SlideShare a Scribd company logo
1 of 55
TESCO
Tuesdays
Today’s session will begin shortly
2
January 28, 2019
Atlanta, GA
Transformer-Rated & Self-Contained
Metering Fundamentals
Prepared by Tom Lawton, TESCO
The Eastern Specialty Company
TESCO Tuesdays
October 6, 2020
3
Topics we will be covering
• The Basics- Differences Between Self
Contained and Transformer or Instrument
Rated Meter Sites
• Transformer Rated Meter Forms
• Test Switches and CT’s
• Blondel’s Theorem and why this matters to
us in metering
• Meter Accuracy Testing in the Field
• Checking the Health of your CT’s and PT’s
• Site Verification and not just meter testing
4
Self Contained Metering
•Typically found in residential
metering
•Meters are capable of handling
the direct incoming amperage
•Meter is connected directly to
the load being measured
•Meter is part of the circuit
•When the meter is removed
from the socket, power to the
customer is interrupted
5
Meters Through the Years
Induction Meter Duncan Meter Meter from 1960’s
Meter from 80’s and 90’s 2000 to Present
6
Back to Basics: Electrical Laws
Ohms Law
Voltage = Current times Resistance
V = I X R
THE MOST USEFUL AND THE MOST
FUNDAMENTAL OF THE ELECTRICAL LAWS
7
Basic Concepts: Electricity and Water
Comparing Electricity to Water flowing from a hose
■ Voltage is the equivalent of the pressure in the hose
■ Current is water flowing through a hose (coulombs/sec vs
gal/sec). The water in a system is the “charge” (coulombs)
■ Impedance(Resistance) is the size of the hose. The nozzle
would provide a change in resistance.
■ Power is how fast water flows from a pipe (gallons per minute vs
kilowatts). Power is a rate of energy consumption
8
Basic Concepts: Electricity and Water
9
Practical Electricity
10
Basic Electrical Laws
♦ Ohms Law Examples
■ If V = 20 volts and I = 5 amperes what is the resistance?
R = V / I = 20 / 5 = 4 ohms
■ If R = 20 ohms and V = 120 volts what is the current?
I = V / R = 120 / 20 = 6 amps
■ If I = 10 amperes and R = 24 ohms what is the voltage?
V = I x R = 10 x 24 = 240 volts
■ Problem: If V = 240 volts and R = 6 ohms what is the current?
I = V / R = 240 / 6 = 40 amps
11
Basic Electrical Laws
12
Basic Electrical Laws
♦ Power = Voltage x Current = V x I = I2R = V2/R
■ If V = 20 volts and I = 8 amperes what is the power?
P = V x I = 20 x 8 = 160 watts
■ If R = 5 ohms and V = 120 volts what is the power?
P = V2/R = 120 x 120 / 5 = 2880 watts
■ If I = 10 amperes and R = 20 ohms what is the power?
P = I2R = 10 x 10 x 20 = 2000 watts
1 kilowatt (kW) = 1,000 watts
1 megawatt (MW) = 1,000,000 watts
13
Basic AC Theory
What is VA?
Power was measured in Watts. Power does useful work.
The power that does useful work is referred to as
“Active Power.”
VA is measured in Volt-Amperes. It is the capacity
required to deliver the Power. It is also referred to as the
“Apparent Power.”
Power Factor = Active Power / Apparent Power
VA = E x I
PF = W/VA
14
Basic Meter Math
Power – VA
For a 120 Volt service drawing 60 Amps at 1.00 PF
How much power is being drawn?
Power = 120 x 60 x 1.00 = 7,200 Watts
How many VA are being drawn?
VA = 120 x 60 = 7,200 Volt Amperes
15
Basic AC Theory
Power – The Simple View
E = Voltage (rms)
I = Current (rms)
PF = Power Factor
Power = Watts = E x I x PF
Power is sometimes
referred to as Demand
Sinusoidal
Waveforms
Only
NO
Harmonics
For a 120 Volt service drawing
13 Amps at Unity (1.0) PF,
how much power is being drawn?
Power = 120 x 13 x 1.0 = 1560 Watts
16
Basic AC Theory
Power Factor = 1.0
AC
RVrms
Irms
17
Basic Meter Math
Power – The Simple View
For a 120 Volt service drawing
13 Amps at 0.866 PF,
how much power is being drawn?
Power = 120 x 13 x 0.866 = 1351 Watts
For a 480 Volt service drawing
156 Amps at 0.712 PF,
how much power is being drawn?
Power = 480 x 156 x 0.712 = 53,315 Watts
18
Basic AC Theory
Power – The Simple View
In the previous example we had:
Power = 480 x 156 x 0.712 = 53,315 Watts
Normally we don’t talk about Watts, we speak in Kilowatts
1000 Watts = 1 Kilowatt = 1 kW
Watts / 1000 = Kilowatts
For a 480 Volt service drawing
156 Amps at Unity (0.712) PF,
how many Kilowatts are being drawn?
Power = 480 x 156 x 0.712 / 1000 = 53.315 kW
19
Basic AC Theory
Energy – What We Sell
If power is how fast water flows from a pipe,
then energy is how much water we have in a bucket
after the water has been flowing for a specified time.
Energy = Power x Time
1 kW for 1 Hour = 1 Kilowatt-Hour = 1 kWh
Energy (Wh) = E x I x PF x T
where T = time in hours
Energy (kW) = (E x I x PF / 1000) x T
20
Basic Meter Math
Energy – What We Sell
For a 120 Volt service drawing 45 Amps at a
Power Factor of 0.9 for 1 day,
how much Energy (kWh) has been used?
Energy = (120 x 45 x 0.9 / 1000) x 24 = 116.64 kWh
For a 240 Volt service drawing 60 Amps at a
Power Factor of 1.0 for 5.5 hours,
how much Energy (kWh) has been used?
Energy = (240 x 60 x 1.0 / 1000) x 5.5 = 79.2 kWh
21
Basic Meter Math
Energy – What We Sell
For a 120 Volt service drawing 20 Amps at a
Power Factor of 0.8 from 8:00AM to 6:00PM,
and 1 Amp at PF=1.0 from 6:00PM to 8:00AM
how much Energy (kWh) has been used?
8:00AM to 6:00PM = 10 hours
6:00PM to 8:00AM = 14 hours
Energy = (120 x 20 x 0.8 / 1000) x 10 = 19.2 kWh
Energy = (120 x 1 x 1 / 1000) x 14 = 1.68 kWh
Energy = 19.2 kWh + 1.68 kWh = 20.88 kWh
22
Basic Energy Formula
• The essential specification of a watthour meter’s measurement
is given by the value
Kh [ Watthours per disk revolution ]
• The watthour meter formula is as follows:
   srevolutiondisk
revolutiondisk
watthours
Watthours nKE h *




23
Meter Shop Accuracy Test Demo
24
TESCO/Georgia Power 2017 Caribbean Meter School
Fundamentals of Polyphase Field Meter Testing and Site Verification
 Full Load
 Light Load
 Power Factor
Meter Accuracy Testing
Meter Accuracy
Testing in a Nutshell
25
Transformer Rated Metering
• Meter measures scaled down
representation of the load.
• Scaling is accomplished by the use
of external current transformers
(CTs) and sometimes voltage
transformers or PTs).
• The meter is NOT part of the circuit
• When the meter is removed from
the socket, power to the customer
is not effected.
26
9S Meter Installation with 400:5 CT’s
400A
400A
400A
LOAD
5A 5A 5A
SOURCE
PHASE A
PHASE B
PHASE C
The Basic Components
27
CT Metering Accuracy
28
Current Transformer Testing System &
Voltage Transformer Testing System
Knopp Voltage Transformer
Testing System
Knopp Current Transformer
Testing System
29
Fundamentals of Polyphase Field Meter
Testing and Site Verification
Current Transformers Conceptual
Representation
Real, with core losses
Ideal. No losses
30
Fundamentals of Polyphase Field Meter
Testing and Site Verification
Functionality with Burden Present on the Secondary Loop
PHASE A
• Some burden will always be
present – junctions, meter
coils, test switches, cables,
etc.
• CT’s must be able to
maintain an accurate ratio
with burden on the
secondary.
31
Fundamentals of Polyphase Field Meter
Testing and Site Verification
Functionality with Burden Present on the Secondary Loop
Example Burden Spec:
0.3% @ B0.1, B0.2, B0.5
or
There should be less than the 0.3%
change in secondary current from initial
(“0” burden) reading, when up to 0.5 Ohms
of burden is applied
Fundamentals of Polyphase Field Meter
Testing and Site Verification
32
Fundamentals of Polyphase Field Meter
Testing and Site Verification
Functionality with Burden Present on the Secondary Loop
0.3% @ B0.1, B0.2, B0.5
0.0000
1.0000
2.0000
3.0000
4.0000
5.0000
6.0000
0 2 4 6 8
Initial Reading = 5Amps
0.3% x 5A = 0.015A
5A – 0.015 = 4.985A
Burden Reading
0 5.0000
0.1 4.9999
0.2 4.9950
0.5 4.9900
1 4.9800
2 4.9500
4 4.0000
8 0.8000
33
Ratio of Primary Current to Secondary Current
PHASE A
SOURCE LOAD
400A
400A
400A
5A5A
Calculate Ratio
Fundamentals of Polyphase Field Meter
Testing and Site Verification
34
Typical Connections
Typical Connections for Common
Transformer (Instrument)
Rated Meter Forms
35
Three Phase Power
Blondel’s Theorem
The theory of polyphase watthour metering was first set forth on a scientific
basis in 1893 by Andre E. Blondel, engineer and mathematician. His theorem
applies to the measurement of real power in a polyphase system of any
number of wires. The theorem is as follows:
- If energy is supplied to any system of conductors
through N wires, the total power in the system is given
by the algebraic sum of the readings of N wattmeters, so
arranged that each of the N wires contains one current
coil, the corresponding voltage coil being connected
between that wire and some common point. If this
common point is on one of the N wires, the
measurement may be made by the use of N-1
wattmeters.
36
Three Phase Power
Blondel’s Theorem
• Simply – We can measure the power in a
N wire system by measuring the power in
N-1 conductors.
• For example, in a 4-wire, 3-phase system
we need to measure the power in 3
circuits.
37
Three Phase Power
Blondel’s Theorem
• If a meter installation meets Blondel’s
Theorem then we will get accurate power
measurements under all circumstances.
• If a metering system does not meet
Blondel’s Theorem then we will only get
accurate measurements if certain
assumptions are met.
38
Blondel’s Theorem
• Three wires
• Two voltage measurements with
one side common to Line 2
• Current measurements on lines
1 & 3.
This satisfies Blondel’s
Theorem.
39
Blondel’s Theorem
• Four wires
• Two voltage measurements to
neutral
• Current measurements on lines 1 &
3. How about line 2?
This DOES NOT satisfy Blondel’s
Theorem.
40
Blondel’s Theorem
• In the previous example:
– What are the “ASSUMPTIONS”?
– When do we get errors?
• What would the “Right Answer” be?
• What did we measure?
)cos()cos()cos( cccbbbaaasys IVIVIVP  
)]cos()cos([)]cos()cos([ bbcccbbaaasys IIVIIVP  
41
Blondel’s Theorem
• Phase B power would be:
– P = Vb Ib cosθ
• But we aren’t measuring Vb
• What we are measuring is:
– IbVacos(60- θ) + IbVccos(60+ θ)
• cos(α + β) = cos(α)cos(β) - sin(α)sin(β)
• cos(α - β) = cos(α)cos(β) + sin(α)sin(β)
• So
42
Blondel’s Theorem
• Pb = Ib Va cos(60- θ) + Ib Vc cos(60+ θ)
• Applying the trig identity
– IbVa(cos(60)cos(θ) + sin(60)sin(θ))
IbVc (cos(60)cos(θ) - sin(60)sin(θ))
– Ib(Va+Vc)0.5cos(θ) + Ib(Vc-Va) 0.866sin(θ)
• Assuming
– Assume Vb = Va = Vc
– And, they are exactly 120° apart
• Pb = Ib(2Vb)(0.5cosθ) = IbVbcosθ
43
Blondel’s Theorem
• If Va ≠ Vb ≠ Vc then the error is
• %Error =
-Ib{(Va+Vc)/(2Vb) - (Va-Vc) 0.866sin(θ)/(Vbcos(θ))
How big is this in reality? If
Va=117, Vb=120, Vc=119, PF=1 then E=-1.67%
Va=117, Vb=116, Vc=119, PF=.866 then E=-1.67%
44
Blondel’s Theorem
Condition % V % I Phase A Phase B
non-
Blondel
Imb Imb V φvan I φian V φvbn I φibn
% Err
All balanced 0 0 120 0 100 0 120 180 100 180 0.00%
Unbalanced voltages PF=1 18% 0% 108 0 100 0 132 180 100 180 0.00%
Unbalanced current PF=1 0% 18% 120 0 90 0 120 180 110 180 0.00%
Unbalanced V&I PF=1 5% 18% 117 0 90 0 123 180 110 180 -0.25%
Unbalanced V&I PF=1 8% 18% 110 0 90 0 120 180 110 180 -0.43%
Unbalanced V&I PF=1 8% 50% 110 0 50 0 120 180 100 180 -1.43%
Unbalanced V&I PF=1 18% 40% 108 0 75 0 132 180 125 180 -2.44%
Unbalanced voltages
PF≠1 PFa = PFb
18% 0% 108 0 100 30 132 180 100 210 0.00%
Unbalanced current
PF≠1 PFa = PFb
0% 18% 120 0 90 30 120 180 110 210 0.00%
Unbalanced V&I
PF≠1 PFa = PFb
18% 18% 108 0 90 30 132 180 110 210 -0.99%
Unbalanced V&I
PF≠1 PFa = PFb
18% 40% 108 0 75 30 132 180 125 210 -2.44%
Unbalanced voltages
PF≠1 PFa ≠ PFb
18% 0% 108 0 100 60 132 180 100 210 -2.61%
Unbalanced current
PF≠1 PFa ≠ PFb
0% 18% 120 0 90 60 120 180 110 210 0.00%
Unbalanced V&I
PF≠1 PFa ≠ PFb
18% 18% 108 0 90 60 132 180 110 210 -3.46%
Unbalanced V&I
PF≠1 PFa ≠ PFb
18% 40% 108 0 75 60 132 180 125 210 -4.63%
Power Measurements Handbook
45
Testing at Transformer Rated Sites
Meter Accuracy
Full Load
Light Load
Power Factor
CT Health
Burden Testing
Ratio Testing
Admittance Testing
Site Verification
46
The Importance of CT Testing in the Field
• One transformer in three wired
backwards will give the customer a
bill of 1/3rd the actual bill.
• One broken wire to a single
transformer will give the customer a
bill of 2/3rd the actual bill
• One dual ratio transformer
inappropriately marked in the billing
system as 400:5 instead of 800:5
provides a bill that is ½ of the actual
bill. And the inverse will give a bill
double of what should have been
sent. Both are lose-lose situations
for the utility.
47
The Importance of CT Testing in the Field
(continued)
•Cross Phasing (wiring errors)
•Loose or Corroded Connections
•CT Mounted Backwards
•CT’s with Shorted Turns
•Wrong Selection of Dual Ratio CT
•Detect Magnetized CT’s
•Burden Failure in Secondary Circuit
•Open or Shorted Secondary
•Mislabeled CT’s
•Ensures all Shorting Blocks have been Removed
48
Potential list of tasks to be completed during a Site
Verification of a Transformer Rated Metering Site
• Double check the meter number, the location the test result and the meter record
• Perform a visual safety inspection of the site. This includes utility and customer equipment. Things
to look for include intact down ground on pole, properly attached enclosure, unwanted voltage on
enclosure, proper trimming and site tidiness (absence of discarded seals, etc.)
• Visually inspect for energy diversions (intentional and not). This includes broken or missing wires,
jumpers, open test switch, unconnected wires and foreign objects on meters or other metering
equipment. Broken or missing wires can seriously cause the under measurement of energy. A
simple broken wire on a CT or VT can cause the loss of 1/3 to 1/2 of the registration on either 3
element or 2 element metering, respectively.
• Visually check lightning arrestors and transformers for damage or leaks.
• Check for proper grounding and bonding of metering equipment. Poor grounding and bonding
practices may result in inaccurate measurements that go undetected for long periods of time.
Implementing a single point ground policy and practice can reduce or eliminate this type of issue.
• Burden test CTs and voltage check PTs.
49
Site Verification Checklist (continued)
• Verify service voltage. Stuck regulator or seasonal capacitor can impact service voltage.
• Verify condition of metering control wire. This includes looking for cracks in insulation, broken
wires, loose connections, etc.
• Confirm we have a Blondel compliant metering set up
• Compare the test switch wiring with the wiring at the CTs and VTs. Verify CTs and VTs not cross
wired. Be sure CTs are grounded in one location (test switch) only.
• Check for bad test switch by examining voltage at the top and bottom of the switch. Also verify
amps using amp probe on both sides of the test switch. Verify neutral connection to cabinet
(voltage).
• Check rotation by closing in one phase at a time at the test switch and observing the phase
meter for forward rotation. If forward rotation is not observed measurements may be significantly
impacted as the phases are most likely cancelling each other out.
• Test meter for accuracy. Verify demand if applicable with observed load. If meter is performing
compensation (line and/or transformer losses) the compensation should be verified either
through direct testing at the site or by examining recorded pulse data.
• Loss compensation is generally a very small percentage of the overall measurement and would
not be caught under utilities normal high/low checks. However, the small percentages when
applied to large loads or generation can really add up overtime. Billing adjustments can easily be
in the $million range if not caught early.
50
Site Verification Checklist (continued)
• Verify metering vectors. Traditionally this has been done using instruments such as a circuit
analyzer. Many solid state meters today can provide vector diagrams along with volt/amp/pf and
values using meter manufacturer software or meter displays. Many of these desired values are
programmed into the meters Alternate/Utility display. Examining these values can provide much
information about the metering integrity. It may also assist in determining if unbalanced loads are
present and if CTs are sized properly. The vendor software generally has the ability to capture both
diagnostic and vector information electronically. These electronic records should be kept in the
meter shop for future comparisons.
• If metering is providing pulses/EOI pulse to customers, SCADA systems or other meters for
totalization they also should be verified vs. the known load on the meter. If present test/inspect
isolation relays/pulse splitters for things like blown fuses to ensure they are operating properly.
• Verify meter information including meter multiplier, serial number, dials/decimals, Mp, Ke, Primary
Kh, Kr and Rate. Errors in this type of information can also cause a adverse impact on
measured/reported values.
• Verify CT shunts are all opened.
• Look for signs of excessive heat on the meter base e.g.
melted plastic or discoloration related to heat
51
Site Verification: Why should we invest our
limited meter service resources here
• These customers represent a
disproportionately large amount of the overall
revenue for every utility in North America.
• For some utilities the ten percent of their
customers who have transformer rated
metering services can represent over 70% of
their overall revenue.
• While these numbers will vary from utility to
utility the basic premise should be the same
for all utilities regarding where Meter
Services should focus their efforts
• This is perhaps one of the larger benefits that
AMI can provide for our Utilities – more time
to spend on C&I metering and less on
residential
Easy Answer: Money.
52
Periodic Site Inspections…..
….Can Discover or Prevent:
• Billing Errors
• Bad Metering set-up
• Detect Current Diversion
• Identify Potential Safety Issues
• Metering Issues (issues not
related to meter accuracy)
• AMR/AMI Communications Issues
• The need for Unscheduled Truck Rolls
due to Undetected Field Related Issues
• Discrepancies between what is
believed to be at a given site versus the
actual setup and equipment at the site
53
Topics we covered
• The Basics- Differences Between Self
Contained and Transformer or Instrument
Rated Meter Sites
• Transformer Rated Meter Forms
• Test Switches and CT’s
• Blondel’s Theorem and why this matters to
us in metering
• Meter Accuracy Testing in the Field
• Checking the Health of your CT’s and PT’s
• Site Verification and not just
meter testing
54
Q&A and
Upcoming TESCO Tuesday Presentations
Presentation Date
OSHA Title 8 & Meter Testing Safety 10/13
Meter Test Switches 10/20
CT Testing: Theory & Practice 10/27
Ratio, Burden and Admittance 11/3
Asset & Inventory Management in the IoT Utility 2.0 World 11/10
Harmonics 11/17
Complete Site Testing 12/1
Electric Vehicle Trends & Calibration of Commercial Chargers 12/8
Streetlights & 5G Metering and Testing 12/15
Sign up: tescometering.com/tescotuesdays
#TESCOTuesdays
Thanks for tuning in!
See you at the next session.
Upcoming Session:
OSHA Title 8 & Meter Testing Safety
October 13, 2020 | 11:00 AM Eastern
@tescometering
@TESCO_Metering
TESCO -The Eastern Specialty Company
TESCO -The Eastern Specialty Company

More Related Content

What's hot

Transducer and instrumentation lab manual
Transducer and instrumentation lab manual Transducer and instrumentation lab manual
Transducer and instrumentation lab manual awais ahmad
 
Electronics measurements and instrumentation basics
Electronics measurements and instrumentation basicsElectronics measurements and instrumentation basics
Electronics measurements and instrumentation basicsAbhishek Thakkar
 

What's hot (20)

Introduction to CTs and PTs
Introduction to CTs and PTsIntroduction to CTs and PTs
Introduction to CTs and PTs
 
Ratio, Burden, Admittance Testing
Ratio, Burden, Admittance TestingRatio, Burden, Admittance Testing
Ratio, Burden, Admittance Testing
 
Introduction to Transformer Rated Metering
Introduction to Transformer Rated Metering Introduction to Transformer Rated Metering
Introduction to Transformer Rated Metering
 
Introduction to CTs and PTs
Introduction to CTs and PTsIntroduction to CTs and PTs
Introduction to CTs and PTs
 
Transformer Rated Metering 09.27.17
Transformer Rated Metering 09.27.17Transformer Rated Metering 09.27.17
Transformer Rated Metering 09.27.17
 
Transformer Rated Metering
Transformer Rated MeteringTransformer Rated Metering
Transformer Rated Metering
 
Introduction to Transformer Rated Metering
Introduction to Transformer Rated MeteringIntroduction to Transformer Rated Metering
Introduction to Transformer Rated Metering
 
CT Testing: Theory and Practice
CT Testing: Theory and PracticeCT Testing: Theory and Practice
CT Testing: Theory and Practice
 
Transformer Rated Metering Site Verification
Transformer Rated Metering Site VerificationTransformer Rated Metering Site Verification
Transformer Rated Metering Site Verification
 
EV Charging Stations
EV Charging StationsEV Charging Stations
EV Charging Stations
 
Calmet C300B power calibrator
Calmet C300B power calibratorCalmet C300B power calibrator
Calmet C300B power calibrator
 
The art of meter testing on site 2019
The art of meter testing on site 2019The art of meter testing on site 2019
The art of meter testing on site 2019
 
Burden Testing, Theory, and Practice
Burden Testing, Theory, and PracticeBurden Testing, Theory, and Practice
Burden Testing, Theory, and Practice
 
Calmet testing energy-measurement-equipment
Calmet testing energy-measurement-equipmentCalmet testing energy-measurement-equipment
Calmet testing energy-measurement-equipment
 
Transducer and instrumentation lab manual
Transducer and instrumentation lab manual Transducer and instrumentation lab manual
Transducer and instrumentation lab manual
 
Electronics measurements and instrumentation basics
Electronics measurements and instrumentation basicsElectronics measurements and instrumentation basics
Electronics measurements and instrumentation basics
 
Introduction to Instrument Transformers
Introduction to Instrument TransformersIntroduction to Instrument Transformers
Introduction to Instrument Transformers
 
Advanced Polyphase Metering
Advanced Polyphase MeteringAdvanced Polyphase Metering
Advanced Polyphase Metering
 
2 dc meter
2 dc meter 2 dc meter
2 dc meter
 
Three Phase Theory
Three Phase TheoryThree Phase Theory
Three Phase Theory
 

Similar to Understanding Transformer-Rated & Self-Contained Metering Fundamentals

electrical measurements
electrical measurementselectrical measurements
electrical measurementsanu200770
 
EM material eee.ppt
EM material eee.pptEM material eee.ppt
EM material eee.pptVara Prasad
 
Alternating Current
Alternating CurrentAlternating Current
Alternating Currentamckaytghs
 
Electrical circuitsand methods of network analysis
Electrical circuitsand methods of network analysisElectrical circuitsand methods of network analysis
Electrical circuitsand methods of network analysisUniversity of Potsdam
 
VCE Physics Unit 3: Electronics & Photonics Base notes
VCE Physics Unit 3: Electronics & Photonics Base notesVCE Physics Unit 3: Electronics & Photonics Base notes
VCE Physics Unit 3: Electronics & Photonics Base notesAndrew Grichting
 
Wattmeter Presentation
Wattmeter PresentationWattmeter Presentation
Wattmeter Presentationfarhan memon
 
Electric circuits.pptx
Electric circuits.pptxElectric circuits.pptx
Electric circuits.pptxKiran453778
 

Similar to Understanding Transformer-Rated & Self-Contained Metering Fundamentals (20)

TESCO Tuesday: Metering Testing by Form
TESCO Tuesday: Metering Testing by FormTESCO Tuesday: Metering Testing by Form
TESCO Tuesday: Metering Testing by Form
 
Introduction to Transformer Rated Metering
Introduction to Transformer Rated MeteringIntroduction to Transformer Rated Metering
Introduction to Transformer Rated Metering
 
Transformer Rated Metering Site Verification
Transformer Rated Metering Site VerificationTransformer Rated Metering Site Verification
Transformer Rated Metering Site Verification
 
Site Verification for Self-Contained Hot Socket Detection
Site Verification for Self-Contained Hot Socket DetectionSite Verification for Self-Contained Hot Socket Detection
Site Verification for Self-Contained Hot Socket Detection
 
Power Meters
Power MetersPower Meters
Power Meters
 
lecture13.ppt
lecture13.pptlecture13.ppt
lecture13.ppt
 
electrical measurements
electrical measurementselectrical measurements
electrical measurements
 
EM material eee.ppt
EM material eee.pptEM material eee.ppt
EM material eee.ppt
 
lecture13.ppt
lecture13.pptlecture13.ppt
lecture13.ppt
 
Introduction to Transformer Rated Metering
Introduction to Transformer Rated Metering Introduction to Transformer Rated Metering
Introduction to Transformer Rated Metering
 
Alternating Current
Alternating CurrentAlternating Current
Alternating Current
 
Electrical circuitsand methods of network analysis
Electrical circuitsand methods of network analysisElectrical circuitsand methods of network analysis
Electrical circuitsand methods of network analysis
 
E&e lab manual
E&e lab manualE&e lab manual
E&e lab manual
 
General Power Quality
General Power QualityGeneral Power Quality
General Power Quality
 
The art of meter testing on site 2019
The art of meter testing on site 2019The art of meter testing on site 2019
The art of meter testing on site 2019
 
VCE Physics Unit 3: Electronics & Photonics Base notes
VCE Physics Unit 3: Electronics & Photonics Base notesVCE Physics Unit 3: Electronics & Photonics Base notes
VCE Physics Unit 3: Electronics & Photonics Base notes
 
Wattmeter Presentation
Wattmeter PresentationWattmeter Presentation
Wattmeter Presentation
 
class6_lab.ppt
class6_lab.pptclass6_lab.ppt
class6_lab.ppt
 
Electric circuits.pptx
Electric circuits.pptxElectric circuits.pptx
Electric circuits.pptx
 
eem-2020309.pdf
eem-2020309.pdfeem-2020309.pdf
eem-2020309.pdf
 

Recently uploaded

Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraDeakin University
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhisoniya singh
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 3652toLead Limited
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphNeo4j
 
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024BookNet Canada
 

Recently uploaded (20)

Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food Manufacturing
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning era
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping Elbows
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
 
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
 

Understanding Transformer-Rated & Self-Contained Metering Fundamentals

  • 2. 2 January 28, 2019 Atlanta, GA Transformer-Rated & Self-Contained Metering Fundamentals Prepared by Tom Lawton, TESCO The Eastern Specialty Company TESCO Tuesdays October 6, 2020
  • 3. 3 Topics we will be covering • The Basics- Differences Between Self Contained and Transformer or Instrument Rated Meter Sites • Transformer Rated Meter Forms • Test Switches and CT’s • Blondel’s Theorem and why this matters to us in metering • Meter Accuracy Testing in the Field • Checking the Health of your CT’s and PT’s • Site Verification and not just meter testing
  • 4. 4 Self Contained Metering •Typically found in residential metering •Meters are capable of handling the direct incoming amperage •Meter is connected directly to the load being measured •Meter is part of the circuit •When the meter is removed from the socket, power to the customer is interrupted
  • 5. 5 Meters Through the Years Induction Meter Duncan Meter Meter from 1960’s Meter from 80’s and 90’s 2000 to Present
  • 6. 6 Back to Basics: Electrical Laws Ohms Law Voltage = Current times Resistance V = I X R THE MOST USEFUL AND THE MOST FUNDAMENTAL OF THE ELECTRICAL LAWS
  • 7. 7 Basic Concepts: Electricity and Water Comparing Electricity to Water flowing from a hose ■ Voltage is the equivalent of the pressure in the hose ■ Current is water flowing through a hose (coulombs/sec vs gal/sec). The water in a system is the “charge” (coulombs) ■ Impedance(Resistance) is the size of the hose. The nozzle would provide a change in resistance. ■ Power is how fast water flows from a pipe (gallons per minute vs kilowatts). Power is a rate of energy consumption
  • 10. 10 Basic Electrical Laws ♦ Ohms Law Examples ■ If V = 20 volts and I = 5 amperes what is the resistance? R = V / I = 20 / 5 = 4 ohms ■ If R = 20 ohms and V = 120 volts what is the current? I = V / R = 120 / 20 = 6 amps ■ If I = 10 amperes and R = 24 ohms what is the voltage? V = I x R = 10 x 24 = 240 volts ■ Problem: If V = 240 volts and R = 6 ohms what is the current? I = V / R = 240 / 6 = 40 amps
  • 12. 12 Basic Electrical Laws ♦ Power = Voltage x Current = V x I = I2R = V2/R ■ If V = 20 volts and I = 8 amperes what is the power? P = V x I = 20 x 8 = 160 watts ■ If R = 5 ohms and V = 120 volts what is the power? P = V2/R = 120 x 120 / 5 = 2880 watts ■ If I = 10 amperes and R = 20 ohms what is the power? P = I2R = 10 x 10 x 20 = 2000 watts 1 kilowatt (kW) = 1,000 watts 1 megawatt (MW) = 1,000,000 watts
  • 13. 13 Basic AC Theory What is VA? Power was measured in Watts. Power does useful work. The power that does useful work is referred to as “Active Power.” VA is measured in Volt-Amperes. It is the capacity required to deliver the Power. It is also referred to as the “Apparent Power.” Power Factor = Active Power / Apparent Power VA = E x I PF = W/VA
  • 14. 14 Basic Meter Math Power – VA For a 120 Volt service drawing 60 Amps at 1.00 PF How much power is being drawn? Power = 120 x 60 x 1.00 = 7,200 Watts How many VA are being drawn? VA = 120 x 60 = 7,200 Volt Amperes
  • 15. 15 Basic AC Theory Power – The Simple View E = Voltage (rms) I = Current (rms) PF = Power Factor Power = Watts = E x I x PF Power is sometimes referred to as Demand Sinusoidal Waveforms Only NO Harmonics For a 120 Volt service drawing 13 Amps at Unity (1.0) PF, how much power is being drawn? Power = 120 x 13 x 1.0 = 1560 Watts
  • 16. 16 Basic AC Theory Power Factor = 1.0 AC RVrms Irms
  • 17. 17 Basic Meter Math Power – The Simple View For a 120 Volt service drawing 13 Amps at 0.866 PF, how much power is being drawn? Power = 120 x 13 x 0.866 = 1351 Watts For a 480 Volt service drawing 156 Amps at 0.712 PF, how much power is being drawn? Power = 480 x 156 x 0.712 = 53,315 Watts
  • 18. 18 Basic AC Theory Power – The Simple View In the previous example we had: Power = 480 x 156 x 0.712 = 53,315 Watts Normally we don’t talk about Watts, we speak in Kilowatts 1000 Watts = 1 Kilowatt = 1 kW Watts / 1000 = Kilowatts For a 480 Volt service drawing 156 Amps at Unity (0.712) PF, how many Kilowatts are being drawn? Power = 480 x 156 x 0.712 / 1000 = 53.315 kW
  • 19. 19 Basic AC Theory Energy – What We Sell If power is how fast water flows from a pipe, then energy is how much water we have in a bucket after the water has been flowing for a specified time. Energy = Power x Time 1 kW for 1 Hour = 1 Kilowatt-Hour = 1 kWh Energy (Wh) = E x I x PF x T where T = time in hours Energy (kW) = (E x I x PF / 1000) x T
  • 20. 20 Basic Meter Math Energy – What We Sell For a 120 Volt service drawing 45 Amps at a Power Factor of 0.9 for 1 day, how much Energy (kWh) has been used? Energy = (120 x 45 x 0.9 / 1000) x 24 = 116.64 kWh For a 240 Volt service drawing 60 Amps at a Power Factor of 1.0 for 5.5 hours, how much Energy (kWh) has been used? Energy = (240 x 60 x 1.0 / 1000) x 5.5 = 79.2 kWh
  • 21. 21 Basic Meter Math Energy – What We Sell For a 120 Volt service drawing 20 Amps at a Power Factor of 0.8 from 8:00AM to 6:00PM, and 1 Amp at PF=1.0 from 6:00PM to 8:00AM how much Energy (kWh) has been used? 8:00AM to 6:00PM = 10 hours 6:00PM to 8:00AM = 14 hours Energy = (120 x 20 x 0.8 / 1000) x 10 = 19.2 kWh Energy = (120 x 1 x 1 / 1000) x 14 = 1.68 kWh Energy = 19.2 kWh + 1.68 kWh = 20.88 kWh
  • 22. 22 Basic Energy Formula • The essential specification of a watthour meter’s measurement is given by the value Kh [ Watthours per disk revolution ] • The watthour meter formula is as follows:    srevolutiondisk revolutiondisk watthours Watthours nKE h *    
  • 24. 24 TESCO/Georgia Power 2017 Caribbean Meter School Fundamentals of Polyphase Field Meter Testing and Site Verification  Full Load  Light Load  Power Factor Meter Accuracy Testing Meter Accuracy Testing in a Nutshell
  • 25. 25 Transformer Rated Metering • Meter measures scaled down representation of the load. • Scaling is accomplished by the use of external current transformers (CTs) and sometimes voltage transformers or PTs). • The meter is NOT part of the circuit • When the meter is removed from the socket, power to the customer is not effected.
  • 26. 26 9S Meter Installation with 400:5 CT’s 400A 400A 400A LOAD 5A 5A 5A SOURCE PHASE A PHASE B PHASE C The Basic Components
  • 28. 28 Current Transformer Testing System & Voltage Transformer Testing System Knopp Voltage Transformer Testing System Knopp Current Transformer Testing System
  • 29. 29 Fundamentals of Polyphase Field Meter Testing and Site Verification Current Transformers Conceptual Representation Real, with core losses Ideal. No losses
  • 30. 30 Fundamentals of Polyphase Field Meter Testing and Site Verification Functionality with Burden Present on the Secondary Loop PHASE A • Some burden will always be present – junctions, meter coils, test switches, cables, etc. • CT’s must be able to maintain an accurate ratio with burden on the secondary.
  • 31. 31 Fundamentals of Polyphase Field Meter Testing and Site Verification Functionality with Burden Present on the Secondary Loop Example Burden Spec: 0.3% @ B0.1, B0.2, B0.5 or There should be less than the 0.3% change in secondary current from initial (“0” burden) reading, when up to 0.5 Ohms of burden is applied Fundamentals of Polyphase Field Meter Testing and Site Verification
  • 32. 32 Fundamentals of Polyphase Field Meter Testing and Site Verification Functionality with Burden Present on the Secondary Loop 0.3% @ B0.1, B0.2, B0.5 0.0000 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 0 2 4 6 8 Initial Reading = 5Amps 0.3% x 5A = 0.015A 5A – 0.015 = 4.985A Burden Reading 0 5.0000 0.1 4.9999 0.2 4.9950 0.5 4.9900 1 4.9800 2 4.9500 4 4.0000 8 0.8000
  • 33. 33 Ratio of Primary Current to Secondary Current PHASE A SOURCE LOAD 400A 400A 400A 5A5A Calculate Ratio Fundamentals of Polyphase Field Meter Testing and Site Verification
  • 34. 34 Typical Connections Typical Connections for Common Transformer (Instrument) Rated Meter Forms
  • 35. 35 Three Phase Power Blondel’s Theorem The theory of polyphase watthour metering was first set forth on a scientific basis in 1893 by Andre E. Blondel, engineer and mathematician. His theorem applies to the measurement of real power in a polyphase system of any number of wires. The theorem is as follows: - If energy is supplied to any system of conductors through N wires, the total power in the system is given by the algebraic sum of the readings of N wattmeters, so arranged that each of the N wires contains one current coil, the corresponding voltage coil being connected between that wire and some common point. If this common point is on one of the N wires, the measurement may be made by the use of N-1 wattmeters.
  • 36. 36 Three Phase Power Blondel’s Theorem • Simply – We can measure the power in a N wire system by measuring the power in N-1 conductors. • For example, in a 4-wire, 3-phase system we need to measure the power in 3 circuits.
  • 37. 37 Three Phase Power Blondel’s Theorem • If a meter installation meets Blondel’s Theorem then we will get accurate power measurements under all circumstances. • If a metering system does not meet Blondel’s Theorem then we will only get accurate measurements if certain assumptions are met.
  • 38. 38 Blondel’s Theorem • Three wires • Two voltage measurements with one side common to Line 2 • Current measurements on lines 1 & 3. This satisfies Blondel’s Theorem.
  • 39. 39 Blondel’s Theorem • Four wires • Two voltage measurements to neutral • Current measurements on lines 1 & 3. How about line 2? This DOES NOT satisfy Blondel’s Theorem.
  • 40. 40 Blondel’s Theorem • In the previous example: – What are the “ASSUMPTIONS”? – When do we get errors? • What would the “Right Answer” be? • What did we measure? )cos()cos()cos( cccbbbaaasys IVIVIVP   )]cos()cos([)]cos()cos([ bbcccbbaaasys IIVIIVP  
  • 41. 41 Blondel’s Theorem • Phase B power would be: – P = Vb Ib cosθ • But we aren’t measuring Vb • What we are measuring is: – IbVacos(60- θ) + IbVccos(60+ θ) • cos(α + β) = cos(α)cos(β) - sin(α)sin(β) • cos(α - β) = cos(α)cos(β) + sin(α)sin(β) • So
  • 42. 42 Blondel’s Theorem • Pb = Ib Va cos(60- θ) + Ib Vc cos(60+ θ) • Applying the trig identity – IbVa(cos(60)cos(θ) + sin(60)sin(θ)) IbVc (cos(60)cos(θ) - sin(60)sin(θ)) – Ib(Va+Vc)0.5cos(θ) + Ib(Vc-Va) 0.866sin(θ) • Assuming – Assume Vb = Va = Vc – And, they are exactly 120° apart • Pb = Ib(2Vb)(0.5cosθ) = IbVbcosθ
  • 43. 43 Blondel’s Theorem • If Va ≠ Vb ≠ Vc then the error is • %Error = -Ib{(Va+Vc)/(2Vb) - (Va-Vc) 0.866sin(θ)/(Vbcos(θ)) How big is this in reality? If Va=117, Vb=120, Vc=119, PF=1 then E=-1.67% Va=117, Vb=116, Vc=119, PF=.866 then E=-1.67%
  • 44. 44 Blondel’s Theorem Condition % V % I Phase A Phase B non- Blondel Imb Imb V φvan I φian V φvbn I φibn % Err All balanced 0 0 120 0 100 0 120 180 100 180 0.00% Unbalanced voltages PF=1 18% 0% 108 0 100 0 132 180 100 180 0.00% Unbalanced current PF=1 0% 18% 120 0 90 0 120 180 110 180 0.00% Unbalanced V&I PF=1 5% 18% 117 0 90 0 123 180 110 180 -0.25% Unbalanced V&I PF=1 8% 18% 110 0 90 0 120 180 110 180 -0.43% Unbalanced V&I PF=1 8% 50% 110 0 50 0 120 180 100 180 -1.43% Unbalanced V&I PF=1 18% 40% 108 0 75 0 132 180 125 180 -2.44% Unbalanced voltages PF≠1 PFa = PFb 18% 0% 108 0 100 30 132 180 100 210 0.00% Unbalanced current PF≠1 PFa = PFb 0% 18% 120 0 90 30 120 180 110 210 0.00% Unbalanced V&I PF≠1 PFa = PFb 18% 18% 108 0 90 30 132 180 110 210 -0.99% Unbalanced V&I PF≠1 PFa = PFb 18% 40% 108 0 75 30 132 180 125 210 -2.44% Unbalanced voltages PF≠1 PFa ≠ PFb 18% 0% 108 0 100 60 132 180 100 210 -2.61% Unbalanced current PF≠1 PFa ≠ PFb 0% 18% 120 0 90 60 120 180 110 210 0.00% Unbalanced V&I PF≠1 PFa ≠ PFb 18% 18% 108 0 90 60 132 180 110 210 -3.46% Unbalanced V&I PF≠1 PFa ≠ PFb 18% 40% 108 0 75 60 132 180 125 210 -4.63% Power Measurements Handbook
  • 45. 45 Testing at Transformer Rated Sites Meter Accuracy Full Load Light Load Power Factor CT Health Burden Testing Ratio Testing Admittance Testing Site Verification
  • 46. 46 The Importance of CT Testing in the Field • One transformer in three wired backwards will give the customer a bill of 1/3rd the actual bill. • One broken wire to a single transformer will give the customer a bill of 2/3rd the actual bill • One dual ratio transformer inappropriately marked in the billing system as 400:5 instead of 800:5 provides a bill that is ½ of the actual bill. And the inverse will give a bill double of what should have been sent. Both are lose-lose situations for the utility.
  • 47. 47 The Importance of CT Testing in the Field (continued) •Cross Phasing (wiring errors) •Loose or Corroded Connections •CT Mounted Backwards •CT’s with Shorted Turns •Wrong Selection of Dual Ratio CT •Detect Magnetized CT’s •Burden Failure in Secondary Circuit •Open or Shorted Secondary •Mislabeled CT’s •Ensures all Shorting Blocks have been Removed
  • 48. 48 Potential list of tasks to be completed during a Site Verification of a Transformer Rated Metering Site • Double check the meter number, the location the test result and the meter record • Perform a visual safety inspection of the site. This includes utility and customer equipment. Things to look for include intact down ground on pole, properly attached enclosure, unwanted voltage on enclosure, proper trimming and site tidiness (absence of discarded seals, etc.) • Visually inspect for energy diversions (intentional and not). This includes broken or missing wires, jumpers, open test switch, unconnected wires and foreign objects on meters or other metering equipment. Broken or missing wires can seriously cause the under measurement of energy. A simple broken wire on a CT or VT can cause the loss of 1/3 to 1/2 of the registration on either 3 element or 2 element metering, respectively. • Visually check lightning arrestors and transformers for damage or leaks. • Check for proper grounding and bonding of metering equipment. Poor grounding and bonding practices may result in inaccurate measurements that go undetected for long periods of time. Implementing a single point ground policy and practice can reduce or eliminate this type of issue. • Burden test CTs and voltage check PTs.
  • 49. 49 Site Verification Checklist (continued) • Verify service voltage. Stuck regulator or seasonal capacitor can impact service voltage. • Verify condition of metering control wire. This includes looking for cracks in insulation, broken wires, loose connections, etc. • Confirm we have a Blondel compliant metering set up • Compare the test switch wiring with the wiring at the CTs and VTs. Verify CTs and VTs not cross wired. Be sure CTs are grounded in one location (test switch) only. • Check for bad test switch by examining voltage at the top and bottom of the switch. Also verify amps using amp probe on both sides of the test switch. Verify neutral connection to cabinet (voltage). • Check rotation by closing in one phase at a time at the test switch and observing the phase meter for forward rotation. If forward rotation is not observed measurements may be significantly impacted as the phases are most likely cancelling each other out. • Test meter for accuracy. Verify demand if applicable with observed load. If meter is performing compensation (line and/or transformer losses) the compensation should be verified either through direct testing at the site or by examining recorded pulse data. • Loss compensation is generally a very small percentage of the overall measurement and would not be caught under utilities normal high/low checks. However, the small percentages when applied to large loads or generation can really add up overtime. Billing adjustments can easily be in the $million range if not caught early.
  • 50. 50 Site Verification Checklist (continued) • Verify metering vectors. Traditionally this has been done using instruments such as a circuit analyzer. Many solid state meters today can provide vector diagrams along with volt/amp/pf and values using meter manufacturer software or meter displays. Many of these desired values are programmed into the meters Alternate/Utility display. Examining these values can provide much information about the metering integrity. It may also assist in determining if unbalanced loads are present and if CTs are sized properly. The vendor software generally has the ability to capture both diagnostic and vector information electronically. These electronic records should be kept in the meter shop for future comparisons. • If metering is providing pulses/EOI pulse to customers, SCADA systems or other meters for totalization they also should be verified vs. the known load on the meter. If present test/inspect isolation relays/pulse splitters for things like blown fuses to ensure they are operating properly. • Verify meter information including meter multiplier, serial number, dials/decimals, Mp, Ke, Primary Kh, Kr and Rate. Errors in this type of information can also cause a adverse impact on measured/reported values. • Verify CT shunts are all opened. • Look for signs of excessive heat on the meter base e.g. melted plastic or discoloration related to heat
  • 51. 51 Site Verification: Why should we invest our limited meter service resources here • These customers represent a disproportionately large amount of the overall revenue for every utility in North America. • For some utilities the ten percent of their customers who have transformer rated metering services can represent over 70% of their overall revenue. • While these numbers will vary from utility to utility the basic premise should be the same for all utilities regarding where Meter Services should focus their efforts • This is perhaps one of the larger benefits that AMI can provide for our Utilities – more time to spend on C&I metering and less on residential Easy Answer: Money.
  • 52. 52 Periodic Site Inspections….. ….Can Discover or Prevent: • Billing Errors • Bad Metering set-up • Detect Current Diversion • Identify Potential Safety Issues • Metering Issues (issues not related to meter accuracy) • AMR/AMI Communications Issues • The need for Unscheduled Truck Rolls due to Undetected Field Related Issues • Discrepancies between what is believed to be at a given site versus the actual setup and equipment at the site
  • 53. 53 Topics we covered • The Basics- Differences Between Self Contained and Transformer or Instrument Rated Meter Sites • Transformer Rated Meter Forms • Test Switches and CT’s • Blondel’s Theorem and why this matters to us in metering • Meter Accuracy Testing in the Field • Checking the Health of your CT’s and PT’s • Site Verification and not just meter testing
  • 54. 54 Q&A and Upcoming TESCO Tuesday Presentations Presentation Date OSHA Title 8 & Meter Testing Safety 10/13 Meter Test Switches 10/20 CT Testing: Theory & Practice 10/27 Ratio, Burden and Admittance 11/3 Asset & Inventory Management in the IoT Utility 2.0 World 11/10 Harmonics 11/17 Complete Site Testing 12/1 Electric Vehicle Trends & Calibration of Commercial Chargers 12/8 Streetlights & 5G Metering and Testing 12/15 Sign up: tescometering.com/tescotuesdays
  • 55. #TESCOTuesdays Thanks for tuning in! See you at the next session. Upcoming Session: OSHA Title 8 & Meter Testing Safety October 13, 2020 | 11:00 AM Eastern @tescometering @TESCO_Metering TESCO -The Eastern Specialty Company TESCO -The Eastern Specialty Company

Editor's Notes

  1. 2