SlideShare a Scribd company logo
1 of 21
Sensors p.1ECE 480, Prof. A. Mason
SENSORS
a.k.a.
Interfacing to the Real World:
Review of Electrical Sensors and Actuators
Andrew Mason
Associtate Professor, ECE
Teach: Microelectronics (analog & digital integrated Circ., VLSI)
Biomedical Engineering (instrumentation)
Research: Integrated Microsystems (on-chip sensors & circuits)
Sensors p.2ECE 480, Prof. A. Mason
Transducers
• Transducer
– a device that converts a primary form of energy into a
corresponding signal with a different energy form
• Primary Energy Forms: mechanical, thermal, electromagnetic,
optical, chemical, etc.
– take form of a sensor or an actuator
• Sensor (e.g., thermometer)
– a device that detects/measures a signal or stimulus
– acquires information from the “real world”
• Actuator (e.g., heater)
– a device that generates a signal or stimulus
real
world
sensor
actuator
intelligent
feedback
system
Sensors p.3ECE 480, Prof. A. Mason
usable
values
Sensor Systems
Typically interested in electronic sensor
– convert desired parameter into electrically measurable signal
• General Electronic Sensor
– primary transducer: changes “real world” parameter into
electrical signal
– secondary transducer: converts electrical signal into analog or
digital values
• Typical Electronic Sensor System
real
world
analo
g
signal
primary
transducer
secondary
transducer
sensor
sensor
input
signal
(measurand)
microcontroller
signal processing
communication
sensor data
analog/digital
network
display
Sensors p.4ECE 480, Prof. A. Mason
Example Electronic Sensor Systems
• Components vary with application
– digital sensor within an instrument
• microcontroller
– signal timing
– data storage
– analog sensor analyzed by a PC
– multiple sensors displayed over internet
µC
signal timing
memory
keypadsensor
sensor display
handheld instrument
PC
comm. card
sensor interface
A/D, communication
signal processing
sensor
e.g., RS232
PC
comm. card
internet
sensor
processor
comm.
sensor
processor
comm.
sensor bus sensor bus
Sensors p.5ECE 480, Prof. A. Mason
Primary Transducers
• Conventional Transducers
large, but generally reliable, based on older technology
– thermocouple: temperature difference
– compass (magnetic): direction
• Microelectronic Sensors
millimeter sized, highly sensitive, less robust
– photodiode/phototransistor: photon energy (light)
• infrared detectors, proximity/intrusion alarms
– piezoresisitve pressure sensor: air/fluid pressure
– microaccelerometers: vibration, ∆-velocity (car crash)
– chemical senors: O2, CO2, Cl, Nitrates (explosives)
– DNA arrays: match DNA sequences
Sensors p.6ECE 480, Prof. A. Mason
Example Primary Transducers
• Light Sensor
– photoconductor
• light  ∆R
– photodiode
• light  ∆I
– membrane pressure sensor
• resistive (pressure  ∆ R)
• capacitive (pressure  ∆C)
Sensors p.7ECE 480, Prof. A. Mason
Displacement Measurements
• Measurements of size, shape, and position utilize
displacement sensors
• Examples
– diameter of part under stress (direct)
– movement of a microphone diaphragm to quantify liquid
movement through the heart (indirect)
• Primary Transducer Types
– Resistive Sensors (Potentiometers & Strain Gages)
– Inductive Sensors
– Capacitive Sensors
– Piezoelectric Sensors
• Secondary Transducers
– Wheatstone Bridge
– Amplifiers
Sensors p.8ECE 480, Prof. A. Mason
Strain Gage: Gage Factor
• Remember: for a strained thin wire
– ∆R/R = ∆L/L – ∆A/A + ∆ρ/ρ
• A = π (D/2)2
, for circular wire
• Poisson’s ratio, µ: relates change in diameter D to
change in length L
– ∆D/D = - µ ∆L/L
• Thus
– ∆R/R = (1+2µ) ∆L/L + ∆ρ/ρ
• Gage Factor, G, used to compare strain-gate materials
– G = ∆R/R = (1+2µ) + ∆ρ/ρ
∆L/L ∆L/L
LD
dimensional effect piezoresistive effect
Sensors p.9ECE 480, Prof. A. Mason
Temperature Sensor Options
• Resistance Temperature Detectors (RTDs)
– Platinum, Nickel, Copper metals are typically used
– positive temperature coefficients
• Thermistors (“thermally sensitive resistor”)
– formed from semiconductor materials, not metals
• often composite of a ceramic and a metallic oxide (Mn, Co, Cu or Fe)
– typically have negative temperature coefficients
• Thermocouples
– based on the Seebeck effect: dissimilar metals at diff. temps.  signal
Sensors p.10ECE 480, Prof. A. Mason
Fiber-optic Temperature Sensor
• Sensor operation
– small prism-shaped sample of single-crystal undoped GaAs
attached to ends of two optical fibers
– light energy absorbed by the GaAs crystal depends on
temperature
– percentage of received vs. transmitted energy is a function of
temperature
• Can be made small enough for biological implantation
GaAs semiconductor temperature probe
Sensors p.11ECE 480, Prof. A. Mason
Example MEMS Transducers
• MEMS = micro-electro-mechanical system
– miniature transducers created using IC fabrication processes
• Microaccelerometer
– cantilever beam
– suspended mass
• Rotation
– gyroscope
• Pressure
Electrodes
Ring
structure
Diaphragm (Upper electrode)
Lower electrode 5-10mm
Sensors p.12ECE 480, Prof. A. Mason
Passive Sensor Readout Circuit
• Photodiode Circuits
• Thermistor Half-Bridge
– voltage divider
– one element varies
• Wheatstone Bridge
– R3 = resistive sensor
– R4 is matched to nominal value of R3
– If R1 = R2, Vout-nominal = 0
– Vout varies as R3 changes
VCC
R1+R4
Sensors p.13ECE 480, Prof. A. Mason
Operational Amplifiers
• Properties
– open-loop gain: ideally infinite: practical values 20k-200k
•high open-loop gain  virtual short between + and - inputs
– input impedance: ideally infinite: CMOS opamps are close to ideal
– output impedance: ideally zero: practical values 20-100Ω
– zero output offset: ideally zero: practical value <1mV
– gain-bandwidth product (GB): practical values ~MHz
•frequency where open-loop gain drops to 1 V/V
• Commercial opamps provide many different properties
– low noise
– low input current
– low power
– high bandwidth
– low/high supply voltage
– special purpose: comparator, instrumentation amplifier
Sensors p.14ECE 480, Prof. A. Mason
Basic Opamp Configuration
• Voltage Comparator
– digitize input
• Voltage Follower
– buffer
• Non-Inverting Amp • Inverting Amp
Sensors p.15ECE 480, Prof. A. Mason
More Opamp Configurations
• Summing Amp
• Differential Amp
• Integrating Amp
• Differentiating Amp
Sensors p.16ECE 480, Prof. A. Mason
Converting Configuration
• Current-to-Voltage
• Voltage-to-Current
Sensors p.17ECE 480, Prof. A. Mason
Instrumentation Amplifier
• Robust differential
gain amplifier
• Input stage
– high input impedance
• buffers gain stage
– no common mode gain
– can have differential gain
• Gain stage
– differential gain, low input impedance
• Overall amplifier
– amplifies only the differential component
• high common mode rejection ratio
– high input impedance suitable for biopotential electrodes with high
output impedance
input stage
gain stage





+
=
3
4
1
12
d
2
R
R
R
RR
G
total differential gain
Sensors p.18ECE 480, Prof. A. Mason
Instrumentation Amplifier w/ BP Filter
instrumentation amplifier
With 776 op amps, the circuit was found to have a CMRR of 86 dB at 100 Hz and a noise level of 40 mV peak to
peak at the output. The frequency response was 0.04 to 150 Hz for ±3 dB and was flat over 4 to 40 Hz. The total
gain is 25 (instrument amp) x 32 (non-inverting amp) = 800.
HPF non-inverting amp
Sensors p.19ECE 480, Prof. A. Mason
Connecting Sensors to Microcontrollers
• Analog
– many microcontrollers have a built-in A/D
• 8-bit to 12-bit common
• many have multi-channel A/D inputs
• Digital
– serial I/O
• use serial I/O port, store in memory to analyze
• synchronous (with clock)
– must match byte format, stop/start bits, parity check, etc.
• asynchronous (no clock): more common for comm. than data
– must match baud rate and bit width, transmission protocol, etc.
– frequency encoded
• use timing port, measure pulse width or pulse frequency
µC
signal timing
memory
keypadsensor
sensor display
instrument
Sensors p.20ECE 480, Prof. A. Mason
Connecting Smart Sensors to PC/Network
• “Smart sensor” = sensor with built-in signal processing & communication
– e.g., combining a “dumb sensor” and a microcontroller
• Data Acquisition Cards (DAQ)
– PC card with analog and digital I/O
– interface through LabVIEW or user-generated code
• Communication Links Common for Sensors
– asynchronous serial comm.
• universal asynchronous receive and transmit (UART)
– 1 receive line + 1 transmit line. nodes must match baud rate & protocol
• RS232 Serial Port on PCs uses UART format (but at +/- 12V)
– can buy a chip to convert from UART to RS232
– synchronous serial comm.
• serial peripheral interface (SPI)
– 1 clock + 1 bidirectional data + 1 chip select/enable
– I2
C = Inter Integrated Circuit bus
• designed by Philips for comm. inside TVs, used in several commercial sensor systems
– IEEE P1451: Sensor Comm. Standard
• several different sensor comm. protocols for different applications
Sensors p.21ECE 480, Prof. A. Mason
Sensor Calibration
• Sensors can exhibit non-ideal effects
– offset: nominal output ≠ nominal parameter value
– nonlinearity: output not linear with parameter changes
– cross parameter sensitivity: secondary output variation with, e.g.,
temperature
• Calibration = adjusting output to match parameter
– analog signal conditioning
– look-up table
– digital calibration
• T = a + bV +cV2
,
– T= temperature; V=sensor voltage;
– a,b,c = calibration coefficients
• Compensation
– remove secondary sensitivities
– must have sensitivities characterized
– can remove with polynomial evaluation
• P = a + bV + cT + dVT + e V2
, where P=pressure, T=temperature
T1
T2
T3
offset
linear
non-linear

More Related Content

What's hot

What's hot (18)

Advanced Sensor
Advanced SensorAdvanced Sensor
Advanced Sensor
 
Introduction to Sensor
Introduction to SensorIntroduction to Sensor
Introduction to Sensor
 
Transducer-Temperature Measuring Transducers
Transducer-Temperature Measuring Transducers Transducer-Temperature Measuring Transducers
Transducer-Temperature Measuring Transducers
 
Sensors
SensorsSensors
Sensors
 
Working Principals of Various Sensors
Working Principals of Various SensorsWorking Principals of Various Sensors
Working Principals of Various Sensors
 
Sensors
SensorsSensors
Sensors
 
Transducer
TransducerTransducer
Transducer
 
Capacitive Sensors
Capacitive SensorsCapacitive Sensors
Capacitive Sensors
 
powering remote devices
powering remote devicespowering remote devices
powering remote devices
 
Sensors
SensorsSensors
Sensors
 
introduction to transducer
introduction to transducerintroduction to transducer
introduction to transducer
 
Sensors and transducers.
Sensors and transducers.Sensors and transducers.
Sensors and transducers.
 
Photoelectric transducer
Photoelectric transducerPhotoelectric transducer
Photoelectric transducer
 
sensors and transducers Module 1 n 2
sensors and transducers Module 1 n 2sensors and transducers Module 1 n 2
sensors and transducers Module 1 n 2
 
Transducers
TransducersTransducers
Transducers
 
Transducer.pdf
Transducer.pdfTransducer.pdf
Transducer.pdf
 
Characteristics and selection of Sensors
Characteristics and selection of SensorsCharacteristics and selection of Sensors
Characteristics and selection of Sensors
 
Advanced Sensors
Advanced SensorsAdvanced Sensors
Advanced Sensors
 

Similar to 480 sensors integration

Ppt1
Ppt1Ppt1
Ppt1
v0run
 
2012 METU Lecture 2 Precision Sensors for Measurement of Strain Displacement ...
2012 METU Lecture 2 Precision Sensors for Measurement of Strain Displacement ...2012 METU Lecture 2 Precision Sensors for Measurement of Strain Displacement ...
2012 METU Lecture 2 Precision Sensors for Measurement of Strain Displacement ...
omidsalangi1
 

Similar to 480 sensors integration (20)

480-sensors.ppt
480-sensors.ppt480-sensors.ppt
480-sensors.ppt
 
480-sensors.ppt
480-sensors.ppt480-sensors.ppt
480-sensors.ppt
 
Sensor Lecture Interfacing
 Sensor Lecture Interfacing Sensor Lecture Interfacing
Sensor Lecture Interfacing
 
Sensor and transducers lect 1
Sensor and transducers lect 1Sensor and transducers lect 1
Sensor and transducers lect 1
 
Sensors.ppt
Sensors.pptSensors.ppt
Sensors.ppt
 
Sensors.ppt
Sensors.pptSensors.ppt
Sensors.ppt
 
Sensors.ppt
Sensors.pptSensors.ppt
Sensors.ppt
 
Sensors.ppt
Sensors.pptSensors.ppt
Sensors.ppt
 
Sensors.ppt
Sensors.pptSensors.ppt
Sensors.ppt
 
Sensors.ppt
Sensors.pptSensors.ppt
Sensors.ppt
 
Sensors.ppt
Sensors.pptSensors.ppt
Sensors.ppt
 
PPT Sensors.ppt
PPT Sensors.pptPPT Sensors.ppt
PPT Sensors.ppt
 
Sensors.ppt
Sensors.pptSensors.ppt
Sensors.ppt
 
UNIT- I.pptx
UNIT- I.pptxUNIT- I.pptx
UNIT- I.pptx
 
Ppt1
Ppt1Ppt1
Ppt1
 
3ok industrial industrialinstructions.pdf
3ok industrial industrialinstructions.pdf3ok industrial industrialinstructions.pdf
3ok industrial industrialinstructions.pdf
 
2012 METU Lecture 2 Precision Sensors for Measurement of Strain Displacement ...
2012 METU Lecture 2 Precision Sensors for Measurement of Strain Displacement ...2012 METU Lecture 2 Precision Sensors for Measurement of Strain Displacement ...
2012 METU Lecture 2 Precision Sensors for Measurement of Strain Displacement ...
 
Unit ii sensors and actuators
Unit ii sensors and actuators Unit ii sensors and actuators
Unit ii sensors and actuators
 
defv5
defv5defv5
defv5
 
2_Working_principles_of_Microsystems_revised.pdf
2_Working_principles_of_Microsystems_revised.pdf2_Working_principles_of_Microsystems_revised.pdf
2_Working_principles_of_Microsystems_revised.pdf
 

More from utpal sarkar

More from utpal sarkar (20)

Rom ram
Rom ramRom ram
Rom ram
 
Pressure sensor lecture
Pressure sensor lecturePressure sensor lecture
Pressure sensor lecture
 
Optical properties and hall effect
Optical properties and hall effectOptical properties and hall effect
Optical properties and hall effect
 
Tunnel diode
Tunnel diodeTunnel diode
Tunnel diode
 
Night vission
Night vissionNight vission
Night vission
 
Night vision goggles the basics
Night vision goggles the basicsNight vision goggles the basics
Night vision goggles the basics
 
Nano electro mechanical systems
Nano electro mechanical systems Nano electro mechanical systems
Nano electro mechanical systems
 
Metal Insulator Semiconductor devices
Metal Insulator Semiconductor devicesMetal Insulator Semiconductor devices
Metal Insulator Semiconductor devices
 
Metal Oxide Semiconductor Field Effect Transistors
Metal Oxide Semiconductor Field Effect TransistorsMetal Oxide Semiconductor Field Effect Transistors
Metal Oxide Semiconductor Field Effect Transistors
 
Micro-electro-mechanical Systems
Micro-electro-mechanical Systems Micro-electro-mechanical Systems
Micro-electro-mechanical Systems
 
Pacemakers
PacemakersPacemakers
Pacemakers
 
Sensor Biomedical applications
 Sensor Biomedical applications Sensor Biomedical applications
Sensor Biomedical applications
 
Nano twzeeres
Nano twzeeresNano twzeeres
Nano twzeeres
 
Ink Jet Nozzels
Ink Jet NozzelsInk Jet Nozzels
Ink Jet Nozzels
 
Molecular electronics
 Molecular electronics Molecular electronics
Molecular electronics
 
Night Vision Technology
Night Vision Technology Night Vision Technology
Night Vision Technology
 
Band theory of solids
Band theory of solidsBand theory of solids
Band theory of solids
 
Accelerometers
AccelerometersAccelerometers
Accelerometers
 
Pacemaker Operation
 Pacemaker Operation  Pacemaker Operation
Pacemaker Operation
 
Nano science in concrete technology
Nano science in concrete technologyNano science in concrete technology
Nano science in concrete technology
 

Recently uploaded

+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 

Recently uploaded (20)

Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsTop 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation Strategies
 

480 sensors integration

  • 1. Sensors p.1ECE 480, Prof. A. Mason SENSORS a.k.a. Interfacing to the Real World: Review of Electrical Sensors and Actuators Andrew Mason Associtate Professor, ECE Teach: Microelectronics (analog & digital integrated Circ., VLSI) Biomedical Engineering (instrumentation) Research: Integrated Microsystems (on-chip sensors & circuits)
  • 2. Sensors p.2ECE 480, Prof. A. Mason Transducers • Transducer – a device that converts a primary form of energy into a corresponding signal with a different energy form • Primary Energy Forms: mechanical, thermal, electromagnetic, optical, chemical, etc. – take form of a sensor or an actuator • Sensor (e.g., thermometer) – a device that detects/measures a signal or stimulus – acquires information from the “real world” • Actuator (e.g., heater) – a device that generates a signal or stimulus real world sensor actuator intelligent feedback system
  • 3. Sensors p.3ECE 480, Prof. A. Mason usable values Sensor Systems Typically interested in electronic sensor – convert desired parameter into electrically measurable signal • General Electronic Sensor – primary transducer: changes “real world” parameter into electrical signal – secondary transducer: converts electrical signal into analog or digital values • Typical Electronic Sensor System real world analo g signal primary transducer secondary transducer sensor sensor input signal (measurand) microcontroller signal processing communication sensor data analog/digital network display
  • 4. Sensors p.4ECE 480, Prof. A. Mason Example Electronic Sensor Systems • Components vary with application – digital sensor within an instrument • microcontroller – signal timing – data storage – analog sensor analyzed by a PC – multiple sensors displayed over internet µC signal timing memory keypadsensor sensor display handheld instrument PC comm. card sensor interface A/D, communication signal processing sensor e.g., RS232 PC comm. card internet sensor processor comm. sensor processor comm. sensor bus sensor bus
  • 5. Sensors p.5ECE 480, Prof. A. Mason Primary Transducers • Conventional Transducers large, but generally reliable, based on older technology – thermocouple: temperature difference – compass (magnetic): direction • Microelectronic Sensors millimeter sized, highly sensitive, less robust – photodiode/phototransistor: photon energy (light) • infrared detectors, proximity/intrusion alarms – piezoresisitve pressure sensor: air/fluid pressure – microaccelerometers: vibration, ∆-velocity (car crash) – chemical senors: O2, CO2, Cl, Nitrates (explosives) – DNA arrays: match DNA sequences
  • 6. Sensors p.6ECE 480, Prof. A. Mason Example Primary Transducers • Light Sensor – photoconductor • light  ∆R – photodiode • light  ∆I – membrane pressure sensor • resistive (pressure  ∆ R) • capacitive (pressure  ∆C)
  • 7. Sensors p.7ECE 480, Prof. A. Mason Displacement Measurements • Measurements of size, shape, and position utilize displacement sensors • Examples – diameter of part under stress (direct) – movement of a microphone diaphragm to quantify liquid movement through the heart (indirect) • Primary Transducer Types – Resistive Sensors (Potentiometers & Strain Gages) – Inductive Sensors – Capacitive Sensors – Piezoelectric Sensors • Secondary Transducers – Wheatstone Bridge – Amplifiers
  • 8. Sensors p.8ECE 480, Prof. A. Mason Strain Gage: Gage Factor • Remember: for a strained thin wire – ∆R/R = ∆L/L – ∆A/A + ∆ρ/ρ • A = π (D/2)2 , for circular wire • Poisson’s ratio, µ: relates change in diameter D to change in length L – ∆D/D = - µ ∆L/L • Thus – ∆R/R = (1+2µ) ∆L/L + ∆ρ/ρ • Gage Factor, G, used to compare strain-gate materials – G = ∆R/R = (1+2µ) + ∆ρ/ρ ∆L/L ∆L/L LD dimensional effect piezoresistive effect
  • 9. Sensors p.9ECE 480, Prof. A. Mason Temperature Sensor Options • Resistance Temperature Detectors (RTDs) – Platinum, Nickel, Copper metals are typically used – positive temperature coefficients • Thermistors (“thermally sensitive resistor”) – formed from semiconductor materials, not metals • often composite of a ceramic and a metallic oxide (Mn, Co, Cu or Fe) – typically have negative temperature coefficients • Thermocouples – based on the Seebeck effect: dissimilar metals at diff. temps.  signal
  • 10. Sensors p.10ECE 480, Prof. A. Mason Fiber-optic Temperature Sensor • Sensor operation – small prism-shaped sample of single-crystal undoped GaAs attached to ends of two optical fibers – light energy absorbed by the GaAs crystal depends on temperature – percentage of received vs. transmitted energy is a function of temperature • Can be made small enough for biological implantation GaAs semiconductor temperature probe
  • 11. Sensors p.11ECE 480, Prof. A. Mason Example MEMS Transducers • MEMS = micro-electro-mechanical system – miniature transducers created using IC fabrication processes • Microaccelerometer – cantilever beam – suspended mass • Rotation – gyroscope • Pressure Electrodes Ring structure Diaphragm (Upper electrode) Lower electrode 5-10mm
  • 12. Sensors p.12ECE 480, Prof. A. Mason Passive Sensor Readout Circuit • Photodiode Circuits • Thermistor Half-Bridge – voltage divider – one element varies • Wheatstone Bridge – R3 = resistive sensor – R4 is matched to nominal value of R3 – If R1 = R2, Vout-nominal = 0 – Vout varies as R3 changes VCC R1+R4
  • 13. Sensors p.13ECE 480, Prof. A. Mason Operational Amplifiers • Properties – open-loop gain: ideally infinite: practical values 20k-200k •high open-loop gain  virtual short between + and - inputs – input impedance: ideally infinite: CMOS opamps are close to ideal – output impedance: ideally zero: practical values 20-100Ω – zero output offset: ideally zero: practical value <1mV – gain-bandwidth product (GB): practical values ~MHz •frequency where open-loop gain drops to 1 V/V • Commercial opamps provide many different properties – low noise – low input current – low power – high bandwidth – low/high supply voltage – special purpose: comparator, instrumentation amplifier
  • 14. Sensors p.14ECE 480, Prof. A. Mason Basic Opamp Configuration • Voltage Comparator – digitize input • Voltage Follower – buffer • Non-Inverting Amp • Inverting Amp
  • 15. Sensors p.15ECE 480, Prof. A. Mason More Opamp Configurations • Summing Amp • Differential Amp • Integrating Amp • Differentiating Amp
  • 16. Sensors p.16ECE 480, Prof. A. Mason Converting Configuration • Current-to-Voltage • Voltage-to-Current
  • 17. Sensors p.17ECE 480, Prof. A. Mason Instrumentation Amplifier • Robust differential gain amplifier • Input stage – high input impedance • buffers gain stage – no common mode gain – can have differential gain • Gain stage – differential gain, low input impedance • Overall amplifier – amplifies only the differential component • high common mode rejection ratio – high input impedance suitable for biopotential electrodes with high output impedance input stage gain stage      + = 3 4 1 12 d 2 R R R RR G total differential gain
  • 18. Sensors p.18ECE 480, Prof. A. Mason Instrumentation Amplifier w/ BP Filter instrumentation amplifier With 776 op amps, the circuit was found to have a CMRR of 86 dB at 100 Hz and a noise level of 40 mV peak to peak at the output. The frequency response was 0.04 to 150 Hz for ±3 dB and was flat over 4 to 40 Hz. The total gain is 25 (instrument amp) x 32 (non-inverting amp) = 800. HPF non-inverting amp
  • 19. Sensors p.19ECE 480, Prof. A. Mason Connecting Sensors to Microcontrollers • Analog – many microcontrollers have a built-in A/D • 8-bit to 12-bit common • many have multi-channel A/D inputs • Digital – serial I/O • use serial I/O port, store in memory to analyze • synchronous (with clock) – must match byte format, stop/start bits, parity check, etc. • asynchronous (no clock): more common for comm. than data – must match baud rate and bit width, transmission protocol, etc. – frequency encoded • use timing port, measure pulse width or pulse frequency µC signal timing memory keypadsensor sensor display instrument
  • 20. Sensors p.20ECE 480, Prof. A. Mason Connecting Smart Sensors to PC/Network • “Smart sensor” = sensor with built-in signal processing & communication – e.g., combining a “dumb sensor” and a microcontroller • Data Acquisition Cards (DAQ) – PC card with analog and digital I/O – interface through LabVIEW or user-generated code • Communication Links Common for Sensors – asynchronous serial comm. • universal asynchronous receive and transmit (UART) – 1 receive line + 1 transmit line. nodes must match baud rate & protocol • RS232 Serial Port on PCs uses UART format (but at +/- 12V) – can buy a chip to convert from UART to RS232 – synchronous serial comm. • serial peripheral interface (SPI) – 1 clock + 1 bidirectional data + 1 chip select/enable – I2 C = Inter Integrated Circuit bus • designed by Philips for comm. inside TVs, used in several commercial sensor systems – IEEE P1451: Sensor Comm. Standard • several different sensor comm. protocols for different applications
  • 21. Sensors p.21ECE 480, Prof. A. Mason Sensor Calibration • Sensors can exhibit non-ideal effects – offset: nominal output ≠ nominal parameter value – nonlinearity: output not linear with parameter changes – cross parameter sensitivity: secondary output variation with, e.g., temperature • Calibration = adjusting output to match parameter – analog signal conditioning – look-up table – digital calibration • T = a + bV +cV2 , – T= temperature; V=sensor voltage; – a,b,c = calibration coefficients • Compensation – remove secondary sensitivities – must have sensitivities characterized – can remove with polynomial evaluation • P = a + bV + cT + dVT + e V2 , where P=pressure, T=temperature T1 T2 T3 offset linear non-linear