AND PLANNING
Example 7: The same GPPS cup has a flow path length of 104 mm. Find
a more accurate clamping force needed.
Flow path to thickness ratio (L/T Ratio) = 104 / 0.6 = 173. From Figure 2,
at 0.6 mm wall thickness, the cavity pressure is 550 bar.
1 bar = 1.02 kg/cm2. The clamping force = 550 * 1.02 * 49 = 27,500 kg =
27.5 tonnes.
The above calculation has not accounted for viscosity. It turns out to be
still correct as the viscosity factor for GPPS is 1.0.
Example 8: The same cup as in the above example is to be made out of
ABS. Find the clamping force needed.
Using the viscosity factor of 1.5, the clamping force needed = 1.5 * 27.5
tonnes = 41.3 tonnes.
CORPORATE TRAINING
AND PLANNING
Plastic flow
(a)Simple shear flow.
(b)Simple extensional flow.
(c) Shear flow in cavity filling.
(d) Extensional flow in cavity filling.
CORPORATE TRAINING
AND PLANNING
where
CORPORATE TRAINING
AND PLANNING
When Plastics flow in the cavity, the pressure decreases along
the delivery system and the cavity
CORPORATE TRAINING
AND PLANNING
Injection pressure as a function of melt viscosity, flow length,
volumetric flow rate, and part thickness
CORPORATE TRAINING
AND PLANNING
Setting Machine Process Conditions
1 Set the melt temperature
2 Set the mold temperature
3 Set the switch-over position
4 Set the screw rotation speed
5 Set the back pressure
6 Set the injection pressure to the machine maximum
7 Set the holding pressure at 0 MPa
8 Set the injection velocity to the machine maximum
9 Set the holding time
10 Set ample remaining cooling time
CORPORATE TRAINING
AND PLANNING
Setting Machine Process Conditions
11 Set the mold open time
12 Mold a short-shot series by increasing injection volume
13 Switch to automatic operation
14 Set the mold opening stroke
15 Set the ejector stroke, start position, and velocity
16 Set the injection volume to 99% mold filled
17 Increase the holding pressure in steps
18 Minimize the holding time
19 Minimize the remaining cooling time
CORPORATE TRAINING
AND PLANNING
Basic Process Factors in Injection
Moulding
• Material Parameters
– Amorphous, Semicrystalline, Blends and Filled Systems
– Pressure-Volume-Temperature (PVT) Behaviour
– Viscosity
• Geometry Parameters
– Wall Thickness of Part
– Number of Gates
– Gate Location
– Gate Thickness and Area
– Type of Gates: Manually or Automatically Trimmed
– Constraints from Ribs, Bosses and Inserts
• Manufacturing Parameters
– Fill Time
– Packing Pressure Level
– Mold Temperature
– Melt Temperature
CORPORATE TRAINING
AND PLANNING
Residual stress
The development of residual flow stresses due to frozen-in molecular
orientation during the filling and packing stages. (1) High cooling, shear,
and orientation zone (2) Low cooling, shear, and orientation zone
CORPORATE TRAINING
AND PLANNING
CORPORATE TRAINING
AND PLANNING
Process Controls
Injection Moulding cycle can be broken down into four
phases:
• Fill,
• Pack,
• Hold, and
• Cooling/plastication
These phases can be controlled by following variables:
• Injection Speed,
• Plastic Temperature,
• Plastic Pressure,
• Cooling Temperature and Time.
CORPORATE TRAINING
AND PLANNING
CORPORATE TRAINING
AND PLANNING
CORPORATE TRAINING
AND PLANNING
Cycle time in injection moulding
CORPORATE TRAINING
AND PLANNING
CORPORATE TRAINING
AND PLANNING
Post Moulding Operation
• Heat inserting
• Chrome Plating
• In Mould Insert Moulding
• Post Mould Inserting
• Drilling
• Polishing
• Assembly
CORPORATE TRAINING
AND PLANNING
Secondary operations
• Bonding
• Welding
• Inserting
• Staking
• Swaging
• Assembling with fasteners
CORPORATE TRAINING
AND PLANNING
Secondary operations
• Appliqué: a surface covering applied by heat and
pressure
• Printing: a process of making a mark or impression onto
a substrate for decorative or informational purposes.
• Painting
• Hard coating
• Metallizing/shielding
• Surface treatment
• Annealing
• Machining
CORPORATE TRAINING
AND PLANNING
Benefits of Post Moulding Operations
• Reduced costs – by carrying out post moulding operations in
house, and utilising lean manufacturing tools, we can greatly reduce
component costs and the complexity of work that our customers
would ordinarily undertake.
• High level of quality – performing post-moulding operations on
products helps ensure that a high level of quality is maintained. By
checking parts from the moment they leave a press, to final
assembly, quality levels can be maintained and ensure that
components are only assembled to the highest standards.
• Reduction of Customer’s stock holding – Assembly of
components will reduce the cost of customers stock holding due to
delivery of an assembly rather than a range of components.
• Reduced production times – post moulding operations mean there
is very little time between the production of components and their
assembly. This means that a great deal of time can be saved when
components would normally be transported, or stored, in between
moulding and assembly operations.
CORPORATE TRAINING
AND PLANNING
Heat inserting is the addition
of inserts into a part
increases the functionality of
a part by which components
can be assembled.
CORPORATE TRAINING
AND PLANNING
Benefits of Heat Inserting
• Increased functionality – by adding inserts to
mouldings the part can more easily be used for its
designed purpose. For example by adding threaded
inserts parts can be easily be screwed to their fixings or
other parts, increasing their functionality.
• Low part degradation – the process of heat inserting
means that the heating/melting of the part is very
localised to where the insert will be pressed in. this
means that parts do not suffer warping, or any other
distortion effects, due to being heated again.
• High level of quality – due to the known challenges
with heat inserting extra measures are taken to ensure
the processes is repeated to as high a level as possible,
meaning part quality is kept very high.
CORPORATE TRAINING
AND PLANNING
Chrome Plating
Due to the chrome plating process requiring the
part to be electrically conductive, a series of steps
are required before the chrome can be deposited
onto the surface of the product.
CORPORATE TRAINING
AND PLANNING
Benefits of Chrome Plating
• Metal finish - Metal finishes can be very popular and, by
coating plastics, advantage can be taken of
characteristics from both materials.
• Wear resistant – as chrome is a metal rather than a
plastic its wear resistance properties are much greater
than those of the plastic it covers. This means for
applications where a part might be handled repeatedly,
such as a shower handset, a chrome finish is likely to
wear better than its plastic counterpart.
• Electrically conductive parts – by chrome or nickel
plating a part it is possible to give a plastic component the
ability to conduct electricity. This gives the advantage of
being able to create electrical components that are light
weight and less costly to produce than completely metal
parts.
• Attractive mouldings – by applying chrome finish to
mouldings a
CORPORATE TRAINING
AND PLANNING
In Mould Insert Moulding
In mould insert moulding is the process by
which a metal, or preformed plastic, insert is
incorporated in to the component during the
moulding stage.
CORPORATE TRAINING
AND PLANNING
Benefits Of In Mould Insert Moulding
• Reduced post-moulding operations – With in mould insert moulding the
need for post moulding operations is greatly reduced. This helps with ease
of assembly and reduces the labour necessary for products.
• Increased part consistency – Insert Moulding has major benefits in the
consistency of parts produced. As the inserts are placed in the same
locations in tools for every cycle each of the mouldings produced will be
exactly the same. This helps reduce costs, as rejected parts will be kept to a
minimum.
• Ease of assembly – Due to inserts being incorporated into parts during the
moulding stage this eases the assembly of the part. Instead of having to
place fittings to attach parts fittings can be incorporated during the moulding
stage so that parts can be simply clipped together.
• Reduced production time – when vertical moulding machines, that are
equipped with a rotary table, are used for production there is the opportunity
to have two halves of the lower part of the tool. This means that production
is almost constant with mouldings being formed at the same time as fresh
inserts are being loaded into the second half of the tool. This lowers overall
production times and can also reduce the amount of labour needed.
CORPORATE TRAINING
AND PLANNING
Post Mould Inserting
Post mould inserting is the process by which a
metal, or preformed plastic, insert is
incorporated into a moulding by means of a
secondary process once the component has
already been moulded.
CORPORATE TRAINING
AND PLANNING
Benefits of Post Mould Inserting
• Ease of assembly – by adding inserts to a moulding the ease by
which it can be assembled is greatly increased. Inserts such as clips
or screw bolts can be incorporated into mouldings which greatly
assist assembly operations and subsequent product performance.
• Increased part functionality – besides adding inserts to aid
assembly inserts that improve a parts functionality can also be used.
For example, terminal fittings for wires, or seals to make parts
watertight.
• Increased component value – any second operation carried out on
a part will add value to it. By adding inserts to help assembly or
increase functionality, product value will be raised. This helps to
compensate for the extra time involved in second operations and
ensure products remain cost effective.
• Good part consistency – to carry out post mould inserting jigs are
used to hold mouldings while they are inserted. This means that the
repeatability of the operation is very good and all parts inserted will
be of the same quality.
CORPORATE TRAINING
AND PLANNING
Drilling
The drilling of parts is used to remove any
unnecessary polymer that may have been
necessary in the moulding process. By
removing this extra material in house it
means a ready-to-assemble moulding can
be provided to the customer, or the part can
be assembled with other mouldings.
CORPORATE TRAINING
AND PLANNING
Polishing
For products that have a high quality gloss finish a
post moulding polishing operation is often a useful
extra process. Even though the finish produced by
the moulding tool may be of a very high quality, a
polishing operation to remove any dust from the
product before final packaging gives a part the
high gloss finish that will have been specified..
Polishing operations are carried out on a soft-
polishing wheel with high quality wax to ensure
that a part is polished to a perfect finish without
leaving any marks.
CORPORATE TRAINING
AND PLANNING
Assembly
For products that require assembly we are able to
carry out this operation in our assembly facility. We
can demonstrate examples of assemblies where
we mould all the separate components in house
and assemble the parts either as a whole in the
assembly facility or as a step by step process on
the press as each part is produced. By carrying out
assembly in house we can reduce costs for our
customers while still producing products to a high
standard.
CORPORATE TRAINING
AND PLANNING
Faults & Remedies
CORPORATE TRAINING
AND PLANNING
Sink Marks
Depression in a moulded part caused
by shrinking or collapsing of the resin
during cooling.
CORPORATE TRAINING
AND PLANNING
Sink Marks - Problems
• Resin feed inadequate
• Improper mould design.
• Parts cool too rapidly
• Rib section in part too wide.
• Temperature of mould
surface opposite rib too hot.
• Entrapped gas.
• Nozzle too restrictive,
• land length too long.
• Pressure too low.
• Mould temperature too low
or high
• Stock temperature too high
• Gate too small
• Improper gate location
• Nozzle and metering zone
temperatures too high.
• Excessive cooling time in
mould
• Unbalanced flow pattern.
• Bad check valve.
CORPORATE TRAINING
AND PLANNING
Jetting
Turbulence in the resin melt flow caused
by undersized gate, abrupt change in
cavity volume, or too high injection
pressure.
CORPORATE TRAINING
AND PLANNING
Jetting - Problems
• Excessive injection speed.
• Melt temperature too high.
• Melt temperature too low.
• mould Temperature too low.
• Nozzle opening too small.
• Gate and length too long.
• Sprue, runner, and/or gate size too small.
• Nozzle heating band malfunction.
• Inefficient gate location.
CORPORATE TRAINING
AND PLANNING
Splay Marks (Silver
Streaking, Splash Marks)
Marks or droplet type imperfections
formed on the surface of a finished
part.
CORPORATE TRAINING
AND PLANNING
Splay Marks (Silver Streaking,
Splash Marks) - Problems
• Obstruction in nozzle.
• Screw rpm too high.
• Back pressure too low.
• Melt temperature too
high.
• Nozzle too hot.
• Nozzle too small.
• Gates too small.
• Sprue too small.
• Insufficient venting.
• Burr in runner or gate.
• Cracked mould.
• Trapped volatiles.
• Excessive moisture.
• Resin contaminated.
• mould cavity
contamination.
• Excessive shot size.
CORPORATE TRAINING
AND PLANNING
Blush
Discoloration generally appearing at
gates, around inserts, or other
obstructions along the flow path. Usually
indicates weak points.
CORPORATE TRAINING
AND PLANNING
Blush - Problems
• mould temperature too cold
• Injection fill speed too fast
• Melt stock temperature too high or too low.
• Improper gate location
• Sprue and nozzle diameter too small.
• Nozzle temperature too low.
• Insufficient cold slug well.
• Sharp Corners in gate area
• Resin excessively moist.
• Inadequate injection pressure.
CORPORATE TRAINING
AND PLANNING
Burn Marks
Black marks or scorch marks on surface
moulded part; usually on the side of the
part opposite the gate or in a deep cavity.
CORPORATE TRAINING
AND PLANNING
Burn Marks - Problems
• Excessive Injection speed
• Excessive injection
pressure.
• Inefficient mould
temperature.
• Excessive amount of
volatiles due to improper
Venting.
• Improper gate location
• Front zone temperature too
high.
• Screw speed too high.
• Excessive back pressure.
• Compression ratio of screw
too high.
• Faulty temperature
controllers.
• Frictional burring--gates too
small
• Dead material hung up on
screw or nozzle.
• Melt stock temperature too
high or too low.
• Nozzle diameter too small
• Over-heated heater band
• Incorrect screw rpm.
CORPORATE TRAINING
AND PLANNING
Poor Weld Lines (Knit Lines)
Inability of two melt fronts to knit together
in a homogeneous fashion during the
moulding process, resulting in weak areas
in the part of varying severity.
CORPORATE TRAINING
AND PLANNING
Poor Weld Lines - Problems
• Material too cold.
• Injection speed too slow
• Entrapment of air at weld
line.
• Improper mould design.
• Contamination of poorly
dispersed pigments.
• Core shifting.
• mould temperature to low.
• Injection speed too slow.
• Melt stock temperature to
low.
• Injection pressure too low.
• Insufficient mould venting
• Cylinder temperature too
low.
• Injection back pressure too
low.
• Nozzle diameter too small.
• Excessive screw flights in
metering zone.
• Improper gate locations
and/or size.
• Distance from gate
excessive.
• Ineffective flow pattern.
• mould release agent (brittle
weld lines).
• Inadequate flow.
CORPORATE TRAINING
AND PLANNING
Voids (Bubbles)
An unfilled space of such size that it
scatters radiant energy such as light.
CORPORATE TRAINING
AND PLANNING
Voids - Problems
• Injection pressure too low
• Packing time too short
• Insufficient feed of material
• mould temperature too low.
• Injection speed too high
• Excessive cushion
• At the side of a rib; rib too thick.
• Runners or gate too small or badly
positioned.
CORPORATE TRAINING
AND PLANNING
Delamination (Skinning)
Surface of the finished part separates or
appears to be composed of layer of
solidified resin. Strata or fish scale type
appearance where the layers may be
separated.
CORPORATE TRAINING
AND PLANNING
Delamination - Problems
• Contamination of resin by additives or other
foreign materials.
• Resin temperature too low.
• Non-uniformity of resin temperature.
• Wrong mould temperature.
• Excessive material moisture.
• Inadequate injection speed.
• Sharp corners at gate.
• Incompatible polymers.
CORPORATE TRAINING
AND PLANNING
Flow Lines and Folds
Mark visible on the finished item that
indicate the direction of flow in the cavity.
CORPORATE TRAINING
AND PLANNING
Flow Lines and Folds - Problems
• Stock temperature too low.
• Runners too small
• Improper gate size and/or location.
• mould temperature too low.
• Inadequate cold slug well.
CORPORATE TRAINING
AND PLANNING
Excessive Warpage/
Shrinkage
Excessive dimensional change in a part
after processing, or the excessive
decrease in dimension in a part through
cooling.
CORPORATE TRAINING
AND PLANNING
Warpage / Shrinkage -Problems
• mould closed time too short.
• Inefficient injection forward
time.
• Ram speed too high or too
low.
• Injection and holding
pressure too high or low.
• Melt temperature
inadequate.
• Excessive nozzle and
metering zone temperatures.
• mould temperature too high
(for thick wall sections).
• Parts cool unevenly.
• Parts underpacked.
• Improper gate location.
• Gate too restrictive
• Unequal temperature
between mould halves.
• Non-uniform part ejection.
• Parts mishandled after
ejection.
• Unbalanced gates on
multiple gated part.
• Too many stresses in part.
CORPORATE TRAINING
AND PLANNING
Black Specks
Particles in the surface of an opaque part
and visible throughout a transparent part.
CORPORATE TRAINING
AND PLANNING
Black Specks - Problems
• Contamination of material.
• Holdup of molten resin moulding machine or mould
runner system.
• Press Contamination.
• Local over-heating in the injection cylinder.
• Defective closure of the nozzle.
• Oxidation by occluded air or inadequate air venting
• mould contains grease.
• Trapped air
• Inefficient injection speed.
CORPORATE TRAINING
AND PLANNING
Brittleness
Tendency of a moulded part to break,
crack, shatter, etc. under conditions which
it would not normally do so.
CORPORATE TRAINING
AND PLANNING
Brittleness - Problems
• mould temperature too high
• Inadequate cooling in gate area
• Gate section of item too thin (gate brittleness)
• Resin too cold.
• Non-uniformity of resin temperature.
• Undried material.
• Contamination.
• Poor part design.
• Material degraded.
• Non-compatible mould release.
• Packing the mould.
• Melt temperature too cold.
• Excessive amounts of regrind.
CORPORATE TRAINING
AND PLANNING
Brittleness - Problems
• Inadequate mould temperature
• Excessive screw rpm
• Excessive back pressure
• Insufficient venting.
• Improper gate location.
• Excessive injection speed.
• Excessive residence timed
• Melt temperature too high.
• Nozzle too hot.
• Injection pressure too low (weld lines).
• Runners and gates in adequate (weld lines).
• Dwell time in the injection cylinder too long (material degraded).
• Material degraded during drying or pre-heating
CORPORATE TRAINING
AND PLANNING
Flash
Excess plastic around the area of the
mould parting line on a moulded
part.
CORPORATE TRAINING
AND PLANNING
Flash - Problems
• mould parting surfaces do not seal properly.
• Injection pressure too high.
• Clamp pressure set too low or projected area
or item too large for clamp pressure of the
machine.
• Injection temperature too high.
• Feed needs adjustment.
• Hold time too long.
• Inadequate mould supports.
• Oversize vents.
CORPORATE TRAINING
AND PLANNING
Blister
Defect on the surface of a moulded part
caused by gases trapped within the part
during curing.
CORPORATE TRAINING
AND PLANNING
Blister - Problems
• Screw rpm too high
• Back pressure too low
• mould temperature too low.
• Gate improperly located
• Insufficient venting.
• Regrind too coarse
CORPORATE TRAINING
AND PLANNING
Crazing
Fine cracks in part surface. May
extend in a network over the surface
or through the part.
CORPORATE TRAINING
AND PLANNING
Crazing - Problems
• Insufficient drying of the material.
• Contamination.
• Injection temperature too high (crazing
accompanied by dis-coloring or yellowing).
• mould surface contaminated
• Inadequate injection speed.
• Inefficient injection forward time.
• Excessive injection pressure.
• mould temperature too low.
• Gate too large.
CORPORATE TRAINING
AND PLANNING
Cracking
Fracture of the plastic material in an
area around a boss, projection, or
moulded insert.
CORPORATE TRAINING
AND PLANNING
Cracking - Problems
• Parts cool too quickly
• moulded-in stress
• Wall thickness too heavy for compound.
CORPORATE TRAINING
AND PLANNING
Low Gloss
Surface roughness resulting from high
speed fill which causes surface wrinkling
as the polymer melt flows along the wall of
the mould.
CORPORATE TRAINING
AND PLANNING
Low Gloss - Problems
• Inadequate polish of mould surface.
• Material or mould too cold.
• Air entrapment.
• Melt index of material too low.
• Improper mould design.
• Wrong injection pressure.
• Excessive injection speed.
CORPORATE TRAINING
AND PLANNING
Low Gloss - Problems
• Inadequate flow.
• Contamination
• Resin excessively moist
• Sprue, runners, and/or gate size too
small.
• Pigment agglomerates.
• Oil or grease on knockout pins.
CORPORATE TRAINING
AND PLANNING
Short Shot
Injection of insufficient material
to fill the mould.
CORPORATE TRAINING
AND PLANNING
Short Shot - Problems
• Insufficient feed, cushion.
• Inadequate injection pressure.
• Inadequate injection speed.
• Insufficient booster or injection high-
pressure time.
• Inefficient screw delay.
• Inadequate injection back pressure.
• Melt temperature too low.
• Cylinder temperature inadequate.
• mould temperature too low.
CORPORATE TRAINING
AND PLANNING
Short Shot - Problems
• Gates, sprues, and/or runners too small.
• Excessive screw flights in metering zone.
• Insufficient venting.
• Improper gate location.
• Melt index of resin too low.
• Excessive clearance between non-return
valve and barrel.
• Screw bridging.
• Injection press of insufficient capacity.
CORPORATE TRAINING
AND PLANNING
THANK YOU

More Related Content

What's hot

Seminar on all electrical injection moulding machine main
Seminar on all electrical injection moulding machine mainSeminar on all electrical injection moulding machine main
Seminar on all electrical injection moulding machine main
anymona1991
 

What's hot (20)

Seminar on all electrical injection moulding machine main
Seminar on all electrical injection moulding machine mainSeminar on all electrical injection moulding machine main
Seminar on all electrical injection moulding machine main
 
Injection molding
Injection moldingInjection molding
Injection molding
 
Thin wall injection molding
Thin wall injection moldingThin wall injection molding
Thin wall injection molding
 
Blow molding
Blow moldingBlow molding
Blow molding
 
Injection moulding
Injection mouldingInjection moulding
Injection moulding
 
Extrusion blow molding
Extrusion blow moldingExtrusion blow molding
Extrusion blow molding
 
Extrusion Moulding Process
Extrusion Moulding  Process Extrusion Moulding  Process
Extrusion Moulding Process
 
Design for Plastics
Design for Plastics Design for Plastics
Design for Plastics
 
Transfer moulding
Transfer mouldingTransfer moulding
Transfer moulding
 
Rotational moulding
Rotational mouldingRotational moulding
Rotational moulding
 
Feed system
Feed systemFeed system
Feed system
 
Plastic injection moulding ppt
Plastic injection moulding pptPlastic injection moulding ppt
Plastic injection moulding ppt
 
Know about injection moulding copy
Know about injection moulding   copyKnow about injection moulding   copy
Know about injection moulding copy
 
Types of mould
Types of mould Types of mould
Types of mould
 
Injection moulding ppt
Injection moulding pptInjection moulding ppt
Injection moulding ppt
 
rotational molding (1).pptx
rotational molding (1).pptxrotational molding (1).pptx
rotational molding (1).pptx
 
Plastic moulding
Plastic mouldingPlastic moulding
Plastic moulding
 
Extrusion molding
Extrusion moldingExtrusion molding
Extrusion molding
 
Thermoforming
ThermoformingThermoforming
Thermoforming
 
Plastics processing Manual (CIPET JAIPUR)
Plastics processing Manual (CIPET JAIPUR)Plastics processing Manual (CIPET JAIPUR)
Plastics processing Manual (CIPET JAIPUR)
 

Similar to 2. injection moulding

Injection Moulding_TY(1)(1)(1).pdf
Injection Moulding_TY(1)(1)(1).pdfInjection Moulding_TY(1)(1)(1).pdf
Injection Moulding_TY(1)(1)(1).pdf
BramhanandUkey
 
seminar ppt 341.pptx
seminar ppt 341.pptxseminar ppt 341.pptx
seminar ppt 341.pptx
sivaenotes
 
Extrusion, DIrect and indirect Extrusoin Hot and Cold extrusion, Application ...
Extrusion, DIrect and indirect Extrusoin Hot and Cold extrusion, Application ...Extrusion, DIrect and indirect Extrusoin Hot and Cold extrusion, Application ...
Extrusion, DIrect and indirect Extrusoin Hot and Cold extrusion, Application ...
Muhammad Awais
 

Similar to 2. injection moulding (20)

Injection moulding
Injection mouldingInjection moulding
Injection moulding
 
Ijection Molding
Ijection MoldingIjection Molding
Ijection Molding
 
Industrial training (1).pptx
Industrial training (1).pptxIndustrial training (1).pptx
Industrial training (1).pptx
 
Blow molding Process
Blow molding ProcessBlow molding Process
Blow molding Process
 
4.blow_moulding.ppt
4.blow_moulding.ppt4.blow_moulding.ppt
4.blow_moulding.ppt
 
4.blow_moulding presentation.ppt
4.blow_moulding presentation.ppt4.blow_moulding presentation.ppt
4.blow_moulding presentation.ppt
 
Plastics
PlasticsPlastics
Plastics
 
Blow molding
Blow moldingBlow molding
Blow molding
 
Injection Moulding_TY(1)(1)(1).pdf
Injection Moulding_TY(1)(1)(1).pdfInjection Moulding_TY(1)(1)(1).pdf
Injection Moulding_TY(1)(1)(1).pdf
 
Plastic Molding presentation by Rashail-1.pptx
Plastic Molding presentation by Rashail-1.pptxPlastic Molding presentation by Rashail-1.pptx
Plastic Molding presentation by Rashail-1.pptx
 
Plastics processing Manual (CIPET JAIPUR)
Plastics processing Manual (CIPET JAIPUR)Plastics processing Manual (CIPET JAIPUR)
Plastics processing Manual (CIPET JAIPUR)
 
Industrial Training in Footwear Manufacturing Unit
Industrial Training in Footwear Manufacturing UnitIndustrial Training in Footwear Manufacturing Unit
Industrial Training in Footwear Manufacturing Unit
 
Plastic Processing .pptx
Plastic Processing .pptxPlastic Processing .pptx
Plastic Processing .pptx
 
Injection and Blow Molding
Injection and Blow MoldingInjection and Blow Molding
Injection and Blow Molding
 
seminar ppt 341.pptx
seminar ppt 341.pptxseminar ppt 341.pptx
seminar ppt 341.pptx
 
7. calendering process (1)
7. calendering process (1)7. calendering process (1)
7. calendering process (1)
 
Blow_Molding_2022.pptx
Blow_Molding_2022.pptxBlow_Molding_2022.pptx
Blow_Molding_2022.pptx
 
Blow_Molding_2022.pptx
Blow_Molding_2022.pptxBlow_Molding_2022.pptx
Blow_Molding_2022.pptx
 
Extrusion, DIrect and indirect Extrusoin Hot and Cold extrusion, Application ...
Extrusion, DIrect and indirect Extrusoin Hot and Cold extrusion, Application ...Extrusion, DIrect and indirect Extrusoin Hot and Cold extrusion, Application ...
Extrusion, DIrect and indirect Extrusoin Hot and Cold extrusion, Application ...
 
Pro E/Mold Design (Pro/MOLDESIGN)
Pro E/Mold Design (Pro/MOLDESIGN)Pro E/Mold Design (Pro/MOLDESIGN)
Pro E/Mold Design (Pro/MOLDESIGN)
 

More from Veer Singh (10)

Jig, fixture & guages theory
Jig, fixture & guages theoryJig, fixture & guages theory
Jig, fixture & guages theory
 
Limit, fit, tolerance
Limit, fit, tolerance   Limit, fit, tolerance
Limit, fit, tolerance
 
Type Of Non cutting Operations (Press Tool)
Type Of Non cutting Operations (Press Tool)Type Of Non cutting Operations (Press Tool)
Type Of Non cutting Operations (Press Tool)
 
Geometric dimensioning and tolerancing (GD&T)
Geometric dimensioning and tolerancing (GD&T)Geometric dimensioning and tolerancing (GD&T)
Geometric dimensioning and tolerancing (GD&T)
 
Dme mold base_std
Dme mold base_stdDme mold base_std
Dme mold base_std
 
Jig locatorss
Jig locatorssJig locatorss
Jig locatorss
 
Haas lathe programming manual
Haas lathe programming manualHaas lathe programming manual
Haas lathe programming manual
 
Die extrusion
Die extrusionDie extrusion
Die extrusion
 
Mould material & Alloy
Mould material & AlloyMould material & Alloy
Mould material & Alloy
 
EDM MACHINE
EDM MACHINEEDM MACHINE
EDM MACHINE
 

Recently uploaded

Recently uploaded (20)

Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 

2. injection moulding

  • 2. CORPORATE TRAINING AND PLANNING Historical Background • A single-action hydraulic injection machine was designed in the U.S.A. in 1870 by Hyatt • Heating-cylinder design was first recognised in a patent issued to Adam Gastron in 1932. • Large-scale development of injection moulding machinery design towards the machines we know today did not occur until the 1950's in Germany
  • 3. CORPORATE TRAINING AND PLANNING Injection Moulding Process – Over View Solid Wide neck, Flat Product is made like bucket, cabinets, Automobile & Industrial parts etc…. by injecting molten thermoplastic material in to a closed mould which is relatively cool.
  • 4. CORPORATE TRAINING AND PLANNING Type of Injection Moulding Machine • Hand Injection Moulding M/C • Plunger type Injection Moulding M/C • Reciprocating Screw Type Injection Moulding M/C
  • 5. CORPORATE TRAINING AND PLANNING Hand Injection Moulding Machine vertical machine consists of Barrel, Plunger, Band Heaters along with energy regulator, Rack & Pinion system for Injecting the material by the plunger, a torpedo and nozzle.
  • 6. CORPORATE TRAINING AND PLANNING Plunger Type Injection Moulding Machine Vertical & Horizontal Plunger Type Injection Moulding Machine
  • 7. CORPORATE TRAINING AND PLANNING The Reciprocating Screw • The feeding zone • The compressing (or transition) zone • The metering zone
  • 9. CORPORATE TRAINING AND PLANNING The Injection Process • Plasticises the material by reciprocating Screw. • Injects the molten material to a closed mould – via a channel system of gates and runners. • Cools the Mould. • Refills the material for the next cycle. • Ejects the Product. • Closes the Mould for further cycle.
  • 13. CORPORATE TRAINING AND PLANNING Advantages of Injection Moulding Process • Parts can be produced at high production rates. • Large volume production is possible. • Relatively low labour cost per unit is obtainable. • Process is highly susceptible to automation. • Parts require little or no finishing. • Many different surfaces, colours, and finishes are available. • Good decoration is possible. • For many shapes this process is the most economical way to fabricate. • Process permits the manufacture of very small parts which are almost impossible to fabricate in quantities by other methods.
  • 14. CORPORATE TRAINING AND PLANNING Advantages of Injection Moulding Process • Minimal scrap loss result as runners, gates, and rejects can be reground and reused. • Same items can be moulded in different materials, without changing the machine or mould in some cases. • Close dimensional tolerances can be maintained. • Parts can be moulded with metallic and non-metallic inserts. • Parts can be moulded in a combination of plastic and such fillers as glass, asbestos, talc and carbon. • The inherent properties of the material give many advantages such as high strength-weight rates, corrosion resistance, strength and clarity.
  • 15. CORPORATE TRAINING AND PLANNING Limitations of Injection Moulding • Intense industry competition often results in low profit margins. • Mould costs are high. • Moulding machinery and auxiliary equipment costs are high. • Lack of knowledge about the fundamentals of the process causes problems. • Lack of knowledge about the long term properties of the materials may result in long-term failures.
  • 16. CORPORATE TRAINING AND PLANNING Machine operation sequence The mould closes and the screw begins moving forward for injection. The cavity fills as the reciprocating screw moves forward, as a plunger.
  • 17. CORPORATE TRAINING AND PLANNING Machine operation sequence The cavity is packed as the screw continuously moves forward. The cavity cools as the gate freezes off and the screw begins to retract to plasticize material for the next shot.
  • 18. CORPORATE TRAINING AND PLANNING Machine operation sequence The mould opens for part ejection The mould closes and the next cycle begins
  • 20. CORPORATE TRAINING AND PLANNING Mould system A typical (three-plate) moulding system
  • 21. CORPORATE TRAINING AND PLANNING A two-plate mould. A three-plate mould. The moulded system includes a delivery system and moulded parts.
  • 22. CORPORATE TRAINING AND PLANNING Screw Used in Injection Moulding Machines The screw has three zones with a ring-plunger assembly. The Feed Zone, where the plastic first enters the screw and is conveyed along a constant root diameter; the Transition Zone, where the plastic is conveyed, compressed and melted along a root diameter that increases with a constant taper; and the Metering Zone, where the melting of the plastic is completed and the melt is conveyed forward along a constant root diameter reaching a temperature and viscosity to form parts.
  • 23. CORPORATE TRAINING AND PLANNING L/D RATIO • The L/D ratio is the ratio of the flighted length (Effective Length) of the screw to its outside diameter. • Most injection screws use a 20:1 L/D ratio. But it may range from 18:1 to 24:1 • In the case of Thermoset it may range from 12:1 to 16:1.
  • 24. CORPORATE TRAINING AND PLANNING High L/D Ratio results the following …. • More shear heat can be uniformly generated in the plastic without degradation; • Greater the opportunity for mixing, resulting in a better homogeneity of the melt. • Greater the residence time of the plastic in the barrel possibly permitting faster cycles of larger shots.
  • 25. CORPORATE TRAINING AND PLANNING COMPRESSION RATIO (CR) • The ratio of the first flight depth of feed zone to the last flight depth of meter zone , Or, • First Channel Volume of feed zone to last channel volume of metering zone, • Typically ranges from 1.5:1 to 4.5:1 for most thermoplastic materials. • Most injection screws classified as general purpose have a compression ratio of 2.5:1 to 3.0:1. • Thermo set screws have a 1:1 ratio.
  • 26. CORPORATE TRAINING AND PLANNING Higher the CR results the following …. • Greater shear heat imparted to the resin • Greater heat uniformity of the melt • High Potential for creating stresses in some resins • High energy consumption
  • 27. CORPORATE TRAINING AND PLANNING Back Pressure (Kg/Cm2 or bar) Back pressure is the amount of pressure exerted by the material ahead of the screw, as the screw is pushed back in preparation for the next shot. Effect of Back Pressure • More Homogeneous Mix • Proper Melting • More compact • Sometime leads degradation
  • 28. CORPORATE TRAINING AND PLANNING Injection Speed (cm/Sec) The injection speed is the forward speed of the screw during its injection operation per unit time. Effect of Injection Speed • Easy Injection of Material • Avoid Short-Shot • Some times leads more orientation & burn marks
  • 29. CORPORATE TRAINING AND PLANNING Screw Rotation Speed The screw rotation speed (RPM) is the rate at which the plasticizing screw rotates. The faster the screw rotation result the following .. • Faster the material is compressed by the screw flights • Increasing the amount of shear heating • Low residence time, some less melting
  • 30. CORPORATE TRAINING AND PLANNING Cushion The cushion is the difference in the final forward position of the screw and its maximum allowable forward position. • More Cushion results more residence time, some time degrades. • If the screw were allowed to travel its full stroke and stop mechanically against the nozzle, the cushion would be zero. • With zero Cushion no hold on works. • Typically a cushion of 3 to 6 mm is used.
  • 31. CORPORATE TRAINING AND PLANNING Materials for Injection Moulding • Acrylonitrile butadiene styrene (ABS) • Acetal • Acrylic • Polycarbonate (PC) • Polyester • Polyethylene • Fluoroplastic • Polyimide • Nylon • Polyphenylene oxide • Polypropylene (PP) ** • Polystyrene (PS) • Polysulphone • Polyvinyl chloride (PVC)
  • 33. CORPORATE TRAINING AND PLANNING Molecules lie in a definite fashion or regular arrangement
  • 35. CORPORATE TRAINING AND PLANNING Molecules fall in Crystalline & amorphous pattern
  • 38. CORPORATE TRAINING AND PLANNING While flowing in the channel or cavity of the Mould. As the melt touches the surface of the mould its viscosity increases because of lowering of melt temperature, So it slides on the Surface and the Molecules gets oriented
  • 51. CORPORATE TRAINING AND PLANNING Broad Molecular weight Distribution shows broad Melting Points
  • 52. CORPORATE TRAINING AND PLANNING Narrow Molecular weight Distribution shows sharp Melting Points
  • 53. CORPORATE TRAINING AND PLANNING Plastic Product Properties can change 10% or more by changing Process Conditions
  • 69. CORPORATE TRAINING AND PLANNING Additive Function Examples Filler increase bulk density calcium carbonate, talc, limestone Plasticizer improve processability, reduce product brittleness phthalate esters, phosphate esters Antioxidant prevent polymer oxidation phenols, aromatic amines Colorant provide desired part application color oil-soluble dyes, organic pigments Flame retardant reduce polymer flammability antimony trioxide Stabilizer stabilize polymer against heat or UV light carbon black, hydroxybenzophenone Reinforcement improve strength E-glass, S-glass, carbon, Kevlar fibers
  • 70. CORPORATE TRAINING AND PLANNING TOGGLE TYPE CLAMPING • A toggle is mechanically device to amplify force. • In a moulding machine, which consists of two bars joined, together end to end with a pivot . • The end of one bar is attached to a stationary platen, and the other end of a second bar is attached to the movable platen. • When the mould is open, the toggle is in the shape of a V. • When pressure is applied to the pivot, the two bars form a straight line.
  • 72. CORPORATE TRAINING AND PLANNING ADVANTAGE • Low cost and lower horsepower needed to run. • Positive clamp of the mould DISADVANTAGE • Do not read the clamp force. • Clamping is more difficult. • Higher maintenance as lubricant is provided. TOGGLE TYPE CLAMPING
  • 73. CORPORATE TRAINING AND PLANNING HYDRAULIC CLAMPING • A clamping unit actuated by hydraulic cylinder, which is directly connected to the moving, closed the mould. In this case ram of hydraulic system is attached to moving platen. There are two halves in hydraulic cylinder, which is actually inlet and outlet of oil. • When oil goes to the cylinder with pressure oil pushes the ram to forward direction by which moving platen moves and mould closed and when oil comes from the cylinder the ram come back and mould is open.
  • 75. CORPORATE TRAINING AND PLANNING ADVANTAGE • Clamp speed easily controlled and stopped at any point. • Direct a read out of clamp force. • Easy adjustment of clamped force and easy mould set up. • Low maintenance as part is self lubricated. DISADVANTAGE • It is higher cost and more expensive than toggle system. • None positive clamp. HYDRAULIC CLAMPING
  • 76. CORPORATE TRAINING AND PLANNING TIE-BAR LESS CLAMPING • Tie-Bar less clamping system is basically Hydraulic clamping system without any tie bar. • The platen is moved on a rail system. • The main advantage of this system there is no limitation of mould platen size. • As there is no tie bar so the mould dimension is not so important. • Also mounting of the mould is easy and it is very useful when products eject from the mould is manual.
  • 78. CORPORATE TRAINING AND PLANNING TIE-BAR LESS CLAMPING • Much larger mould mounting area. • Larger stroke compared to the toggle type machines. • Full machine capacity can be utilised. • Smaller machines can mould larger components. • Saves floor space. • Saves electrical energy because of reduction in the size of machine. • Has the capacity to reduce weight of the moulded component because tie- bar stretching is not there. • Machine becomes very flexible for future modification. • Easy access to mould cavity's because of the absence of the tie bars. • Robotic arm movement becomes easy. • Fewer moving parts so lesser wear and tear so longer life for machines. • Lower lubrication required. • Removal of mould plates much simple. • Greater stability.
  • 80. CORPORATE TRAINING AND PLANNING Example 1: POM has an S.G. of 1.42. It is to be moulded in an Injection Moulding Machine with a shot weight of 80 gms (in PS). This machine has a shot weight of 80 x 1.42 / 1.05 = 108.19 gms of POM. Example 2: PP has an S.G. of 0.90. It is to be moulded in an Injection Moulding Machine with a shot weight of 80 gms (in PS). This machine has a shot weight of 80 x 0.90 / 1.05 = 68.57 gms of PP.
  • 81. CORPORATE TRAINING AND PLANNING Example 3: Figurines made of UPVC (S.G. 1.38) with a combined weight of figurine plus runners of 40 gms. are to be moulded. What size of machine is sufficient? Shot weight in terms of PS = 40 x 1.05/1.38 = 30.43 gms. Using the 85% guide line, the machine shot weight needed = 30.43/0.85 =35.80 gms. Example 4: The same figurine in example 3 is to be moulded in a big machine. What is the biggest machine that could be used? Using the 35% rule, the biggest machine that could be used has a shot weight = 30.43/0.35 = 86.94 gms.
  • 82. CORPORATE TRAINING AND PLANNING Projected area is calculated by multiplying length times width. Determining Projected Area
  • 83. CORPORATE TRAINING AND PLANNING Projected Area = Length x Width and multiplying that area by a clamp factor of between 2 and 8. Most commonly factor 5 is used. Clamp Force = Projected Area x 5 For every inch of depth the clamp force must be increased by 10%. Determining Clamping Force (Tonnes)
  • 84. CORPORATE TRAINING AND PLANNING Example 5: What is the residence time of UPVC (S.G. 1.38) in a machine with screw diameter of 55 mm, injection stroke of 250 mm, shot weight (PS) of 567 g, and a cycle time of 10 s moulding shots weighing 260 g? Volume of melt in the barrel is estimated to be two times the injection volume = 2 * 3.1416 * 5.5 * 5.5 * 25 / 4 = 1188 cm3 Barrel residence time = 1188 * 1.38 * 10 / 260 = 63 s Example 6: A GPPS cup of diameter 79 mm is to be moulded. The cup is 0.6 mm at its thinnest section. Find a conservative clamping force which would be sufficient. The projected area of the cup (and runner) is 3.1416 * 7.92 / 4 = 49 cm2. This cup belongs to the thin wall domain. The conservative clamping force is 0.62 * 49 = 30.4 tonnes.
  • 85. CORPORATE TRAINING AND PLANNING Example 7: The same GPPS cup has a flow path length of 104 mm. Find a more accurate clamping force needed. Flow path to thickness ratio (L/T Ratio) = 104 / 0.6 = 173. From Figure 2, at 0.6 mm wall thickness, the cavity pressure is 550 bar. 1 bar = 1.02 kg/cm2. The clamping force = 550 * 1.02 * 49 = 27,500 kg = 27.5 tonnes. The above calculation has not accounted for viscosity. It turns out to be still correct as the viscosity factor for GPPS is 1.0. Example 8: The same cup as in the above example is to be made out of ABS. Find the clamping force needed. Using the viscosity factor of 1.5, the clamping force needed = 1.5 * 27.5 tonnes = 41.3 tonnes.
  • 86. CORPORATE TRAINING AND PLANNING Plastic flow (a)Simple shear flow. (b)Simple extensional flow. (c) Shear flow in cavity filling. (d) Extensional flow in cavity filling.
  • 88. CORPORATE TRAINING AND PLANNING When Plastics flow in the cavity, the pressure decreases along the delivery system and the cavity
  • 89. CORPORATE TRAINING AND PLANNING Injection pressure as a function of melt viscosity, flow length, volumetric flow rate, and part thickness
  • 90. CORPORATE TRAINING AND PLANNING Setting Machine Process Conditions 1 Set the melt temperature 2 Set the mold temperature 3 Set the switch-over position 4 Set the screw rotation speed 5 Set the back pressure 6 Set the injection pressure to the machine maximum 7 Set the holding pressure at 0 MPa 8 Set the injection velocity to the machine maximum 9 Set the holding time 10 Set ample remaining cooling time
  • 91. CORPORATE TRAINING AND PLANNING Setting Machine Process Conditions 11 Set the mold open time 12 Mold a short-shot series by increasing injection volume 13 Switch to automatic operation 14 Set the mold opening stroke 15 Set the ejector stroke, start position, and velocity 16 Set the injection volume to 99% mold filled 17 Increase the holding pressure in steps 18 Minimize the holding time 19 Minimize the remaining cooling time
  • 92. CORPORATE TRAINING AND PLANNING Basic Process Factors in Injection Moulding • Material Parameters – Amorphous, Semicrystalline, Blends and Filled Systems – Pressure-Volume-Temperature (PVT) Behaviour – Viscosity • Geometry Parameters – Wall Thickness of Part – Number of Gates – Gate Location – Gate Thickness and Area – Type of Gates: Manually or Automatically Trimmed – Constraints from Ribs, Bosses and Inserts • Manufacturing Parameters – Fill Time – Packing Pressure Level – Mold Temperature – Melt Temperature
  • 93. CORPORATE TRAINING AND PLANNING Residual stress The development of residual flow stresses due to frozen-in molecular orientation during the filling and packing stages. (1) High cooling, shear, and orientation zone (2) Low cooling, shear, and orientation zone
  • 95. CORPORATE TRAINING AND PLANNING Process Controls Injection Moulding cycle can be broken down into four phases: • Fill, • Pack, • Hold, and • Cooling/plastication These phases can be controlled by following variables: • Injection Speed, • Plastic Temperature, • Plastic Pressure, • Cooling Temperature and Time.
  • 98. CORPORATE TRAINING AND PLANNING Cycle time in injection moulding
  • 100. CORPORATE TRAINING AND PLANNING Post Moulding Operation • Heat inserting • Chrome Plating • In Mould Insert Moulding • Post Mould Inserting • Drilling • Polishing • Assembly
  • 101. CORPORATE TRAINING AND PLANNING Secondary operations • Bonding • Welding • Inserting • Staking • Swaging • Assembling with fasteners
  • 102. CORPORATE TRAINING AND PLANNING Secondary operations • Appliqué: a surface covering applied by heat and pressure • Printing: a process of making a mark or impression onto a substrate for decorative or informational purposes. • Painting • Hard coating • Metallizing/shielding • Surface treatment • Annealing • Machining
  • 103. CORPORATE TRAINING AND PLANNING Benefits of Post Moulding Operations • Reduced costs – by carrying out post moulding operations in house, and utilising lean manufacturing tools, we can greatly reduce component costs and the complexity of work that our customers would ordinarily undertake. • High level of quality – performing post-moulding operations on products helps ensure that a high level of quality is maintained. By checking parts from the moment they leave a press, to final assembly, quality levels can be maintained and ensure that components are only assembled to the highest standards. • Reduction of Customer’s stock holding – Assembly of components will reduce the cost of customers stock holding due to delivery of an assembly rather than a range of components. • Reduced production times – post moulding operations mean there is very little time between the production of components and their assembly. This means that a great deal of time can be saved when components would normally be transported, or stored, in between moulding and assembly operations.
  • 104. CORPORATE TRAINING AND PLANNING Heat inserting is the addition of inserts into a part increases the functionality of a part by which components can be assembled.
  • 105. CORPORATE TRAINING AND PLANNING Benefits of Heat Inserting • Increased functionality – by adding inserts to mouldings the part can more easily be used for its designed purpose. For example by adding threaded inserts parts can be easily be screwed to their fixings or other parts, increasing their functionality. • Low part degradation – the process of heat inserting means that the heating/melting of the part is very localised to where the insert will be pressed in. this means that parts do not suffer warping, or any other distortion effects, due to being heated again. • High level of quality – due to the known challenges with heat inserting extra measures are taken to ensure the processes is repeated to as high a level as possible, meaning part quality is kept very high.
  • 106. CORPORATE TRAINING AND PLANNING Chrome Plating Due to the chrome plating process requiring the part to be electrically conductive, a series of steps are required before the chrome can be deposited onto the surface of the product.
  • 107. CORPORATE TRAINING AND PLANNING Benefits of Chrome Plating • Metal finish - Metal finishes can be very popular and, by coating plastics, advantage can be taken of characteristics from both materials. • Wear resistant – as chrome is a metal rather than a plastic its wear resistance properties are much greater than those of the plastic it covers. This means for applications where a part might be handled repeatedly, such as a shower handset, a chrome finish is likely to wear better than its plastic counterpart. • Electrically conductive parts – by chrome or nickel plating a part it is possible to give a plastic component the ability to conduct electricity. This gives the advantage of being able to create electrical components that are light weight and less costly to produce than completely metal parts. • Attractive mouldings – by applying chrome finish to mouldings a
  • 108. CORPORATE TRAINING AND PLANNING In Mould Insert Moulding In mould insert moulding is the process by which a metal, or preformed plastic, insert is incorporated in to the component during the moulding stage.
  • 109. CORPORATE TRAINING AND PLANNING Benefits Of In Mould Insert Moulding • Reduced post-moulding operations – With in mould insert moulding the need for post moulding operations is greatly reduced. This helps with ease of assembly and reduces the labour necessary for products. • Increased part consistency – Insert Moulding has major benefits in the consistency of parts produced. As the inserts are placed in the same locations in tools for every cycle each of the mouldings produced will be exactly the same. This helps reduce costs, as rejected parts will be kept to a minimum. • Ease of assembly – Due to inserts being incorporated into parts during the moulding stage this eases the assembly of the part. Instead of having to place fittings to attach parts fittings can be incorporated during the moulding stage so that parts can be simply clipped together. • Reduced production time – when vertical moulding machines, that are equipped with a rotary table, are used for production there is the opportunity to have two halves of the lower part of the tool. This means that production is almost constant with mouldings being formed at the same time as fresh inserts are being loaded into the second half of the tool. This lowers overall production times and can also reduce the amount of labour needed.
  • 110. CORPORATE TRAINING AND PLANNING Post Mould Inserting Post mould inserting is the process by which a metal, or preformed plastic, insert is incorporated into a moulding by means of a secondary process once the component has already been moulded.
  • 111. CORPORATE TRAINING AND PLANNING Benefits of Post Mould Inserting • Ease of assembly – by adding inserts to a moulding the ease by which it can be assembled is greatly increased. Inserts such as clips or screw bolts can be incorporated into mouldings which greatly assist assembly operations and subsequent product performance. • Increased part functionality – besides adding inserts to aid assembly inserts that improve a parts functionality can also be used. For example, terminal fittings for wires, or seals to make parts watertight. • Increased component value – any second operation carried out on a part will add value to it. By adding inserts to help assembly or increase functionality, product value will be raised. This helps to compensate for the extra time involved in second operations and ensure products remain cost effective. • Good part consistency – to carry out post mould inserting jigs are used to hold mouldings while they are inserted. This means that the repeatability of the operation is very good and all parts inserted will be of the same quality.
  • 112. CORPORATE TRAINING AND PLANNING Drilling The drilling of parts is used to remove any unnecessary polymer that may have been necessary in the moulding process. By removing this extra material in house it means a ready-to-assemble moulding can be provided to the customer, or the part can be assembled with other mouldings.
  • 113. CORPORATE TRAINING AND PLANNING Polishing For products that have a high quality gloss finish a post moulding polishing operation is often a useful extra process. Even though the finish produced by the moulding tool may be of a very high quality, a polishing operation to remove any dust from the product before final packaging gives a part the high gloss finish that will have been specified.. Polishing operations are carried out on a soft- polishing wheel with high quality wax to ensure that a part is polished to a perfect finish without leaving any marks.
  • 114. CORPORATE TRAINING AND PLANNING Assembly For products that require assembly we are able to carry out this operation in our assembly facility. We can demonstrate examples of assemblies where we mould all the separate components in house and assemble the parts either as a whole in the assembly facility or as a step by step process on the press as each part is produced. By carrying out assembly in house we can reduce costs for our customers while still producing products to a high standard.
  • 116. CORPORATE TRAINING AND PLANNING Sink Marks Depression in a moulded part caused by shrinking or collapsing of the resin during cooling.
  • 117. CORPORATE TRAINING AND PLANNING Sink Marks - Problems • Resin feed inadequate • Improper mould design. • Parts cool too rapidly • Rib section in part too wide. • Temperature of mould surface opposite rib too hot. • Entrapped gas. • Nozzle too restrictive, • land length too long. • Pressure too low. • Mould temperature too low or high • Stock temperature too high • Gate too small • Improper gate location • Nozzle and metering zone temperatures too high. • Excessive cooling time in mould • Unbalanced flow pattern. • Bad check valve.
  • 118. CORPORATE TRAINING AND PLANNING Jetting Turbulence in the resin melt flow caused by undersized gate, abrupt change in cavity volume, or too high injection pressure.
  • 119. CORPORATE TRAINING AND PLANNING Jetting - Problems • Excessive injection speed. • Melt temperature too high. • Melt temperature too low. • mould Temperature too low. • Nozzle opening too small. • Gate and length too long. • Sprue, runner, and/or gate size too small. • Nozzle heating band malfunction. • Inefficient gate location.
  • 120. CORPORATE TRAINING AND PLANNING Splay Marks (Silver Streaking, Splash Marks) Marks or droplet type imperfections formed on the surface of a finished part.
  • 121. CORPORATE TRAINING AND PLANNING Splay Marks (Silver Streaking, Splash Marks) - Problems • Obstruction in nozzle. • Screw rpm too high. • Back pressure too low. • Melt temperature too high. • Nozzle too hot. • Nozzle too small. • Gates too small. • Sprue too small. • Insufficient venting. • Burr in runner or gate. • Cracked mould. • Trapped volatiles. • Excessive moisture. • Resin contaminated. • mould cavity contamination. • Excessive shot size.
  • 122. CORPORATE TRAINING AND PLANNING Blush Discoloration generally appearing at gates, around inserts, or other obstructions along the flow path. Usually indicates weak points.
  • 123. CORPORATE TRAINING AND PLANNING Blush - Problems • mould temperature too cold • Injection fill speed too fast • Melt stock temperature too high or too low. • Improper gate location • Sprue and nozzle diameter too small. • Nozzle temperature too low. • Insufficient cold slug well. • Sharp Corners in gate area • Resin excessively moist. • Inadequate injection pressure.
  • 124. CORPORATE TRAINING AND PLANNING Burn Marks Black marks or scorch marks on surface moulded part; usually on the side of the part opposite the gate or in a deep cavity.
  • 125. CORPORATE TRAINING AND PLANNING Burn Marks - Problems • Excessive Injection speed • Excessive injection pressure. • Inefficient mould temperature. • Excessive amount of volatiles due to improper Venting. • Improper gate location • Front zone temperature too high. • Screw speed too high. • Excessive back pressure. • Compression ratio of screw too high. • Faulty temperature controllers. • Frictional burring--gates too small • Dead material hung up on screw or nozzle. • Melt stock temperature too high or too low. • Nozzle diameter too small • Over-heated heater band • Incorrect screw rpm.
  • 126. CORPORATE TRAINING AND PLANNING Poor Weld Lines (Knit Lines) Inability of two melt fronts to knit together in a homogeneous fashion during the moulding process, resulting in weak areas in the part of varying severity.
  • 127. CORPORATE TRAINING AND PLANNING Poor Weld Lines - Problems • Material too cold. • Injection speed too slow • Entrapment of air at weld line. • Improper mould design. • Contamination of poorly dispersed pigments. • Core shifting. • mould temperature to low. • Injection speed too slow. • Melt stock temperature to low. • Injection pressure too low. • Insufficient mould venting • Cylinder temperature too low. • Injection back pressure too low. • Nozzle diameter too small. • Excessive screw flights in metering zone. • Improper gate locations and/or size. • Distance from gate excessive. • Ineffective flow pattern. • mould release agent (brittle weld lines). • Inadequate flow.
  • 128. CORPORATE TRAINING AND PLANNING Voids (Bubbles) An unfilled space of such size that it scatters radiant energy such as light.
  • 129. CORPORATE TRAINING AND PLANNING Voids - Problems • Injection pressure too low • Packing time too short • Insufficient feed of material • mould temperature too low. • Injection speed too high • Excessive cushion • At the side of a rib; rib too thick. • Runners or gate too small or badly positioned.
  • 130. CORPORATE TRAINING AND PLANNING Delamination (Skinning) Surface of the finished part separates or appears to be composed of layer of solidified resin. Strata or fish scale type appearance where the layers may be separated.
  • 131. CORPORATE TRAINING AND PLANNING Delamination - Problems • Contamination of resin by additives or other foreign materials. • Resin temperature too low. • Non-uniformity of resin temperature. • Wrong mould temperature. • Excessive material moisture. • Inadequate injection speed. • Sharp corners at gate. • Incompatible polymers.
  • 132. CORPORATE TRAINING AND PLANNING Flow Lines and Folds Mark visible on the finished item that indicate the direction of flow in the cavity.
  • 133. CORPORATE TRAINING AND PLANNING Flow Lines and Folds - Problems • Stock temperature too low. • Runners too small • Improper gate size and/or location. • mould temperature too low. • Inadequate cold slug well.
  • 134. CORPORATE TRAINING AND PLANNING Excessive Warpage/ Shrinkage Excessive dimensional change in a part after processing, or the excessive decrease in dimension in a part through cooling.
  • 135. CORPORATE TRAINING AND PLANNING Warpage / Shrinkage -Problems • mould closed time too short. • Inefficient injection forward time. • Ram speed too high or too low. • Injection and holding pressure too high or low. • Melt temperature inadequate. • Excessive nozzle and metering zone temperatures. • mould temperature too high (for thick wall sections). • Parts cool unevenly. • Parts underpacked. • Improper gate location. • Gate too restrictive • Unequal temperature between mould halves. • Non-uniform part ejection. • Parts mishandled after ejection. • Unbalanced gates on multiple gated part. • Too many stresses in part.
  • 136. CORPORATE TRAINING AND PLANNING Black Specks Particles in the surface of an opaque part and visible throughout a transparent part.
  • 137. CORPORATE TRAINING AND PLANNING Black Specks - Problems • Contamination of material. • Holdup of molten resin moulding machine or mould runner system. • Press Contamination. • Local over-heating in the injection cylinder. • Defective closure of the nozzle. • Oxidation by occluded air or inadequate air venting • mould contains grease. • Trapped air • Inefficient injection speed.
  • 138. CORPORATE TRAINING AND PLANNING Brittleness Tendency of a moulded part to break, crack, shatter, etc. under conditions which it would not normally do so.
  • 139. CORPORATE TRAINING AND PLANNING Brittleness - Problems • mould temperature too high • Inadequate cooling in gate area • Gate section of item too thin (gate brittleness) • Resin too cold. • Non-uniformity of resin temperature. • Undried material. • Contamination. • Poor part design. • Material degraded. • Non-compatible mould release. • Packing the mould. • Melt temperature too cold. • Excessive amounts of regrind.
  • 140. CORPORATE TRAINING AND PLANNING Brittleness - Problems • Inadequate mould temperature • Excessive screw rpm • Excessive back pressure • Insufficient venting. • Improper gate location. • Excessive injection speed. • Excessive residence timed • Melt temperature too high. • Nozzle too hot. • Injection pressure too low (weld lines). • Runners and gates in adequate (weld lines). • Dwell time in the injection cylinder too long (material degraded). • Material degraded during drying or pre-heating
  • 141. CORPORATE TRAINING AND PLANNING Flash Excess plastic around the area of the mould parting line on a moulded part.
  • 142. CORPORATE TRAINING AND PLANNING Flash - Problems • mould parting surfaces do not seal properly. • Injection pressure too high. • Clamp pressure set too low or projected area or item too large for clamp pressure of the machine. • Injection temperature too high. • Feed needs adjustment. • Hold time too long. • Inadequate mould supports. • Oversize vents.
  • 143. CORPORATE TRAINING AND PLANNING Blister Defect on the surface of a moulded part caused by gases trapped within the part during curing.
  • 144. CORPORATE TRAINING AND PLANNING Blister - Problems • Screw rpm too high • Back pressure too low • mould temperature too low. • Gate improperly located • Insufficient venting. • Regrind too coarse
  • 145. CORPORATE TRAINING AND PLANNING Crazing Fine cracks in part surface. May extend in a network over the surface or through the part.
  • 146. CORPORATE TRAINING AND PLANNING Crazing - Problems • Insufficient drying of the material. • Contamination. • Injection temperature too high (crazing accompanied by dis-coloring or yellowing). • mould surface contaminated • Inadequate injection speed. • Inefficient injection forward time. • Excessive injection pressure. • mould temperature too low. • Gate too large.
  • 147. CORPORATE TRAINING AND PLANNING Cracking Fracture of the plastic material in an area around a boss, projection, or moulded insert.
  • 148. CORPORATE TRAINING AND PLANNING Cracking - Problems • Parts cool too quickly • moulded-in stress • Wall thickness too heavy for compound.
  • 149. CORPORATE TRAINING AND PLANNING Low Gloss Surface roughness resulting from high speed fill which causes surface wrinkling as the polymer melt flows along the wall of the mould.
  • 150. CORPORATE TRAINING AND PLANNING Low Gloss - Problems • Inadequate polish of mould surface. • Material or mould too cold. • Air entrapment. • Melt index of material too low. • Improper mould design. • Wrong injection pressure. • Excessive injection speed.
  • 151. CORPORATE TRAINING AND PLANNING Low Gloss - Problems • Inadequate flow. • Contamination • Resin excessively moist • Sprue, runners, and/or gate size too small. • Pigment agglomerates. • Oil or grease on knockout pins.
  • 152. CORPORATE TRAINING AND PLANNING Short Shot Injection of insufficient material to fill the mould.
  • 153. CORPORATE TRAINING AND PLANNING Short Shot - Problems • Insufficient feed, cushion. • Inadequate injection pressure. • Inadequate injection speed. • Insufficient booster or injection high- pressure time. • Inefficient screw delay. • Inadequate injection back pressure. • Melt temperature too low. • Cylinder temperature inadequate. • mould temperature too low.
  • 154. CORPORATE TRAINING AND PLANNING Short Shot - Problems • Gates, sprues, and/or runners too small. • Excessive screw flights in metering zone. • Insufficient venting. • Improper gate location. • Melt index of resin too low. • Excessive clearance between non-return valve and barrel. • Screw bridging. • Injection press of insufficient capacity.