SlideShare a Scribd company logo
1 of 26
Enhancement of First Penetration
Field in Superconducting Multi-layers
              Samples



                                           C. Z. ANTOINE, S. BERRY
                   CEA, Irfu, Centre d'Etudes de Saclay, 91191 Gif-sur-Yvette Cedex, France

                                M. AURINO, J-F. JACQUOT, J-C. VILLEGIER,
                       CEA, INAC, 17 Rue des Martyrs, 38054 Grenoble-Cedex-9, France

                                              G. LAMURA
                            CNR-SPIN-GE, corso Perrone 24, 16124 Genova, Italy

                                             A. ANDREONE
CNR-SPIN-NA and Dipartimento di Scienze Fisiche, Università di Napoli Federico II, Piazzale Tecchio 80, 80125
                                              Napoli, Italy

The Fourth International Workshop on Thin Films and New Ideas for pushing the limits of RF Superconductivity


  CEA/DSM/Irfu/SACM/Lesar                           Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010   1
High field dissipations
  Theoretical Work from Gurevich : Non linear BCS resistance

 A. Gurevich, "Multiscale mechanisms of SRF breakdown". Physica C, 2006. 441(1-2): p. 38-43
 A. Gurevich, "Enhancement of RF breakdown field of SC by multilayer coating". Appl. Phys.Lett., 2006. 88:
   p. 12511.
 P. Bauer, et al., "Evidence for non-linear BCS resistance in SRF cavities ". Physica C, 2006. 441: p. 51–56

    Classical model (BCS) : dissipations calculated @ T ~Tc, clean limit
    “rf pair breaking” induces non linear corrections which increase when T
    At high field : quadratic variation of RBCS =>
          Vortex ~ some nm
          Hot spot ~ some mm             cm
             (comparable to what is observed on cavities)


           High field dissipation threshold = 1st penetration des vortex (HC1)
    Nb is the best for SRF because it has the highest HC1,
    ….



CEA/DSM/Irfu/SACM/Lesar                          Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010   2
High field dissipations

           HC1 Nb3Sn (0.05 T)                             HC1 Nb (0.17 T)

        1E+12

                                Nb3Sn
        1E+11

                                                        Nb
                                                                                             Bulk Nb3Sn cavity :
   Qo




        1E+10
                                                                                                   • High Q0 @ low field
                                                                               QUENCH
                                                                                                   => low Rres
        1E+09
                                                                                                   • Early Q slope


        1E+08
                0   10
                     5      20
                            10         30
                                       15          40
                                                   20          50
                                                               25         60
                                                                          30            70
                                                                                        35

                                         Epk (MV/m)


                                 1.5 GHz Nb3Sn cavity (Wuppertal, 1985)
                                 1.3 GHz Nb cavity (Saclay, 1999)




CEA/DSM/Irfu/SACM/Lesar                                   Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010   3
High field dissipations
  Theoretical Work from Gurevich : Non linear BCS resistance

 A. Gurevich, "Multiscale mechanisms of SRF breakdown". Physica C, 2006. 441(1-2): p. 38-43
 A. Gurevich, "Enhancement of RF breakdown field of SC by multilayer coating". Appl. Phys.Lett., 2006. 88:
   p. 12511.
 P. Bauer, et al., "Evidence for non-linear BCS resistance in SRF cavities ". Physica C, 2006. 441: p. 51–56

    Classical model (BCS) : dissipations calculated @ T ~Tc, clean limit
    “rf pair breaking” induces non linear corrections which increase when T
    At high field : quadratic variation of RBCS =>
          Vortex ~ some nm
          Hot spot ~ some mm             cm
             (comparable to what is observed on cavities)


           High field dissipation threshold = 1st penetration des vortex (HC1)
    Nb is the best for SRF because it has the highest HC1,
    Nb is close to its ultimate limits (normal state transition)
    Increasing the field = > avoiding vortices penetration


CEA/DSM/Irfu/SACM/Lesar                          Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010   4
Breaking Niobium monopoly
Overcoming niobium limits (A.Gurevich, 2006) :

        Keep niobium but shield its surface from RF field and
       prevent vortex penetration
       Use nanometric films (w. d < ) of higher Tc SC :
                                 => HC1 et Hs enhancement
        Example :
       NbN , = 5 nm, = 200 nm

                                 HC1 = 0,02 T                     &        Hs = 0,23 T,
                                                      x 200                                           x ~ 30
  20 nm film =>                  H’C1 = 4,2 T                     &       H’s = 6,37 T

                          (similar improvement with MgB2 or Nb3Sn)
                 NbN        1       Nb
             R   BCS
                           10
                                R   BCS   =>      Q0multi >> Q0Nb

CEA/DSM/Irfu/SACM/Lesar                         Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010   5
High Tc nanometric SC films : low RS, high HC1
                                                                                                          Magnetic field B (mT)
                                                                                                                            160
                                      Happlied                                             1E+12
                                                                                                               80




                                                                  Quality coefficient Q0
                                                                                           1E+11
                    HNb
                                      Cavity's internal
     Outside wall                     surface →
                                                                                           1E+10


                                     Nd
               HNb         Happl e                                                         1E+09
                                                                                                   0           20            40         60
                                                                                                       Accelerating Field Eacc (MV/m)
  Composite nanometric SC : Multilayers
           Nb / insulator/ superconductor / insulator /superconductor…
      Bulk Nb prevents perpendicular vortex penetration (surrounding field)
      Insulating layer ~ 15 nm : Josephson decoupling
  High Tc SC : d ~ some 10 nm
      High HS
      Magnetic screening for parallel vortex
      Lower RBCS Q0 ↑↑

        CEA/DSM/Irfu/SACM/Lesar                           Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010                6
Samples and HC1 issues
 Choice of model samples:
        It is easier to change parameters on sample than on cavities : e.g.
              Easier to get good quality layers on small surfaces
              Change of substrate nature : sapphire, monocrystalline Nb,
            polycrystalline Nb, surface preparation.
              Optimization of SC thickness, number of layer, etc.
        But !
              HC1 measurement is more difficult with classical means (DC).
              Note that HC1DC ≤ HC1RF ≤ HC => any DC or low frequency
            measurement is conservative compare to what is expected if
            RF.
              HC1 give an estimation of the maximum field achievable
            without dissipation : if I keep below HC1, I don't really have to
            care about what exactly HSH is, what the (complex!) behavior of
            vortices is, etc.
              Still need RF test to estimate RS/Q0


CEA/DSM/Irfu/SACM/Lesar             Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010   7
High quality model samples
  Choice of NbN:
          ML structure = close to Josephson junction preparation (SC/insulator compatibility)
          Use of asserted techniques for superconducting electronics circuits preparation:
               Magnetron sputtering
               Flat monocrystalline substrates
                                            ~ 25 nm NbN

                                       ~ 15 nm insulator (MgO)

                                          250 nm Nb “bulk”
Reference sample R                                                                                Test sample SL
                                       Monocrystalline sapphire




                                                     ~ 12 nm NbN
                                           x4
                                                14 nm insulator (MgO)

                                                250 nm Nb “bulk”

                                                Monocrystalline sapphire


                                                                                          Test sample ML

         Collaboration avec J.C. Villégier, CEA-Inac / Grenoble

  CEA/DSM/Irfu/SACM/Lesar                       Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010     8
Characterization:
          Standard characterization : material quality (collabn
        CEA/INAC-Grenoble)
            Quantum design PPMS:
                 Tc, conductivity
            X Rays : low angle diffusion :
                 Peaks/phases Identification : Monocrystalline
               or highly (200) textured layers
                 Distortions :d(200) on NbN expanded: ~ 0,5 %
            X Rays : reflectivity:
                 thickness and interface roughness                                             Quantum design physical properties
                                                                                               measurement system (PPMS):

Reference
             Thickness     Roughness        Sample SL     Thickness    Roughness         Sample ML**         Thicknes           Roughness
Sample R*
               (nm)          (nm)          Tc = 16.37 K     (nm)         (nm)            Tc = 15.48 K         s (nm)              (nm)
Tc = 8.9 K
Nb                 250                 1   Nb                  250                 1     Nb                         250                   1
MgO                 14                 1   MgO                  14                 1     MgO ***                      14                  1
NbN                   0                0   NbN                  25               1.5     NbN                          12              1.5

                 * Sample R contains only Nb capped with a layer of NbO. Obtained by RIE etching of sample SL.
                 ** In ML the motive MgO/NbN is repeated 4 times.
                 *** except the external, capping layer which is 5 nm

             CEA/DSM/Irfu/SACM/Lesar                           Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010         9
Magnetic characterization : SQUID (1)
Principle of measurement (5x5mm2 samples) :
 Parallel and perpendicular field tested                                                            B //, longitudinal moment
  Thin films in parallel configuration (B//):
                                                                                                                                Quartz
 1. Strong transverse signal vs longitudinal => the longitudinal                                                                holder
   component appears non purely dipolar (superposition of 2
   signals)                                                                                     Detection
 2. Strong sensitivity of M to the angle between the sample                                       coils       B                 Sample

   surface and the applied field B (alignment should be better
   than 0.005°).
    Development of a dedicated fitting procedure
 1. Fourier transform
 2. Separation of the odd signal from the even signal
                                                                                                    B //, transverse moment
 3. Reverse Fourier transform
 4. Fitting                                                                                        Sample
                                                                                                                                 Oriented
                                                                                                                                   quartz
                                                          Longitudinal signal                                                      holder


                                                                       Actual
                                                                    longitudinal                              B
                                                                    component




                                                                                                  Detection
                                      Transverse
                                                                                                    coils
                                      component
                                      (cross talk)

  Usual dipolar signal      Signal as detected in the long. Loop : strong even signal is
                            due to “crosstalk " with the transverse moment


  CEA/DSM/Irfu/SACM/Lesar                                     Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010
SQUID (2) : references @ 4.5 K

Nb(250 nm) :
                                                           NbN(30 nm)




                                 "Elemental" layers : isotropic.
                                 HP ~ 18 mT = compatible with magnetron sputtered films
                                 No field enhancement on 30 nm NbN layer !?

       CEA/DSM/Irfu/SACM/Lesar                    Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010
SQUID (3) : SL Sample @ 4.5 K




  High quality NbN film (Tc =16.37K)

  Strong anisotropic behavior

  Longitudinal moment : Fishtail
shape characteristic of layered SC

  HP ~ 96 mT (+ 78 mT /Nb alone) !!!

  Similar behavior with ML




            CEA/DSM/Irfu/SACM/Lesar    Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010
SQUID (4) : ML Sample @ 4.5 K
  ML sample : 250 nm Nb + 4 x (14 nm MgO + 12 nm NbN )
  Similar behavior as SL
  Instabilities in 1rst and 3rd quadrant (vortices jumps ?)
  NbN lowest quality (Tc= 15.48K)




CEA/DSM/Irfu/SACM/Lesar                Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010
SQUID : ISSUES

  Strong screening effect observed although
sample is in uniform field (!?)
    Edge, shape, alignment issues => is BP ~ BC1 ?
  Perpendicular remnant moment => what is the
exact local field ?
  DC instead of RF : not a problem; BC1 is
expected to be higher in RF
=> need to get rid of edge effects
=> need to get local measurement !



CEA/DSM/Irfu/SACM/Lesar         Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010
Local magnetometry (1)
3rd harmonic measurement, coll. INFM Napoli
    M. Aurino, et al., Journal of Applied Physics, 2005. 98: p. 123901.
    Perpendicular field : field distribution can be determined analytically.
      If rsample> 4 rcoil : Sample ≡ infinite plate
     Applied field : perpendicular, induction (B ) // surface


                                                                                              Differential Locking
                                                                                              Amplifier




                                         Excitation/Detection
                                         coil (small/sample)




CEA/DSM/Irfu/SACM/Lesar                     Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010           15
Local magnetometry (2)
         3rd harmonic measurement, coll. INFM Napoli
                 b0cos         ) applied in the coil

                 temperature ramp

                 third harmonic signal appears @ Tb0

                series of b0 => series of transition temperature => BC1 (T))




                                                                                                       = T/Tc
Sample SL : third harmonic signal for various b0


  CEA/DSM/Irfu/SACM/Lesar                          Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010   16
Local magnetometry (3)
                        18
                         100

                        16 90
                                                                            ref ref
                        14 80
                                                                            SL
                        12 70                                                    SL
                             60
               B (mT)   10
               B (mT)
                             50
                         8
                                  SQUID results
                             40
                         6
                             30
                         4
                             20
                         2
                             10

                         0 0
                           0 0    2 2     4 4     6 6   8 8     10 10   12 12     14 14    16 16    18 18
                                                          T (K)(K)
                                                             T


SL sample : 250 nm Nb + 14 nm MgO + 25 nm NbN
8.90K < Tp° < 16K : behavior ~ NbN alone
Tp°< 8.90K, i.e. when Nb substrate is SC , => BC1SL >> BC1Nb
Need to extend measure @ higher field and lower temperature


CEA/DSM/Irfu/SACM/Lesar                                 Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010   17
Local magnetometry (4)
               Sample SL : small Nb signal @ ~TcNb : Nb is sensed through the NbN layer !
              Since the Nb layer feels a field attenuated by the NbN layer, the apparent
           transition field is higher.
             This curve provides a direct measurement of the attenuation of the field due to
           the NbN layer


                                                                             2
                                                                                                                               Nb Ref
                                                                            1.5
                                                                                                                               Nb/SL




                                                                   B (mT)
                                                                             1


                                                                            0.5
0.04
0.03                                                       Nd
                                                                             0
0.02
                                  HNb        Happl e
                                                                                  8                          8.5                         9
0.01
  0                                  BC1 curves for Niobium in the reference (direct                       T (K)
       5   7        9
                                     measurement) and in SL (under the NbN layer).


               CEA/DSM/Irfu/SACM/Lesar                              Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010      18
Local magnetometry (4)
                                                                  copper rod
                                                                  (thermalization of
                                                                  electrical wires)


                                      spring

coil support
(high                           glass             coil
conductivity                    bead
copper)

                                                         Coil :
                                                         
                                                         ∅int :             sample
                                                         1mm,          ∅ ext :
 thermal                                                 5mm,         L : 2,25
   braid                                                 mm
                                                        Wire: ∅ 32µm

                                                        Spires : 2800

                                                        Bmax ~ 30 mT sample support
   High                                                  (estimation from
                                               temperature
                            heating                             steel      (high conductivity
   conductivity                                  sensor max J)
                            wire                                rods       copper)
   copper plate

 coil with ext. ∅ : 5 mm => samples with ∅> 13 mm ≡ infinite plane
 thermal regulation : 1.6 K <Tp°< 40K, automated
 100 to 200 mT available soon


  CEA/DSM/Irfu/SACM/Lesar                                    Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010   20
Future : Depositing and testing RF cavities
                                                     TE011,
            depositing and testing RF Cavities:      ~3 GHz
                                                     IPNO
                  IPN (Orsay) : 3GHz,
                  LKB (Paris) : 50GHz
                   Cavités 1.3 GHz @ Saclay
             (what deposition technique?!)

1.3 GHz
Irfu



                                                         50 GHz
                                                         LKB




            CEA/DSM/Irfu/SACM/Lesar               Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010   21
Conclusions et perspectives:

    When no edge effect (i.e. demagnetization factor) is
involved, magnetic screening of NbN is effective even in
perpendicular field
    This result is very encouraging regarding cavities situation
     Local magnetometry is a convenient tool for sample
characterization :
           ML structure optimization (SC, thickness, number of
       layers, substrate preparation…)
           Evaluation of various deposition techniques
     We are open to collaboration if you want to test samples !



CEA/DSM/Irfu/SACM/Lesar           Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010   22
Compléments




CEA/DSM/Irfu/SACM/Lesar       Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010   23
Adjustment of coil distance
                                   glue                                              glue + copper powder




                            glass bead wedge : 60 µm                                  coil




CEA/DSM/Irfu/SACM/Lesar               Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010   24
Multilayers optimization
SC structure optimization
Deposition techniques optimization                          Nb
                                                            NbN
   Magnetron sputtering Inac (Grenoble),
                                                            Al2O3
   Atomic Layer Deposition INP (Grenoble)
                                                            MgO
                                                            Cu


                                                     Metallic substrates more realistic):




                                             From samples to cavities :
                                               ALD involves the use of a pair of reagents
                                               Application of this AB Scheme
                                                     Reforms a new surface
                                                     Adds precisely 1 monolayer
                                               Viscous flow (~1 Torr) allows rapid growth
                                               No line of site requirements

                                                       => uniform layers, larges surfaces,
                                                     well adapted to complex shapes :
                                                     cavities!
                                                       up grade of existing cavities ?


 CEA/DSM/Irfu/SACM/Lesar              Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010   26
Bulk Nb ultimate limits : not far from here !
                                                                                            Cavité 1DE3 :
                                                                                             EP @ Saclay
                                                                                           T- map @ DESY
                                                                                           Film : courtoisie
                                                                                           A.     Gössel +
                                                                                              D. Reschke
                                                                                               (DESY,
                                                                                             Début 2008)




The hot spot is not localized : the material is ~ equivalent at each location
=> cavity not limited /local defect, but by material properties ?
       CEA/DSM/Irfu/SACM/Lesar         Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010      27
Rappels sur les principaux supras


   Matériau         TC (K)      n        HC           HC1              HC2                 L          Type
                             (µWcm)   (Tesla)*      (Tesla)*         (Tesla)*          (nm)*
       Pb             7,1              0,08            n.a.             n.a.             48                 I
       Nb            9,22      2        0,2            0,17             0,4              40                 II
     Mo3Re            15               0,43            0,03             3,5             140                 II
      NbN            16,2      70      0,23            0,02              15             200                 II
      V3Si            17                                                                                    II
     NbTiN           17,5      35                      0,03                             151                 II
     Nb3Sn           18,3      20      0,54            0,05              30              85                 II
      Mg2B2           40               0,43            0,03             3,5             140            II-
                                                                                                     2gaps
     YBCO             93                1,4            0,01             100             150         d-wave




CEA/DSM/Irfu/SACM/Lesar                    Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010        28

More Related Content

What's hot

MRS fall meeting 2009, Boston
MRS fall meeting 2009, BostonMRS fall meeting 2009, Boston
MRS fall meeting 2009, Boston
bmazumder
 
лекция 2 атомные смещения в бинарных сплавах
лекция 2 атомные смещения в бинарных сплавах лекция 2 атомные смещения в бинарных сплавах
лекция 2 атомные смещения в бинарных сплавах
Sergey Sozykin
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Jorge Quintanilla
 
Cu stp 02_solar_resource
Cu stp 02_solar_resourceCu stp 02_solar_resource
Cu stp 02_solar_resource
Manuel Silva
 
лекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физикилекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физики
Sergey Sozykin
 

What's hot (12)

Cabtures
CabturesCabtures
Cabtures
 
MRS fall meeting 2009, Boston
MRS fall meeting 2009, BostonMRS fall meeting 2009, Boston
MRS fall meeting 2009, Boston
 
Sebastian
SebastianSebastian
Sebastian
 
SMR_defence_sep3
SMR_defence_sep3SMR_defence_sep3
SMR_defence_sep3
 
Senergy Formation Damage Presentation
Senergy Formation Damage PresentationSenergy Formation Damage Presentation
Senergy Formation Damage Presentation
 
лекция 2 атомные смещения в бинарных сплавах
лекция 2 атомные смещения в бинарных сплавах лекция 2 атомные смещения в бинарных сплавах
лекция 2 атомные смещения в бинарных сплавах
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
 
Cu stp 02_solar_resource
Cu stp 02_solar_resourceCu stp 02_solar_resource
Cu stp 02_solar_resource
 
Gael Reinaudi. Invited speaker at "Quantum Engineering based on Atoms and Pho...
Gael Reinaudi. Invited speaker at "Quantum Engineering based on Atoms and Pho...Gael Reinaudi. Invited speaker at "Quantum Engineering based on Atoms and Pho...
Gael Reinaudi. Invited speaker at "Quantum Engineering based on Atoms and Pho...
 
лекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физикилекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физики
 
Llnl Presentation 1 Apr 10
Llnl Presentation 1 Apr 10Llnl Presentation 1 Apr 10
Llnl Presentation 1 Apr 10
 
3MPL Graduate School Days
3MPL Graduate School Days3MPL Graduate School Days
3MPL Graduate School Days
 

Similar to Antoine - Enhancement of First Penetration Field in Superconducting Multi-layers Samples

Nanoscience seminar Grenoble March 2012
Nanoscience seminar Grenoble March 2012Nanoscience seminar Grenoble March 2012
Nanoscience seminar Grenoble March 2012
hankeijzers
 
NanowireSensor (Nano-Tera)
NanowireSensor (Nano-Tera)NanowireSensor (Nano-Tera)
NanowireSensor (Nano-Tera)
dalgetty
 
Ordered TiO2 Nanotube Arrays For DSC
Ordered TiO2 Nanotube Arrays For DSCOrdered TiO2 Nanotube Arrays For DSC
Ordered TiO2 Nanotube Arrays For DSC
chkxu
 
Grassellino - Application of Muon Spin Rotation to studies of cavity performa...
Grassellino - Application of Muon Spin Rotation to studies of cavity performa...Grassellino - Application of Muon Spin Rotation to studies of cavity performa...
Grassellino - Application of Muon Spin Rotation to studies of cavity performa...
thinfilmsworkshop
 
NanowireSensor
NanowireSensorNanowireSensor
NanowireSensor
dalgetty
 

Similar to Antoine - Enhancement of First Penetration Field in Superconducting Multi-layers Samples (20)

Nanoscience seminar Grenoble March 2012
Nanoscience seminar Grenoble March 2012Nanoscience seminar Grenoble March 2012
Nanoscience seminar Grenoble March 2012
 
Beam instrumentation: low energy, low intensity beams
Beam instrumentation: low energy, low intensity beamsBeam instrumentation: low energy, low intensity beams
Beam instrumentation: low energy, low intensity beams
 
EXO_DBD07
EXO_DBD07EXO_DBD07
EXO_DBD07
 
Lobanov - Nb-sputtered 150 MHz Quarter-wave Resonators for ANU Linac Upgrade
Lobanov - Nb-sputtered 150 MHz Quarter-wave Resonators for ANU Linac UpgradeLobanov - Nb-sputtered 150 MHz Quarter-wave Resonators for ANU Linac Upgrade
Lobanov - Nb-sputtered 150 MHz Quarter-wave Resonators for ANU Linac Upgrade
 
NanowireSensor (Nano-Tera)
NanowireSensor (Nano-Tera)NanowireSensor (Nano-Tera)
NanowireSensor (Nano-Tera)
 
12.45 o15 m bartle
12.45 o15 m bartle12.45 o15 m bartle
12.45 o15 m bartle
 
Laser based Spectrometer for VOCs Monitoring
Laser based Spectrometer for VOCs MonitoringLaser based Spectrometer for VOCs Monitoring
Laser based Spectrometer for VOCs Monitoring
 
Ordered TiO2 Nanotube Arrays For DSC
Ordered TiO2 Nanotube Arrays For DSCOrdered TiO2 Nanotube Arrays For DSC
Ordered TiO2 Nanotube Arrays For DSC
 
Squeezing Resoumis V1
Squeezing Resoumis V1Squeezing Resoumis V1
Squeezing Resoumis V1
 
Enzo palmieri experimental results on thermal boundary resistance for niobi...
Enzo palmieri   experimental results on thermal boundary resistance for niobi...Enzo palmieri   experimental results on thermal boundary resistance for niobi...
Enzo palmieri experimental results on thermal boundary resistance for niobi...
 
Grassellino - Application of Muon Spin Rotation to studies of cavity performa...
Grassellino - Application of Muon Spin Rotation to studies of cavity performa...Grassellino - Application of Muon Spin Rotation to studies of cavity performa...
Grassellino - Application of Muon Spin Rotation to studies of cavity performa...
 
Light sources based on optical-scale accelerators
Light sources based on optical-scale acceleratorsLight sources based on optical-scale accelerators
Light sources based on optical-scale accelerators
 
CNT Nantes- 2011
CNT Nantes- 2011CNT Nantes- 2011
CNT Nantes- 2011
 
Jay amrit kapitza resistance at niobiumsuperfluid he interfaces
Jay amrit   kapitza resistance at niobiumsuperfluid he interfacesJay amrit   kapitza resistance at niobiumsuperfluid he interfaces
Jay amrit kapitza resistance at niobiumsuperfluid he interfaces
 
Introduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling MicroscopyIntroduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling Microscopy
 
15.30 o5 a kaiser
15.30 o5 a kaiser15.30 o5 a kaiser
15.30 o5 a kaiser
 
mrm Bristol-Flow Visualisation-(2008)
mrm Bristol-Flow Visualisation-(2008)mrm Bristol-Flow Visualisation-(2008)
mrm Bristol-Flow Visualisation-(2008)
 
Extreme Rheology- Cardiff- 2009
Extreme Rheology- Cardiff- 2009Extreme Rheology- Cardiff- 2009
Extreme Rheology- Cardiff- 2009
 
Presentation
PresentationPresentation
Presentation
 
NanowireSensor
NanowireSensorNanowireSensor
NanowireSensor
 

More from thinfilmsworkshop

3 ej fccrf legnaro 2014-10-06
3   ej fccrf legnaro 2014-10-063   ej fccrf legnaro 2014-10-06
3 ej fccrf legnaro 2014-10-06
thinfilmsworkshop
 
Tesi Bachelor Debastiani
Tesi Bachelor DebastianiTesi Bachelor Debastiani
Tesi Bachelor Debastiani
thinfilmsworkshop
 
Tesi Bachelor Giovanni Vergari
Tesi Bachelor Giovanni VergariTesi Bachelor Giovanni Vergari
Tesi Bachelor Giovanni Vergari
thinfilmsworkshop
 
Tesi master Ram Khrishna Thakur
Tesi master Ram Khrishna ThakurTesi master Ram Khrishna Thakur
Tesi master Ram Khrishna Thakur
thinfilmsworkshop
 
Tesi master Goulong yu
Tesi master Goulong yuTesi master Goulong yu
Tesi master Goulong yu
thinfilmsworkshop
 
Tesi magistrale Akaberi Nazkhatoon
Tesi magistrale Akaberi NazkhatoonTesi magistrale Akaberi Nazkhatoon
Tesi magistrale Akaberi Nazkhatoon
thinfilmsworkshop
 
Tesi PhD Zhang Yan
Tesi PhD  Zhang YanTesi PhD  Zhang Yan
Tesi PhD Zhang Yan
thinfilmsworkshop
 
Tesi Master Diego Tonini
Tesi Master Diego ToniniTesi Master Diego Tonini
Tesi Master Diego Tonini
thinfilmsworkshop
 
Tesi Master Giorgio Keppel
Tesi Master Giorgio KeppelTesi Master Giorgio Keppel
Tesi Master Giorgio Keppel
thinfilmsworkshop
 

More from thinfilmsworkshop (20)

V. Palmieri - Superconducting resonant cavities
V. Palmieri - Superconducting resonant cavitiesV. Palmieri - Superconducting resonant cavities
V. Palmieri - Superconducting resonant cavities
 
V. Palmieri - The classical superconductivity
V. Palmieri - The classical superconductivityV. Palmieri - The classical superconductivity
V. Palmieri - The classical superconductivity
 
Motori superconduttivi 2
Motori superconduttivi 2Motori superconduttivi 2
Motori superconduttivi 2
 
Motori superconduttivi 1
Motori superconduttivi 1Motori superconduttivi 1
Motori superconduttivi 1
 
3 ej fccrf legnaro 2014-10-06
3   ej fccrf legnaro 2014-10-063   ej fccrf legnaro 2014-10-06
3 ej fccrf legnaro 2014-10-06
 
Tesi Master Andrea Camacho Romero
Tesi Master Andrea Camacho RomeroTesi Master Andrea Camacho Romero
Tesi Master Andrea Camacho Romero
 
Tesi Bachelor Debastiani
Tesi Bachelor DebastianiTesi Bachelor Debastiani
Tesi Bachelor Debastiani
 
Tesi Bachelor Giovanni Vergari
Tesi Bachelor Giovanni VergariTesi Bachelor Giovanni Vergari
Tesi Bachelor Giovanni Vergari
 
Tesi master Ram Khrishna Thakur
Tesi master Ram Khrishna ThakurTesi master Ram Khrishna Thakur
Tesi master Ram Khrishna Thakur
 
Tesi master Goulong yu
Tesi master Goulong yuTesi master Goulong yu
Tesi master Goulong yu
 
Tesi magistrale Akaberi Nazkhatoon
Tesi magistrale Akaberi NazkhatoonTesi magistrale Akaberi Nazkhatoon
Tesi magistrale Akaberi Nazkhatoon
 
Tesi master Acosta Gabriela
Tesi master Acosta GabrielaTesi master Acosta Gabriela
Tesi master Acosta Gabriela
 
Tesi PhD Zhang Yan
Tesi PhD  Zhang YanTesi PhD  Zhang Yan
Tesi PhD Zhang Yan
 
Tesi federico della ricca
Tesi federico della riccaTesi federico della ricca
Tesi federico della ricca
 
Tesi Master Zambotto Dino
Tesi Master Zambotto Dino Tesi Master Zambotto Dino
Tesi Master Zambotto Dino
 
Tesi master Vanessa Rampazzo
Tesi master Vanessa Rampazzo Tesi master Vanessa Rampazzo
Tesi master Vanessa Rampazzo
 
Tesi master Paolo Modanese
Tesi master Paolo ModaneseTesi master Paolo Modanese
Tesi master Paolo Modanese
 
Tesi Master Diego Tonini
Tesi Master Diego ToniniTesi Master Diego Tonini
Tesi Master Diego Tonini
 
Tesi Master Giorgio Keppel
Tesi Master Giorgio KeppelTesi Master Giorgio Keppel
Tesi Master Giorgio Keppel
 
Tes master Tommaso Cavallin
Tes master Tommaso CavallinTes master Tommaso Cavallin
Tes master Tommaso Cavallin
 

Recently uploaded

Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
Joaquim Jorge
 

Recently uploaded (20)

[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Tech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfTech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdf
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Developing An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilDeveloping An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of Brazil
 

Antoine - Enhancement of First Penetration Field in Superconducting Multi-layers Samples

  • 1. Enhancement of First Penetration Field in Superconducting Multi-layers Samples C. Z. ANTOINE, S. BERRY CEA, Irfu, Centre d'Etudes de Saclay, 91191 Gif-sur-Yvette Cedex, France M. AURINO, J-F. JACQUOT, J-C. VILLEGIER, CEA, INAC, 17 Rue des Martyrs, 38054 Grenoble-Cedex-9, France G. LAMURA CNR-SPIN-GE, corso Perrone 24, 16124 Genova, Italy A. ANDREONE CNR-SPIN-NA and Dipartimento di Scienze Fisiche, Università di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli, Italy The Fourth International Workshop on Thin Films and New Ideas for pushing the limits of RF Superconductivity CEA/DSM/Irfu/SACM/Lesar Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010 1
  • 2. High field dissipations Theoretical Work from Gurevich : Non linear BCS resistance A. Gurevich, "Multiscale mechanisms of SRF breakdown". Physica C, 2006. 441(1-2): p. 38-43 A. Gurevich, "Enhancement of RF breakdown field of SC by multilayer coating". Appl. Phys.Lett., 2006. 88: p. 12511. P. Bauer, et al., "Evidence for non-linear BCS resistance in SRF cavities ". Physica C, 2006. 441: p. 51–56 Classical model (BCS) : dissipations calculated @ T ~Tc, clean limit “rf pair breaking” induces non linear corrections which increase when T At high field : quadratic variation of RBCS => Vortex ~ some nm Hot spot ~ some mm cm (comparable to what is observed on cavities) High field dissipation threshold = 1st penetration des vortex (HC1) Nb is the best for SRF because it has the highest HC1, …. CEA/DSM/Irfu/SACM/Lesar Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010 2
  • 3. High field dissipations HC1 Nb3Sn (0.05 T) HC1 Nb (0.17 T) 1E+12 Nb3Sn 1E+11 Nb Bulk Nb3Sn cavity : Qo 1E+10 • High Q0 @ low field QUENCH => low Rres 1E+09 • Early Q slope 1E+08 0 10 5 20 10 30 15 40 20 50 25 60 30 70 35 Epk (MV/m) 1.5 GHz Nb3Sn cavity (Wuppertal, 1985) 1.3 GHz Nb cavity (Saclay, 1999) CEA/DSM/Irfu/SACM/Lesar Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010 3
  • 4. High field dissipations Theoretical Work from Gurevich : Non linear BCS resistance A. Gurevich, "Multiscale mechanisms of SRF breakdown". Physica C, 2006. 441(1-2): p. 38-43 A. Gurevich, "Enhancement of RF breakdown field of SC by multilayer coating". Appl. Phys.Lett., 2006. 88: p. 12511. P. Bauer, et al., "Evidence for non-linear BCS resistance in SRF cavities ". Physica C, 2006. 441: p. 51–56 Classical model (BCS) : dissipations calculated @ T ~Tc, clean limit “rf pair breaking” induces non linear corrections which increase when T At high field : quadratic variation of RBCS => Vortex ~ some nm Hot spot ~ some mm cm (comparable to what is observed on cavities) High field dissipation threshold = 1st penetration des vortex (HC1) Nb is the best for SRF because it has the highest HC1, Nb is close to its ultimate limits (normal state transition) Increasing the field = > avoiding vortices penetration CEA/DSM/Irfu/SACM/Lesar Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010 4
  • 5. Breaking Niobium monopoly Overcoming niobium limits (A.Gurevich, 2006) : Keep niobium but shield its surface from RF field and prevent vortex penetration Use nanometric films (w. d < ) of higher Tc SC : => HC1 et Hs enhancement Example : NbN , = 5 nm, = 200 nm HC1 = 0,02 T & Hs = 0,23 T, x 200 x ~ 30 20 nm film => H’C1 = 4,2 T & H’s = 6,37 T (similar improvement with MgB2 or Nb3Sn) NbN 1 Nb R BCS 10 R BCS => Q0multi >> Q0Nb CEA/DSM/Irfu/SACM/Lesar Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010 5
  • 6. High Tc nanometric SC films : low RS, high HC1 Magnetic field B (mT) 160 Happlied 1E+12 80 Quality coefficient Q0 1E+11 HNb Cavity's internal Outside wall surface → 1E+10 Nd HNb Happl e 1E+09 0 20 40 60 Accelerating Field Eacc (MV/m) Composite nanometric SC : Multilayers Nb / insulator/ superconductor / insulator /superconductor… Bulk Nb prevents perpendicular vortex penetration (surrounding field) Insulating layer ~ 15 nm : Josephson decoupling High Tc SC : d ~ some 10 nm High HS Magnetic screening for parallel vortex Lower RBCS Q0 ↑↑ CEA/DSM/Irfu/SACM/Lesar Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010 6
  • 7. Samples and HC1 issues Choice of model samples: It is easier to change parameters on sample than on cavities : e.g. Easier to get good quality layers on small surfaces Change of substrate nature : sapphire, monocrystalline Nb, polycrystalline Nb, surface preparation. Optimization of SC thickness, number of layer, etc. But ! HC1 measurement is more difficult with classical means (DC). Note that HC1DC ≤ HC1RF ≤ HC => any DC or low frequency measurement is conservative compare to what is expected if RF. HC1 give an estimation of the maximum field achievable without dissipation : if I keep below HC1, I don't really have to care about what exactly HSH is, what the (complex!) behavior of vortices is, etc. Still need RF test to estimate RS/Q0 CEA/DSM/Irfu/SACM/Lesar Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010 7
  • 8. High quality model samples Choice of NbN: ML structure = close to Josephson junction preparation (SC/insulator compatibility) Use of asserted techniques for superconducting electronics circuits preparation: Magnetron sputtering Flat monocrystalline substrates ~ 25 nm NbN ~ 15 nm insulator (MgO) 250 nm Nb “bulk” Reference sample R Test sample SL Monocrystalline sapphire ~ 12 nm NbN x4 14 nm insulator (MgO) 250 nm Nb “bulk” Monocrystalline sapphire Test sample ML Collaboration avec J.C. Villégier, CEA-Inac / Grenoble CEA/DSM/Irfu/SACM/Lesar Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010 8
  • 9. Characterization: Standard characterization : material quality (collabn CEA/INAC-Grenoble) Quantum design PPMS: Tc, conductivity X Rays : low angle diffusion : Peaks/phases Identification : Monocrystalline or highly (200) textured layers Distortions :d(200) on NbN expanded: ~ 0,5 % X Rays : reflectivity: thickness and interface roughness Quantum design physical properties measurement system (PPMS): Reference Thickness Roughness Sample SL Thickness Roughness Sample ML** Thicknes Roughness Sample R* (nm) (nm) Tc = 16.37 K (nm) (nm) Tc = 15.48 K s (nm) (nm) Tc = 8.9 K Nb 250 1 Nb 250 1 Nb 250 1 MgO 14 1 MgO 14 1 MgO *** 14 1 NbN 0 0 NbN 25 1.5 NbN 12 1.5 * Sample R contains only Nb capped with a layer of NbO. Obtained by RIE etching of sample SL. ** In ML the motive MgO/NbN is repeated 4 times. *** except the external, capping layer which is 5 nm CEA/DSM/Irfu/SACM/Lesar Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010 9
  • 10. Magnetic characterization : SQUID (1) Principle of measurement (5x5mm2 samples) : Parallel and perpendicular field tested B //, longitudinal moment Thin films in parallel configuration (B//): Quartz 1. Strong transverse signal vs longitudinal => the longitudinal holder component appears non purely dipolar (superposition of 2 signals) Detection 2. Strong sensitivity of M to the angle between the sample coils B Sample surface and the applied field B (alignment should be better than 0.005°). Development of a dedicated fitting procedure 1. Fourier transform 2. Separation of the odd signal from the even signal B //, transverse moment 3. Reverse Fourier transform 4. Fitting Sample Oriented quartz Longitudinal signal holder Actual longitudinal B component Detection Transverse coils component (cross talk) Usual dipolar signal Signal as detected in the long. Loop : strong even signal is due to “crosstalk " with the transverse moment CEA/DSM/Irfu/SACM/Lesar Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010
  • 11. SQUID (2) : references @ 4.5 K Nb(250 nm) : NbN(30 nm) "Elemental" layers : isotropic. HP ~ 18 mT = compatible with magnetron sputtered films No field enhancement on 30 nm NbN layer !? CEA/DSM/Irfu/SACM/Lesar Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010
  • 12. SQUID (3) : SL Sample @ 4.5 K High quality NbN film (Tc =16.37K) Strong anisotropic behavior Longitudinal moment : Fishtail shape characteristic of layered SC HP ~ 96 mT (+ 78 mT /Nb alone) !!! Similar behavior with ML CEA/DSM/Irfu/SACM/Lesar Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010
  • 13. SQUID (4) : ML Sample @ 4.5 K ML sample : 250 nm Nb + 4 x (14 nm MgO + 12 nm NbN ) Similar behavior as SL Instabilities in 1rst and 3rd quadrant (vortices jumps ?) NbN lowest quality (Tc= 15.48K) CEA/DSM/Irfu/SACM/Lesar Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010
  • 14. SQUID : ISSUES Strong screening effect observed although sample is in uniform field (!?) Edge, shape, alignment issues => is BP ~ BC1 ? Perpendicular remnant moment => what is the exact local field ? DC instead of RF : not a problem; BC1 is expected to be higher in RF => need to get rid of edge effects => need to get local measurement ! CEA/DSM/Irfu/SACM/Lesar Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010
  • 15. Local magnetometry (1) 3rd harmonic measurement, coll. INFM Napoli M. Aurino, et al., Journal of Applied Physics, 2005. 98: p. 123901. Perpendicular field : field distribution can be determined analytically. If rsample> 4 rcoil : Sample ≡ infinite plate Applied field : perpendicular, induction (B ) // surface Differential Locking Amplifier Excitation/Detection coil (small/sample) CEA/DSM/Irfu/SACM/Lesar Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010 15
  • 16. Local magnetometry (2) 3rd harmonic measurement, coll. INFM Napoli b0cos ) applied in the coil temperature ramp third harmonic signal appears @ Tb0 series of b0 => series of transition temperature => BC1 (T)) = T/Tc Sample SL : third harmonic signal for various b0 CEA/DSM/Irfu/SACM/Lesar Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010 16
  • 17. Local magnetometry (3) 18 100 16 90 ref ref 14 80 SL 12 70 SL 60 B (mT) 10 B (mT) 50 8 SQUID results 40 6 30 4 20 2 10 0 0 0 0 2 2 4 4 6 6 8 8 10 10 12 12 14 14 16 16 18 18 T (K)(K) T SL sample : 250 nm Nb + 14 nm MgO + 25 nm NbN 8.90K < Tp° < 16K : behavior ~ NbN alone Tp°< 8.90K, i.e. when Nb substrate is SC , => BC1SL >> BC1Nb Need to extend measure @ higher field and lower temperature CEA/DSM/Irfu/SACM/Lesar Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010 17
  • 18. Local magnetometry (4) Sample SL : small Nb signal @ ~TcNb : Nb is sensed through the NbN layer ! Since the Nb layer feels a field attenuated by the NbN layer, the apparent transition field is higher. This curve provides a direct measurement of the attenuation of the field due to the NbN layer 2 Nb Ref 1.5 Nb/SL B (mT) 1 0.5 0.04 0.03 Nd 0 0.02 HNb Happl e 8 8.5 9 0.01 0 BC1 curves for Niobium in the reference (direct T (K) 5 7 9 measurement) and in SL (under the NbN layer). CEA/DSM/Irfu/SACM/Lesar Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010 18
  • 19. Local magnetometry (4) copper rod (thermalization of electrical wires) spring coil support (high glass coil conductivity bead copper) Coil :  ∅int : sample 1mm, ∅ ext : thermal 5mm, L : 2,25 braid mm  Wire: ∅ 32µm  Spires : 2800  Bmax ~ 30 mT sample support High (estimation from temperature heating steel (high conductivity conductivity sensor max J) wire rods copper) copper plate coil with ext. ∅ : 5 mm => samples with ∅> 13 mm ≡ infinite plane thermal regulation : 1.6 K <Tp°< 40K, automated 100 to 200 mT available soon CEA/DSM/Irfu/SACM/Lesar Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010 20
  • 20. Future : Depositing and testing RF cavities TE011, depositing and testing RF Cavities: ~3 GHz IPNO IPN (Orsay) : 3GHz, LKB (Paris) : 50GHz Cavités 1.3 GHz @ Saclay (what deposition technique?!) 1.3 GHz Irfu 50 GHz LKB CEA/DSM/Irfu/SACM/Lesar Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010 21
  • 21. Conclusions et perspectives: When no edge effect (i.e. demagnetization factor) is involved, magnetic screening of NbN is effective even in perpendicular field This result is very encouraging regarding cavities situation Local magnetometry is a convenient tool for sample characterization : ML structure optimization (SC, thickness, number of layers, substrate preparation…) Evaluation of various deposition techniques We are open to collaboration if you want to test samples ! CEA/DSM/Irfu/SACM/Lesar Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010 22
  • 22. Compléments CEA/DSM/Irfu/SACM/Lesar Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010 23
  • 23. Adjustment of coil distance glue glue + copper powder glass bead wedge : 60 µm coil CEA/DSM/Irfu/SACM/Lesar Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010 24
  • 24. Multilayers optimization SC structure optimization Deposition techniques optimization Nb NbN Magnetron sputtering Inac (Grenoble), Al2O3 Atomic Layer Deposition INP (Grenoble) MgO Cu Metallic substrates more realistic): From samples to cavities : ALD involves the use of a pair of reagents Application of this AB Scheme Reforms a new surface Adds precisely 1 monolayer Viscous flow (~1 Torr) allows rapid growth No line of site requirements => uniform layers, larges surfaces, well adapted to complex shapes : cavities! up grade of existing cavities ? CEA/DSM/Irfu/SACM/Lesar Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010 26
  • 25. Bulk Nb ultimate limits : not far from here ! Cavité 1DE3 : EP @ Saclay T- map @ DESY Film : courtoisie A. Gössel + D. Reschke (DESY, Début 2008) The hot spot is not localized : the material is ~ equivalent at each location => cavity not limited /local defect, but by material properties ? CEA/DSM/Irfu/SACM/Lesar Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010 27
  • 26. Rappels sur les principaux supras Matériau TC (K) n HC HC1 HC2 L Type (µWcm) (Tesla)* (Tesla)* (Tesla)* (nm)* Pb 7,1 0,08 n.a. n.a. 48 I Nb 9,22 2 0,2 0,17 0,4 40 II Mo3Re 15 0,43 0,03 3,5 140 II NbN 16,2 70 0,23 0,02 15 200 II V3Si 17 II NbTiN 17,5 35 0,03 151 II Nb3Sn 18,3 20 0,54 0,05 30 85 II Mg2B2 40 0,43 0,03 3,5 140 II- 2gaps YBCO 93 1,4 0,01 100 150 d-wave CEA/DSM/Irfu/SACM/Lesar Claire Antoine –Thin Films Workshop, Padua, October 4 –6, 2010 28