SlideShare a Scribd company logo
1 of 31
03/18 (M) Utilitarian Ethics Mill, p. 137-185
Introduction to Utilitarian Approach
Rachels, Ch. 7 & 8, pp.98-125
Mill’s development Handout
Discussion on Mill
03/20 (W)Utilitarian Ethics Mill, p. 137-185
Introduction to Utilitarian Approach
Rachels, Ch. 7 & 8, pp.98-125
03/25 (M) Mill’s development Handout
03/27 (W) Discussion on Mill
Part II. Morality in Practice
04/01 (M) Case Studies:
Film: Extreme Measures
04/03 (W)Film Discussion and Worksheet
Class Discussion on Sex Equality
04/08 (M) Abortion and Euthanasia
Sol, Ellie, Erin – Physician Assisted Suicide
Abortion (w/ exceptions) –Kiara, Caleigh, Heidi
04/10 (W)
04/15 (M)Near & Distant Peoples
Transgender Athletes – Alex, Mackenzie and Diego
Karlyn, Claire, Jess- Cadavers in car safety research
04/17 (W)Animal Rights
Death penalty – Mitch, Alexis, Temi
PETA – Dominic, Eric, Nick
04/22 (M) Easter Monday-No Class
04/24 (W)War and Peace
(or Sexual Harassment
Sex Equality
Alec, Chengxiao Li, Khadija
College Admissions Bribery (Academic and Athletic)
Marco, Jacob, Ty
Vaccination right: Andy, Riley, Habeeb]
Same-sex marriage + gay clergy: Ben, Sam, Connor
04/29 (M) Gun Control Final Essay Due (Early due
date) Ethical Position of it- Stephen, Shelby, Trevor
(No comments will be given for the final
papers that are submitted later than 04/29)
(or Homosexual Conduct (read on your own)
Punishment and Responsibility
05/01 (W) Review and the last day for presentations
05/06-05/11 Final Exam Week
Final Exam: PHL270 A (8:00 class): 05/07 (T): 8:00-9:40am;
PHL270 B (9:30 class): 05/06 (M): 8:00-9:40am
Final Paper Due on 05/08 (W) (You will get a fair grade for
your paper but no comments. The penalty for the papers
submitted later than 05/08 is –5% in your total grade and no
comments will be given for the late final paper). No paper will
be accepted after 05/10(F)
1
2
Journal 5 – Oil Spill – ENVS 100 Online Class
❖ Read this handout beforehand, to be sure you have everything
you need.
❖ Post a synthesis reflection of what you learned. Incorporate
information from all
of the required questions in Parts A, B, and C. (Do not simply
answer the
questions…Write about what you learned from them.) Feel free
to expand your
reflection in the directions of your interest!
The objectives of this hands-on activity are:
1. To simulate an oil spill in the marine environment and to try
several methods of cleaning up the spill.
You will be simulating oil in open water, oil on a beach, and oil
on the feathers of a bird.
2. To calculate the size of an oil spill and determine whether it
exceeded the legal limits.
3. To consider the sources and impacts of nonpoint-source oil
pollution
4. To connect this activity with other course concepts
5. To attempt bioremediation using local seawater (optional)
!
http://education.nationalgeographic.com/education/file/national-
geographic-magazine-geography-offshore-oil/?ar_a=1
1
http://education.nationalgeographic.com/education/file/national-
geographic-magazine-geography-offshore-oil/?ar_a=1
Supplies you will need for SECTION A:
• To simulate the open ocean, a coast, and wildlife:
o Container: One deep dinner-sized plate or pie pan or
Tupperware-style storage container
o Water: To simulate water ☺
o Drinking straw: To create wind
o Sand: Enough to build a beach in your plate
o Feather: One feather from a craft-supplies store or pillow (or
otherwise completely sterilized)
• Oils (to simulate spilled oils) – Small quantities of each
o Cooking oil (olive, canola, corn, etc.)
o Mineral oil
o Other oils of your choosing (castor, etc)
o Note: If you want your oil to look more like crude oil, you can
mix in some powdered chocolate and shake well.
o DO NOT USE REAL MOTOR OIL! It requires special
hazardous-materials (hazmat) disposal methods!
• Cleaners (to simulate liquid cleanup methods) – Small
quantities of each
o Dishwashing liquid (or shampoo)
o Rubbing alcohol (or isopropyl alcohol, or vodka)
o Cold water
o Hot water
• Sorbents and containments (to simulate physical cleanup
methods)
o Cotton pads or cotton balls or gauze pads (to simulate sorbent
pads)
o Small quantities of dried grass clippings (to simulate straw
bales)
o Other materials of your choosing, such as:
▪ Piece of nylon pantyhose material
▪ Coffee filter
▪ Toilet paper
▪ Cotton string
▪ (Etc)
o Optional: Tweezers (to help you gently move the materials
around)
Supplies List for Optional SECTION D – CAUTION: Uses
diesel fuel and fertilizers
• To attempt oil bioremediation (optional)
□ Pond water or sea water
□ Clear glass bottle or jar with tight-fitting screw top or stopper
□ A few slow-release fertilizer pellets or a drop of liquid
fertilizer (from gardening store)
□ Small volume of automotive diesel (from gas station)
NOTE: When you are done with the experiment, dispose of the
supplies via your town’s hazardous
materials (hazmat) protocols. Gas stations, oil-change outlets,
car washes, county hazmat locations, etc
might accept them.
2
SECTION A – Oil Spill and Cleanup Simulations
Part 1 – Oil-in-Open Water Simulation
1. Fill your plate with water (to a depth of about 1/2”). Pour a
small amount of your first simulated “crude oil” onto the
surface of
the water. Record your observations.
2. Using the drinking straw, blow on the surface of the oiled
water, lightly at first, then more strongly. This is a simulation
of wind
transport and mixing. What happens to the oil?
3. Use the drinking straw to stir the oil and water as vigorously
as possible without spilling the liquid over the rim of the plate.
This
is a simulation of mixing by wave action. What happens to the
oil?
4. a. Add several drops of the dishwashing liquid to the surface
of the oil/water mixture. This is a simulation of the use of an oil
dispersant. Record your observations.
b. Can you think of any benefit to using an oil dispersant in the
real world? If so, what?
c. Can you think of any negative consequences of using a
dispersant? If so, what?
5. Empty out your plate, then fill it with water again, and add
some more oil. Place two sorbent pads (cotton/gauze) on the
surface,
and drag them around gently with your fingers (or tweezers).
Remove the sorbent pads. How well did the sorbent pads soak
up
the oil?
6. Remove the sorbent pads, add a little more oil if necessary,
then sprinkle some dried grass clippings (to simulate straw)
onto the
oily surface. Gently move the grass clippings around, then
remove them. How well did the grass clippings soak up the oil?
Part 2 – Oil-on-Beach Simulation
7. Clean your plate and create a “wet sand beach” with some
open water. Pour some of your simulated “crude oil” onto the
surface
of the beach. What happens to the oil?
8. Using fingers or tweezers, dip a sorbent pad in each of the
following, and attempt to clean oil off the beach. For each
substance,
describe your relative success in cleaning the oil off the sand.
• Cold Water • Hot Water • Rubbing Alcohol • Liquid/Dish Soap
9. What special problems are evident with regard to cleaning oil
off a sand beach?
Part 3 - Oiled Bird Simulation
10. Remove your “beach” and clean your plate. Dip a sterilized
feather into your simulated “crude oil”, then place it on your
plate.
Using sorbent pads, attempt to clean the oil off the feather with
each of the following, and describe your observations:
• Cold Water • Hot Water • Rubbing Alcohol • Liquid/Dish Soap
Part 4 – Other Scenarios
11. Now use the other equipment and materials at your disposal
(see the supplies list above, and use your imagination). Repeat
portions of the simulations above, to try to clean up the ocean
water and your beach as best you can. Record your methods and
your results for each scenario.
Part 5 – Conclusions
12. Based on your observations during these simulations, what
would be your recommendations for clean-up techniques in a
real oil
spill in Puget Sound, for each of the following situations?
(Note: Doing nothing is one possible option.) Explain your
reasoning.
• Open Ocean • Beaches • Oiled Wildlife
3
SECTION B – Calculations (show your work, in enough detail
that I can follow your reasoning)
13. An oil spill, with the appearance of black to dark brown, is
sighted by a commercial airliner flying over the Great Barrier
Reef.
The spill is estimated to be 1.5 kilometers long and 50 meters
wide. How much oil (in liters) would there be in the spill?
(Remember that to produce a black to dark brown color, the oil
would have to be at least 100 microns thick.)
14. A Coastwatch surveillance aircraft photographs a ship
trailing a silvery oil discharge from its stern. The discharge is
13.5
nautical miles and at least the width of the vessel which is 37.5
meters. An oil spill on the water that gives a silvery sheen is
approximately 1 micron in thickness. How much oil (in liters)
has the ship discharged into the sea?
15. A fishing boat reports an oil spill near a ship to the local
maritime authority. The ship is radioed and asked whether oil
was being
discharged from its vessel. The captain reports that the ship has
discharged only 10 liters of heavy fuel waste oil during a bilge
pump-out which is mixed with 100 tonnes of sea water. Has the
ship exceeded the legal limit of oil discharge of 15 parts per
million (15 parts of oil to 1 million parts of water)? Assume oil
and sea water have the same density for the calculation (but see
the tables in the background section for closer estimates).
NOTE: MATH HINTS for Questions #13-15 are at the end of
the Background Information section of this document!
SECTION C – Extensions and Connections
16. Not all oil pollution comes from a single, localized source
such as an oil tanker. In fact, in many locations the majority
comes
from nonpoint sources such as storm drains, household car
washing, poor car maintenance (oil drips), etc. Most people do
not
realize that water in storm drains is not treated before being
discharged, and thus may contain very high concentrations of
oil and
other pollutants if they – and their neighbors, family, and local
businesses – are not careful. List the following:
• As many nonpoint sources of oil pollution as you can think of
(residential and other)
• Their impacts on the environment and wildlife
• Ideas for how to minimize the pollution and its impacts
17. Step back and put the information you learned in this
activity into the context of the rest of this course. Write a
synthesis of how
this all connects.
Optional : SECTION D – Diesel Oil Bioremediation
18. Do the “Experiment Demonstrating Oil Bioremediation”,
posted at: https://www.amsa.gov.au/community/kids-and-
teachers-
resources/kids/teachers/experiment_bioremediation/index.html
, or an alternative. Report your results
when you have completed the experiment (it takes about a
week). Document each stage with words, sketches, photographs,
and/
or video. NOTE: When you are done with the experiment,
dispose of the supplies via your school’s/town’s hazardous
materials
(hazmat) protocols. Gas stations, oil-change outlets, car washes,
county hazmat locations, etc might accept them. “The
experiment…is very simple and costs very little to do. In
bioremediation you need: oil eating organisms (bugs), nutrients,
oxygen, water and the food “oil”. There are plenty of natural
organisms, bacteria, fungi etc in the air and water around us so
there is no need to go searching for them.”
Background Information
Oil in the Marine Environment
A small amount of oil leaks into the ocean from natural seeps
on the sea floor. In recent decades, however, our growing
dependence on
marine transportation for petroleum products, offshore drilling,
near-shore refining, and urban runoff have superceded the
natural
seepage of oil into the ocean by at least a factor of ten. Of
course, the most highly publicized oil releases are associated
with relatively
rare, but catastrophic tanker accidents such as the Exxon
Valdez, but these account for only a small percentage (about
3%) of the
average amount of oil spilled into the ocean each year. Much
more oil enters the marine environment each year through
“routine”
shipping operations and runoff from land-based sources.
Once oil is spilled into the ocean, several things happen to it.
First, it is often transported and spread by winds, waves, tides,
and
currents. Lighter, more volatile components of the oil evaporate
into the atmosphere, contributing to air pollution. Heavier,
dense
components of the oil ball up and sink to the bottom, coating or
becoming incorporated into bottom sediments and harming
benthic
organisms for years. Storm winds and waves can mix oil and
water into a frothy emulsion (known as “chocolate mousse”)
that impacts
pelagic organisms, such as plankton, birds, fish, and marine
mammals. Most components of oil do not dissolve easily in
water, but
those that do can harm the delicate juvenile forms of marine
organisms even in minute concentrations. The insoluble
components of
oil form sticky layers of oil on the surface that prevent free
diffusion of gases, clog organisms’ feeding structures and gills,
kill larvae,
4
https://www.amsa.gov.au/community/kids-and-teachers-
resources/kids/teachers/experiment_bioremediation/index.html
and decrease the light available for photosynthesis. When the
skin or fur of marine mammals become coated with oil, they are
often
unable to regulate their body temperature (remember they, like
us, are endotherms), and may die of hypothermia.
Methods of Oil Spill Cleanup
The first step in oil spill cleanup is typically containment by
booms made of logs or linked plastic floats. Skimmers, or
special boats
that recover oil using conveyor belts or vacuum hoses are then
used to scoop up the confined floating oil. In some cases,
absorbent
material, known as sorbents, are used to make it easier to
collect the oil. Examples might include natural materials such
as straw, or
sorbent pads made of some absorbent but floatable material like
polypropylene. In some cases, burning of the surface oil is
carried
out, but this in itself is hazardous and has obvious
environmental consequences. Oil dispersant chemicals, which
are similar to
detergents, are sometimes sprayed on oil spills to help break
them up and disperse them, but these chemicals present
environmental
hazards of their own. Bioremediation, involving the
introduction of natural or genetically-engineered oil-eating
bacteria, has been
shown to be partially effective in reducing quantities of spilled
oil, but is tricky to use, and has not yet been proven to be
completely
risk-free in the marine environment. Finally, when oil fouls
beach or rocky shoreline areas, cleanup methods employed in
the past
have included high pressure sprays of water or steam. While
this method definitely improves the appearance of the shoreline,
biological studies have shown that in most cases it does more
harm than good, and sometimes effectively sterilizes the
environment,
killing everything that the oil didn’t.
All oil spill cleanup methods are only partially successful, and
in many cases research has found that the cleanup may actually
make
the environmental damage worse than it would have been if the
spill had been left alone. Oil in the marine environment is toxic
and
ugly, but it is ultimately biodegradable, and nature will, over
many years or decades, eventually repair itself if left alone. The
cheapest
and most effective oil spill treatment is to prevent them from
happening in the first place.
The Exxon Valdez Spill
On March 24, 1989 at 4 minutes past midnight, the oil tanker
Exxon Valdez struck a reef in Alaska’s spectacular Prince
William
Sound. An environmental nightmare began that changed not
only Prince William Sound, but the world. No longer would
people
blindly believe promises from corporations that their operations
were completely safe.
A total of 11,000,000 gallons of Alaska North Slope crude oil
leaked from the ruptured hull of the ship, impaled by the jagged
rocks of
Bligh Reef. Within two months, the oil had been driven along a
path stretching 470 miles to the southwest. The initial cleanup
of the
spill took three years, and the cost was over $2.1 billion. The
death toll in terms of wildlife was staggering; the full impact
may never
be known.
On October 8, 1991, an agreement was reached between the
State of Alaska, the federal government, and Exxon on both
criminal
charges and civil damage claims. In settlement of civil charges,
Exxon would pay the State of Alaska and the United States $900
million over a 10-year period. This money would be used for
restoration and would be administered by six government
Trustees; three
federal, three state. In settlement of criminal charges, Exxon
would pay a fine of $250 million. Two “restitution funds” of
$50 million
each were established, one under state control and one under
federal authority. Against strong opposition from many
Alaskans, $125
million of the balance was forgiven due to Exxon’s cooperation
during the cleanup, and upgraded safety procedures to prevent a
reoccurrence. The remaining $50 million was divided between
the Victims of Crime Act account ($13 million) and the North
American Wetlands Conservation Fund ($12 million). On
September 16, 1994, a jury in federal court returned a $5 billion
punitive
damages verdict against Exxon. The company, however, has
appealed several times since that time.
In a January 2004 ruling, a U.S. District Court ruled that Exxon
must pay a slightly reduced $4.5 billion in punitive damages,
but with
$2.25 billion added on for back interest (total $6.75 billion).
Exxon continued to appeal, and the case was finally heard
before the U.S.
Supreme Court in 2008. The court reduced Exxon’s punitive
damages to $507.5 million, about one-tenth of the original
penalty.
Joseph Hazelwood was the captain of the Exxon Valdez the
night she ran aground. Despite his admission that he had
consumed at least
three drinks before boarding the ship, Hazelwood was acquitted
in 1990 of operating the tanker while drunk. He was convicted
of the
misdemeanor offence of illegally discharging oil, and on July 8,
1998, the Alaska Appeals Court upheld Hazelwood’s sentence
on that
charge. Hazelwood currently lives on Long Island, New York,
and works as a maritime insurance adjustor for a company
owned by his
lawyer.
The Exxon Valdez, re-named the SeaRiver Mediterranean, is
still carrying oil around the world. Although she has been
barred from
ever entering Alaskan waters again, Exxon applied to have that
court ruling reversed. The appeal was rejected.
An application to merge with Mobil to form the world’s largest
corporation was opposed by Senator Slade Gorton on March 4,
1999,
due to Exxon’s non-payment of assessed penalties. The merger
of the two oil giants occurred later that year despite the
senator's
objections. Exxon-Mobil has since become the most profitable
company in the world.
Searching for positive results of the spill requires a creative
definition of the term “positive.” As a direct or indirect result
of the Exxon
Valdez disaster, tighter environmental regulations have been
imposed on many industries. The most important regulation
attempting to
protect against a repeat of the spill is the modern standard for
tanker ships, which now must be built with double hulls, so that
if the
outer skin is punctured, no oil will leak. Among other benefits,
large tracts of land have been added to Kenai Fjords National
Park,
using funds from the Exxon fines.
5
FIGURE 1:
Gulf of Alaska map with an overlay of the path
the Exxon Valdez oil took and how long it took to
get there.
http://library.thinkquest.org/10867/spill
Mathematics and Oil Spills
(http://www.amsa.gov.au/Marine_Environment_Protection
except to Americanize spellings)
Conversion factors for oil spills
When an oil spill occurs many different units of measure may
be used to describe the size of the spill. This can be very
confusing for
the public as often media reports use the largest figure to
describe the oil spill.
Volumes of Oil
barrels x 35 = imperial gallons
barrels x 42 = US gallons
cubic meters x 264.2 = US gallons
cubic feet x 7.481 = US gallons
metric tons x 294 = US gallons
US gallons x 0.833 = imperial gallons
US gallons x 3.785 = liters
US gallons x 0.0238 = barrels (or divide by 42)
US gallons x 0.0034 = metric tons
1 cubic meter is 1000 liters
1 metric tonne of water is 1,000 liters of water
The amount of oil on the water
Sometimes ships need to discharge oily bilges at sea. The
current legal limit for this oily discharge is 15 parts of oil to
one million
parts of water (or 15 parts per million (ppm)). A discharge of 15
ppm cannot be seen on the water therefore if you can see an oil
spill it
is an illegal discharge.
When bringing a case to court, authorities need to estimate the
amount of oil which may be in the discharge. Oil spills spread
quickly
on the surface of the sea and the area of the spill is key
information which is reported to authorities. In maritime
language, nautical
miles (nm) is used to describe distance travelled by vessels.
You will often need to convert this measurement to metric units
to then
calculate the amount of oil in the spill.
Nautical miles x 1.852 = metric conversion to kilometers
6
http://library.thinkquest.org/10867/spill
http://www.amsa.gov.au/marine_environment_protection
General glossary of terms used in oil spill observations
Spill characteristics appear differently under low light
conditions and under strong winds conditions.
• Light sheen: A light, almost transparent, layer of oil.
Sometimes confused with windrows and natural sheen resulting
from
biological processes. (e.g., coral spawning or algal bloom).
• Silver sheen: A slightly thicker layer of oil that appears
silvery or shimmery.
• Rainbow sheen: Sheen that reflects colors.
• Brown oil: Typically a 0.1 mm – 1.0 mm thick layer of water-
in-oil emulsion. (Thickness can vary widely depending on wind
and
current conditions). May be referred as heavy or dull colored
sheens. [Note: 0.1 millimeters = 100 micrometers = 100 microns
=
100 µm]
• Mousse: Water-in-oil emulsion often formed as oil weathers:
colors can range from orange or tan to dark brown.
• Black oil: Area of black colored oil sometimes appearing with
a latex texture. Often confused with kelp beds and other natural
phenomenon.
• Windrows: Oil or sheen oriented in lines or streaks. Brown oil
and mousse can be easily confused with algae scum collecting
in
convergence lines, algae patches, or mats or kelp or fucus.
Sometimes called streaks, stringers or fingers.
• Tarballs: Weathered oil that has formed a pliable ball. Size
may vary from pinhead to about 30 cm. Sheen may or may not
be
present.
• Tar mats: Non-floating mats of oily debris (usually sediment
and/or plant matter) that are found on beaches or just offshore.
• Pancakes: Isolated patches of oil shaped in a mostly circular
fashion. Pancakes can range in size from a few meters across to
hundreds of meters in diameter. Sheen may or may not be
present.
Densities (mass per volume)
Water (H2O) = 1.00 g/cm3
Surface sea water ≈ 1.02 g/cm3
Vegetable oil ≈ 0.92 g/cm3
http://www.iea.org/textbase/work/2004/eswg/SIP9.pdf
7
http://www.iea.org/textbase/work/2004/eswg/sip9.pdf
Viscosities (resistance to flow)
* IFO - Intermediate Fuel Oil; ** HFO - Heavy Fuel Oil
http://www.amsa.gov.au/Marine_Environment_Protection
For further information:
• http://www.psp.wa.gov/
•
http://www.psparchives.com/publications/puget_sound/sos/07so
s/2007_stateofthesound_fulldoc.pdf
• https://www.amsa.gov.au/community/kids-and-teachers-
resources/
• http://www.seattlepi.com/news/article/In-busy-shipping-lanes-
threat-of-big-oil-spill-1101231.php
•
http://www.ecy.wa.gov/programs/tcp/sites_brochure/lower_duw
amish/lower_duwamish_hp.html
• http://duwamishcleanup.org/community-engagement/
• http://www.simetric.co.uk/si_liquids.htm
Natural Product Petroleum Product Approx. Viscosity cSt @ 20
C
Water 1
Kerosene 1.0 - 2.0
Gasoline 1.5 - 2.0
Turpentine 1.5 - 2.0
Milk (whole) 2
Automotive diesel 3 - 5
Heating oil 10
Marine diesel oil 13
Salad oil 60
Canola oil 70
Olive oil 100
IFO* 40 200
SAE 10W30 Lube oil 200
Varnish 300
IFO* 80 500
Glycerine 600
Castor oil 1,000
IFO* 180 2,000
Corn syrup 5,000
HFO** 280 5,000 - 25,000
Honey 10,000
HFO** 380 10,000 - 100,000
Hot fudge syrup 25,000
Molasses 50,000
Heavy molasses 100,000
8
http://www.amsa.gov.au/marine_environment_protection
http://www.psp.wa.gov/
http://www.psp.wa.gov/sos.php
https://www.amsa.gov.au/community/kids-and-teachers-
resources/
http://www.seattlepi.com/news/article/In-busy-shipping-lanes-
threat-of-big-oil-spill-1101231.php
http://www.ecy.wa.gov/programs/tcp/sites_brochure/lower_duw
amish/lower_duwamish_hp.html
http://duwamishcleanup.org/community-engagement/
http://www.simetric.co.uk/si_liquids.htm
What Happens to Spilled Oil?
(http://www.amsa.gov.au/Marine_Environment_Protection)
When oil enters the sea, many physical, chemical and biological
processes act on the oil. Many changes happen at once - the
slick moves and spreads
and environmental processes alter its character. Some of the
processes are most important immediately after the spill and
other processes become
increasingly important as time goes on.
Spreading: Oil is lighter than water, so it floats on the surface
as a slick. The slick (or spill) spreads over the surface of the
water due to the force of
gravity. Spreading decreases steadily as time passes.
Dissolution: Occurs when the water-soluble components of oil
break down into the large volume of water surrounding the spill.
Only a very small
percentage of oil dissolves.
Sedimentation: The force of gravity will cause some of the oil
to travel through the water and settle on the bottom.
Movement: An oil spill will move in the same direction and at a
similar speed as the water. It is moved by currents, tide and
wind.
Biodegradation: Many species of marine micro-organisms or
bacteria, fungi and yeasts feed on the compounds that make up
oil. Hydrocarbons (oil)
consumed by these micro-organisms can be partially
metabolized or completely metabolized to carbon dioxide and
water. The rate of biodegradation
depends on the temperature of the oil and water mixture.
Evaporation: Causes some of the oil to transfer to the
atmosphere. Lighter hydrocarbons evaporate more rapidly than
heavy components.
Weathering: Is a progressive series of changes in oil
characteristics caused by physical, chemical and biological
processes. The rate of weathering is
highly dependent on the type of oil spilled - the lighter it is, the
faster it is likely to weather.
Dispersion: The spilled oil is spread into the upper layers of the
water column by natural wave action.
Oxidation: The chemical combination of hydrocarbons with
oxygen is known as oxidation. Oxidation is slow compared with
other weathering
processes.
Emulsification: Is the combination of two liquids - one
suspended in the other. In the case of oil, the emulsion can be
either oil-in-water or water in
oil. Milk is an oil-in-water emulsion; butter is a water-in-oil
emulsion. Both types of emulsification require wave action and
occur only for specific
oil compositions. Water-in-oil emulsions are extremely stable
and may persist for months or years after a spill. Water-in-oil
emulsions containing 50
to 80 per cent water are most common, and have a reddish-
brown colour and grease like consistency. They are some times
called 'chocolate mousse'
because of their pudding-like appearance.
The Effects of Oil on Wildlife
(http://www.amsa.gov.au/Marine_Environment_Protection)
We have all seen pictures and videos of wildlife covered in
black, sticky oil after an oil spill. These pictures are usually of
oiled birds. Many people
are not aware that it is not just birds that get oiled during a
spill. Other marine life such as marine mammals can also suffer
from the effects of an oil
spill. Even small spills can severely affect marine wildlife.
Not all oils are the same. There are many different types of oil
and this means that each oil spill is different depending on the
type of oil spilt.
Each oil spill will have a different impact on wildlife and the
surrounding environment depending on:
• the type of oil spilled,
• the location of the spill,
• the species of wildlife in the area,
• the timing of breeding cycles and seasonal migrations,
• and even the weather at sea during the oil spill.
Oil affects wildlife by coating their bodies with a thick layer.
Many oils also become stickier over time (this is called
weathering) and so adheres to
wildlife even more. Since most oil floats on the surface of the
water it can affect many marine animals and sea birds.
Unfortunately, birds and marine
mammals will not necessarily avoid an oil spill. Some marine
mammals, such as seals and dolphins, have been seen swimming
and feeding in or near
an oil spill. Some fish are attracted to oil because it looks like
floating food. This endangers sea birds, which are attracted to
schools of fish and may
dive through oil slicks to get to the fish.
Oil that sticks to fur or feathers, usually crude and bunker fuels,
can cause many problems. Some of these problems are:
• hypothermia in birds by reducing or destroying the insulation
and waterproofing properties of their feathers;
• hypothermia in fur seal pups by reducing or destroying the
insulation of their woolly fur (called lanugo). Adult fur seals
have blubber and would not suffer from
hypothermia if oiled. Dolphins and whales do not have fur, so
oil will not easily stick to them;
• birds become easy prey, as their feathers being matted by oil
make them less able to fly away;
• marine mammals such as fur seals become easy prey if oil
sticks their flippers to their bodies, making it hard for them to
escape predators;
• birds sink or drown because oiled feathers weigh more and
their sticky feathers cannot trap enough air between them to
keep them buoyant;
• fur seal pups drown if oil sticks their flippers to their bodies;
• birds lose body weight as their metabolism tries to combat low
body temperature;
• marine mammals lose body weight when they can not feed due
to contamination of their environment by oil;
• birds become dehydrated and can starve as they give up or
reduce drinking, diving and swimming to look for food;
• inflammation or infection in dugongs and difficulty eating due
to oil sticking to the sensory hairs around their mouths;
• disguise of scent that seal pups and mothers rely on to identify
each other, leading to rejection, abandonment and starvation of
seal pups; and
• damage to the insides of animals and birds bodies, for example
by causing ulcers or bleeding in their stomachs if they ingest
the oil by accident.
Oil does not have to be sticky to endanger wildlife. Both sticky
oils such as crude oil and bunker fuels, and non-sticky oils such
as refined petroleum
products can affect different wildlife. Oils such as refined
petroleum products do not last as long in the marine
environment as crude or bunker fuel.
They are not likely to stick to a bird or animal, but they are
much more poisonous than crude oil or bunker fuel. While some
of the following effects
on sea birds, marine mammals and turtles can be caused by
crude oil or bunker fuel, they are more commonly caused by
refined oil products.
Oil in the environment or oil that is ingested can cause:
• poisoning of wildlife higher up the food chain if they eat large
amounts of other organisms that have taken oil into their
tissues;
• interference with breeding by making the animal too ill to
breed, interfering with breeding behaviour such as a bird sitting
on their eggs, or by reducing the
number of eggs a bird will lay;
• damage to the airways and lungs of marine mammals and
turtles, congestion, pneumonia, emphysema and even death by
breathing in droplets of oil, or oil fumes
9
http://www.amsa.gov.au/marine_environment_protection
http://www.amsa.gov.au/marine_environment_protection
or gas;
• damage to a marine mammal's or turtle's eyes, which can cause
ulcers, conjunctivitis and blindness, making it difficult for them
to find food, and sometimes
causing starvation;
• irritation or ulceration of skin, mouth or nasal cavities;
• damage to and suppression of a marine mammal's immune
system, sometimes causing secondary bacterial or fungal
infections;
• damage to red blood cells;
• organ damage and failure such as a bird or marine mammal's
liver;
• damage to a bird's adrenal tissue which interferes with a bird's
ability to maintain blood pressure, and concentration of fluid in
its body;
• decrease in the thickness of egg shells;
• stress;
• damage to fish eggs, larvae and young fish;
• contamination of beaches where turtles breed causing
contamination of eggs, adult turtles or newly hatched turtles;
• damage to estuaries, coral reefs, seagrass and mangrove
habitats which are the breeding areas of many fish and
crustaceans, interfering with their breeding;
• tainting of fish, crustaceans, molluscs and algae;
• interference with a baleen whale's feeding system by tar-like
oil, as this type of whale feeds by skimming the surface and
filtering out the water; and
• poisoning of young through the mother, as a dolphin calf can
absorb oil through its mother’s milk.
Animals covered in oil at the beginning of a spill may be
affected differently from animals encountering the oil later. For
example, early on, the oil
maybe more poisonous, so the wildlife affected early will take
in more of the poison. The weather conditions can reduce or
increase the potential for
oil to cause damage to the environment and wildlife. For
example, warm seas and high winds will encourage lighter oils
to form gases, and will
reduce the amount of oil that stays in the water to affect marine
life.
The impact of an oil spill on wildlife is also affected by where
spilled oil reaches. For example, fur seal pups are affected more
than adults by oil
spills because pups swim in tidal pools and along rocky coasts,
whereas the adults swim in open water where it is less likely for
oil to linger.
Dugongs also feed on seagrass along the coast and therefore be
more affected by oil spills.
Different resources will be needed to combat an oil spill,
depending on the number and type of wildlife that is affected.
Quick and humane care of
wildlife affected by oil spills is required by law. The National
Oiled Wildlife Response guidelines have been developed at both
the Commonwealth
and State/Territory level under Australia's national strategy to
respond to oil and chemical spills in the marine environment.
This strategy is known as
the National Plan to Combat Pollution of the Sea by Oil and
other Noxious and Hazardous Substances (National Plan).
Math Hints for Oil Spill Calculations
13. An oil spill, with the appearance of black to dark brown, is
sighted by a commercial airliner flying over the Great Barrier
Reef. The
spill is estimated to be 1.5 kilometers long and 50 meters wide.
How much oil (in liters) would there be in the spill? (Remember
that to
produce a black to dark brown color, the oil would have to be at
least 100 microns thick.)
You are asked for the volume of oil (in liters).
Volumes are 3-dimensional: Volume (V) = Length (L) x Width
(W) x Height (H)
Here, the Length and Width are given, and the Height is the
thickness of the oil.
Convert L, W, and H to meters (so you can multiply them all
together to get cubic meters, m3).
One kilometer = 1000 meters (Use this to convert L from km to
m)
One micron = 1 micrometer = 1 x 10-6 meters = 0.000001 meter
(Use this to convert H from microns to meters)
Now multiply: V = L x W x H
Now convert to liters – Per the table on page 7 of this handout,
1 cubic meter is 1000 liters. (Use this to convert V from m3 to
liters)
Hint: Your final answer should be 7500 liters. You must show
me all steps, including units with all numbers.
14. A Coastwatch surveillance aircraft photographs a ship
trailing a silvery oil discharge from its stern. The discharge is
13.5 nautical
miles and at least the width of the vessel which is 37.5 meters.
An oil spill on the water that gives a silvery sheen is
approximately 1
micron in thickness. How much oil (in liters) has the ship
discharged into the sea?
Do the same thing as in Q#13 above, with one additional
conversion step:
Per page 7: Nautical miles x 1.852 = metric conversion from
nautical miles to kilometers
Hint: Your final answer should be a little less than 1000 liters.
Show your work.
15. A fishing boat reports an oil spill near a ship to the local
maritime authority. The ship is radioed and asked whether oil
was being
discharged from its vessel. The captain reports that the ship has
discharged only 10 liters of heavy fuel waste oil during a bilge
pump-
out which is mixed with 100 tonnes of sea water. Has the ship
exceeded the legal limit of oil discharge of 15 parts per million
(15 parts
of oil to 1 million parts of water)? Assume oil and sea water
have the same density for the calculation (but see the tables in
this handout
for closer estimates).
Try this one on your own. You’ll need to know (page 7) that 1
metric tonne of water = 1000 liters of water. Also, 15 ppm = 15
parts oil to
1,000,000 parts water. Likewise, a concentration of 1 ppm
equals 1 liter oil in 1,000,000 liters seawater.
Hint: Your final answer should be YES – The concentration you
calculate should vastly exceed the legal limit of 15 ppm. Show
your work.
10
http://www.amsa.gov.au/marine_environment_protection/nation
al_plan/general_information/oiled_wildlife/wildlife.pdf
http://www.amsa.gov.au/marine_environment_protection/nation
al_plan/overview.asp

More Related Content

Similar to 0318 (M)Utilitarian EthicsMill, p. 137-185Introduction t.docx

Core cleaning (reservoir engineering)
Core cleaning (reservoir engineering)Core cleaning (reservoir engineering)
Core cleaning (reservoir engineering)Bakhtiar Mahmood
 
Oil spills & Cleaning
Oil spills & CleaningOil spills & Cleaning
Oil spills & CleaningShagun Ramola
 
Running head OIL SPILLSOIL SPILLS .docx
Running head OIL SPILLSOIL SPILLS                              .docxRunning head OIL SPILLSOIL SPILLS                              .docx
Running head OIL SPILLSOIL SPILLS .docxtoltonkendal
 
Emergency on Plant Earth - Turtles
Emergency on Plant Earth - TurtlesEmergency on Plant Earth - Turtles
Emergency on Plant Earth - TurtlesRCB78
 
312331516-soap-making-project-for-cbse-class-12.pdf
312331516-soap-making-project-for-cbse-class-12.pdf312331516-soap-making-project-for-cbse-class-12.pdf
312331516-soap-making-project-for-cbse-class-12.pdfShivkantSingh7
 
Lab WorksheetHypothesesActivity 1.Tubes 1 and 2.docx
Lab WorksheetHypothesesActivity 1.Tubes 1 and 2.docxLab WorksheetHypothesesActivity 1.Tubes 1 and 2.docx
Lab WorksheetHypothesesActivity 1.Tubes 1 and 2.docxcroysierkathey
 
Water Testing Lab Background Information Chemists can .docx
Water Testing Lab  Background Information Chemists can .docxWater Testing Lab  Background Information Chemists can .docx
Water Testing Lab Background Information Chemists can .docxcelenarouzie
 
Oil spill cleanup
Oil spill cleanupOil spill cleanup
Oil spill cleanupqqfftt
 
Hand dishwashing strategies non video
Hand dishwashing strategies non videoHand dishwashing strategies non video
Hand dishwashing strategies non videoLilian Manipis
 
Lab 9 Chemical Reactions IIPre-lab Questions1. Michelangelo u.docx
Lab 9 Chemical Reactions IIPre-lab Questions1. Michelangelo u.docxLab 9 Chemical Reactions IIPre-lab Questions1. Michelangelo u.docx
Lab 9 Chemical Reactions IIPre-lab Questions1. Michelangelo u.docxsmile790243
 
E.9 unit6 lesson 3
E.9 unit6 lesson 3E.9 unit6 lesson 3
E.9 unit6 lesson 3vu anh
 
CHEM 1411 Alternate Separation of a Mixture LabObjectives1. To un
CHEM 1411 Alternate Separation of a Mixture LabObjectives1. To unCHEM 1411 Alternate Separation of a Mixture LabObjectives1. To un
CHEM 1411 Alternate Separation of a Mixture LabObjectives1. To unJinElias52
 

Similar to 0318 (M)Utilitarian EthicsMill, p. 137-185Introduction t.docx (16)

Core cleaning (reservoir engineering)
Core cleaning (reservoir engineering)Core cleaning (reservoir engineering)
Core cleaning (reservoir engineering)
 
Oil spills & Cleaning
Oil spills & CleaningOil spills & Cleaning
Oil spills & Cleaning
 
Running head OIL SPILLSOIL SPILLS .docx
Running head OIL SPILLSOIL SPILLS                              .docxRunning head OIL SPILLSOIL SPILLS                              .docx
Running head OIL SPILLSOIL SPILLS .docx
 
Emergency on Plant Earth - Turtles
Emergency on Plant Earth - TurtlesEmergency on Plant Earth - Turtles
Emergency on Plant Earth - Turtles
 
Topic 8 events
Topic 8 eventsTopic 8 events
Topic 8 events
 
312331516-soap-making-project-for-cbse-class-12.pdf
312331516-soap-making-project-for-cbse-class-12.pdf312331516-soap-making-project-for-cbse-class-12.pdf
312331516-soap-making-project-for-cbse-class-12.pdf
 
Lube Oil Purifier.docx
Lube Oil Purifier.docxLube Oil Purifier.docx
Lube Oil Purifier.docx
 
Lab WorksheetHypothesesActivity 1.Tubes 1 and 2.docx
Lab WorksheetHypothesesActivity 1.Tubes 1 and 2.docxLab WorksheetHypothesesActivity 1.Tubes 1 and 2.docx
Lab WorksheetHypothesesActivity 1.Tubes 1 and 2.docx
 
Water Testing Lab Background Information Chemists can .docx
Water Testing Lab  Background Information Chemists can .docxWater Testing Lab  Background Information Chemists can .docx
Water Testing Lab Background Information Chemists can .docx
 
Hot Work Drum and Tanks
Hot Work Drum and TanksHot Work Drum and Tanks
Hot Work Drum and Tanks
 
Oil spill cleanup
Oil spill cleanupOil spill cleanup
Oil spill cleanup
 
Hand dishwashing strategies non video
Hand dishwashing strategies non videoHand dishwashing strategies non video
Hand dishwashing strategies non video
 
Lab 9 Chemical Reactions IIPre-lab Questions1. Michelangelo u.docx
Lab 9 Chemical Reactions IIPre-lab Questions1. Michelangelo u.docxLab 9 Chemical Reactions IIPre-lab Questions1. Michelangelo u.docx
Lab 9 Chemical Reactions IIPre-lab Questions1. Michelangelo u.docx
 
E.9 unit6 lesson 3
E.9 unit6 lesson 3E.9 unit6 lesson 3
E.9 unit6 lesson 3
 
CHEM 1411 Alternate Separation of a Mixture LabObjectives1. To un
CHEM 1411 Alternate Separation of a Mixture LabObjectives1. To unCHEM 1411 Alternate Separation of a Mixture LabObjectives1. To un
CHEM 1411 Alternate Separation of a Mixture LabObjectives1. To un
 
Core cleaning
Core cleaningCore cleaning
Core cleaning
 

More from teresehearn

1- When it comes to helping people who are having problems, how do y.docx
1- When it comes to helping people who are having problems, how do y.docx1- When it comes to helping people who are having problems, how do y.docx
1- When it comes to helping people who are having problems, how do y.docxteresehearn
 
1-Managing Interpersonal Relationships DiscussionManaging inte.docx
1-Managing Interpersonal Relationships DiscussionManaging inte.docx1-Managing Interpersonal Relationships DiscussionManaging inte.docx
1-Managing Interpersonal Relationships DiscussionManaging inte.docxteresehearn
 
1-IRB is an important step in research. State the required compo.docx
1-IRB is an important step in research. State the required compo.docx1-IRB is an important step in research. State the required compo.docx
1-IRB is an important step in research. State the required compo.docxteresehearn
 
1-App must contain at least 5 runnable and navigable activities.docx
1-App must contain at least 5 runnable and navigable activities.docx1-App must contain at least 5 runnable and navigable activities.docx
1-App must contain at least 5 runnable and navigable activities.docxteresehearn
 
1-2 paragraphsMaximum of 1 page, double- spacedAPA sty.docx
1-2 paragraphsMaximum of 1 page, double- spacedAPA sty.docx1-2 paragraphsMaximum of 1 page, double- spacedAPA sty.docx
1-2 paragraphsMaximum of 1 page, double- spacedAPA sty.docxteresehearn
 
1-What are the pros and cons of parole. Discuss!2-Discuss wa.docx
1-What are the pros and cons of parole. Discuss!2-Discuss wa.docx1-What are the pros and cons of parole. Discuss!2-Discuss wa.docx
1-What are the pros and cons of parole. Discuss!2-Discuss wa.docxteresehearn
 
1-2 pages, APA format, 2 scholarly resources (one from textbook)....docx
1-2 pages, APA format, 2 scholarly resources (one from textbook)....docx1-2 pages, APA format, 2 scholarly resources (one from textbook)....docx
1-2 pages, APA format, 2 scholarly resources (one from textbook)....docxteresehearn
 
1-A patient on a medical floor has an indwelling catheter that has b.docx
1-A patient on a medical floor has an indwelling catheter that has b.docx1-A patient on a medical floor has an indwelling catheter that has b.docx
1-A patient on a medical floor has an indwelling catheter that has b.docxteresehearn
 
1-2 pages REVIEW ATTACHED DOCUMENT!! ( indicate assignment response .docx
1-2 pages REVIEW ATTACHED DOCUMENT!! ( indicate assignment response .docx1-2 pages REVIEW ATTACHED DOCUMENT!! ( indicate assignment response .docx
1-2 pages REVIEW ATTACHED DOCUMENT!! ( indicate assignment response .docxteresehearn
 
1-2 pages  Required ReadingsRavitch, S. M., & Carl, N. M. (2.docx
1-2 pages  Required ReadingsRavitch, S. M., & Carl, N. M. (2.docx1-2 pages  Required ReadingsRavitch, S. M., & Carl, N. M. (2.docx
1-2 pages  Required ReadingsRavitch, S. M., & Carl, N. M. (2.docxteresehearn
 
1-866-275-3266[email protected]ANALYSISVITALITYRELATIV.docx
1-866-275-3266[email protected]ANALYSISVITALITYRELATIV.docx1-866-275-3266[email protected]ANALYSISVITALITYRELATIV.docx
1-866-275-3266[email protected]ANALYSISVITALITYRELATIV.docxteresehearn
 
1-2 paragraphsapa formatreferencesStep 1 - Read the In.docx
1-2 paragraphsapa formatreferencesStep 1 - Read the In.docx1-2 paragraphsapa formatreferencesStep 1 - Read the In.docx
1-2 paragraphsapa formatreferencesStep 1 - Read the In.docxteresehearn
 
1- What is Policy2- Explain each of them  Public policy—Pr.docx
1- What is Policy2- Explain each of them  Public policy—Pr.docx1- What is Policy2- Explain each of them  Public policy—Pr.docx
1- What is Policy2- Explain each of them  Public policy—Pr.docxteresehearn
 
1-2 paragraphsapa formatreferencesIn Chapter 6 The En.docx
1-2 paragraphsapa formatreferencesIn Chapter 6 The En.docx1-2 paragraphsapa formatreferencesIn Chapter 6 The En.docx
1-2 paragraphsapa formatreferencesIn Chapter 6 The En.docxteresehearn
 
1- What is Policy2- Explain each of them     Public policy— Pr.docx
1- What is Policy2- Explain each of them     Public policy— Pr.docx1- What is Policy2- Explain each of them     Public policy— Pr.docx
1- What is Policy2- Explain each of them     Public policy— Pr.docxteresehearn
 
1- What is Policy2- Explain each of them  Public policy—Pr.docx
1- What is Policy2- Explain each of them  Public policy—Pr.docx1- What is Policy2- Explain each of them  Public policy—Pr.docx
1- What is Policy2- Explain each of them  Public policy—Pr.docxteresehearn
 
1-2 Paragraphs adequately describing cloning biotechnology as thorou.docx
1-2 Paragraphs adequately describing cloning biotechnology as thorou.docx1-2 Paragraphs adequately describing cloning biotechnology as thorou.docx
1-2 Paragraphs adequately describing cloning biotechnology as thorou.docxteresehearn
 
1- Explain why some cells are pink and others are purple in Gram-sta.docx
1- Explain why some cells are pink and others are purple in Gram-sta.docx1- Explain why some cells are pink and others are purple in Gram-sta.docx
1- Explain why some cells are pink and others are purple in Gram-sta.docxteresehearn
 
1-Some typical agents of socialization are family, school, religion.docx
1-Some typical agents of socialization are family, school, religion.docx1-Some typical agents of socialization are family, school, religion.docx
1-Some typical agents of socialization are family, school, religion.docxteresehearn
 
1-Provide a critique Kristen Swanson’s Theory of Caring, making .docx
1-Provide a critique Kristen Swanson’s Theory of Caring, making .docx1-Provide a critique Kristen Swanson’s Theory of Caring, making .docx
1-Provide a critique Kristen Swanson’s Theory of Caring, making .docxteresehearn
 

More from teresehearn (20)

1- When it comes to helping people who are having problems, how do y.docx
1- When it comes to helping people who are having problems, how do y.docx1- When it comes to helping people who are having problems, how do y.docx
1- When it comes to helping people who are having problems, how do y.docx
 
1-Managing Interpersonal Relationships DiscussionManaging inte.docx
1-Managing Interpersonal Relationships DiscussionManaging inte.docx1-Managing Interpersonal Relationships DiscussionManaging inte.docx
1-Managing Interpersonal Relationships DiscussionManaging inte.docx
 
1-IRB is an important step in research. State the required compo.docx
1-IRB is an important step in research. State the required compo.docx1-IRB is an important step in research. State the required compo.docx
1-IRB is an important step in research. State the required compo.docx
 
1-App must contain at least 5 runnable and navigable activities.docx
1-App must contain at least 5 runnable and navigable activities.docx1-App must contain at least 5 runnable and navigable activities.docx
1-App must contain at least 5 runnable and navigable activities.docx
 
1-2 paragraphsMaximum of 1 page, double- spacedAPA sty.docx
1-2 paragraphsMaximum of 1 page, double- spacedAPA sty.docx1-2 paragraphsMaximum of 1 page, double- spacedAPA sty.docx
1-2 paragraphsMaximum of 1 page, double- spacedAPA sty.docx
 
1-What are the pros and cons of parole. Discuss!2-Discuss wa.docx
1-What are the pros and cons of parole. Discuss!2-Discuss wa.docx1-What are the pros and cons of parole. Discuss!2-Discuss wa.docx
1-What are the pros and cons of parole. Discuss!2-Discuss wa.docx
 
1-2 pages, APA format, 2 scholarly resources (one from textbook)....docx
1-2 pages, APA format, 2 scholarly resources (one from textbook)....docx1-2 pages, APA format, 2 scholarly resources (one from textbook)....docx
1-2 pages, APA format, 2 scholarly resources (one from textbook)....docx
 
1-A patient on a medical floor has an indwelling catheter that has b.docx
1-A patient on a medical floor has an indwelling catheter that has b.docx1-A patient on a medical floor has an indwelling catheter that has b.docx
1-A patient on a medical floor has an indwelling catheter that has b.docx
 
1-2 pages REVIEW ATTACHED DOCUMENT!! ( indicate assignment response .docx
1-2 pages REVIEW ATTACHED DOCUMENT!! ( indicate assignment response .docx1-2 pages REVIEW ATTACHED DOCUMENT!! ( indicate assignment response .docx
1-2 pages REVIEW ATTACHED DOCUMENT!! ( indicate assignment response .docx
 
1-2 pages  Required ReadingsRavitch, S. M., & Carl, N. M. (2.docx
1-2 pages  Required ReadingsRavitch, S. M., & Carl, N. M. (2.docx1-2 pages  Required ReadingsRavitch, S. M., & Carl, N. M. (2.docx
1-2 pages  Required ReadingsRavitch, S. M., & Carl, N. M. (2.docx
 
1-866-275-3266[email protected]ANALYSISVITALITYRELATIV.docx
1-866-275-3266[email protected]ANALYSISVITALITYRELATIV.docx1-866-275-3266[email protected]ANALYSISVITALITYRELATIV.docx
1-866-275-3266[email protected]ANALYSISVITALITYRELATIV.docx
 
1-2 paragraphsapa formatreferencesStep 1 - Read the In.docx
1-2 paragraphsapa formatreferencesStep 1 - Read the In.docx1-2 paragraphsapa formatreferencesStep 1 - Read the In.docx
1-2 paragraphsapa formatreferencesStep 1 - Read the In.docx
 
1- What is Policy2- Explain each of them  Public policy—Pr.docx
1- What is Policy2- Explain each of them  Public policy—Pr.docx1- What is Policy2- Explain each of them  Public policy—Pr.docx
1- What is Policy2- Explain each of them  Public policy—Pr.docx
 
1-2 paragraphsapa formatreferencesIn Chapter 6 The En.docx
1-2 paragraphsapa formatreferencesIn Chapter 6 The En.docx1-2 paragraphsapa formatreferencesIn Chapter 6 The En.docx
1-2 paragraphsapa formatreferencesIn Chapter 6 The En.docx
 
1- What is Policy2- Explain each of them     Public policy— Pr.docx
1- What is Policy2- Explain each of them     Public policy— Pr.docx1- What is Policy2- Explain each of them     Public policy— Pr.docx
1- What is Policy2- Explain each of them     Public policy— Pr.docx
 
1- What is Policy2- Explain each of them  Public policy—Pr.docx
1- What is Policy2- Explain each of them  Public policy—Pr.docx1- What is Policy2- Explain each of them  Public policy—Pr.docx
1- What is Policy2- Explain each of them  Public policy—Pr.docx
 
1-2 Paragraphs adequately describing cloning biotechnology as thorou.docx
1-2 Paragraphs adequately describing cloning biotechnology as thorou.docx1-2 Paragraphs adequately describing cloning biotechnology as thorou.docx
1-2 Paragraphs adequately describing cloning biotechnology as thorou.docx
 
1- Explain why some cells are pink and others are purple in Gram-sta.docx
1- Explain why some cells are pink and others are purple in Gram-sta.docx1- Explain why some cells are pink and others are purple in Gram-sta.docx
1- Explain why some cells are pink and others are purple in Gram-sta.docx
 
1-Some typical agents of socialization are family, school, religion.docx
1-Some typical agents of socialization are family, school, religion.docx1-Some typical agents of socialization are family, school, religion.docx
1-Some typical agents of socialization are family, school, religion.docx
 
1-Provide a critique Kristen Swanson’s Theory of Caring, making .docx
1-Provide a critique Kristen Swanson’s Theory of Caring, making .docx1-Provide a critique Kristen Swanson’s Theory of Caring, making .docx
1-Provide a critique Kristen Swanson’s Theory of Caring, making .docx
 

Recently uploaded

Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 

Recently uploaded (20)

Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 

0318 (M)Utilitarian EthicsMill, p. 137-185Introduction t.docx

  • 1. 03/18 (M) Utilitarian Ethics Mill, p. 137-185 Introduction to Utilitarian Approach Rachels, Ch. 7 & 8, pp.98-125 Mill’s development Handout Discussion on Mill 03/20 (W)Utilitarian Ethics Mill, p. 137-185 Introduction to Utilitarian Approach Rachels, Ch. 7 & 8, pp.98-125 03/25 (M) Mill’s development Handout 03/27 (W) Discussion on Mill Part II. Morality in Practice 04/01 (M) Case Studies: Film: Extreme Measures 04/03 (W)Film Discussion and Worksheet Class Discussion on Sex Equality 04/08 (M) Abortion and Euthanasia Sol, Ellie, Erin – Physician Assisted Suicide Abortion (w/ exceptions) –Kiara, Caleigh, Heidi 04/10 (W) 04/15 (M)Near & Distant Peoples Transgender Athletes – Alex, Mackenzie and Diego Karlyn, Claire, Jess- Cadavers in car safety research 04/17 (W)Animal Rights Death penalty – Mitch, Alexis, Temi PETA – Dominic, Eric, Nick
  • 2. 04/22 (M) Easter Monday-No Class 04/24 (W)War and Peace (or Sexual Harassment Sex Equality Alec, Chengxiao Li, Khadija College Admissions Bribery (Academic and Athletic) Marco, Jacob, Ty Vaccination right: Andy, Riley, Habeeb] Same-sex marriage + gay clergy: Ben, Sam, Connor 04/29 (M) Gun Control Final Essay Due (Early due date) Ethical Position of it- Stephen, Shelby, Trevor (No comments will be given for the final papers that are submitted later than 04/29) (or Homosexual Conduct (read on your own) Punishment and Responsibility 05/01 (W) Review and the last day for presentations 05/06-05/11 Final Exam Week Final Exam: PHL270 A (8:00 class): 05/07 (T): 8:00-9:40am; PHL270 B (9:30 class): 05/06 (M): 8:00-9:40am Final Paper Due on 05/08 (W) (You will get a fair grade for your paper but no comments. The penalty for the papers submitted later than 05/08 is –5% in your total grade and no comments will be given for the late final paper). No paper will be accepted after 05/10(F)
  • 3. 1 2 Journal 5 – Oil Spill – ENVS 100 Online Class ❖ Read this handout beforehand, to be sure you have everything you need. ❖ Post a synthesis reflection of what you learned. Incorporate information from all of the required questions in Parts A, B, and C. (Do not simply answer the questions…Write about what you learned from them.) Feel free to expand your reflection in the directions of your interest! The objectives of this hands-on activity are: 1. To simulate an oil spill in the marine environment and to try several methods of cleaning up the spill. You will be simulating oil in open water, oil on a beach, and oil on the feathers of a bird. 2. To calculate the size of an oil spill and determine whether it exceeded the legal limits. 3. To consider the sources and impacts of nonpoint-source oil pollution 4. To connect this activity with other course concepts 5. To attempt bioremediation using local seawater (optional)
  • 4. ! http://education.nationalgeographic.com/education/file/national- geographic-magazine-geography-offshore-oil/?ar_a=1 1 http://education.nationalgeographic.com/education/file/national- geographic-magazine-geography-offshore-oil/?ar_a=1 Supplies you will need for SECTION A: • To simulate the open ocean, a coast, and wildlife: o Container: One deep dinner-sized plate or pie pan or Tupperware-style storage container o Water: To simulate water ☺ o Drinking straw: To create wind o Sand: Enough to build a beach in your plate o Feather: One feather from a craft-supplies store or pillow (or otherwise completely sterilized) • Oils (to simulate spilled oils) – Small quantities of each o Cooking oil (olive, canola, corn, etc.) o Mineral oil o Other oils of your choosing (castor, etc) o Note: If you want your oil to look more like crude oil, you can mix in some powdered chocolate and shake well. o DO NOT USE REAL MOTOR OIL! It requires special hazardous-materials (hazmat) disposal methods! • Cleaners (to simulate liquid cleanup methods) – Small quantities of each o Dishwashing liquid (or shampoo) o Rubbing alcohol (or isopropyl alcohol, or vodka)
  • 5. o Cold water o Hot water • Sorbents and containments (to simulate physical cleanup methods) o Cotton pads or cotton balls or gauze pads (to simulate sorbent pads) o Small quantities of dried grass clippings (to simulate straw bales) o Other materials of your choosing, such as: ▪ Piece of nylon pantyhose material ▪ Coffee filter ▪ Toilet paper ▪ Cotton string ▪ (Etc) o Optional: Tweezers (to help you gently move the materials around) Supplies List for Optional SECTION D – CAUTION: Uses diesel fuel and fertilizers • To attempt oil bioremediation (optional) □ Pond water or sea water □ Clear glass bottle or jar with tight-fitting screw top or stopper □ A few slow-release fertilizer pellets or a drop of liquid fertilizer (from gardening store) □ Small volume of automotive diesel (from gas station) NOTE: When you are done with the experiment, dispose of the supplies via your town’s hazardous materials (hazmat) protocols. Gas stations, oil-change outlets, car washes, county hazmat locations, etc might accept them.
  • 6. 2 SECTION A – Oil Spill and Cleanup Simulations Part 1 – Oil-in-Open Water Simulation 1. Fill your plate with water (to a depth of about 1/2”). Pour a small amount of your first simulated “crude oil” onto the surface of the water. Record your observations. 2. Using the drinking straw, blow on the surface of the oiled water, lightly at first, then more strongly. This is a simulation of wind transport and mixing. What happens to the oil? 3. Use the drinking straw to stir the oil and water as vigorously as possible without spilling the liquid over the rim of the plate. This is a simulation of mixing by wave action. What happens to the oil? 4. a. Add several drops of the dishwashing liquid to the surface of the oil/water mixture. This is a simulation of the use of an oil dispersant. Record your observations. b. Can you think of any benefit to using an oil dispersant in the real world? If so, what? c. Can you think of any negative consequences of using a dispersant? If so, what? 5. Empty out your plate, then fill it with water again, and add some more oil. Place two sorbent pads (cotton/gauze) on the
  • 7. surface, and drag them around gently with your fingers (or tweezers). Remove the sorbent pads. How well did the sorbent pads soak up the oil? 6. Remove the sorbent pads, add a little more oil if necessary, then sprinkle some dried grass clippings (to simulate straw) onto the oily surface. Gently move the grass clippings around, then remove them. How well did the grass clippings soak up the oil? Part 2 – Oil-on-Beach Simulation 7. Clean your plate and create a “wet sand beach” with some open water. Pour some of your simulated “crude oil” onto the surface of the beach. What happens to the oil? 8. Using fingers or tweezers, dip a sorbent pad in each of the following, and attempt to clean oil off the beach. For each substance, describe your relative success in cleaning the oil off the sand. • Cold Water • Hot Water • Rubbing Alcohol • Liquid/Dish Soap 9. What special problems are evident with regard to cleaning oil off a sand beach? Part 3 - Oiled Bird Simulation 10. Remove your “beach” and clean your plate. Dip a sterilized feather into your simulated “crude oil”, then place it on your plate. Using sorbent pads, attempt to clean the oil off the feather with
  • 8. each of the following, and describe your observations: • Cold Water • Hot Water • Rubbing Alcohol • Liquid/Dish Soap Part 4 – Other Scenarios 11. Now use the other equipment and materials at your disposal (see the supplies list above, and use your imagination). Repeat portions of the simulations above, to try to clean up the ocean water and your beach as best you can. Record your methods and your results for each scenario. Part 5 – Conclusions 12. Based on your observations during these simulations, what would be your recommendations for clean-up techniques in a real oil spill in Puget Sound, for each of the following situations? (Note: Doing nothing is one possible option.) Explain your reasoning. • Open Ocean • Beaches • Oiled Wildlife 3 SECTION B – Calculations (show your work, in enough detail that I can follow your reasoning) 13. An oil spill, with the appearance of black to dark brown, is sighted by a commercial airliner flying over the Great Barrier Reef. The spill is estimated to be 1.5 kilometers long and 50 meters wide. How much oil (in liters) would there be in the spill? (Remember that to produce a black to dark brown color, the oil would have to be at least 100 microns thick.)
  • 9. 14. A Coastwatch surveillance aircraft photographs a ship trailing a silvery oil discharge from its stern. The discharge is 13.5 nautical miles and at least the width of the vessel which is 37.5 meters. An oil spill on the water that gives a silvery sheen is approximately 1 micron in thickness. How much oil (in liters) has the ship discharged into the sea? 15. A fishing boat reports an oil spill near a ship to the local maritime authority. The ship is radioed and asked whether oil was being discharged from its vessel. The captain reports that the ship has discharged only 10 liters of heavy fuel waste oil during a bilge pump-out which is mixed with 100 tonnes of sea water. Has the ship exceeded the legal limit of oil discharge of 15 parts per million (15 parts of oil to 1 million parts of water)? Assume oil and sea water have the same density for the calculation (but see the tables in the background section for closer estimates). NOTE: MATH HINTS for Questions #13-15 are at the end of the Background Information section of this document! SECTION C – Extensions and Connections 16. Not all oil pollution comes from a single, localized source such as an oil tanker. In fact, in many locations the majority comes from nonpoint sources such as storm drains, household car washing, poor car maintenance (oil drips), etc. Most people do not realize that water in storm drains is not treated before being discharged, and thus may contain very high concentrations of oil and other pollutants if they – and their neighbors, family, and local businesses – are not careful. List the following:
  • 10. • As many nonpoint sources of oil pollution as you can think of (residential and other) • Their impacts on the environment and wildlife • Ideas for how to minimize the pollution and its impacts 17. Step back and put the information you learned in this activity into the context of the rest of this course. Write a synthesis of how this all connects. Optional : SECTION D – Diesel Oil Bioremediation 18. Do the “Experiment Demonstrating Oil Bioremediation”, posted at: https://www.amsa.gov.au/community/kids-and- teachers- resources/kids/teachers/experiment_bioremediation/index.html , or an alternative. Report your results when you have completed the experiment (it takes about a week). Document each stage with words, sketches, photographs, and/ or video. NOTE: When you are done with the experiment, dispose of the supplies via your school’s/town’s hazardous materials (hazmat) protocols. Gas stations, oil-change outlets, car washes, county hazmat locations, etc might accept them. “The experiment…is very simple and costs very little to do. In bioremediation you need: oil eating organisms (bugs), nutrients, oxygen, water and the food “oil”. There are plenty of natural organisms, bacteria, fungi etc in the air and water around us so there is no need to go searching for them.” Background Information Oil in the Marine Environment A small amount of oil leaks into the ocean from natural seeps on the sea floor. In recent decades, however, our growing
  • 11. dependence on marine transportation for petroleum products, offshore drilling, near-shore refining, and urban runoff have superceded the natural seepage of oil into the ocean by at least a factor of ten. Of course, the most highly publicized oil releases are associated with relatively rare, but catastrophic tanker accidents such as the Exxon Valdez, but these account for only a small percentage (about 3%) of the average amount of oil spilled into the ocean each year. Much more oil enters the marine environment each year through “routine” shipping operations and runoff from land-based sources. Once oil is spilled into the ocean, several things happen to it. First, it is often transported and spread by winds, waves, tides, and currents. Lighter, more volatile components of the oil evaporate into the atmosphere, contributing to air pollution. Heavier, dense components of the oil ball up and sink to the bottom, coating or becoming incorporated into bottom sediments and harming benthic organisms for years. Storm winds and waves can mix oil and water into a frothy emulsion (known as “chocolate mousse”) that impacts pelagic organisms, such as plankton, birds, fish, and marine mammals. Most components of oil do not dissolve easily in water, but those that do can harm the delicate juvenile forms of marine organisms even in minute concentrations. The insoluble components of oil form sticky layers of oil on the surface that prevent free diffusion of gases, clog organisms’ feeding structures and gills, kill larvae,
  • 12. 4 https://www.amsa.gov.au/community/kids-and-teachers- resources/kids/teachers/experiment_bioremediation/index.html and decrease the light available for photosynthesis. When the skin or fur of marine mammals become coated with oil, they are often unable to regulate their body temperature (remember they, like us, are endotherms), and may die of hypothermia. Methods of Oil Spill Cleanup The first step in oil spill cleanup is typically containment by booms made of logs or linked plastic floats. Skimmers, or special boats that recover oil using conveyor belts or vacuum hoses are then used to scoop up the confined floating oil. In some cases, absorbent material, known as sorbents, are used to make it easier to collect the oil. Examples might include natural materials such as straw, or sorbent pads made of some absorbent but floatable material like polypropylene. In some cases, burning of the surface oil is carried out, but this in itself is hazardous and has obvious environmental consequences. Oil dispersant chemicals, which are similar to detergents, are sometimes sprayed on oil spills to help break them up and disperse them, but these chemicals present environmental hazards of their own. Bioremediation, involving the introduction of natural or genetically-engineered oil-eating bacteria, has been shown to be partially effective in reducing quantities of spilled
  • 13. oil, but is tricky to use, and has not yet been proven to be completely risk-free in the marine environment. Finally, when oil fouls beach or rocky shoreline areas, cleanup methods employed in the past have included high pressure sprays of water or steam. While this method definitely improves the appearance of the shoreline, biological studies have shown that in most cases it does more harm than good, and sometimes effectively sterilizes the environment, killing everything that the oil didn’t. All oil spill cleanup methods are only partially successful, and in many cases research has found that the cleanup may actually make the environmental damage worse than it would have been if the spill had been left alone. Oil in the marine environment is toxic and ugly, but it is ultimately biodegradable, and nature will, over many years or decades, eventually repair itself if left alone. The cheapest and most effective oil spill treatment is to prevent them from happening in the first place. The Exxon Valdez Spill On March 24, 1989 at 4 minutes past midnight, the oil tanker Exxon Valdez struck a reef in Alaska’s spectacular Prince William Sound. An environmental nightmare began that changed not only Prince William Sound, but the world. No longer would people blindly believe promises from corporations that their operations were completely safe. A total of 11,000,000 gallons of Alaska North Slope crude oil leaked from the ruptured hull of the ship, impaled by the jagged
  • 14. rocks of Bligh Reef. Within two months, the oil had been driven along a path stretching 470 miles to the southwest. The initial cleanup of the spill took three years, and the cost was over $2.1 billion. The death toll in terms of wildlife was staggering; the full impact may never be known. On October 8, 1991, an agreement was reached between the State of Alaska, the federal government, and Exxon on both criminal charges and civil damage claims. In settlement of civil charges, Exxon would pay the State of Alaska and the United States $900 million over a 10-year period. This money would be used for restoration and would be administered by six government Trustees; three federal, three state. In settlement of criminal charges, Exxon would pay a fine of $250 million. Two “restitution funds” of $50 million each were established, one under state control and one under federal authority. Against strong opposition from many Alaskans, $125 million of the balance was forgiven due to Exxon’s cooperation during the cleanup, and upgraded safety procedures to prevent a reoccurrence. The remaining $50 million was divided between the Victims of Crime Act account ($13 million) and the North American Wetlands Conservation Fund ($12 million). On September 16, 1994, a jury in federal court returned a $5 billion punitive damages verdict against Exxon. The company, however, has appealed several times since that time. In a January 2004 ruling, a U.S. District Court ruled that Exxon must pay a slightly reduced $4.5 billion in punitive damages, but with
  • 15. $2.25 billion added on for back interest (total $6.75 billion). Exxon continued to appeal, and the case was finally heard before the U.S. Supreme Court in 2008. The court reduced Exxon’s punitive damages to $507.5 million, about one-tenth of the original penalty. Joseph Hazelwood was the captain of the Exxon Valdez the night she ran aground. Despite his admission that he had consumed at least three drinks before boarding the ship, Hazelwood was acquitted in 1990 of operating the tanker while drunk. He was convicted of the misdemeanor offence of illegally discharging oil, and on July 8, 1998, the Alaska Appeals Court upheld Hazelwood’s sentence on that charge. Hazelwood currently lives on Long Island, New York, and works as a maritime insurance adjustor for a company owned by his lawyer. The Exxon Valdez, re-named the SeaRiver Mediterranean, is still carrying oil around the world. Although she has been barred from ever entering Alaskan waters again, Exxon applied to have that court ruling reversed. The appeal was rejected. An application to merge with Mobil to form the world’s largest corporation was opposed by Senator Slade Gorton on March 4, 1999, due to Exxon’s non-payment of assessed penalties. The merger of the two oil giants occurred later that year despite the senator's objections. Exxon-Mobil has since become the most profitable company in the world.
  • 16. Searching for positive results of the spill requires a creative definition of the term “positive.” As a direct or indirect result of the Exxon Valdez disaster, tighter environmental regulations have been imposed on many industries. The most important regulation attempting to protect against a repeat of the spill is the modern standard for tanker ships, which now must be built with double hulls, so that if the outer skin is punctured, no oil will leak. Among other benefits, large tracts of land have been added to Kenai Fjords National Park, using funds from the Exxon fines. 5 FIGURE 1: Gulf of Alaska map with an overlay of the path the Exxon Valdez oil took and how long it took to get there. http://library.thinkquest.org/10867/spill Mathematics and Oil Spills (http://www.amsa.gov.au/Marine_Environment_Protection except to Americanize spellings) Conversion factors for oil spills When an oil spill occurs many different units of measure may
  • 17. be used to describe the size of the spill. This can be very confusing for the public as often media reports use the largest figure to describe the oil spill. Volumes of Oil barrels x 35 = imperial gallons barrels x 42 = US gallons cubic meters x 264.2 = US gallons cubic feet x 7.481 = US gallons metric tons x 294 = US gallons US gallons x 0.833 = imperial gallons US gallons x 3.785 = liters US gallons x 0.0238 = barrels (or divide by 42) US gallons x 0.0034 = metric tons 1 cubic meter is 1000 liters 1 metric tonne of water is 1,000 liters of water The amount of oil on the water Sometimes ships need to discharge oily bilges at sea. The current legal limit for this oily discharge is 15 parts of oil to one million parts of water (or 15 parts per million (ppm)). A discharge of 15 ppm cannot be seen on the water therefore if you can see an oil spill it is an illegal discharge. When bringing a case to court, authorities need to estimate the amount of oil which may be in the discharge. Oil spills spread
  • 18. quickly on the surface of the sea and the area of the spill is key information which is reported to authorities. In maritime language, nautical miles (nm) is used to describe distance travelled by vessels. You will often need to convert this measurement to metric units to then calculate the amount of oil in the spill. Nautical miles x 1.852 = metric conversion to kilometers 6 http://library.thinkquest.org/10867/spill http://www.amsa.gov.au/marine_environment_protection General glossary of terms used in oil spill observations Spill characteristics appear differently under low light conditions and under strong winds conditions. • Light sheen: A light, almost transparent, layer of oil. Sometimes confused with windrows and natural sheen resulting from biological processes. (e.g., coral spawning or algal bloom). • Silver sheen: A slightly thicker layer of oil that appears silvery or shimmery. • Rainbow sheen: Sheen that reflects colors. • Brown oil: Typically a 0.1 mm – 1.0 mm thick layer of water- in-oil emulsion. (Thickness can vary widely depending on wind and current conditions). May be referred as heavy or dull colored sheens. [Note: 0.1 millimeters = 100 micrometers = 100 microns =
  • 19. 100 µm] • Mousse: Water-in-oil emulsion often formed as oil weathers: colors can range from orange or tan to dark brown. • Black oil: Area of black colored oil sometimes appearing with a latex texture. Often confused with kelp beds and other natural phenomenon. • Windrows: Oil or sheen oriented in lines or streaks. Brown oil and mousse can be easily confused with algae scum collecting in convergence lines, algae patches, or mats or kelp or fucus. Sometimes called streaks, stringers or fingers. • Tarballs: Weathered oil that has formed a pliable ball. Size may vary from pinhead to about 30 cm. Sheen may or may not be present. • Tar mats: Non-floating mats of oily debris (usually sediment and/or plant matter) that are found on beaches or just offshore. • Pancakes: Isolated patches of oil shaped in a mostly circular fashion. Pancakes can range in size from a few meters across to hundreds of meters in diameter. Sheen may or may not be present. Densities (mass per volume) Water (H2O) = 1.00 g/cm3 Surface sea water ≈ 1.02 g/cm3 Vegetable oil ≈ 0.92 g/cm3 http://www.iea.org/textbase/work/2004/eswg/SIP9.pdf
  • 20. 7 http://www.iea.org/textbase/work/2004/eswg/sip9.pdf Viscosities (resistance to flow) * IFO - Intermediate Fuel Oil; ** HFO - Heavy Fuel Oil http://www.amsa.gov.au/Marine_Environment_Protection For further information: • http://www.psp.wa.gov/ • http://www.psparchives.com/publications/puget_sound/sos/07so s/2007_stateofthesound_fulldoc.pdf • https://www.amsa.gov.au/community/kids-and-teachers- resources/ • http://www.seattlepi.com/news/article/In-busy-shipping-lanes- threat-of-big-oil-spill-1101231.php • http://www.ecy.wa.gov/programs/tcp/sites_brochure/lower_duw amish/lower_duwamish_hp.html • http://duwamishcleanup.org/community-engagement/ • http://www.simetric.co.uk/si_liquids.htm Natural Product Petroleum Product Approx. Viscosity cSt @ 20 C Water 1 Kerosene 1.0 - 2.0
  • 21. Gasoline 1.5 - 2.0 Turpentine 1.5 - 2.0 Milk (whole) 2 Automotive diesel 3 - 5 Heating oil 10 Marine diesel oil 13 Salad oil 60 Canola oil 70 Olive oil 100 IFO* 40 200 SAE 10W30 Lube oil 200 Varnish 300 IFO* 80 500 Glycerine 600 Castor oil 1,000 IFO* 180 2,000 Corn syrup 5,000 HFO** 280 5,000 - 25,000
  • 22. Honey 10,000 HFO** 380 10,000 - 100,000 Hot fudge syrup 25,000 Molasses 50,000 Heavy molasses 100,000 8 http://www.amsa.gov.au/marine_environment_protection http://www.psp.wa.gov/ http://www.psp.wa.gov/sos.php https://www.amsa.gov.au/community/kids-and-teachers- resources/ http://www.seattlepi.com/news/article/In-busy-shipping-lanes- threat-of-big-oil-spill-1101231.php http://www.ecy.wa.gov/programs/tcp/sites_brochure/lower_duw amish/lower_duwamish_hp.html http://duwamishcleanup.org/community-engagement/ http://www.simetric.co.uk/si_liquids.htm What Happens to Spilled Oil? (http://www.amsa.gov.au/Marine_Environment_Protection) When oil enters the sea, many physical, chemical and biological processes act on the oil. Many changes happen at once - the slick moves and spreads and environmental processes alter its character. Some of the processes are most important immediately after the spill and other processes become increasingly important as time goes on. Spreading: Oil is lighter than water, so it floats on the surface
  • 23. as a slick. The slick (or spill) spreads over the surface of the water due to the force of gravity. Spreading decreases steadily as time passes. Dissolution: Occurs when the water-soluble components of oil break down into the large volume of water surrounding the spill. Only a very small percentage of oil dissolves. Sedimentation: The force of gravity will cause some of the oil to travel through the water and settle on the bottom. Movement: An oil spill will move in the same direction and at a similar speed as the water. It is moved by currents, tide and wind. Biodegradation: Many species of marine micro-organisms or bacteria, fungi and yeasts feed on the compounds that make up oil. Hydrocarbons (oil) consumed by these micro-organisms can be partially metabolized or completely metabolized to carbon dioxide and water. The rate of biodegradation depends on the temperature of the oil and water mixture. Evaporation: Causes some of the oil to transfer to the atmosphere. Lighter hydrocarbons evaporate more rapidly than heavy components. Weathering: Is a progressive series of changes in oil characteristics caused by physical, chemical and biological processes. The rate of weathering is highly dependent on the type of oil spilled - the lighter it is, the faster it is likely to weather. Dispersion: The spilled oil is spread into the upper layers of the water column by natural wave action. Oxidation: The chemical combination of hydrocarbons with oxygen is known as oxidation. Oxidation is slow compared with other weathering processes. Emulsification: Is the combination of two liquids - one suspended in the other. In the case of oil, the emulsion can be either oil-in-water or water in
  • 24. oil. Milk is an oil-in-water emulsion; butter is a water-in-oil emulsion. Both types of emulsification require wave action and occur only for specific oil compositions. Water-in-oil emulsions are extremely stable and may persist for months or years after a spill. Water-in-oil emulsions containing 50 to 80 per cent water are most common, and have a reddish- brown colour and grease like consistency. They are some times called 'chocolate mousse' because of their pudding-like appearance. The Effects of Oil on Wildlife (http://www.amsa.gov.au/Marine_Environment_Protection) We have all seen pictures and videos of wildlife covered in black, sticky oil after an oil spill. These pictures are usually of oiled birds. Many people are not aware that it is not just birds that get oiled during a spill. Other marine life such as marine mammals can also suffer from the effects of an oil spill. Even small spills can severely affect marine wildlife. Not all oils are the same. There are many different types of oil and this means that each oil spill is different depending on the type of oil spilt. Each oil spill will have a different impact on wildlife and the surrounding environment depending on: • the type of oil spilled, • the location of the spill, • the species of wildlife in the area, • the timing of breeding cycles and seasonal migrations, • and even the weather at sea during the oil spill. Oil affects wildlife by coating their bodies with a thick layer. Many oils also become stickier over time (this is called weathering) and so adheres to
  • 25. wildlife even more. Since most oil floats on the surface of the water it can affect many marine animals and sea birds. Unfortunately, birds and marine mammals will not necessarily avoid an oil spill. Some marine mammals, such as seals and dolphins, have been seen swimming and feeding in or near an oil spill. Some fish are attracted to oil because it looks like floating food. This endangers sea birds, which are attracted to schools of fish and may dive through oil slicks to get to the fish. Oil that sticks to fur or feathers, usually crude and bunker fuels, can cause many problems. Some of these problems are: • hypothermia in birds by reducing or destroying the insulation and waterproofing properties of their feathers; • hypothermia in fur seal pups by reducing or destroying the insulation of their woolly fur (called lanugo). Adult fur seals have blubber and would not suffer from hypothermia if oiled. Dolphins and whales do not have fur, so oil will not easily stick to them; • birds become easy prey, as their feathers being matted by oil make them less able to fly away; • marine mammals such as fur seals become easy prey if oil sticks their flippers to their bodies, making it hard for them to escape predators; • birds sink or drown because oiled feathers weigh more and their sticky feathers cannot trap enough air between them to keep them buoyant; • fur seal pups drown if oil sticks their flippers to their bodies; • birds lose body weight as their metabolism tries to combat low body temperature; • marine mammals lose body weight when they can not feed due to contamination of their environment by oil; • birds become dehydrated and can starve as they give up or reduce drinking, diving and swimming to look for food;
  • 26. • inflammation or infection in dugongs and difficulty eating due to oil sticking to the sensory hairs around their mouths; • disguise of scent that seal pups and mothers rely on to identify each other, leading to rejection, abandonment and starvation of seal pups; and • damage to the insides of animals and birds bodies, for example by causing ulcers or bleeding in their stomachs if they ingest the oil by accident. Oil does not have to be sticky to endanger wildlife. Both sticky oils such as crude oil and bunker fuels, and non-sticky oils such as refined petroleum products can affect different wildlife. Oils such as refined petroleum products do not last as long in the marine environment as crude or bunker fuel. They are not likely to stick to a bird or animal, but they are much more poisonous than crude oil or bunker fuel. While some of the following effects on sea birds, marine mammals and turtles can be caused by crude oil or bunker fuel, they are more commonly caused by refined oil products. Oil in the environment or oil that is ingested can cause: • poisoning of wildlife higher up the food chain if they eat large amounts of other organisms that have taken oil into their tissues; • interference with breeding by making the animal too ill to breed, interfering with breeding behaviour such as a bird sitting on their eggs, or by reducing the number of eggs a bird will lay; • damage to the airways and lungs of marine mammals and turtles, congestion, pneumonia, emphysema and even death by breathing in droplets of oil, or oil fumes 9 http://www.amsa.gov.au/marine_environment_protection
  • 27. http://www.amsa.gov.au/marine_environment_protection or gas; • damage to a marine mammal's or turtle's eyes, which can cause ulcers, conjunctivitis and blindness, making it difficult for them to find food, and sometimes causing starvation; • irritation or ulceration of skin, mouth or nasal cavities; • damage to and suppression of a marine mammal's immune system, sometimes causing secondary bacterial or fungal infections; • damage to red blood cells; • organ damage and failure such as a bird or marine mammal's liver; • damage to a bird's adrenal tissue which interferes with a bird's ability to maintain blood pressure, and concentration of fluid in its body; • decrease in the thickness of egg shells; • stress; • damage to fish eggs, larvae and young fish; • contamination of beaches where turtles breed causing contamination of eggs, adult turtles or newly hatched turtles; • damage to estuaries, coral reefs, seagrass and mangrove habitats which are the breeding areas of many fish and crustaceans, interfering with their breeding; • tainting of fish, crustaceans, molluscs and algae; • interference with a baleen whale's feeding system by tar-like oil, as this type of whale feeds by skimming the surface and filtering out the water; and • poisoning of young through the mother, as a dolphin calf can absorb oil through its mother’s milk. Animals covered in oil at the beginning of a spill may be affected differently from animals encountering the oil later. For example, early on, the oil
  • 28. maybe more poisonous, so the wildlife affected early will take in more of the poison. The weather conditions can reduce or increase the potential for oil to cause damage to the environment and wildlife. For example, warm seas and high winds will encourage lighter oils to form gases, and will reduce the amount of oil that stays in the water to affect marine life. The impact of an oil spill on wildlife is also affected by where spilled oil reaches. For example, fur seal pups are affected more than adults by oil spills because pups swim in tidal pools and along rocky coasts, whereas the adults swim in open water where it is less likely for oil to linger. Dugongs also feed on seagrass along the coast and therefore be more affected by oil spills. Different resources will be needed to combat an oil spill, depending on the number and type of wildlife that is affected. Quick and humane care of wildlife affected by oil spills is required by law. The National Oiled Wildlife Response guidelines have been developed at both the Commonwealth and State/Territory level under Australia's national strategy to respond to oil and chemical spills in the marine environment. This strategy is known as the National Plan to Combat Pollution of the Sea by Oil and other Noxious and Hazardous Substances (National Plan). Math Hints for Oil Spill Calculations 13. An oil spill, with the appearance of black to dark brown, is sighted by a commercial airliner flying over the Great Barrier Reef. The spill is estimated to be 1.5 kilometers long and 50 meters wide. How much oil (in liters) would there be in the spill? (Remember that to
  • 29. produce a black to dark brown color, the oil would have to be at least 100 microns thick.) You are asked for the volume of oil (in liters). Volumes are 3-dimensional: Volume (V) = Length (L) x Width (W) x Height (H) Here, the Length and Width are given, and the Height is the thickness of the oil. Convert L, W, and H to meters (so you can multiply them all together to get cubic meters, m3). One kilometer = 1000 meters (Use this to convert L from km to m) One micron = 1 micrometer = 1 x 10-6 meters = 0.000001 meter (Use this to convert H from microns to meters) Now multiply: V = L x W x H Now convert to liters – Per the table on page 7 of this handout, 1 cubic meter is 1000 liters. (Use this to convert V from m3 to liters) Hint: Your final answer should be 7500 liters. You must show me all steps, including units with all numbers. 14. A Coastwatch surveillance aircraft photographs a ship trailing a silvery oil discharge from its stern. The discharge is 13.5 nautical miles and at least the width of the vessel which is 37.5 meters. An oil spill on the water that gives a silvery sheen is approximately 1 micron in thickness. How much oil (in liters) has the ship
  • 30. discharged into the sea? Do the same thing as in Q#13 above, with one additional conversion step: Per page 7: Nautical miles x 1.852 = metric conversion from nautical miles to kilometers Hint: Your final answer should be a little less than 1000 liters. Show your work. 15. A fishing boat reports an oil spill near a ship to the local maritime authority. The ship is radioed and asked whether oil was being discharged from its vessel. The captain reports that the ship has discharged only 10 liters of heavy fuel waste oil during a bilge pump- out which is mixed with 100 tonnes of sea water. Has the ship exceeded the legal limit of oil discharge of 15 parts per million (15 parts of oil to 1 million parts of water)? Assume oil and sea water have the same density for the calculation (but see the tables in this handout for closer estimates). Try this one on your own. You’ll need to know (page 7) that 1 metric tonne of water = 1000 liters of water. Also, 15 ppm = 15 parts oil to 1,000,000 parts water. Likewise, a concentration of 1 ppm equals 1 liter oil in 1,000,000 liters seawater. Hint: Your final answer should be YES – The concentration you calculate should vastly exceed the legal limit of 15 ppm. Show your work. 10