SlideShare a Scribd company logo
1 of 34
Technology transfer in a global economy
David B. Audretsch • Erik E. Lehmann • Mike Wright
Published online: 6 December 2012
! Springer Science+Business Media New York 2012
Abstract The emergence of new technologies is acting both as a
driving force and an
enabling factor to globalization. At the same time, these
technologies are changing rapidly,
shortening the life cycles of products and the underlying
processes, and raising technology
costs. Technology transfer from academic and scientific
institutions has thus transformed
into a strategic variable for companies and nations to cope with
these challenges in a global
economy. This article introduces the rationale for the special
issue on the role of tech-
nology transfer in a global economy. The paper summarizes the
main topics and themes
covered by a selection of papers and keynotes presented at the
annual conference of the
Technology Transfer Society in 2011, as well as providing some
pointers towards a future
research agenda.
D. B. Audretsch
Indiana University, Bloomington, IN 47405, USA
e-mail: [email protected]
D. B. Audretsch
WHU Otto Beisheim School of Business, 56179 Valendar,
Germany
E. E. Lehmann (&)
Department of Business and Economics, Augsburg University,
Universitaetsstr. 16,
86159 Augsburg, Germany
e-mail: [email protected]
E. E. Lehmann
Global Business Management (GBM), Augsburg and CisAlpino
Center for Comparative Studies
in Europe (CCSE), Bergamo, Italy
M. Wright
Centre for Management Buy-out Research, Imperial College
Business School,
Exhibition Road, London SW7 2AZ, UK
e-mail: [email protected]
M. Wright
University of Ghent, Ghent, Belgium
123
J Technol Transf (2014) 39:301–312
DOI 10.1007/s10961-012-9283-6
Keywords Academic entrepreneurship ! Entrepreneurship policy
! Global networks !
Global clusters ! Intellectual property rights ! Universities !
Technology transfer !
Science parks
JEL Classification N31 ! O30 ! O31
1 Introduction
Recent decades are often characterized as the era of
globalization—never before has such a
web of linkages and interconnections existed, including a
worldwide system of production,
distribution, new structures and relationships (Acs and Preston
1997). Globalization
stimulates competition worldwide, forcing government to adopt
market-oriented policies,
both domestically and internationally. Competition pressures
producers to continually
innovate, improve quality and cost effectiveness of existing
products. At the same time,
firms can no longer acquire nor afford all the technological and
human resources they need.
This inhibits their ability to foster flexible relationships with
other firms, and most
importantly, institutions, like universities. The result has been
an increasing trend of
research over the last 25 years involving technology and
knowledge transfers from
academic institutions to private industry (see e.g. Siegel and
Wright 2013 for a review).
A first wave of academic research on technology transfer and
globalization began in the
1990s, after the collapse of the Berlin Wall. Often expressed as
North–South technology
transfer, transfers from developed and industrialized nations—
the North—to underdevel-
oped and poor nations—the South—accelerates economic,
industrial and social develop-
ment. Not surprisingly, attention is paid to a diverse set of
developing nations. They
include not only countries from Africa and Latin America, but
also India, China, countries
from the former Soviet Union, and other formerly communistic
nations. The process of
international economic integration has been underway since
then, facilitated by more open
economic policies, trade liberalization and technical advances
in transport and commu-
nication (Westphal 2002). Exports and foreign direct investment
(FDI) emerged as key
channels for international integration and technology transfer
through multinationals (Acs
and Preston 1997). Since then, the rapid pace of globalization
has changed the landscape
significantly. In particular, the emergence and rapid growth of
multinational firms ema-
nating from Brazil, Russia, India or China (BRIC) are now also
involved in the interna-
tional process of production and economic integration. Recent
rankings of the Top 100
firms as measured by market value reveals this impressive
growth. However, not all
manufacturing industries are affected by globalization to the
same extent. Studies from
OECD countries show that in particular medium and high
technology intensive industries
are more internationalized due to a lack of in-house knowledge
(OECD 2007). This leads
to a reverse process in the technology transfer process.
Currently, international or global
technology transfer is focused on transfer of technologies,
knowledge and overseas sub-
sidization of firms. Instead of the former North–South transfer
from developed to under-
developed countries, the focus of technology transfer now is
less concerned about the
acceleration of economic development or fostering the
transition process of underdevel-
oped nations but on the exploitation of comparative advantages
within global competition.
The emergence of new global players in the former
underdeveloped countries and the
integration of new players in the global economy challenge
existing comparative advan-
tages and competitiveness of countries and regions (Hoskisson
et al. 2012).
302 D. B. Audretsch et al.
123
A second wave of academic research is now emerging, focusing
on the pace and scale of
today’s globalization, most often associated with value added
supply chains. Production
processes are becoming increasingly fragmented geographically,
following an international
division of labor. Firms find it advantageous to outsource key
stages of production to other
countries. Technology transfer is strongly considered on the
regional level, following
Porter’s argument that ‘‘the enduring competitive advantages in
a global economy lie
increasingly in local things—knowledge, relationships,
motivations—that distant rivals
cannot match’’ (Porter 1998, p. 78). An increasing body of
literature both theoretically and
empirically has since emerged to analyze how knowledge and
ideas spillover that lead to
economic growth and welfare (Dejardin and Fritsch 2011;
Audretsch et al. 2005, 2006).
Policy makers are concerned with sources of knowledge
spillovers and how ideas can
best be commercialized. Starting with the Bayle–Dole Act of
1980 in the US, and con-
tinued by, among others, the European Union with the Lisbon-
Agenda in 2002, most
OECD countries reacted to these new challenges (Mowery and
Sampat 2005; Cosh and
Hughes 2010). In particular, academic and scientific institutions
are the focus of policy
makers and business practitioners as the main drivers and
sources of scientific and human
knowledge (Audretsch et al. 2005, 2012; Colombo et al. 2010;
Wright et al. 2008, 2009).
Given large investments in university research, policy makers
and firm managers naturally
seek greater returns through spillovers and technology transfer
to improve competitive
advantages in the global world. Increasing investment in
scientific research also raises
incentives for universities to increase revenue by
commercializing scientific output
(Mowery 2005). Analyzing and understanding technology
transfer from academic and
scientific institutions into marketable ideas thus becomes one of
the most important topics
in academic research. Despite the various and fruitful research
done in this topic, there is a
need for a better assessment of the role played by universities
and policy in a global
economy (Audretsch et al. 2013).
The annual conference of the Technology Transfer Society in
2011: Technology
Transfer in a Global Economy was dedicated to uniting
professionals from academia,
research institutes and business practitioners. A collection of
papers and thoughts presented
at this conference is summarized in this issue. While technology
transfer may have several
objectives, depending on the resource, user or mechanism, the
main objective is to promote
movement of federally developed ideas, knowledge and
technologies created in public
institutions to the marketplace for commercialization. Within
this context, the role of
universities is intensively discussed as a primary source and
factor within the technology
process. This problem is thus primarily dedicated to the role
that government and uni-
versity institutions play in shaping the commercialization of
federally developed tech-
nology and knowledge within a global economy. The aim of this
special issue is to shrink
this gap, by analyzing the technology transfer process from both
a macro and a micro
perspective. This shifts the focus from broad policy levels
(Sect. 2.1), through the level of
university-industry relationships and global networks (Sect. 2.2)
towards the micro level of
single universities (Sect. 2.3).
2 Themes and contributions
2.1 Global innovation policy
Globalization and new technologies have triggered a shift away
from capital and physical
assets towards intangible assets and knowledge. Competitive
advantages have shifted away
Technology transfer in a global economy 303
123
from access to financial and physical capital towards
knowledge-based resources and
human capital. This shift from ideas, insights and innovation
requires that the different
actors and players are willing and able to seek opportunities to
actualize and commer-
cialize them by championing them to society (Wang and Shapira
2012). To foster and
support this process, several policy areas should be considered,
in particular entrepre-
neurial policy, new areas of economic and academic activities,
intellectual property rights
(IPR), cluster policies and efforts at the regional and local
level.
Policies to foster entrepreneurship and new areas of economic
activities might aim at
creating new areas of economic activities in stimulating new
firm creation and entrepre-
neurship (Varis and Littunen 2010). This dictates a specific
attitude: being entrepreneurial!
Like entrepreneurs seeking opportunities to commercialize their
ideas, policy makers,
managers at universities and institutions of higher education,
and large and established
firms must behave like entrepreneurs (Phan et al. 2009). The
entrepreneurial society, as
described by Audretsch (2009), constitutes the result and need
of this shift, covering the
whole society. University entrepreneurship expresses the
necessity of universities and
higher education policy to cope with these global challenges.
Audretsch (2013) begins by
asking how and why the role of universities in society has
evolved over time. Economies,
specifically in Western Countries, have evolved from being
driven by physical capital to
knowledge and then again by entrepreneurship. He argues the
forces shaping this economic
shift also shape the role of universities over time. The
entrepreneurial university thus
responds by generating technology transfer, knowledge-based
start-ups and human capital.
However, in the entrepreneurial society, the focus should be
broadened by enhancing
entrepreneurship capital and facilitating behavior to prosper.
In recent decades, universities have often responded by
investing in augmented tech-
nology transfer offices (Siegel and Phan 2005; Siegel et al.
2003; Hülsbeck et al. 2011),
starting courses and programs in entrepreneurship and
commercializing ideas, broadening
administrative and academic support for all kinds of knowledge
transfer. Academic
entrepreneurship became the role model of modern universities
(Phan et al. 2009; Wright
et al. 2008, 2009; Shane 2004). Since universities are identified
as the driving forces in the
technology transfer process, and academic entrepreneurship
became the dominant strategic
orientation of universities, competitive advantages in a
worldwide competition diminishes.
This puts pressure on policy makers and university managers to
rearrange the focus of their
strategic orientations towards the challenge beyond academic
entrepreneurship and tech-
nology transfer. Wright (2013) outlines a synthesis of micro and
macro levels that attempt to
provide a broader conceptualization of academic
entrepreneurship and technology transfer.
He illustrates that academic entrepreneurship and technology
transfer are maturing as an
area of study and policy. Maturation of research poses major
challenges for publishing on
this topic in good journals since it becomes harder to identify
research questions—and thus
rejection rates increase (Clark and Wright 2007, 2009). At the
same time, societal benefits of
universities and academic entrepreneurship are subject of much
continuing policy debate.
Wright suggests these developments provide opportunities for
new research avenues in the
area of academic entrepreneurship and technology transfer.
These developments also create
a need to reassess policy towards academic entrepreneurship,
specifically and towards
universities more generally. He concludes by envisioning two
complementary roles for
universities in the promotion of academic entrepreneurship.
First, direct academic entre-
preneurship in which novel, world class research plays an
important role in creating
innovations that lead to strategic competitive advantage.
Second, an indirect academic
entrepreneurship, where education and research experience may
lead indirectly to entre-
preneurial actions through corporate spin-offs and start-ups by
alumni and students.
304 D. B. Audretsch et al.
123
In view of the changing environment of innovation in a global
economy, it is important
to consider whether the current system of IPR rules and
practices continues to stimulate
innovation and provide access to knowledge or fair use and the
diffusion of knowledge. In
particular, when in certain cases abuses of control with which
IPR owners are sometimes
endowed could hamper competition and entry (OECD 2007). An
important requirement in
the technology transfer process in a global economy is thus to
establish legal ownership of
that technology through intellectual property law. Generally
recognized forms of intel-
lectual property in industrial nations are patents, trademarks,
copyrights and trade secrets.
Recent developments about patent ownership and rights
underline the importance of a clear
basis of property rights to avoid inefficient bargaining. This,
however, requires a new body
of knowledge. Graham and Hancock (2013) address this topic
and highlight the USPTO
Chief Economist’s office’s research agenda. They explain broad
and diverse aspects of
innovation, IPRs, and the economy. Graham and Hancock argue
that not only patents but
also trademarks are a developing field in empirical scholarship.
They outline that trade-
marks have not been historically closely analyzed by economic
researchers. However, they
note that trademarks are relevant to many areas due to the large
amount of commercial
activity they can capture. Trademarks are particularly relevant
in fields of innovation that
patenting may not capture well, such as business-model and
service innovation, and other
innovation in activities that are closer to marketing than to
manufacturing. Trademarks can
also cover technological fields which may be eligible for patent
protection but in which
patents are not as commonly used. They believe that close
collaboration with the research
community will be the most fruitful way to develop this body of
knowledge. Graham and
Hancock conclude that a better understanding of innovation
policy and the positive con-
tributions of timely and high-quality examination of IPRs is
important both to the USPTO
and to scholarly researchers alike (Bercovitz et al. 2001).
2.2 Global networks and clusters
It is widely known that local and regional strengths are an
important asset for economic
policy within a globalized world. Firms may be attracted to very
specific activities and
skills that only exist in some regions and locations (Audretsch
et al. 2006). These activities
and skills may be linked to scientific or academic institutions,
which changed their mission
and vision towards an entrepreneurial orientation. Academic
entrepreneurship orientation,
the quantity and quality of social networks and experience with
industrial collaboration,
increase with time and play an important role in the knowledge
and technology transfer
(Siegel et al. 2003). At the aggregate level, the creation of
technological collaboration
between countries can be considered as mutually beneficial or
detrimental. Such global
innovation networks are emerging as a result of the
international division of innovation
processes through, among others, international technological
collaborations (Gassler and
Nones 2008). Consequently, the dynamics and evolution of the
technological collabora-
tions can be expected to fulfill the criteria of a complex
network.
Walshok et al. (2013) examine the growth of transnational
networks of innovation. They
propose a preliminary classificatory system of four distinct
kinds of forces which give rise
to social networks that facilitate knowledge flows, relationship
building and collaborative
activities important to accessing global markets. They argue
that networks may form
around a technology sector, be identity based, emerge from a
government-led initiative, or
be stimulated by a civic or philanthropic organization. They
state that each has a different
mode of organizing, financing, and meeting its objectives, as
shown by examples presented
in the paper. Their proposed classification of these
characteristics is intended to open a
Technology transfer in a global economy 305
123
conversation within the social sciences and among policy
makers about how better to
understand the ways in which transnational networks get
formed, operate and produce
desired results.
International technological and innovation collaboration often
occurs when separate
businesses form a technological joint venture to develop new
knowledge or products. At
the aggregate level, the result of global technological
collaborations is the emergence of
knowledge flows between countries (Gulbrandsen and Godoe
2008). The existence of such
flows between any pair of countries creates externalities to
other countries, like increased
competition for skilled labor or knowledge spillovers (Sachwald
2008; Braunerhjelm et al.
2010). De Prato and Nepelski (2013) study the structure and
evolution of global techno-
logical collaboration networks and create a unique map of
technological collaborations
between countries around the world, i.e. the global
technological collaboration network,
and analyze the determinants of the formation of technological
collaboration relationships
between countries. They begin by examining the structure and
dynamics of the global
technological network, workings of network interactions, what
positions countries occupy
and how economic fundamentals affect the formation of
technological networks. They use
patent-based data of international co-inventions and apply
network analyses. Extending the
gravity model of international technological collaboration by
network measures, they show
that a country’s position in the network has very strong impact
on the intensity of col-
laboration with other countries. The empirical results presented
by De Prato and Nepelski
(2013) show that the inclusion of network indices, controlling
for the position of a country
in a global R&D network, are well justified. Moreover, in
addition to the standard
explanatory variables, they argue that innovation networks
deliver additional information
explaining the existence and intensity of R&D linkages between
countries.
Like global innovation networks, entrepreneurship research
centers emerged in the past
decade all over the world. In recent years, there has been
substantial global increase in
investment in science parks to facilitate technology transfer and
regional growth. Science
parks have thus become an international phenomenon (Siegel
and Phan 2005). While
studies on the determinants of performance of research centers
have mainly focused on
science and technology, entrepreneurship has so far been
neglected. Cassia et al. (2013)
investigate entrepreneurship research centers analyzing their
research performance. Using
a sample of 46 centers worldwide, their results shed light on
entrepreneurship research and
the role of centers by discussing knowledge transfer
mechanisms and research orientation
in relationship to scientific performance. Their findings
contribute to the divergence of
methodologies and approach in entrepreneurship research. They
also corroborate the view
that centers enable a compound Matthew-effect, according to
which knowledge is trans-
ferred to external stakeholders, when controlling for research
orientation of the center,
foster and enrich research performance.
2.3 Technology transfer on the country level
Making countries an attractive location for economic activities
needs an understanding of
what determines national and regional attractiveness. Carree et
al. (2013) integrate the
discussed perspectives of academic entrepreneurship,
technology transfer and IPRs within
an entrepreneurial society. They begin by asking why and how
knowledge spillovers spur
economic growth. They see new entrepreneurial ventures as an
effective mechanism to
transform academic knowledge into regional economic growth.
In this study they test the
hypothesis that entrepreneurship represents an effective
mechanism to transform academic
knowledge into economic growth. They evaluate three outputs
of academic activities:
306 D. B. Audretsch et al.
123
teaching, research, and IPR activities management, along with
the importance of new
ventures to transform the mentioned outputs into improved
economic performance. The
analysis is carried out in Italian provinces between 2001 and
2006, showing that academic
outputs improve economic performance. They conclude that new
entrepreneurial ventures
act as opportunity seekers providing new and valuable
commercial opportunities overseen
by established firms. In this sense, entrepreneurial universities
are incubators or interme-
diaries that provide a supportive environment in which the
university community can
explore, evaluate and exploit ideas that could be transformed
into social and economic
entrepreneurial initiatives.
Empirical research on entrepreneurial universities is often
carried out with a cross-
section sample of universities. As previous research shows, the
results are often somewhat
biased since important variables like historical background,
cultural and social structures
could not be controlled for. In particular in Europe, though
located in a close geographic
proximity, universities differ significantly from each other in
their institutional arrange-
ments, traditions and characteristics (Wright et al. 2008).
Guerrero et al. (2013) alterna-
tively use an in-depth qualitative approach to analyze the
different roles and tasks of an
entrepreneurial university. They compare two entrepreneurial
universities in two different
European regions, Spain and Ireland, highlighting some
organizational practices and
approaches relevant to the transformation process of other
regional universities seeking to
become an entrepreneurial university. They report significant
evidence that regional uni-
versities have extensive outreach activities aimed at industry
and primary and secondary
school pupils. Formal outreach activities are critically important
for regional universities to
sustain their competitive positions with respect to their teaching
mission particularly
among secondary school pupils and to provide opportunities to
children who would have
not had the opportunity to pursue tertiary education.
Experimentation of approaches to
exploit the resources and capabilities is necessary to support the
entrepreneurial mission of
research universities and for effective knowledge and
technology transfer. They report that
absorptive capacity increases as universities embrace more
aspects of the entrepreneurial
university. High dependency on public funding as the main
source of income does not
prevent regional universities from adopting many aspects of the
entrepreneurial university.
In summary, they conclude that the main implications of their
study are aligned with
strategies for smart, sustainable and inclusive growth in
regional contexts promoted by the
European Union for 2020.
Despite growing interest in university-to-industry technology
transfer, there are very
few studies on the governance of universities’ technology
transfer offices (TTOs). The few
existing ones tend to focus on US universities and generally
tackle one dimension of
governance. Schoen et al. (2013) contribute to the existing
literature on TTOs in two ways.
First, they take into account the diversity of organizational
models with a theoretical
perspective. Their paper presents a discussion on which
combinations of four structural
dimensions should yield viable configurations, namely classical
TTO, autonomous TTO,
discipline-integrated Technology Transfer Alliance and finally
discipline-specialized
Technology Transfer Alliance. Second, their paper relies on
sixteen case studies of uni-
versities located in six European countries in order to address
the pros and cons of the four
types of TTOs. Their results provide both a conceptual
understanding and an empirical
overview of how universities organize their technology transfer
and intellectual property
management. They conclude that measuring performance of
TTOs without taking into
account the governance characteristics and their degree of
specialization may result in
incorrect implications.
Technology transfer in a global economy 307
123
Access to information is crucial for entrepreneurial discovery
and exploitation of
opportunities (Fiet and Patel 2008; Link et al. 2008). Firms with
access to information are
better placed to innovate and even to adopt appropriate
technology, increase efficiency of
applied R&D in industry, contribute to reducing the risks of
mistaken entrepreneurial
decisions, thus improving corporate competitiveness.
Conversely, information constraints
may be the main barrier to the adoption of innovations.
Enterprises obtain information they
need to improve innovation-related activities from a variety of
internal and external
sources, such as their own R&D departments, clients and in
particular universities and
public research organizations. Azagra-Caro et al. (2013) argue
that it is important to
understand what factors shape company perceptions of the
usefulness of information
provided. They first expand previous research on the importance
on public knowledge to
firms, which has been almost exclusively focused on innovators.
Secondly, they inquire as
to whether non-innovators also value public knowledge, and
investigate antecedents
associated to their perceptions of this specific source of
information. Their second
objective is particularly important because most previous
analyses of the usefulness of
innovation-related information, and more specifically,
knowledge provided by universities
and public research organizations focus mostly on innovators,
single out radical innovators
for analysis or do not distinguish between innovators and non-
innovators. Azagra-Caro
et al. (2013) provide a complementary view, arguing that it is
profitable to differentiate
factors associated with perceptions of public knowledge in
companies which have practical
experience of product or process innovation and companies
which have not. Their theo-
retical reasoning and empirical findings support that firm size,
the skilling of the workforce
and the abandonment of strategic innovation positively
determine innovators’ perceptions,
while the presence of an R&D department and market power
positively determine non-
innovators’ perceptions. Using a sample of 1,031 Spanish
manufacturing firms, they
conclude that practical experience in technological innovation
enhances firms’ perceptions
on the usefulness of public research, not directly but by
enabling certain internal changes,
i.e. it produces encounters between corporate choices and public
research.
In recent decades encompassing technology and knowledge
transfer—the third mission
of universities—has come abreast of the two traditional tasks of
universities, research and
teaching. Rolfo and Finardi (2013) provide experimental
evidence of the differences
existing in such terms between a specialized technological
university and a generalist,
Humboldtian University. Their experimental study is performed
on two Italian universities
with similar formal structure and external environment, but with
different specialization
and research/teaching subjects. They exploit two databases—
one agent-based, the second
institutional-based—in order to highlight different organizations
and attitudes. Their
results might prove relevant for the organization of third
mission activities with particular
regard to technology transfer.
West (2013) provides a case study on solar energy. The use of
solar energy to replace
fossil fuels has held great promise for more than a century. For
nearly as long, West argues,
California entrepreneurs have sought to leverage that
opportunity to create successful
firms. These entrepreneurs as well as investors, policymakers
and even the general public
assumed that solar energy would bring the same sort of success
as with the state’s other
technology-based industries. However, firms failed to achieve
sustained competitive
advantage, due to premature entry, volatile demand, inability to
create sustained techno-
logical advantage and large-scale entry by foreign competitors
in a commoditized global
market. His paper begins with a brief review of locational
factors for competitive
advantage, and how those applied to the development of the
state’s other major industries.
West then examines technological, production, demand and
policy factors in the three
308 D. B. Audretsch et al.
123
major segments of solar power technologies: hot water, turbine-
powered electricity gen-
eration and photovoltaic generation. He then analyzes
commonalities and contrasts
between the state’s industrial trajectories in these three
technology segments, the state’s
earlier industry successes and our understanding of the
locational factors for competitive
advantage. He concludes that, if today’s results are any
indication, California firms will
play a small role if any in the eventual global adoption of solar
technologies. The shift to
low-cost, high-efficiency manufacturing was long-anticipated
by an industry that con-
stantly attempted to increase scale and reduce cost. What was
not predicted by anyone was
the highly volatile nature of demand—nor the entry of well-
financed Chinese rivals from a
competing model of political economy.
3 Further research
The papers presented at the annual T2S 2011 conference as well
as the studies included in
this special issue suggests that several issues must be addressed
by university adminis-
trators, policy makers and firm managers to enhance the
effectiveness of technology
transfer and to cope with the challenges in a global economy.
However, as mentioned by
Wright (2013), further research is needed to broaden and
enlarge our understanding of
technology transfer in a global economy. On the policy level,
there is a need for policies
improving the functioning of markets and to overcome market
failures and externalities,
looking for actions the government can undertake to strengthen
the capacity of established
and entrepreneurial firms to compete in the global market.
There is also a need for IPR
related policies, balancing the diffusion of technology and
knowledge on the one and
providing incentives to innovate on the other hand. Recent
patent wars among firms in the
high-technology sector highlight this necessity, leading to
prohibitive entry barriers for
new and entrepreneurial firms in this sector. There remains also
a paucity of evidence
about different traditions and approaches of policy development
in different countries
(Mustar and Wright 2010) but also on the evaluation of existing
policy programs and
schemes to foster technology transfer and new venture creation
(Siegel and Wessner 2012;
Link and Scott 2012). Further, similar policies that have been
successful in some countries
like the Anglo-Saxon ones cannot feasibly be adopted in
different European or OECD
countries. In particular, there remains a paucity of evidence on
the causes and conse-
quences of innovation policy in countries like China, India or
Russia with a stronger focus
on governmental control and coordination of economic
activities. Future research in these
areas also needs to recognize that not all emerging economies
have developed at the same
rate. Some emerging economies have now become quite
developed in terms of their
infrastructure and institutional environment, others have
become well-developed in terms
of either infrastructure or institutional context but not both and
so can be considered ‘‘mid-
range’’ economies, while others have hardly developed at all or
have even gone backwards
(Hoskisson et al. 2012). These differences may have important
implications for the nature
of global technology and knowledge transfer that as yet remain
to be explored but do
emphasize the need for future studies to go beyond a simplistic
dichotomy between
developed and emerging economies.
Further research is also required to examine the role of informal
university technology
transfer (Grimpe and Fier 2010), the incentives of academics
and scientists to cooperate
with industry (D’Este and Perkmann 2011; Fritsch and Krabel
2012) and the role of
intermediary structures within the technology transfer process
such as advisers, incubators,
coaches and financial intermediaries (Colombo et al. 2010). The
need for an increased
Technology transfer in a global economy 309
123
focus on informal technology transfer is emphasized by the
development beyond patent-
able technology to incorporate new technological developments
in ICT and similar areas.
These new developments have profound implications for the
roles of TTOs and venture
capital firms who have traditionally geared up to focus on
technology transfer involving
hard IP. The role of informal technology transfer has particular
resonance for research that
compares different contexts. Global variations in both the
institutional environment and the
nature of technology being developed may mean that informal
technology transfer has a
greater role to play in some contexts rather than others.
Informal technology transfer may
be particularly important in emerging economies. Such
economies may better able to
compete in terms of the development of technology that does
not require highly expensive
laboratories and equipment because of shortcomings in their
infrastructures and may be
able to leap-frog developed economies in terms of technological
advances that are not
patentable. However, to the extent that there are problems with
contract enforcement in
emerging economies, there are implications regarding the
ability of government and uni-
versities to capture some of the benefits from technology
transfer.
Overall, then, while examination of traditional technology
transfer based on formal IP in
many developed economies has become quite a mature topic, the
growth of newer informal
forms of technology and the emergence of a variety of
economies entering the technology
transfer arena opens up exciting and enticing prospects for
future research on global
technology transfer.
References
Acs, Z., & Preston, L. (1997). Small and medium enterprises,
technology, and globalization: Introducing to a
special issue on small and medium-sized enterprises in the
global economy. Small Business Economics,
9 (1), 1–6.
Audretsch, D. (2009). The entrepreneurial society. Journal of
Technology Transfer, 34, 245–254.
Audretsch, D. B. (2013). From the entrepreneurial university to
the university for the entrepreneurial
society. Journal of Technology Transfer. doi:10.1007/s10961-
012-9288-1.
Audretsch, D. B., Hülsbeck, M., & Lehmann, E. E. (2012).
Regional competitiveness, university spillovers
and entrepreneurial activity. Small Business Economics, 39 (3),
587–601.
Audretsch, D. B., Keilbach, M. C., & Lehmann, E. E. (2006).
Entrepreneurship and economic growth.
Oxford: Oxford University Press.
Audretsch, D. B., & Lehmann, E. E. (2005). Do university
policies make a difference? Research Policy,
34(3), 343–347.
Audretsch, D. B., Lehmann, E. E., Link, A. N., & Starnecker, A.
(2013). Technology transfer in a global
economy. Heidelberg: Springer.
Audretsch, D. B., Lehmann, E. E., & Warning, S. (2005).
University spillover and new firm location.
Research Policy, 34(7), 1113–1122.
Azagra-Caro, J. M., Pardo, R., & Rama, R. (2013). Not
searching, but finding: how innovation shapes
perceptions about universities and public research
organizations. Journal of Technology Transfer (this
issue).
Bercovitz, J., Feldman, M., Feller, I., & Burton, R. (2001).
Organizational structure as a determinant of
academic patent and licensing behavior: An exploratory study of
Duke, Johns Hopkins, and Penn-
sylvania State universities. Journal of Technology Transfer, 26
(1–2), 21–35.
Braunerhjelm, P., Acs, Z. J., Audretsch, D. B., & Carlsson, B.
(2010). The missing link: Knowledge
diffusion and entrepreneurship in endogenous growth. Small
Business Economics, 34(2), 105–125.
Carree, M., Della Malva, A., & Santarelli, E. (2013). The
contribution of universities to growth: Empirical
evidence for Italy. Journal of Technology Transfer.
doi:10.1007/s10961-012-9282-7.
Cassia, L., De Massis, A., Minola, T., & Meoli, M. (2013).
Entrepreneurship research centers:Research
orientation, knowledge transfer and performance. Journal of
Technology Transfer. doi:10.1007/s10961-
012-9290-7.
310 D. B. Audretsch et al.
123
http://dx.doi.org/10.1007/s10961-012-9288-1
http://dx.doi.org/10.1007/s10961-012-9282-7
http://dx.doi.org/10.1007/s10961-012-9290-7
http://dx.doi.org/10.1007/s10961-012-9290-7
Clark, T., & Wright, M. (2007). Reviewing Journal rankings and
revisiting peer reviews. Journal of
Management Studies, 44(4), 612–621.
Clark, T., & Wright, M. (2009). So farewell, then….reflections
on editing journal of management studies.
Journal of Management Studies, 46 (1), 1–9.
Colombo, D., D’Adda, D., & Piva, E. (2010a). The contribution
of university research to the growth of
academic start-ups: An empirical analysis. Journal of
Technology Transfer, 35(1), 113–140.
Colombo, M., Mustar, P., & Wright, M. (2010b). Dynamics of
science-based entrepreneurship. Journal of
Technology Transfer, 35(1), 1–15.
Cosh, A., & Hughes, A. (2010). Never mind the quality feel the
width: University–industry links and
government financial support for innovation in small high-
technology businesses in the UK and the
USA. Journal of Technology Transfer, 35(1), 66–91.
D’Este, P., & Perkmann, M. (2011). Why do academics engage
with industry? The entrepreneurial uni-
versity and individual motivations. Journal of Technology
Transfer, 36 (3), 316–339.
De Prato, G., & Nepelski, D. (2013). Global technological
collaboration network: Network analysis of
international co-inventions. Journal of Technology Transfer.
doi:10.1007/s10961-012-9285-4.
Dejardin, M., & Fritsch, M. (2011). Entrepreneurial dynamics
and regional growth. Small Business Eco-
nomics, 36 (4), 377–382.
Fiet, J. O., & Patel, P. C. (2008). Entrepreneurial discovery and
constrained, systematic search. Small
Business Economics, 30 , 215–229.
Fritsch, M., & Krabel, S. (2012). Ready to leave the ivory
tower? Academic scientists’ appeal to work in the
private sector. Journal of Technology Transfer, 37 (3), 271–296.
Gassler, H., & Nones, B. (2008). Internationalisation of R&D
and embeddedness: The case of Austria.
Journal of Technology Transfer, 33(4), 407–421.
Graham, S., & Hancock, G. (2013). The USPTO Economics
research agenda. Journal of Technology
Transfer (this issue).
Grimpe, Ch., & Fier, H. (2010). Informal university technology
transfer: A comparison between the United
States and Germany. Journal of Technology Transfer, 35(6),
637–650.
Guerrero, M., Urbano, D., Cunningham, J., & Organ, D. (2013).
Entrepreneurial universities in two
European regions: A case study comparison. Journal of
Technology Transfer. doi:10.1007/s10961-
012-9287-2.
Gulbrandsen, M., & Godoe, H. (2008). ‘‘We really don’t want
to move, but…’’: Identity and strategy in the
internationalisation of industrial R&D. Journal of Technology
Transfer, 33(4), 379–392.
Hoskisson, R. E., Wright, M., Filatotchev, I., & Peng, M. W.
(2012). Emerging multinationals from mid-
range economies: The influence of institutions and factor
markets. Journal of Management Studies,
Forthcoming,. doi:10.1111/j.1467-6486.2012.01085.x.
Hülsbeck, M., Lehmann, E., & Starnecker, A. (2011). A
performance of technology transfer offices in
Germany. Journal of Technology Transfer. doi:10.1007/s10961-
011-9243-6.
Link, A., Rothaermel, F., & Siegel, D. (2008). University
technology transfer: An introduction to the special
issue. IEEE Transactions on Engineering Management, 55(1),
5–8.
Link, A. N., & Scott, J. T. (2012). The exploitation of publicly
funded technology. Journal of Technology
Transfer, 37 (3), 375–383.
Mowery, D. C. (2005). The Bayh-Dole Act and high-technology
entrepreneurship an U.S. universities:
Chicken, egg, or something else? In G. D. Libecap (Ed.),
University entrepreneurship and technology
transfer: Process, design, and intellectual property (pp. 39–68).
Elsevier: North Holland.
Mowery, D. C., & Sampat, B. N. (2005). The Bayh-Dole Act of
1980 and university-industry technology
transfer: A model for other OECD governments? Journal of
Technology Transfer, 30 (1–2), 115–127.
Mustar, P., & Wright, M. (2010). Convergence or path
dependency in policies to foster the creation of
university spin-off firms? A comparison of France and the
United Kingdom. Journal of Technology
Transfer, 35(1), 42–65.
OECD. (2007). Moving up the value chain: staying competitive
in the global economy. A synthesis report on
global value chains. Paris: OECD.
Phan, P., Siegel, D., & Wright, M. (2009). New developments in
technology management education:
Background issues, program initiatives and a research agenda.
Academy of Management Education and
Learning, 8 (3), 324–336.
Porter, M. (1998). Clusters and the new economics of
competition (pp. 77–90). Watertown: Harvard
Business Review.
Rolfo, S., & Finardi, U. (2013). Organizational and behavioural
differences in technology transfer between
generalist and specialized universities. Journal of Technology
Transfer (this issue).
Sachwald, F. (2008). Location choices within global innovation
networks: The case of Europe. Journal of
Technology Transfer, 33(4), 364–378.
Technology transfer in a global economy 311
123
http://dx.doi.org/10.1007/s10961-012-9285-4
http://dx.doi.org/10.1007/s10961-012-9287-2
http://dx.doi.org/10.1007/s10961-012-9287-2
http://dx.doi.org/10.1111/j.1467-6486.2012.01085.x
http://dx.doi.org/10.1007/s10961-011-9243-6
Schoen, A., van Pottelsberghe de la Potterie, B., & Henkel, J.
(2013). Governance typology of universities’
technology transfer processes. Journal of Technology Transfer.
doi:10.1007/s10961-012-9289-0.
Shane, S. (2004). Academic entrepreneurship. Cheltenham:
Edward Elgar.
Siegel, D. S., & Phan, Ph H. (2005). Analyzing the
effectiveness of university technology transfer: impli-
cations for entrepreneurship education. In G. D. Libecap (Ed.),
University entrepreneurship and
technology transfer: Process, design, and intellectual property
(pp. 1–38). North Holland: Elsevier.
Siegel, D. S., Waldman, D., & Link, A. N. (2003). Assessing the
impact of organizational practices on the
relative productivity of university technology transfer offices:
An exploratory study. Research Policy,
32(1), 27–48.
Siegel, D., & Wessner, C. (2012). Universities and the success
of entrepreneurial ventures: Evidence from
the small business innovation research program. Journal of
Technology Transfer, 37 (4), 404–415.
Siegel, D., & Wright, M. (2013). University technology transfer
offices, licensing and start-ups. In A. Link,
D. Siegel, & M. Wright (Eds.), University technology transfer.
Chicago: CUP.
Varis, M., & Littunen, H. (2010). Types of innovation, sources
of information and performance in entre-
preneurial SMES. European Journal of Innovation Management,
13, 128–154.
Walshok, M. L, J. D. Shapiro, & Owens, N. (2013).
Transnational innovation networks aren’t all created
equal: Towards a classification system. Journal of Technology
Transfer (this issue).
Wang, J., & Shapira, P. (2012). Partnering with universities: a
good choice for nanotechnology start-up
firms? Small Business Economics, 38 (2), 197–215.
West, J. (2013). Too little, too early: California’s transient
advantage in the emergence of the solar industry,
1900–2010. Journal of Technology Transfer (this issue).
Westphal, L. E. (2002). Technology Strategies for economic
development in a fast changing global econ-
omy. Economics of Innovation and New Technology, 4(5), 275–
320.
Wright, M. (2013). Academic entrepreneurship, technology
transfer and society: Where next? Journal of
Technology Transfer. doi:10.1007/s10961-012-9286-3.
Wright, M., Clarysse, B., Lockett, A., & Knockaert, M. (2008a).
Mid-range universities’ in Europe linkages
with industry: Knowledge types and the role of intermediaries.
Research Policy, 37 , 1205–1223.
Wright, M., Clarysse, B., Mustar, P., & Lockett, A. (2008b).
Academic entrepreneurship in Europe.
Cheltenham: Edward Elgar.
Wright, M., Piva, E., Mosey, S., & Lockett, A. (2009). Business
schools and academic entrepreneurship.
Journal of Technology Transfer, 34(6), 560–587.
312 D. B. Audretsch et al.
123
http://dx.doi.org/10.1007/s10961-012-9289-0
http://dx.doi.org/10.1007/s10961-012-9286-3
Reproduced with permission of the copyright owner. Further
reproduction prohibited without
permission.

More Related Content

Similar to Technology transfer in a global economyDavid B. Audretsch .docx

Bill Wicksteed
Bill WicksteedBill Wicksteed
Bill Wicksteedgratsaniti
 
Mgi disruptive technologies_executive_summary_may2013 (1)
Mgi disruptive technologies_executive_summary_may2013 (1)Mgi disruptive technologies_executive_summary_may2013 (1)
Mgi disruptive technologies_executive_summary_may2013 (1)swaipnew
 
Mgi disruptive technologies_executive_summary_may2013
Mgi disruptive technologies_executive_summary_may2013Mgi disruptive technologies_executive_summary_may2013
Mgi disruptive technologies_executive_summary_may2013Nathan Gazzard
 
Trends in Advanced Manufacturing
Trends in Advanced ManufacturingTrends in Advanced Manufacturing
Trends in Advanced Manufacturingumesh chikhale
 
Trends in Advanced Manufacturing
Trends in Advanced ManufacturingTrends in Advanced Manufacturing
Trends in Advanced Manufacturingumesh chikhale
 
Correlation and dependence between: Business –Globalisation - Information Soc...
Correlation and dependence between: Business –Globalisation - Information Soc...Correlation and dependence between: Business –Globalisation - Information Soc...
Correlation and dependence between: Business –Globalisation - Information Soc...inventionjournals
 
A review of innovation models
A review of innovation modelsA review of innovation models
A review of innovation modelsAli Kazmi
 
University-Industry Linkages in Thailand: Successes, Failures, and Lessons Le...
University-Industry Linkages in Thailand: Successes, Failures, and Lessons Le...University-Industry Linkages in Thailand: Successes, Failures, and Lessons Le...
University-Industry Linkages in Thailand: Successes, Failures, and Lessons Le...iBoP Asia
 
B.how to face_technological_tsunami_clustering_.pmi
B.how to face_technological_tsunami_clustering_.pmiB.how to face_technological_tsunami_clustering_.pmi
B.how to face_technological_tsunami_clustering_.pmigunseli
 
B.how to face_technological_tsunami_clustering_.pmi
B.how to face_technological_tsunami_clustering_.pmiB.how to face_technological_tsunami_clustering_.pmi
B.how to face_technological_tsunami_clustering_.pmigunseli
 
The role of foreign technology and indigenous innovation
The role of foreign technology and indigenous innovationThe role of foreign technology and indigenous innovation
The role of foreign technology and indigenous innovationdesire120
 
Changing Face V4
Changing Face V4Changing Face V4
Changing Face V4Saine
 
Environmental Innovations and Societal Transitions - Ashford
Environmental Innovations and Societal Transitions - AshfordEnvironmental Innovations and Societal Transitions - Ashford
Environmental Innovations and Societal Transitions - AshfordSociotechnical Roundtable
 
Intermediaries Article
Intermediaries ArticleIntermediaries Article
Intermediaries ArticleAccelerateH2O
 
Catch-up Industrialization and Growth Trajectory of Science and Technology: ...
Catch-up Industrialization and Growth Trajectory of Science and  Technology: ...Catch-up Industrialization and Growth Trajectory of Science and  Technology: ...
Catch-up Industrialization and Growth Trajectory of Science and Technology: ...iBoP Asia
 
OECD STIG: Governance of international research and innovation cooperation fo...
OECD STIG: Governance of international research and innovation cooperation fo...OECD STIG: Governance of international research and innovation cooperation fo...
OECD STIG: Governance of international research and innovation cooperation fo...Per Koch
 
Technology transfer
Technology transferTechnology transfer
Technology transfershashjim
 

Similar to Technology transfer in a global economyDavid B. Audretsch .docx (20)

Innovation for Economic Performance the Case of Latin American Firms
Innovation for Economic Performance the Case of Latin American FirmsInnovation for Economic Performance the Case of Latin American Firms
Innovation for Economic Performance the Case of Latin American Firms
 
Bill Wicksteed
Bill WicksteedBill Wicksteed
Bill Wicksteed
 
Mgi disruptive technologies_executive_summary_may2013 (1)
Mgi disruptive technologies_executive_summary_may2013 (1)Mgi disruptive technologies_executive_summary_may2013 (1)
Mgi disruptive technologies_executive_summary_may2013 (1)
 
Mgi disruptive technologies_executive_summary_may2013
Mgi disruptive technologies_executive_summary_may2013Mgi disruptive technologies_executive_summary_may2013
Mgi disruptive technologies_executive_summary_may2013
 
Trends in Advanced Manufacturing
Trends in Advanced ManufacturingTrends in Advanced Manufacturing
Trends in Advanced Manufacturing
 
Trends in Advanced Manufacturing
Trends in Advanced ManufacturingTrends in Advanced Manufacturing
Trends in Advanced Manufacturing
 
Correlation and dependence between: Business –Globalisation - Information Soc...
Correlation and dependence between: Business –Globalisation - Information Soc...Correlation and dependence between: Business –Globalisation - Information Soc...
Correlation and dependence between: Business –Globalisation - Information Soc...
 
A review of innovation models
A review of innovation modelsA review of innovation models
A review of innovation models
 
University-Industry Linkages in Thailand: Successes, Failures, and Lessons Le...
University-Industry Linkages in Thailand: Successes, Failures, and Lessons Le...University-Industry Linkages in Thailand: Successes, Failures, and Lessons Le...
University-Industry Linkages in Thailand: Successes, Failures, and Lessons Le...
 
B.how to face_technological_tsunami_clustering_.pmi
B.how to face_technological_tsunami_clustering_.pmiB.how to face_technological_tsunami_clustering_.pmi
B.how to face_technological_tsunami_clustering_.pmi
 
B.how to face_technological_tsunami_clustering_.pmi
B.how to face_technological_tsunami_clustering_.pmiB.how to face_technological_tsunami_clustering_.pmi
B.how to face_technological_tsunami_clustering_.pmi
 
The role of foreign technology and indigenous innovation
The role of foreign technology and indigenous innovationThe role of foreign technology and indigenous innovation
The role of foreign technology and indigenous innovation
 
Changing Face V4
Changing Face V4Changing Face V4
Changing Face V4
 
Technology transfer
Technology transferTechnology transfer
Technology transfer
 
Ipe19
Ipe19Ipe19
Ipe19
 
Environmental Innovations and Societal Transitions - Ashford
Environmental Innovations and Societal Transitions - AshfordEnvironmental Innovations and Societal Transitions - Ashford
Environmental Innovations and Societal Transitions - Ashford
 
Intermediaries Article
Intermediaries ArticleIntermediaries Article
Intermediaries Article
 
Catch-up Industrialization and Growth Trajectory of Science and Technology: ...
Catch-up Industrialization and Growth Trajectory of Science and  Technology: ...Catch-up Industrialization and Growth Trajectory of Science and  Technology: ...
Catch-up Industrialization and Growth Trajectory of Science and Technology: ...
 
OECD STIG: Governance of international research and innovation cooperation fo...
OECD STIG: Governance of international research and innovation cooperation fo...OECD STIG: Governance of international research and innovation cooperation fo...
OECD STIG: Governance of international research and innovation cooperation fo...
 
Technology transfer
Technology transferTechnology transfer
Technology transfer
 

More from ssuserf9c51d

Muslims in the Golden Age is the theme for the research project. You.docx
Muslims in the Golden Age is the theme for the research project. You.docxMuslims in the Golden Age is the theme for the research project. You.docx
Muslims in the Golden Age is the theme for the research project. You.docxssuserf9c51d
 
Multiple Sources of MediaExamine the impact of multiple sour.docx
Multiple Sources of MediaExamine the impact of multiple sour.docxMultiple Sources of MediaExamine the impact of multiple sour.docx
Multiple Sources of MediaExamine the impact of multiple sour.docxssuserf9c51d
 
Multicultural Event WrittenPlease choose and research a cult.docx
Multicultural Event WrittenPlease choose and research a cult.docxMulticultural Event WrittenPlease choose and research a cult.docx
Multicultural Event WrittenPlease choose and research a cult.docxssuserf9c51d
 
Multi-Party NegotiationFor this Essay, you will explore the co.docx
Multi-Party NegotiationFor this Essay, you will explore the co.docxMulti-Party NegotiationFor this Essay, you will explore the co.docx
Multi-Party NegotiationFor this Essay, you will explore the co.docxssuserf9c51d
 
Music has long been used by movements seeking social change.  In the.docx
Music has long been used by movements seeking social change.  In the.docxMusic has long been used by movements seeking social change.  In the.docx
Music has long been used by movements seeking social change.  In the.docxssuserf9c51d
 
MSW Advanced Clinical Concentration -Student Learning AgreementW.docx
MSW Advanced Clinical Concentration -Student Learning AgreementW.docxMSW Advanced Clinical Concentration -Student Learning AgreementW.docx
MSW Advanced Clinical Concentration -Student Learning AgreementW.docxssuserf9c51d
 
Multimedia Instructional MaterialsStaying current on technolog.docx
Multimedia Instructional MaterialsStaying current on technolog.docxMultimedia Instructional MaterialsStaying current on technolog.docx
Multimedia Instructional MaterialsStaying current on technolog.docxssuserf9c51d
 
Murray Bowen is one of the most respected family theorists in th.docx
Murray Bowen is one of the most respected family theorists in th.docxMurray Bowen is one of the most respected family theorists in th.docx
Murray Bowen is one of the most respected family theorists in th.docxssuserf9c51d
 
Mrs. Thomas is a 54, year old African American widow, mother and gra.docx
Mrs. Thomas is a 54, year old African American widow, mother and gra.docxMrs. Thomas is a 54, year old African American widow, mother and gra.docx
Mrs. Thomas is a 54, year old African American widow, mother and gra.docxssuserf9c51d
 
Multiple Source Essay, Speculating about CausesProposing a Solution.docx
Multiple Source Essay, Speculating about CausesProposing a Solution.docxMultiple Source Essay, Speculating about CausesProposing a Solution.docx
Multiple Source Essay, Speculating about CausesProposing a Solution.docxssuserf9c51d
 
Multiyear Plans Please respond to the followingDo you.docx
Multiyear Plans Please respond to the followingDo you.docxMultiyear Plans Please respond to the followingDo you.docx
Multiyear Plans Please respond to the followingDo you.docxssuserf9c51d
 
Multinational Financial ManagementDetermine key reasons wh.docx
Multinational Financial ManagementDetermine key reasons wh.docxMultinational Financial ManagementDetermine key reasons wh.docx
Multinational Financial ManagementDetermine key reasons wh.docxssuserf9c51d
 
Murder CasePreambleAn organization system administrator .docx
Murder CasePreambleAn organization system administrator .docxMurder CasePreambleAn organization system administrator .docx
Murder CasePreambleAn organization system administrator .docxssuserf9c51d
 
Multimodal Personal Narrative – Develop a multimodal document to bot.docx
Multimodal Personal Narrative – Develop a multimodal document to bot.docxMultimodal Personal Narrative – Develop a multimodal document to bot.docx
Multimodal Personal Narrative – Develop a multimodal document to bot.docxssuserf9c51d
 
Multigenre ProjectEN101O Fall 2019 Dr. WalterA Multigenre Pr.docx
Multigenre ProjectEN101O Fall 2019 Dr. WalterA Multigenre Pr.docxMultigenre ProjectEN101O Fall 2019 Dr. WalterA Multigenre Pr.docx
Multigenre ProjectEN101O Fall 2019 Dr. WalterA Multigenre Pr.docxssuserf9c51d
 
Multimedia activity Business OrganizationVisit the Choose Your .docx
Multimedia activity Business OrganizationVisit the Choose Your .docxMultimedia activity Business OrganizationVisit the Choose Your .docx
Multimedia activity Business OrganizationVisit the Choose Your .docxssuserf9c51d
 
Multicultural PerspectiveToday’s classrooms are diverse and .docx
Multicultural PerspectiveToday’s classrooms are diverse and .docxMulticultural PerspectiveToday’s classrooms are diverse and .docx
Multicultural PerspectiveToday’s classrooms are diverse and .docxssuserf9c51d
 
Muhammad Ali, how did his refusal to go into the army affect his.docx
Muhammad Ali, how did his refusal to go into the army affect his.docxMuhammad Ali, how did his refusal to go into the army affect his.docx
Muhammad Ali, how did his refusal to go into the army affect his.docxssuserf9c51d
 
MS 113 Some key concepts that you need to know to navigate th.docx
MS 113 Some key concepts that you need to know to navigate th.docxMS 113 Some key concepts that you need to know to navigate th.docx
MS 113 Some key concepts that you need to know to navigate th.docxssuserf9c51d
 
Much has been made of the new Web 2.0 phenomenon, including social n.docx
Much has been made of the new Web 2.0 phenomenon, including social n.docxMuch has been made of the new Web 2.0 phenomenon, including social n.docx
Much has been made of the new Web 2.0 phenomenon, including social n.docxssuserf9c51d
 

More from ssuserf9c51d (20)

Muslims in the Golden Age is the theme for the research project. You.docx
Muslims in the Golden Age is the theme for the research project. You.docxMuslims in the Golden Age is the theme for the research project. You.docx
Muslims in the Golden Age is the theme for the research project. You.docx
 
Multiple Sources of MediaExamine the impact of multiple sour.docx
Multiple Sources of MediaExamine the impact of multiple sour.docxMultiple Sources of MediaExamine the impact of multiple sour.docx
Multiple Sources of MediaExamine the impact of multiple sour.docx
 
Multicultural Event WrittenPlease choose and research a cult.docx
Multicultural Event WrittenPlease choose and research a cult.docxMulticultural Event WrittenPlease choose and research a cult.docx
Multicultural Event WrittenPlease choose and research a cult.docx
 
Multi-Party NegotiationFor this Essay, you will explore the co.docx
Multi-Party NegotiationFor this Essay, you will explore the co.docxMulti-Party NegotiationFor this Essay, you will explore the co.docx
Multi-Party NegotiationFor this Essay, you will explore the co.docx
 
Music has long been used by movements seeking social change.  In the.docx
Music has long been used by movements seeking social change.  In the.docxMusic has long been used by movements seeking social change.  In the.docx
Music has long been used by movements seeking social change.  In the.docx
 
MSW Advanced Clinical Concentration -Student Learning AgreementW.docx
MSW Advanced Clinical Concentration -Student Learning AgreementW.docxMSW Advanced Clinical Concentration -Student Learning AgreementW.docx
MSW Advanced Clinical Concentration -Student Learning AgreementW.docx
 
Multimedia Instructional MaterialsStaying current on technolog.docx
Multimedia Instructional MaterialsStaying current on technolog.docxMultimedia Instructional MaterialsStaying current on technolog.docx
Multimedia Instructional MaterialsStaying current on technolog.docx
 
Murray Bowen is one of the most respected family theorists in th.docx
Murray Bowen is one of the most respected family theorists in th.docxMurray Bowen is one of the most respected family theorists in th.docx
Murray Bowen is one of the most respected family theorists in th.docx
 
Mrs. Thomas is a 54, year old African American widow, mother and gra.docx
Mrs. Thomas is a 54, year old African American widow, mother and gra.docxMrs. Thomas is a 54, year old African American widow, mother and gra.docx
Mrs. Thomas is a 54, year old African American widow, mother and gra.docx
 
Multiple Source Essay, Speculating about CausesProposing a Solution.docx
Multiple Source Essay, Speculating about CausesProposing a Solution.docxMultiple Source Essay, Speculating about CausesProposing a Solution.docx
Multiple Source Essay, Speculating about CausesProposing a Solution.docx
 
Multiyear Plans Please respond to the followingDo you.docx
Multiyear Plans Please respond to the followingDo you.docxMultiyear Plans Please respond to the followingDo you.docx
Multiyear Plans Please respond to the followingDo you.docx
 
Multinational Financial ManagementDetermine key reasons wh.docx
Multinational Financial ManagementDetermine key reasons wh.docxMultinational Financial ManagementDetermine key reasons wh.docx
Multinational Financial ManagementDetermine key reasons wh.docx
 
Murder CasePreambleAn organization system administrator .docx
Murder CasePreambleAn organization system administrator .docxMurder CasePreambleAn organization system administrator .docx
Murder CasePreambleAn organization system administrator .docx
 
Multimodal Personal Narrative – Develop a multimodal document to bot.docx
Multimodal Personal Narrative – Develop a multimodal document to bot.docxMultimodal Personal Narrative – Develop a multimodal document to bot.docx
Multimodal Personal Narrative – Develop a multimodal document to bot.docx
 
Multigenre ProjectEN101O Fall 2019 Dr. WalterA Multigenre Pr.docx
Multigenre ProjectEN101O Fall 2019 Dr. WalterA Multigenre Pr.docxMultigenre ProjectEN101O Fall 2019 Dr. WalterA Multigenre Pr.docx
Multigenre ProjectEN101O Fall 2019 Dr. WalterA Multigenre Pr.docx
 
Multimedia activity Business OrganizationVisit the Choose Your .docx
Multimedia activity Business OrganizationVisit the Choose Your .docxMultimedia activity Business OrganizationVisit the Choose Your .docx
Multimedia activity Business OrganizationVisit the Choose Your .docx
 
Multicultural PerspectiveToday’s classrooms are diverse and .docx
Multicultural PerspectiveToday’s classrooms are diverse and .docxMulticultural PerspectiveToday’s classrooms are diverse and .docx
Multicultural PerspectiveToday’s classrooms are diverse and .docx
 
Muhammad Ali, how did his refusal to go into the army affect his.docx
Muhammad Ali, how did his refusal to go into the army affect his.docxMuhammad Ali, how did his refusal to go into the army affect his.docx
Muhammad Ali, how did his refusal to go into the army affect his.docx
 
MS 113 Some key concepts that you need to know to navigate th.docx
MS 113 Some key concepts that you need to know to navigate th.docxMS 113 Some key concepts that you need to know to navigate th.docx
MS 113 Some key concepts that you need to know to navigate th.docx
 
Much has been made of the new Web 2.0 phenomenon, including social n.docx
Much has been made of the new Web 2.0 phenomenon, including social n.docxMuch has been made of the new Web 2.0 phenomenon, including social n.docx
Much has been made of the new Web 2.0 phenomenon, including social n.docx
 

Recently uploaded

Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxJiesonDelaCerna
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.arsicmarija21
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 

Recently uploaded (20)

Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptx
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 

Technology transfer in a global economyDavid B. Audretsch .docx

  • 1. Technology transfer in a global economy David B. Audretsch • Erik E. Lehmann • Mike Wright Published online: 6 December 2012 ! Springer Science+Business Media New York 2012 Abstract The emergence of new technologies is acting both as a driving force and an enabling factor to globalization. At the same time, these technologies are changing rapidly, shortening the life cycles of products and the underlying processes, and raising technology costs. Technology transfer from academic and scientific institutions has thus transformed into a strategic variable for companies and nations to cope with these challenges in a global economy. This article introduces the rationale for the special issue on the role of tech- nology transfer in a global economy. The paper summarizes the main topics and themes covered by a selection of papers and keynotes presented at the annual conference of the Technology Transfer Society in 2011, as well as providing some pointers towards a future research agenda. D. B. Audretsch Indiana University, Bloomington, IN 47405, USA e-mail: [email protected] D. B. Audretsch WHU Otto Beisheim School of Business, 56179 Valendar,
  • 2. Germany E. E. Lehmann (&) Department of Business and Economics, Augsburg University, Universitaetsstr. 16, 86159 Augsburg, Germany e-mail: [email protected] E. E. Lehmann Global Business Management (GBM), Augsburg and CisAlpino Center for Comparative Studies in Europe (CCSE), Bergamo, Italy M. Wright Centre for Management Buy-out Research, Imperial College Business School, Exhibition Road, London SW7 2AZ, UK e-mail: [email protected] M. Wright University of Ghent, Ghent, Belgium 123 J Technol Transf (2014) 39:301–312 DOI 10.1007/s10961-012-9283-6 Keywords Academic entrepreneurship ! Entrepreneurship policy ! Global networks ! Global clusters ! Intellectual property rights ! Universities ! Technology transfer ! Science parks JEL Classification N31 ! O30 ! O31 1 Introduction
  • 3. Recent decades are often characterized as the era of globalization—never before has such a web of linkages and interconnections existed, including a worldwide system of production, distribution, new structures and relationships (Acs and Preston 1997). Globalization stimulates competition worldwide, forcing government to adopt market-oriented policies, both domestically and internationally. Competition pressures producers to continually innovate, improve quality and cost effectiveness of existing products. At the same time, firms can no longer acquire nor afford all the technological and human resources they need. This inhibits their ability to foster flexible relationships with other firms, and most importantly, institutions, like universities. The result has been an increasing trend of research over the last 25 years involving technology and knowledge transfers from academic institutions to private industry (see e.g. Siegel and Wright 2013 for a review). A first wave of academic research on technology transfer and globalization began in the 1990s, after the collapse of the Berlin Wall. Often expressed as North–South technology transfer, transfers from developed and industrialized nations— the North—to underdevel- oped and poor nations—the South—accelerates economic, industrial and social develop- ment. Not surprisingly, attention is paid to a diverse set of developing nations. They include not only countries from Africa and Latin America, but also India, China, countries
  • 4. from the former Soviet Union, and other formerly communistic nations. The process of international economic integration has been underway since then, facilitated by more open economic policies, trade liberalization and technical advances in transport and commu- nication (Westphal 2002). Exports and foreign direct investment (FDI) emerged as key channels for international integration and technology transfer through multinationals (Acs and Preston 1997). Since then, the rapid pace of globalization has changed the landscape significantly. In particular, the emergence and rapid growth of multinational firms ema- nating from Brazil, Russia, India or China (BRIC) are now also involved in the interna- tional process of production and economic integration. Recent rankings of the Top 100 firms as measured by market value reveals this impressive growth. However, not all manufacturing industries are affected by globalization to the same extent. Studies from OECD countries show that in particular medium and high technology intensive industries are more internationalized due to a lack of in-house knowledge (OECD 2007). This leads to a reverse process in the technology transfer process. Currently, international or global technology transfer is focused on transfer of technologies, knowledge and overseas sub- sidization of firms. Instead of the former North–South transfer from developed to under- developed countries, the focus of technology transfer now is less concerned about the acceleration of economic development or fostering the transition process of underdevel-
  • 5. oped nations but on the exploitation of comparative advantages within global competition. The emergence of new global players in the former underdeveloped countries and the integration of new players in the global economy challenge existing comparative advan- tages and competitiveness of countries and regions (Hoskisson et al. 2012). 302 D. B. Audretsch et al. 123 A second wave of academic research is now emerging, focusing on the pace and scale of today’s globalization, most often associated with value added supply chains. Production processes are becoming increasingly fragmented geographically, following an international division of labor. Firms find it advantageous to outsource key stages of production to other countries. Technology transfer is strongly considered on the regional level, following Porter’s argument that ‘‘the enduring competitive advantages in a global economy lie increasingly in local things—knowledge, relationships, motivations—that distant rivals cannot match’’ (Porter 1998, p. 78). An increasing body of literature both theoretically and empirically has since emerged to analyze how knowledge and ideas spillover that lead to economic growth and welfare (Dejardin and Fritsch 2011; Audretsch et al. 2005, 2006).
  • 6. Policy makers are concerned with sources of knowledge spillovers and how ideas can best be commercialized. Starting with the Bayle–Dole Act of 1980 in the US, and con- tinued by, among others, the European Union with the Lisbon- Agenda in 2002, most OECD countries reacted to these new challenges (Mowery and Sampat 2005; Cosh and Hughes 2010). In particular, academic and scientific institutions are the focus of policy makers and business practitioners as the main drivers and sources of scientific and human knowledge (Audretsch et al. 2005, 2012; Colombo et al. 2010; Wright et al. 2008, 2009). Given large investments in university research, policy makers and firm managers naturally seek greater returns through spillovers and technology transfer to improve competitive advantages in the global world. Increasing investment in scientific research also raises incentives for universities to increase revenue by commercializing scientific output (Mowery 2005). Analyzing and understanding technology transfer from academic and scientific institutions into marketable ideas thus becomes one of the most important topics in academic research. Despite the various and fruitful research done in this topic, there is a need for a better assessment of the role played by universities and policy in a global economy (Audretsch et al. 2013). The annual conference of the Technology Transfer Society in 2011: Technology Transfer in a Global Economy was dedicated to uniting professionals from academia,
  • 7. research institutes and business practitioners. A collection of papers and thoughts presented at this conference is summarized in this issue. While technology transfer may have several objectives, depending on the resource, user or mechanism, the main objective is to promote movement of federally developed ideas, knowledge and technologies created in public institutions to the marketplace for commercialization. Within this context, the role of universities is intensively discussed as a primary source and factor within the technology process. This problem is thus primarily dedicated to the role that government and uni- versity institutions play in shaping the commercialization of federally developed tech- nology and knowledge within a global economy. The aim of this special issue is to shrink this gap, by analyzing the technology transfer process from both a macro and a micro perspective. This shifts the focus from broad policy levels (Sect. 2.1), through the level of university-industry relationships and global networks (Sect. 2.2) towards the micro level of single universities (Sect. 2.3). 2 Themes and contributions 2.1 Global innovation policy Globalization and new technologies have triggered a shift away from capital and physical assets towards intangible assets and knowledge. Competitive advantages have shifted away Technology transfer in a global economy 303
  • 8. 123 from access to financial and physical capital towards knowledge-based resources and human capital. This shift from ideas, insights and innovation requires that the different actors and players are willing and able to seek opportunities to actualize and commer- cialize them by championing them to society (Wang and Shapira 2012). To foster and support this process, several policy areas should be considered, in particular entrepre- neurial policy, new areas of economic and academic activities, intellectual property rights (IPR), cluster policies and efforts at the regional and local level. Policies to foster entrepreneurship and new areas of economic activities might aim at creating new areas of economic activities in stimulating new firm creation and entrepre- neurship (Varis and Littunen 2010). This dictates a specific attitude: being entrepreneurial! Like entrepreneurs seeking opportunities to commercialize their ideas, policy makers, managers at universities and institutions of higher education, and large and established firms must behave like entrepreneurs (Phan et al. 2009). The entrepreneurial society, as described by Audretsch (2009), constitutes the result and need of this shift, covering the whole society. University entrepreneurship expresses the necessity of universities and
  • 9. higher education policy to cope with these global challenges. Audretsch (2013) begins by asking how and why the role of universities in society has evolved over time. Economies, specifically in Western Countries, have evolved from being driven by physical capital to knowledge and then again by entrepreneurship. He argues the forces shaping this economic shift also shape the role of universities over time. The entrepreneurial university thus responds by generating technology transfer, knowledge-based start-ups and human capital. However, in the entrepreneurial society, the focus should be broadened by enhancing entrepreneurship capital and facilitating behavior to prosper. In recent decades, universities have often responded by investing in augmented tech- nology transfer offices (Siegel and Phan 2005; Siegel et al. 2003; Hülsbeck et al. 2011), starting courses and programs in entrepreneurship and commercializing ideas, broadening administrative and academic support for all kinds of knowledge transfer. Academic entrepreneurship became the role model of modern universities (Phan et al. 2009; Wright et al. 2008, 2009; Shane 2004). Since universities are identified as the driving forces in the technology transfer process, and academic entrepreneurship became the dominant strategic orientation of universities, competitive advantages in a worldwide competition diminishes. This puts pressure on policy makers and university managers to rearrange the focus of their strategic orientations towards the challenge beyond academic entrepreneurship and tech-
  • 10. nology transfer. Wright (2013) outlines a synthesis of micro and macro levels that attempt to provide a broader conceptualization of academic entrepreneurship and technology transfer. He illustrates that academic entrepreneurship and technology transfer are maturing as an area of study and policy. Maturation of research poses major challenges for publishing on this topic in good journals since it becomes harder to identify research questions—and thus rejection rates increase (Clark and Wright 2007, 2009). At the same time, societal benefits of universities and academic entrepreneurship are subject of much continuing policy debate. Wright suggests these developments provide opportunities for new research avenues in the area of academic entrepreneurship and technology transfer. These developments also create a need to reassess policy towards academic entrepreneurship, specifically and towards universities more generally. He concludes by envisioning two complementary roles for universities in the promotion of academic entrepreneurship. First, direct academic entre- preneurship in which novel, world class research plays an important role in creating innovations that lead to strategic competitive advantage. Second, an indirect academic entrepreneurship, where education and research experience may lead indirectly to entre- preneurial actions through corporate spin-offs and start-ups by alumni and students. 304 D. B. Audretsch et al. 123
  • 11. In view of the changing environment of innovation in a global economy, it is important to consider whether the current system of IPR rules and practices continues to stimulate innovation and provide access to knowledge or fair use and the diffusion of knowledge. In particular, when in certain cases abuses of control with which IPR owners are sometimes endowed could hamper competition and entry (OECD 2007). An important requirement in the technology transfer process in a global economy is thus to establish legal ownership of that technology through intellectual property law. Generally recognized forms of intel- lectual property in industrial nations are patents, trademarks, copyrights and trade secrets. Recent developments about patent ownership and rights underline the importance of a clear basis of property rights to avoid inefficient bargaining. This, however, requires a new body of knowledge. Graham and Hancock (2013) address this topic and highlight the USPTO Chief Economist’s office’s research agenda. They explain broad and diverse aspects of innovation, IPRs, and the economy. Graham and Hancock argue that not only patents but also trademarks are a developing field in empirical scholarship. They outline that trade- marks have not been historically closely analyzed by economic researchers. However, they note that trademarks are relevant to many areas due to the large amount of commercial activity they can capture. Trademarks are particularly relevant
  • 12. in fields of innovation that patenting may not capture well, such as business-model and service innovation, and other innovation in activities that are closer to marketing than to manufacturing. Trademarks can also cover technological fields which may be eligible for patent protection but in which patents are not as commonly used. They believe that close collaboration with the research community will be the most fruitful way to develop this body of knowledge. Graham and Hancock conclude that a better understanding of innovation policy and the positive con- tributions of timely and high-quality examination of IPRs is important both to the USPTO and to scholarly researchers alike (Bercovitz et al. 2001). 2.2 Global networks and clusters It is widely known that local and regional strengths are an important asset for economic policy within a globalized world. Firms may be attracted to very specific activities and skills that only exist in some regions and locations (Audretsch et al. 2006). These activities and skills may be linked to scientific or academic institutions, which changed their mission and vision towards an entrepreneurial orientation. Academic entrepreneurship orientation, the quantity and quality of social networks and experience with industrial collaboration, increase with time and play an important role in the knowledge and technology transfer (Siegel et al. 2003). At the aggregate level, the creation of technological collaboration between countries can be considered as mutually beneficial or
  • 13. detrimental. Such global innovation networks are emerging as a result of the international division of innovation processes through, among others, international technological collaborations (Gassler and Nones 2008). Consequently, the dynamics and evolution of the technological collabora- tions can be expected to fulfill the criteria of a complex network. Walshok et al. (2013) examine the growth of transnational networks of innovation. They propose a preliminary classificatory system of four distinct kinds of forces which give rise to social networks that facilitate knowledge flows, relationship building and collaborative activities important to accessing global markets. They argue that networks may form around a technology sector, be identity based, emerge from a government-led initiative, or be stimulated by a civic or philanthropic organization. They state that each has a different mode of organizing, financing, and meeting its objectives, as shown by examples presented in the paper. Their proposed classification of these characteristics is intended to open a Technology transfer in a global economy 305 123 conversation within the social sciences and among policy makers about how better to understand the ways in which transnational networks get
  • 14. formed, operate and produce desired results. International technological and innovation collaboration often occurs when separate businesses form a technological joint venture to develop new knowledge or products. At the aggregate level, the result of global technological collaborations is the emergence of knowledge flows between countries (Gulbrandsen and Godoe 2008). The existence of such flows between any pair of countries creates externalities to other countries, like increased competition for skilled labor or knowledge spillovers (Sachwald 2008; Braunerhjelm et al. 2010). De Prato and Nepelski (2013) study the structure and evolution of global techno- logical collaboration networks and create a unique map of technological collaborations between countries around the world, i.e. the global technological collaboration network, and analyze the determinants of the formation of technological collaboration relationships between countries. They begin by examining the structure and dynamics of the global technological network, workings of network interactions, what positions countries occupy and how economic fundamentals affect the formation of technological networks. They use patent-based data of international co-inventions and apply network analyses. Extending the gravity model of international technological collaboration by network measures, they show that a country’s position in the network has very strong impact on the intensity of col- laboration with other countries. The empirical results presented
  • 15. by De Prato and Nepelski (2013) show that the inclusion of network indices, controlling for the position of a country in a global R&D network, are well justified. Moreover, in addition to the standard explanatory variables, they argue that innovation networks deliver additional information explaining the existence and intensity of R&D linkages between countries. Like global innovation networks, entrepreneurship research centers emerged in the past decade all over the world. In recent years, there has been substantial global increase in investment in science parks to facilitate technology transfer and regional growth. Science parks have thus become an international phenomenon (Siegel and Phan 2005). While studies on the determinants of performance of research centers have mainly focused on science and technology, entrepreneurship has so far been neglected. Cassia et al. (2013) investigate entrepreneurship research centers analyzing their research performance. Using a sample of 46 centers worldwide, their results shed light on entrepreneurship research and the role of centers by discussing knowledge transfer mechanisms and research orientation in relationship to scientific performance. Their findings contribute to the divergence of methodologies and approach in entrepreneurship research. They also corroborate the view that centers enable a compound Matthew-effect, according to which knowledge is trans- ferred to external stakeholders, when controlling for research orientation of the center,
  • 16. foster and enrich research performance. 2.3 Technology transfer on the country level Making countries an attractive location for economic activities needs an understanding of what determines national and regional attractiveness. Carree et al. (2013) integrate the discussed perspectives of academic entrepreneurship, technology transfer and IPRs within an entrepreneurial society. They begin by asking why and how knowledge spillovers spur economic growth. They see new entrepreneurial ventures as an effective mechanism to transform academic knowledge into regional economic growth. In this study they test the hypothesis that entrepreneurship represents an effective mechanism to transform academic knowledge into economic growth. They evaluate three outputs of academic activities: 306 D. B. Audretsch et al. 123 teaching, research, and IPR activities management, along with the importance of new ventures to transform the mentioned outputs into improved economic performance. The analysis is carried out in Italian provinces between 2001 and 2006, showing that academic outputs improve economic performance. They conclude that new entrepreneurial ventures act as opportunity seekers providing new and valuable
  • 17. commercial opportunities overseen by established firms. In this sense, entrepreneurial universities are incubators or interme- diaries that provide a supportive environment in which the university community can explore, evaluate and exploit ideas that could be transformed into social and economic entrepreneurial initiatives. Empirical research on entrepreneurial universities is often carried out with a cross- section sample of universities. As previous research shows, the results are often somewhat biased since important variables like historical background, cultural and social structures could not be controlled for. In particular in Europe, though located in a close geographic proximity, universities differ significantly from each other in their institutional arrange- ments, traditions and characteristics (Wright et al. 2008). Guerrero et al. (2013) alterna- tively use an in-depth qualitative approach to analyze the different roles and tasks of an entrepreneurial university. They compare two entrepreneurial universities in two different European regions, Spain and Ireland, highlighting some organizational practices and approaches relevant to the transformation process of other regional universities seeking to become an entrepreneurial university. They report significant evidence that regional uni- versities have extensive outreach activities aimed at industry and primary and secondary school pupils. Formal outreach activities are critically important for regional universities to sustain their competitive positions with respect to their teaching
  • 18. mission particularly among secondary school pupils and to provide opportunities to children who would have not had the opportunity to pursue tertiary education. Experimentation of approaches to exploit the resources and capabilities is necessary to support the entrepreneurial mission of research universities and for effective knowledge and technology transfer. They report that absorptive capacity increases as universities embrace more aspects of the entrepreneurial university. High dependency on public funding as the main source of income does not prevent regional universities from adopting many aspects of the entrepreneurial university. In summary, they conclude that the main implications of their study are aligned with strategies for smart, sustainable and inclusive growth in regional contexts promoted by the European Union for 2020. Despite growing interest in university-to-industry technology transfer, there are very few studies on the governance of universities’ technology transfer offices (TTOs). The few existing ones tend to focus on US universities and generally tackle one dimension of governance. Schoen et al. (2013) contribute to the existing literature on TTOs in two ways. First, they take into account the diversity of organizational models with a theoretical perspective. Their paper presents a discussion on which combinations of four structural dimensions should yield viable configurations, namely classical TTO, autonomous TTO, discipline-integrated Technology Transfer Alliance and finally
  • 19. discipline-specialized Technology Transfer Alliance. Second, their paper relies on sixteen case studies of uni- versities located in six European countries in order to address the pros and cons of the four types of TTOs. Their results provide both a conceptual understanding and an empirical overview of how universities organize their technology transfer and intellectual property management. They conclude that measuring performance of TTOs without taking into account the governance characteristics and their degree of specialization may result in incorrect implications. Technology transfer in a global economy 307 123 Access to information is crucial for entrepreneurial discovery and exploitation of opportunities (Fiet and Patel 2008; Link et al. 2008). Firms with access to information are better placed to innovate and even to adopt appropriate technology, increase efficiency of applied R&D in industry, contribute to reducing the risks of mistaken entrepreneurial decisions, thus improving corporate competitiveness. Conversely, information constraints may be the main barrier to the adoption of innovations. Enterprises obtain information they need to improve innovation-related activities from a variety of internal and external sources, such as their own R&D departments, clients and in
  • 20. particular universities and public research organizations. Azagra-Caro et al. (2013) argue that it is important to understand what factors shape company perceptions of the usefulness of information provided. They first expand previous research on the importance on public knowledge to firms, which has been almost exclusively focused on innovators. Secondly, they inquire as to whether non-innovators also value public knowledge, and investigate antecedents associated to their perceptions of this specific source of information. Their second objective is particularly important because most previous analyses of the usefulness of innovation-related information, and more specifically, knowledge provided by universities and public research organizations focus mostly on innovators, single out radical innovators for analysis or do not distinguish between innovators and non- innovators. Azagra-Caro et al. (2013) provide a complementary view, arguing that it is profitable to differentiate factors associated with perceptions of public knowledge in companies which have practical experience of product or process innovation and companies which have not. Their theo- retical reasoning and empirical findings support that firm size, the skilling of the workforce and the abandonment of strategic innovation positively determine innovators’ perceptions, while the presence of an R&D department and market power positively determine non- innovators’ perceptions. Using a sample of 1,031 Spanish manufacturing firms, they conclude that practical experience in technological innovation
  • 21. enhances firms’ perceptions on the usefulness of public research, not directly but by enabling certain internal changes, i.e. it produces encounters between corporate choices and public research. In recent decades encompassing technology and knowledge transfer—the third mission of universities—has come abreast of the two traditional tasks of universities, research and teaching. Rolfo and Finardi (2013) provide experimental evidence of the differences existing in such terms between a specialized technological university and a generalist, Humboldtian University. Their experimental study is performed on two Italian universities with similar formal structure and external environment, but with different specialization and research/teaching subjects. They exploit two databases— one agent-based, the second institutional-based—in order to highlight different organizations and attitudes. Their results might prove relevant for the organization of third mission activities with particular regard to technology transfer. West (2013) provides a case study on solar energy. The use of solar energy to replace fossil fuels has held great promise for more than a century. For nearly as long, West argues, California entrepreneurs have sought to leverage that opportunity to create successful firms. These entrepreneurs as well as investors, policymakers and even the general public assumed that solar energy would bring the same sort of success as with the state’s other
  • 22. technology-based industries. However, firms failed to achieve sustained competitive advantage, due to premature entry, volatile demand, inability to create sustained techno- logical advantage and large-scale entry by foreign competitors in a commoditized global market. His paper begins with a brief review of locational factors for competitive advantage, and how those applied to the development of the state’s other major industries. West then examines technological, production, demand and policy factors in the three 308 D. B. Audretsch et al. 123 major segments of solar power technologies: hot water, turbine- powered electricity gen- eration and photovoltaic generation. He then analyzes commonalities and contrasts between the state’s industrial trajectories in these three technology segments, the state’s earlier industry successes and our understanding of the locational factors for competitive advantage. He concludes that, if today’s results are any indication, California firms will play a small role if any in the eventual global adoption of solar technologies. The shift to low-cost, high-efficiency manufacturing was long-anticipated by an industry that con- stantly attempted to increase scale and reduce cost. What was not predicted by anyone was the highly volatile nature of demand—nor the entry of well-
  • 23. financed Chinese rivals from a competing model of political economy. 3 Further research The papers presented at the annual T2S 2011 conference as well as the studies included in this special issue suggests that several issues must be addressed by university adminis- trators, policy makers and firm managers to enhance the effectiveness of technology transfer and to cope with the challenges in a global economy. However, as mentioned by Wright (2013), further research is needed to broaden and enlarge our understanding of technology transfer in a global economy. On the policy level, there is a need for policies improving the functioning of markets and to overcome market failures and externalities, looking for actions the government can undertake to strengthen the capacity of established and entrepreneurial firms to compete in the global market. There is also a need for IPR related policies, balancing the diffusion of technology and knowledge on the one and providing incentives to innovate on the other hand. Recent patent wars among firms in the high-technology sector highlight this necessity, leading to prohibitive entry barriers for new and entrepreneurial firms in this sector. There remains also a paucity of evidence about different traditions and approaches of policy development in different countries (Mustar and Wright 2010) but also on the evaluation of existing policy programs and schemes to foster technology transfer and new venture creation
  • 24. (Siegel and Wessner 2012; Link and Scott 2012). Further, similar policies that have been successful in some countries like the Anglo-Saxon ones cannot feasibly be adopted in different European or OECD countries. In particular, there remains a paucity of evidence on the causes and conse- quences of innovation policy in countries like China, India or Russia with a stronger focus on governmental control and coordination of economic activities. Future research in these areas also needs to recognize that not all emerging economies have developed at the same rate. Some emerging economies have now become quite developed in terms of their infrastructure and institutional environment, others have become well-developed in terms of either infrastructure or institutional context but not both and so can be considered ‘‘mid- range’’ economies, while others have hardly developed at all or have even gone backwards (Hoskisson et al. 2012). These differences may have important implications for the nature of global technology and knowledge transfer that as yet remain to be explored but do emphasize the need for future studies to go beyond a simplistic dichotomy between developed and emerging economies. Further research is also required to examine the role of informal university technology transfer (Grimpe and Fier 2010), the incentives of academics and scientists to cooperate with industry (D’Este and Perkmann 2011; Fritsch and Krabel 2012) and the role of intermediary structures within the technology transfer process
  • 25. such as advisers, incubators, coaches and financial intermediaries (Colombo et al. 2010). The need for an increased Technology transfer in a global economy 309 123 focus on informal technology transfer is emphasized by the development beyond patent- able technology to incorporate new technological developments in ICT and similar areas. These new developments have profound implications for the roles of TTOs and venture capital firms who have traditionally geared up to focus on technology transfer involving hard IP. The role of informal technology transfer has particular resonance for research that compares different contexts. Global variations in both the institutional environment and the nature of technology being developed may mean that informal technology transfer has a greater role to play in some contexts rather than others. Informal technology transfer may be particularly important in emerging economies. Such economies may better able to compete in terms of the development of technology that does not require highly expensive laboratories and equipment because of shortcomings in their infrastructures and may be able to leap-frog developed economies in terms of technological advances that are not patentable. However, to the extent that there are problems with contract enforcement in
  • 26. emerging economies, there are implications regarding the ability of government and uni- versities to capture some of the benefits from technology transfer. Overall, then, while examination of traditional technology transfer based on formal IP in many developed economies has become quite a mature topic, the growth of newer informal forms of technology and the emergence of a variety of economies entering the technology transfer arena opens up exciting and enticing prospects for future research on global technology transfer. References Acs, Z., & Preston, L. (1997). Small and medium enterprises, technology, and globalization: Introducing to a special issue on small and medium-sized enterprises in the global economy. Small Business Economics, 9 (1), 1–6. Audretsch, D. (2009). The entrepreneurial society. Journal of Technology Transfer, 34, 245–254. Audretsch, D. B. (2013). From the entrepreneurial university to the university for the entrepreneurial society. Journal of Technology Transfer. doi:10.1007/s10961- 012-9288-1. Audretsch, D. B., Hülsbeck, M., & Lehmann, E. E. (2012). Regional competitiveness, university spillovers and entrepreneurial activity. Small Business Economics, 39 (3), 587–601. Audretsch, D. B., Keilbach, M. C., & Lehmann, E. E. (2006).
  • 27. Entrepreneurship and economic growth. Oxford: Oxford University Press. Audretsch, D. B., & Lehmann, E. E. (2005). Do university policies make a difference? Research Policy, 34(3), 343–347. Audretsch, D. B., Lehmann, E. E., Link, A. N., & Starnecker, A. (2013). Technology transfer in a global economy. Heidelberg: Springer. Audretsch, D. B., Lehmann, E. E., & Warning, S. (2005). University spillover and new firm location. Research Policy, 34(7), 1113–1122. Azagra-Caro, J. M., Pardo, R., & Rama, R. (2013). Not searching, but finding: how innovation shapes perceptions about universities and public research organizations. Journal of Technology Transfer (this issue). Bercovitz, J., Feldman, M., Feller, I., & Burton, R. (2001). Organizational structure as a determinant of academic patent and licensing behavior: An exploratory study of Duke, Johns Hopkins, and Penn- sylvania State universities. Journal of Technology Transfer, 26 (1–2), 21–35. Braunerhjelm, P., Acs, Z. J., Audretsch, D. B., & Carlsson, B. (2010). The missing link: Knowledge diffusion and entrepreneurship in endogenous growth. Small Business Economics, 34(2), 105–125. Carree, M., Della Malva, A., & Santarelli, E. (2013). The contribution of universities to growth: Empirical
  • 28. evidence for Italy. Journal of Technology Transfer. doi:10.1007/s10961-012-9282-7. Cassia, L., De Massis, A., Minola, T., & Meoli, M. (2013). Entrepreneurship research centers:Research orientation, knowledge transfer and performance. Journal of Technology Transfer. doi:10.1007/s10961- 012-9290-7. 310 D. B. Audretsch et al. 123 http://dx.doi.org/10.1007/s10961-012-9288-1 http://dx.doi.org/10.1007/s10961-012-9282-7 http://dx.doi.org/10.1007/s10961-012-9290-7 http://dx.doi.org/10.1007/s10961-012-9290-7 Clark, T., & Wright, M. (2007). Reviewing Journal rankings and revisiting peer reviews. Journal of Management Studies, 44(4), 612–621. Clark, T., & Wright, M. (2009). So farewell, then….reflections on editing journal of management studies. Journal of Management Studies, 46 (1), 1–9. Colombo, D., D’Adda, D., & Piva, E. (2010a). The contribution of university research to the growth of academic start-ups: An empirical analysis. Journal of Technology Transfer, 35(1), 113–140. Colombo, M., Mustar, P., & Wright, M. (2010b). Dynamics of science-based entrepreneurship. Journal of Technology Transfer, 35(1), 1–15.
  • 29. Cosh, A., & Hughes, A. (2010). Never mind the quality feel the width: University–industry links and government financial support for innovation in small high- technology businesses in the UK and the USA. Journal of Technology Transfer, 35(1), 66–91. D’Este, P., & Perkmann, M. (2011). Why do academics engage with industry? The entrepreneurial uni- versity and individual motivations. Journal of Technology Transfer, 36 (3), 316–339. De Prato, G., & Nepelski, D. (2013). Global technological collaboration network: Network analysis of international co-inventions. Journal of Technology Transfer. doi:10.1007/s10961-012-9285-4. Dejardin, M., & Fritsch, M. (2011). Entrepreneurial dynamics and regional growth. Small Business Eco- nomics, 36 (4), 377–382. Fiet, J. O., & Patel, P. C. (2008). Entrepreneurial discovery and constrained, systematic search. Small Business Economics, 30 , 215–229. Fritsch, M., & Krabel, S. (2012). Ready to leave the ivory tower? Academic scientists’ appeal to work in the private sector. Journal of Technology Transfer, 37 (3), 271–296. Gassler, H., & Nones, B. (2008). Internationalisation of R&D and embeddedness: The case of Austria. Journal of Technology Transfer, 33(4), 407–421. Graham, S., & Hancock, G. (2013). The USPTO Economics research agenda. Journal of Technology Transfer (this issue).
  • 30. Grimpe, Ch., & Fier, H. (2010). Informal university technology transfer: A comparison between the United States and Germany. Journal of Technology Transfer, 35(6), 637–650. Guerrero, M., Urbano, D., Cunningham, J., & Organ, D. (2013). Entrepreneurial universities in two European regions: A case study comparison. Journal of Technology Transfer. doi:10.1007/s10961- 012-9287-2. Gulbrandsen, M., & Godoe, H. (2008). ‘‘We really don’t want to move, but…’’: Identity and strategy in the internationalisation of industrial R&D. Journal of Technology Transfer, 33(4), 379–392. Hoskisson, R. E., Wright, M., Filatotchev, I., & Peng, M. W. (2012). Emerging multinationals from mid- range economies: The influence of institutions and factor markets. Journal of Management Studies, Forthcoming,. doi:10.1111/j.1467-6486.2012.01085.x. Hülsbeck, M., Lehmann, E., & Starnecker, A. (2011). A performance of technology transfer offices in Germany. Journal of Technology Transfer. doi:10.1007/s10961- 011-9243-6. Link, A., Rothaermel, F., & Siegel, D. (2008). University technology transfer: An introduction to the special issue. IEEE Transactions on Engineering Management, 55(1), 5–8. Link, A. N., & Scott, J. T. (2012). The exploitation of publicly funded technology. Journal of Technology Transfer, 37 (3), 375–383.
  • 31. Mowery, D. C. (2005). The Bayh-Dole Act and high-technology entrepreneurship an U.S. universities: Chicken, egg, or something else? In G. D. Libecap (Ed.), University entrepreneurship and technology transfer: Process, design, and intellectual property (pp. 39–68). Elsevier: North Holland. Mowery, D. C., & Sampat, B. N. (2005). The Bayh-Dole Act of 1980 and university-industry technology transfer: A model for other OECD governments? Journal of Technology Transfer, 30 (1–2), 115–127. Mustar, P., & Wright, M. (2010). Convergence or path dependency in policies to foster the creation of university spin-off firms? A comparison of France and the United Kingdom. Journal of Technology Transfer, 35(1), 42–65. OECD. (2007). Moving up the value chain: staying competitive in the global economy. A synthesis report on global value chains. Paris: OECD. Phan, P., Siegel, D., & Wright, M. (2009). New developments in technology management education: Background issues, program initiatives and a research agenda. Academy of Management Education and Learning, 8 (3), 324–336. Porter, M. (1998). Clusters and the new economics of competition (pp. 77–90). Watertown: Harvard Business Review. Rolfo, S., & Finardi, U. (2013). Organizational and behavioural differences in technology transfer between generalist and specialized universities. Journal of Technology Transfer (this issue).
  • 32. Sachwald, F. (2008). Location choices within global innovation networks: The case of Europe. Journal of Technology Transfer, 33(4), 364–378. Technology transfer in a global economy 311 123 http://dx.doi.org/10.1007/s10961-012-9285-4 http://dx.doi.org/10.1007/s10961-012-9287-2 http://dx.doi.org/10.1007/s10961-012-9287-2 http://dx.doi.org/10.1111/j.1467-6486.2012.01085.x http://dx.doi.org/10.1007/s10961-011-9243-6 Schoen, A., van Pottelsberghe de la Potterie, B., & Henkel, J. (2013). Governance typology of universities’ technology transfer processes. Journal of Technology Transfer. doi:10.1007/s10961-012-9289-0. Shane, S. (2004). Academic entrepreneurship. Cheltenham: Edward Elgar. Siegel, D. S., & Phan, Ph H. (2005). Analyzing the effectiveness of university technology transfer: impli- cations for entrepreneurship education. In G. D. Libecap (Ed.), University entrepreneurship and technology transfer: Process, design, and intellectual property (pp. 1–38). North Holland: Elsevier. Siegel, D. S., Waldman, D., & Link, A. N. (2003). Assessing the impact of organizational practices on the relative productivity of university technology transfer offices: An exploratory study. Research Policy, 32(1), 27–48.
  • 33. Siegel, D., & Wessner, C. (2012). Universities and the success of entrepreneurial ventures: Evidence from the small business innovation research program. Journal of Technology Transfer, 37 (4), 404–415. Siegel, D., & Wright, M. (2013). University technology transfer offices, licensing and start-ups. In A. Link, D. Siegel, & M. Wright (Eds.), University technology transfer. Chicago: CUP. Varis, M., & Littunen, H. (2010). Types of innovation, sources of information and performance in entre- preneurial SMES. European Journal of Innovation Management, 13, 128–154. Walshok, M. L, J. D. Shapiro, & Owens, N. (2013). Transnational innovation networks aren’t all created equal: Towards a classification system. Journal of Technology Transfer (this issue). Wang, J., & Shapira, P. (2012). Partnering with universities: a good choice for nanotechnology start-up firms? Small Business Economics, 38 (2), 197–215. West, J. (2013). Too little, too early: California’s transient advantage in the emergence of the solar industry, 1900–2010. Journal of Technology Transfer (this issue). Westphal, L. E. (2002). Technology Strategies for economic development in a fast changing global econ- omy. Economics of Innovation and New Technology, 4(5), 275– 320. Wright, M. (2013). Academic entrepreneurship, technology transfer and society: Where next? Journal of
  • 34. Technology Transfer. doi:10.1007/s10961-012-9286-3. Wright, M., Clarysse, B., Lockett, A., & Knockaert, M. (2008a). Mid-range universities’ in Europe linkages with industry: Knowledge types and the role of intermediaries. Research Policy, 37 , 1205–1223. Wright, M., Clarysse, B., Mustar, P., & Lockett, A. (2008b). Academic entrepreneurship in Europe. Cheltenham: Edward Elgar. Wright, M., Piva, E., Mosey, S., & Lockett, A. (2009). Business schools and academic entrepreneurship. Journal of Technology Transfer, 34(6), 560–587. 312 D. B. Audretsch et al. 123 http://dx.doi.org/10.1007/s10961-012-9289-0 http://dx.doi.org/10.1007/s10961-012-9286-3 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.