SlideShare a Scribd company logo
@Xebiconfr #Xebicon18 @YoannBENOIT
Build the future
Boostez vos modèles avec du Deep Learning distribué
Yoann BENOIT, Data Scientist
Xebia
@Xebiconfr #Xebicon18 @YoannBENOIT
Yoann BENOIT
Data Scientist
@YoannBENOIT
@Xebiconfr #Xebicon18 @YoannBENOIT
Deep Learning
@Xebiconfr #Xebicon18 @YoannBENOIT
Un vaste champ des possibilités
@Xebiconfr #Xebicon18 @YoannBENOIT
Deep Learning … sur mon laptop
modèle
transfert de
connaissance modèle
Réseaux de neurones
peu profonds
Transfer Learning
@Xebiconfr #Xebicon18 @YoannBENOIT
Les limites de mon laptop
Temps
d’entraînement
trop long
@Xebiconfr #Xebicon18 @YoannBENOIT
Les limites de mon laptop
Tuning difficile
@Xebiconfr #Xebicon18 @YoannBENOIT
Les limites de mon laptop
Taille du
modèle trop
grande
@Xebiconfr #Xebicon18 @YoannBENOIT
Du CPU … au GPU
@Xebiconfr #Xebicon18 @YoannBENOIT
Du CPU … au GPU
Distributed Deep Learning
@Xebiconfr #Xebicon18 @YoannBENOIT
Distributed Deep Learning
@Xebiconfr #Xebicon18 @YoannBENOIT
Un réseau de neurones est composé d’opérations mathématiques enchaînées
Op. 1
Op. 2.1 Op. 2.2
Op. 3
@Xebiconfr #Xebicon18 @YoannBENOIT
Data Parallelism vs Model Parallelism
Data Parallelism
Réplication du modèle sur plusieurs machines
Model Parallelism
Opérations du modèle réparties entre
plusieurs machines
Op. 1
Op. 2.1 Op. 2.2
Op. 3
@Xebiconfr #Xebicon18 @YoannBENOIT
Data Parallelism
@Xebiconfr #Xebicon18 @YoannBENOIT
Data Parallelism - Duplication du modèle sur chaque machine
Machine 1
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Machine 3
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Machine 4
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Machine 2
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Op. 1
Op. 2.1 Op. 2.2
Op. 3
@Xebiconfr #Xebicon18 @YoannBENOIT
Data Parallelism - Duplication du modèle sur chaque machine
Machine 1
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Machine 3
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Machine 4
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Machine 2
Op. 1
Op. 2.1 Op. 2.2
Op. 3
N images
@Xebiconfr #Xebicon18 @YoannBENOIT
Data Parallelism - Duplication du modèle sur chaque machine
Machine 1
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Machine 3
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Machine 4
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Machine 2
Op. 1
Op. 2.1 Op. 2.2
Op. 3
N images
N/4 N/4 N/4 N/4
@Xebiconfr #Xebicon18 @YoannBENOIT
Data Parallelism - Propriétés
Copie du même modèle sur chaque machine
Une partie du batch à chaque itération
Pas de communication entre les différents threads en phase
d’inférence
Calcul des gradients indépendamment pour chaque copie
@Xebiconfr #Xebicon18 @YoannBENOIT
Data Parallelism - Combiner les résultats
Synchronisation
poids gradients
synchrone asynchrone
centralisée distribuée
@Xebiconfr #Xebicon18 @YoannBENOIT
Machine 4Machine 3Machine 2Machine 1
Data Parallelism - Synchronisation
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Op. 1
Op. 2.1 Op. 2.2
Op. 3
@Xebiconfr #Xebicon18 @YoannBENOIT
Machine 4Machine 3Machine 2Machine 1
Data Parallelism - Synchronisation
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Serveur de paramètres
@Xebiconfr #Xebicon18 @YoannBENOIT
Machine 4Machine 3Machine 2Machine 1
Data Parallelism - Synchronisation des poids
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Serveur de paramètres
Wi Wi Wi Wi
@Xebiconfr #Xebicon18 @YoannBENOIT
Machine 4Machine 3Machine 2Machine 1
Data Parallelism - Synchronisation des poids
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Serveur de paramètres
@Xebiconfr #Xebicon18 @YoannBENOIT
Machine 4Machine 3Machine 2Machine 1
Data Parallelism - Moyenne des poids
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Serveur de paramètres : Wi+1 = ¼ ∑Wi+1,j
Wi+1,1 Wi+1,2 Wi+1,3 Wi+1,4
@Xebiconfr #Xebicon18 @YoannBENOIT
Machine 4Machine 3Machine 2Machine 1
Data Parallelism - Descente de gradient stochastique synchrone / asynchrone
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Serveur de paramètres : Wi+1 = Wi - ƛ*∑ΔWi,j
ΔWi,1 ΔWi,2 ΔWi,3 ΔWi,4
@Xebiconfr #Xebicon18 @YoannBENOIT
Data Parallelism - Quand l’utiliser ?
Peu de paramètres
Calculs de gradients complexes
Ex : Couches convolutionnelles ou réseaux de neurones récurrents
@Xebiconfr #Xebicon18 @YoannBENOIT
Model Parallelism
@Xebiconfr #Xebicon18 @YoannBENOIT
Model Parallelism
Op. 1
Op. 2.1 Op. 2.2
Op. 3
@Xebiconfr #Xebicon18 @YoannBENOIT
Machine 4
Machine 2 Machine 3
Machine 1
Model Parallelism
Op. 1
Op. 2.1 Op. 2.2
Op. 3
@Xebiconfr #Xebicon18 @YoannBENOIT
Model Parallelism - Propriétés
Opérations et poids répartis sur chaque machine
Tout le batch est utilisé à chaque itération
Communication constante entre les différents threads
Synchroniser des poids après chaque produit matriciel
@Xebiconfr #Xebicon18 @YoannBENOIT
Model Parallelism - Quand l’utiliser ?
Beaucoup de paramètres
Ne tient pas en mémoire
Ex : Réseau de neurones très profond ou stacking de couches denses
@Xebiconfr #Xebicon18 @YoannBENOIT
Data + Model Parallelism
@Xebiconfr #Xebicon18 @YoannBENOIT
Data + Model Parallelism
Op. 1
Op. 2.1 Op. 2.2
Op. 3
@Xebiconfr #Xebicon18 @YoannBENOIT
Data + Model Parallelism
G4
G2 G3
G1
Op. 1
Op. 2.1 Op. 2.2
Op. 3
Machine 3Machine 2Machine 1
G4
G2 G3
G1
Op. 1
Op. 2.1 Op. 2.2
Op. 3
G4
G2 G3
G1
Op. 1
Op. 2.1 Op. 2.2
Op. 3
G4
G2 G3
G1
Op. 1
Op. 2.1 Op. 2.2
Op. 3
@Xebiconfr #Xebicon18 @YoannBENOIT
Distributed Deep Learning
@Xebiconfr #Xebicon18 @YoannBENOIT
Machines multi-GPU
@Xebiconfr #Xebicon18 @YoannBENOIT
Frameworks pour le Deep Learning distribué
@Xebiconfr #Xebicon18 @YoannBENOIT
Clusters Hadoop
@Xebiconfr #Xebicon18 @YoannBENOIT
Deep Learning distribué sur des clusters Hadoop
➔ Elephas
➔ Distributed Keras
➔ TensorFlowOnSpark
@Xebiconfr #Xebicon18 @YoannBENOIT
Deep Learning distribué sur des clusters Hadoop
➔ Deep Learning Pipelines
➔ DeepLearning4j
@Xebiconfr #Xebicon18 @YoannBENOIT
Cloud
@Xebiconfr #Xebicon18 @YoannBENOIT
Distributed Deep Learning
@Xebiconfr #Xebicon18 @YoannBENOIT
Quand l’utiliser ?
Réseaux de neurones avec contraintes de poids partagés
Réseaux de neurones qui ne tiennent pas en mémoire
Très grande volumétrie de données
Tuning de paramètres intensif
@Xebiconfr #Xebicon18 @YoannBENOIT
Que choisir ?
Multi-GPU
Distribué
Distribué
Machine seule
Multi-GPU
Distribué
Data Size
NetworkSize
@Xebiconfr #Xebicon18 @YoannBENOIT
Build the future
MERCI
@Xebiconfr #Xebicon18 @YoannBENOIT
Références
➔ http://timdettmers.com/2014/10/09/deep-learning-data-parallelism/
➔ https://medium.com/rocketml/put-tensorflow-keras-and-mxnet-deeplearning-models-on-steroids-c34
0586989b5
➔ https://www.slideshare.net/insideHPC/tutorial-on-deep-learning
➔ https://www.slideshare.net/hustwj/cikm-keynotenov2014
➔ http://timdettmers.com/2014/10/09/deep-learning-data-parallelism/
➔ http://timdettmers.com/2014/11/09/model-parallelism-deep-learning/
➔ https://xiandong79.github.io/Intro-Distributed-Deep-Learning
➔ https://blog.skymind.ai/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neur
al-networks/
➔ https://arxiv.org/pdf/1404.5997v2.pdf
➔ https://www.analytics-link.com/single-post/2017/10/09/INTEREST-Scaling-Deep-Learning-Highlights
-From-The-Startupml-Workshop
➔ https://medium.com/@ntenenz/distributed-tensorflow-2bf94f0205c3
➔ https://medium.com/netflix-techblog/distributed-neural-networks-with-gpus-in-the-aws-cloud-ccf71e8
2056b
@Xebiconfr #Xebicon18 @YoannBENOIT
Frameworks
➔ http://maxpumperla.com/elephas/
➔ https://github.com/yahoo/TensorFlowOnSpark
➔ https://github.com/cerndb/dist-keras
➔ https://docs.databricks.com/applications/deep-learning/deep-learning-pipelines.html
➔ https://github.com/uber/horovod

More Related Content

Similar to XebiCon'18 - Boostez vos modèles avec du Deep Learning distribué

Prometheus as exposition format for eBPF programs running on Kubernetes
Prometheus as exposition format for eBPF programs running on KubernetesPrometheus as exposition format for eBPF programs running on Kubernetes
Prometheus as exposition format for eBPF programs running on Kubernetes
Leonardo Di Donato
 
Microsoft kafka load imbalance
Microsoft   kafka load imbalanceMicrosoft   kafka load imbalance
Microsoft kafka load imbalance
Nitin Kumar
 
Python coroutine
Python coroutinePython coroutine
Python coroutine
경섭 심
 
Not Less, Not More: Exactly Once, Large-Scale Stream Processing in Action
Not Less, Not More: Exactly Once, Large-Scale Stream Processing in ActionNot Less, Not More: Exactly Once, Large-Scale Stream Processing in Action
Not Less, Not More: Exactly Once, Large-Scale Stream Processing in Action
Paris Carbone
 
Ndp Slides
Ndp SlidesNdp Slides
Ndp Slides
oscon2007
 
GDC 2009: iPhone Development: Exploring The New Frontier
GDC 2009: iPhone Development: Exploring The New FrontierGDC 2009: iPhone Development: Exploring The New Frontier
GDC 2009: iPhone Development: Exploring The New Frontier
Noel Llopis
 
Graph processing
Graph processingGraph processing
Graph processing
yeahjs
 
GPUs for GEC Competition @ GECCO-2013
GPUs for GEC Competition @ GECCO-2013GPUs for GEC Competition @ GECCO-2013
GPUs for GEC Competition @ GECCO-2013
Daniele Loiacono
 
Parallel computing in Python: Current state and recent advances
Parallel computing in Python: Current state and recent advancesParallel computing in Python: Current state and recent advances
Parallel computing in Python: Current state and recent advances
Pierre Glaser
 
Neural Field aware Factorization Machine
Neural Field aware Factorization MachineNeural Field aware Factorization Machine
Neural Field aware Factorization Machine
InMobi
 
Ai final ppt with InMobi template
Ai  final ppt with InMobi templateAi  final ppt with InMobi template
Ai final ppt with InMobi template
Gunjan Sharma
 
Using neon for pattern recognition in audio data
Using neon for pattern recognition in audio dataUsing neon for pattern recognition in audio data
Using neon for pattern recognition in audio data
Intel Nervana
 
Ibm cell
Ibm cell Ibm cell
From V8 to Modern Compilers
From V8 to Modern CompilersFrom V8 to Modern Compilers
From V8 to Modern Compilers
Min-Yih Hsu
 
Distributed System explained (with Java Microservices)
Distributed System explained (with Java Microservices)Distributed System explained (with Java Microservices)
Distributed System explained (with Java Microservices)
Mario Romano
 
Hussein Mehanna, Engineering Director, ML Core - Facebook at MLconf ATL 2016
Hussein Mehanna, Engineering Director, ML Core - Facebook at MLconf ATL 2016Hussein Mehanna, Engineering Director, ML Core - Facebook at MLconf ATL 2016
Hussein Mehanna, Engineering Director, ML Core - Facebook at MLconf ATL 2016
MLconf
 
Transformer Zoo
Transformer ZooTransformer Zoo
Transformer Zoo
Grigory Sapunov
 
Fine tuning large LMs
Fine tuning large LMsFine tuning large LMs
Fine tuning large LMs
SylvainGugger
 
PR-217: EfficientDet: Scalable and Efficient Object Detection
PR-217: EfficientDet: Scalable and Efficient Object DetectionPR-217: EfficientDet: Scalable and Efficient Object Detection
PR-217: EfficientDet: Scalable and Efficient Object Detection
Jinwon Lee
 
Breaking paravirtualized devices
Breaking paravirtualized devicesBreaking paravirtualized devices
Breaking paravirtualized devices
Priyanka Aash
 

Similar to XebiCon'18 - Boostez vos modèles avec du Deep Learning distribué (20)

Prometheus as exposition format for eBPF programs running on Kubernetes
Prometheus as exposition format for eBPF programs running on KubernetesPrometheus as exposition format for eBPF programs running on Kubernetes
Prometheus as exposition format for eBPF programs running on Kubernetes
 
Microsoft kafka load imbalance
Microsoft   kafka load imbalanceMicrosoft   kafka load imbalance
Microsoft kafka load imbalance
 
Python coroutine
Python coroutinePython coroutine
Python coroutine
 
Not Less, Not More: Exactly Once, Large-Scale Stream Processing in Action
Not Less, Not More: Exactly Once, Large-Scale Stream Processing in ActionNot Less, Not More: Exactly Once, Large-Scale Stream Processing in Action
Not Less, Not More: Exactly Once, Large-Scale Stream Processing in Action
 
Ndp Slides
Ndp SlidesNdp Slides
Ndp Slides
 
GDC 2009: iPhone Development: Exploring The New Frontier
GDC 2009: iPhone Development: Exploring The New FrontierGDC 2009: iPhone Development: Exploring The New Frontier
GDC 2009: iPhone Development: Exploring The New Frontier
 
Graph processing
Graph processingGraph processing
Graph processing
 
GPUs for GEC Competition @ GECCO-2013
GPUs for GEC Competition @ GECCO-2013GPUs for GEC Competition @ GECCO-2013
GPUs for GEC Competition @ GECCO-2013
 
Parallel computing in Python: Current state and recent advances
Parallel computing in Python: Current state and recent advancesParallel computing in Python: Current state and recent advances
Parallel computing in Python: Current state and recent advances
 
Neural Field aware Factorization Machine
Neural Field aware Factorization MachineNeural Field aware Factorization Machine
Neural Field aware Factorization Machine
 
Ai final ppt with InMobi template
Ai  final ppt with InMobi templateAi  final ppt with InMobi template
Ai final ppt with InMobi template
 
Using neon for pattern recognition in audio data
Using neon for pattern recognition in audio dataUsing neon for pattern recognition in audio data
Using neon for pattern recognition in audio data
 
Ibm cell
Ibm cell Ibm cell
Ibm cell
 
From V8 to Modern Compilers
From V8 to Modern CompilersFrom V8 to Modern Compilers
From V8 to Modern Compilers
 
Distributed System explained (with Java Microservices)
Distributed System explained (with Java Microservices)Distributed System explained (with Java Microservices)
Distributed System explained (with Java Microservices)
 
Hussein Mehanna, Engineering Director, ML Core - Facebook at MLconf ATL 2016
Hussein Mehanna, Engineering Director, ML Core - Facebook at MLconf ATL 2016Hussein Mehanna, Engineering Director, ML Core - Facebook at MLconf ATL 2016
Hussein Mehanna, Engineering Director, ML Core - Facebook at MLconf ATL 2016
 
Transformer Zoo
Transformer ZooTransformer Zoo
Transformer Zoo
 
Fine tuning large LMs
Fine tuning large LMsFine tuning large LMs
Fine tuning large LMs
 
PR-217: EfficientDet: Scalable and Efficient Object Detection
PR-217: EfficientDet: Scalable and Efficient Object DetectionPR-217: EfficientDet: Scalable and Efficient Object Detection
PR-217: EfficientDet: Scalable and Efficient Object Detection
 
Breaking paravirtualized devices
Breaking paravirtualized devicesBreaking paravirtualized devices
Breaking paravirtualized devices
 

More from Publicis Sapient Engineering

XebiCon'18 - L'algorithme de reconnaissance de formes par le cerveau humain
XebiCon'18 - L'algorithme de reconnaissance de formes par le cerveau humainXebiCon'18 - L'algorithme de reconnaissance de formes par le cerveau humain
XebiCon'18 - L'algorithme de reconnaissance de formes par le cerveau humain
Publicis Sapient Engineering
 
Xebicon'18 - Spark in jail : conteneurisez vos traitements data sans serveur
Xebicon'18 - Spark in jail : conteneurisez vos traitements data sans serveurXebicon'18 - Spark in jail : conteneurisez vos traitements data sans serveur
Xebicon'18 - Spark in jail : conteneurisez vos traitements data sans serveur
Publicis Sapient Engineering
 
XebiCon'18 - Modern Infrastructure
XebiCon'18 - Modern InfrastructureXebiCon'18 - Modern Infrastructure
XebiCon'18 - Modern Infrastructure
Publicis Sapient Engineering
 
XebiCon'18 - Event Sourcing et RGPD, incompatibles ?
XebiCon'18 - Event Sourcing et RGPD, incompatibles ?XebiCon'18 - Event Sourcing et RGPD, incompatibles ?
XebiCon'18 - Event Sourcing et RGPD, incompatibles ?
Publicis Sapient Engineering
 
XebiCon'18 - Deno, le nouveau NodeJS qui inverse la tendance ?
XebiCon'18 - Deno, le nouveau NodeJS qui inverse la tendance ?XebiCon'18 - Deno, le nouveau NodeJS qui inverse la tendance ?
XebiCon'18 - Deno, le nouveau NodeJS qui inverse la tendance ?
Publicis Sapient Engineering
 
XebiCon'18 - Comment j'ai développé un jeu vidéo avec des outils de développe...
XebiCon'18 - Comment j'ai développé un jeu vidéo avec des outils de développe...XebiCon'18 - Comment j'ai développé un jeu vidéo avec des outils de développe...
XebiCon'18 - Comment j'ai développé un jeu vidéo avec des outils de développe...
Publicis Sapient Engineering
 
XebiCon'18 - Les utilisateurs finaux, les oubliés de nos produits !
XebiCon'18 - Les utilisateurs finaux, les oubliés de nos produits !XebiCon'18 - Les utilisateurs finaux, les oubliés de nos produits !
XebiCon'18 - Les utilisateurs finaux, les oubliés de nos produits !
Publicis Sapient Engineering
 
XebiCon'18 - Comment fausser l'interprétation de vos résultats avec des dataviz
XebiCon'18 - Comment fausser l'interprétation de vos résultats avec des datavizXebiCon'18 - Comment fausser l'interprétation de vos résultats avec des dataviz
XebiCon'18 - Comment fausser l'interprétation de vos résultats avec des dataviz
Publicis Sapient Engineering
 
XebiCon'18 - Le développeur dans la Pop Culture
XebiCon'18 - Le développeur dans la Pop Culture XebiCon'18 - Le développeur dans la Pop Culture
XebiCon'18 - Le développeur dans la Pop Culture
Publicis Sapient Engineering
 
XebiCon'18 - Architecturer son application mobile pour la durabilité
XebiCon'18 - Architecturer son application mobile pour la durabilitéXebiCon'18 - Architecturer son application mobile pour la durabilité
XebiCon'18 - Architecturer son application mobile pour la durabilité
Publicis Sapient Engineering
 
XebiCon'18 - Sécuriser son API avec OpenID Connect
XebiCon'18 - Sécuriser son API avec OpenID ConnectXebiCon'18 - Sécuriser son API avec OpenID Connect
XebiCon'18 - Sécuriser son API avec OpenID Connect
Publicis Sapient Engineering
 
XebiCon'18 - Structuration du Temps et Dynamique de Groupes, Théorie organisa...
XebiCon'18 - Structuration du Temps et Dynamique de Groupes, Théorie organisa...XebiCon'18 - Structuration du Temps et Dynamique de Groupes, Théorie organisa...
XebiCon'18 - Structuration du Temps et Dynamique de Groupes, Théorie organisa...
Publicis Sapient Engineering
 
XebiCon'18 - Spark NLP, un an après
XebiCon'18 - Spark NLP, un an aprèsXebiCon'18 - Spark NLP, un an après
XebiCon'18 - Spark NLP, un an après
Publicis Sapient Engineering
 
XebiCon'18 - La sécurité, douce illusion même en 2018
XebiCon'18 - La sécurité, douce illusion même en 2018XebiCon'18 - La sécurité, douce illusion même en 2018
XebiCon'18 - La sécurité, douce illusion même en 2018
Publicis Sapient Engineering
 
XebiCon'18 - Utiliser Hyperledger Fabric pour la création d'une blockchain pr...
XebiCon'18 - Utiliser Hyperledger Fabric pour la création d'une blockchain pr...XebiCon'18 - Utiliser Hyperledger Fabric pour la création d'une blockchain pr...
XebiCon'18 - Utiliser Hyperledger Fabric pour la création d'une blockchain pr...
Publicis Sapient Engineering
 
XebiCon'18 - Ce que l'histoire du métro Parisien m'a enseigné sur la création...
XebiCon'18 - Ce que l'histoire du métro Parisien m'a enseigné sur la création...XebiCon'18 - Ce que l'histoire du métro Parisien m'a enseigné sur la création...
XebiCon'18 - Ce que l'histoire du métro Parisien m'a enseigné sur la création...
Publicis Sapient Engineering
 
XebiCon'18 - La guerre des Frameworks n'aura pas lieu
XebiCon'18 - La guerre des Frameworks n'aura pas lieuXebiCon'18 - La guerre des Frameworks n'aura pas lieu
XebiCon'18 - La guerre des Frameworks n'aura pas lieu
Publicis Sapient Engineering
 
XebiCon'18 - Orchestration : Conteneurs vs Musique
XebiCon'18 - Orchestration : Conteneurs vs MusiqueXebiCon'18 - Orchestration : Conteneurs vs Musique
XebiCon'18 - Orchestration : Conteneurs vs Musique
Publicis Sapient Engineering
 
XebiCon'18 - Passage à l'échelle de mes applications Kafka-Streams
XebiCon'18 - Passage à l'échelle de mes applications Kafka-StreamsXebiCon'18 - Passage à l'échelle de mes applications Kafka-Streams
XebiCon'18 - Passage à l'échelle de mes applications Kafka-Streams
Publicis Sapient Engineering
 
XebiCon'18 - Data Science Done Wrong
XebiCon'18 - Data Science Done WrongXebiCon'18 - Data Science Done Wrong
XebiCon'18 - Data Science Done Wrong
Publicis Sapient Engineering
 

More from Publicis Sapient Engineering (20)

XebiCon'18 - L'algorithme de reconnaissance de formes par le cerveau humain
XebiCon'18 - L'algorithme de reconnaissance de formes par le cerveau humainXebiCon'18 - L'algorithme de reconnaissance de formes par le cerveau humain
XebiCon'18 - L'algorithme de reconnaissance de formes par le cerveau humain
 
Xebicon'18 - Spark in jail : conteneurisez vos traitements data sans serveur
Xebicon'18 - Spark in jail : conteneurisez vos traitements data sans serveurXebicon'18 - Spark in jail : conteneurisez vos traitements data sans serveur
Xebicon'18 - Spark in jail : conteneurisez vos traitements data sans serveur
 
XebiCon'18 - Modern Infrastructure
XebiCon'18 - Modern InfrastructureXebiCon'18 - Modern Infrastructure
XebiCon'18 - Modern Infrastructure
 
XebiCon'18 - Event Sourcing et RGPD, incompatibles ?
XebiCon'18 - Event Sourcing et RGPD, incompatibles ?XebiCon'18 - Event Sourcing et RGPD, incompatibles ?
XebiCon'18 - Event Sourcing et RGPD, incompatibles ?
 
XebiCon'18 - Deno, le nouveau NodeJS qui inverse la tendance ?
XebiCon'18 - Deno, le nouveau NodeJS qui inverse la tendance ?XebiCon'18 - Deno, le nouveau NodeJS qui inverse la tendance ?
XebiCon'18 - Deno, le nouveau NodeJS qui inverse la tendance ?
 
XebiCon'18 - Comment j'ai développé un jeu vidéo avec des outils de développe...
XebiCon'18 - Comment j'ai développé un jeu vidéo avec des outils de développe...XebiCon'18 - Comment j'ai développé un jeu vidéo avec des outils de développe...
XebiCon'18 - Comment j'ai développé un jeu vidéo avec des outils de développe...
 
XebiCon'18 - Les utilisateurs finaux, les oubliés de nos produits !
XebiCon'18 - Les utilisateurs finaux, les oubliés de nos produits !XebiCon'18 - Les utilisateurs finaux, les oubliés de nos produits !
XebiCon'18 - Les utilisateurs finaux, les oubliés de nos produits !
 
XebiCon'18 - Comment fausser l'interprétation de vos résultats avec des dataviz
XebiCon'18 - Comment fausser l'interprétation de vos résultats avec des datavizXebiCon'18 - Comment fausser l'interprétation de vos résultats avec des dataviz
XebiCon'18 - Comment fausser l'interprétation de vos résultats avec des dataviz
 
XebiCon'18 - Le développeur dans la Pop Culture
XebiCon'18 - Le développeur dans la Pop Culture XebiCon'18 - Le développeur dans la Pop Culture
XebiCon'18 - Le développeur dans la Pop Culture
 
XebiCon'18 - Architecturer son application mobile pour la durabilité
XebiCon'18 - Architecturer son application mobile pour la durabilitéXebiCon'18 - Architecturer son application mobile pour la durabilité
XebiCon'18 - Architecturer son application mobile pour la durabilité
 
XebiCon'18 - Sécuriser son API avec OpenID Connect
XebiCon'18 - Sécuriser son API avec OpenID ConnectXebiCon'18 - Sécuriser son API avec OpenID Connect
XebiCon'18 - Sécuriser son API avec OpenID Connect
 
XebiCon'18 - Structuration du Temps et Dynamique de Groupes, Théorie organisa...
XebiCon'18 - Structuration du Temps et Dynamique de Groupes, Théorie organisa...XebiCon'18 - Structuration du Temps et Dynamique de Groupes, Théorie organisa...
XebiCon'18 - Structuration du Temps et Dynamique de Groupes, Théorie organisa...
 
XebiCon'18 - Spark NLP, un an après
XebiCon'18 - Spark NLP, un an aprèsXebiCon'18 - Spark NLP, un an après
XebiCon'18 - Spark NLP, un an après
 
XebiCon'18 - La sécurité, douce illusion même en 2018
XebiCon'18 - La sécurité, douce illusion même en 2018XebiCon'18 - La sécurité, douce illusion même en 2018
XebiCon'18 - La sécurité, douce illusion même en 2018
 
XebiCon'18 - Utiliser Hyperledger Fabric pour la création d'une blockchain pr...
XebiCon'18 - Utiliser Hyperledger Fabric pour la création d'une blockchain pr...XebiCon'18 - Utiliser Hyperledger Fabric pour la création d'une blockchain pr...
XebiCon'18 - Utiliser Hyperledger Fabric pour la création d'une blockchain pr...
 
XebiCon'18 - Ce que l'histoire du métro Parisien m'a enseigné sur la création...
XebiCon'18 - Ce que l'histoire du métro Parisien m'a enseigné sur la création...XebiCon'18 - Ce que l'histoire du métro Parisien m'a enseigné sur la création...
XebiCon'18 - Ce que l'histoire du métro Parisien m'a enseigné sur la création...
 
XebiCon'18 - La guerre des Frameworks n'aura pas lieu
XebiCon'18 - La guerre des Frameworks n'aura pas lieuXebiCon'18 - La guerre des Frameworks n'aura pas lieu
XebiCon'18 - La guerre des Frameworks n'aura pas lieu
 
XebiCon'18 - Orchestration : Conteneurs vs Musique
XebiCon'18 - Orchestration : Conteneurs vs MusiqueXebiCon'18 - Orchestration : Conteneurs vs Musique
XebiCon'18 - Orchestration : Conteneurs vs Musique
 
XebiCon'18 - Passage à l'échelle de mes applications Kafka-Streams
XebiCon'18 - Passage à l'échelle de mes applications Kafka-StreamsXebiCon'18 - Passage à l'échelle de mes applications Kafka-Streams
XebiCon'18 - Passage à l'échelle de mes applications Kafka-Streams
 
XebiCon'18 - Data Science Done Wrong
XebiCon'18 - Data Science Done WrongXebiCon'18 - Data Science Done Wrong
XebiCon'18 - Data Science Done Wrong
 

Recently uploaded

PRODUCT LISTING OPTIMIZATION PRESENTATION.pptx
PRODUCT LISTING OPTIMIZATION PRESENTATION.pptxPRODUCT LISTING OPTIMIZATION PRESENTATION.pptx
PRODUCT LISTING OPTIMIZATION PRESENTATION.pptx
christinelarrosa
 
Astute Business Solutions | Oracle Cloud Partner |
Astute Business Solutions | Oracle Cloud Partner |Astute Business Solutions | Oracle Cloud Partner |
Astute Business Solutions | Oracle Cloud Partner |
AstuteBusiness
 
Northern Engraving | Nameplate Manufacturing Process - 2024
Northern Engraving | Nameplate Manufacturing Process - 2024Northern Engraving | Nameplate Manufacturing Process - 2024
Northern Engraving | Nameplate Manufacturing Process - 2024
Northern Engraving
 
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
Alex Pruden
 
Poznań ACE event - 19.06.2024 Team 24 Wrapup slidedeck
Poznań ACE event - 19.06.2024 Team 24 Wrapup slidedeckPoznań ACE event - 19.06.2024 Team 24 Wrapup slidedeck
Poznań ACE event - 19.06.2024 Team 24 Wrapup slidedeck
FilipTomaszewski5
 
"What does it really mean for your system to be available, or how to define w...
"What does it really mean for your system to be available, or how to define w..."What does it really mean for your system to be available, or how to define w...
"What does it really mean for your system to be available, or how to define w...
Fwdays
 
Session 1 - Intro to Robotic Process Automation.pdf
Session 1 - Intro to Robotic Process Automation.pdfSession 1 - Intro to Robotic Process Automation.pdf
Session 1 - Intro to Robotic Process Automation.pdf
UiPathCommunity
 
Nordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptxNordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptx
MichaelKnudsen27
 
High performance Serverless Java on AWS- GoTo Amsterdam 2024
High performance Serverless Java on AWS- GoTo Amsterdam 2024High performance Serverless Java on AWS- GoTo Amsterdam 2024
High performance Serverless Java on AWS- GoTo Amsterdam 2024
Vadym Kazulkin
 
What is an RPA CoE? Session 1 – CoE Vision
What is an RPA CoE?  Session 1 – CoE VisionWhat is an RPA CoE?  Session 1 – CoE Vision
What is an RPA CoE? Session 1 – CoE Vision
DianaGray10
 
Mutation Testing for Task-Oriented Chatbots
Mutation Testing for Task-Oriented ChatbotsMutation Testing for Task-Oriented Chatbots
Mutation Testing for Task-Oriented Chatbots
Pablo Gómez Abajo
 
Connector Corner: Seamlessly power UiPath Apps, GenAI with prebuilt connectors
Connector Corner: Seamlessly power UiPath Apps, GenAI with prebuilt connectorsConnector Corner: Seamlessly power UiPath Apps, GenAI with prebuilt connectors
Connector Corner: Seamlessly power UiPath Apps, GenAI with prebuilt connectors
DianaGray10
 
JavaLand 2024: Application Development Green Masterplan
JavaLand 2024: Application Development Green MasterplanJavaLand 2024: Application Development Green Masterplan
JavaLand 2024: Application Development Green Masterplan
Miro Wengner
 
What is an RPA CoE? Session 2 – CoE Roles
What is an RPA CoE?  Session 2 – CoE RolesWhat is an RPA CoE?  Session 2 – CoE Roles
What is an RPA CoE? Session 2 – CoE Roles
DianaGray10
 
Dandelion Hashtable: beyond billion requests per second on a commodity server
Dandelion Hashtable: beyond billion requests per second on a commodity serverDandelion Hashtable: beyond billion requests per second on a commodity server
Dandelion Hashtable: beyond billion requests per second on a commodity server
Antonios Katsarakis
 
The Microsoft 365 Migration Tutorial For Beginner.pptx
The Microsoft 365 Migration Tutorial For Beginner.pptxThe Microsoft 365 Migration Tutorial For Beginner.pptx
The Microsoft 365 Migration Tutorial For Beginner.pptx
operationspcvita
 
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
Edge AI and Vision Alliance
 
From Natural Language to Structured Solr Queries using LLMs
From Natural Language to Structured Solr Queries using LLMsFrom Natural Language to Structured Solr Queries using LLMs
From Natural Language to Structured Solr Queries using LLMs
Sease
 
Day 2 - Intro to UiPath Studio Fundamentals
Day 2 - Intro to UiPath Studio FundamentalsDay 2 - Intro to UiPath Studio Fundamentals
Day 2 - Intro to UiPath Studio Fundamentals
UiPathCommunity
 
QA or the Highway - Component Testing: Bridging the gap between frontend appl...
QA or the Highway - Component Testing: Bridging the gap between frontend appl...QA or the Highway - Component Testing: Bridging the gap between frontend appl...
QA or the Highway - Component Testing: Bridging the gap between frontend appl...
zjhamm304
 

Recently uploaded (20)

PRODUCT LISTING OPTIMIZATION PRESENTATION.pptx
PRODUCT LISTING OPTIMIZATION PRESENTATION.pptxPRODUCT LISTING OPTIMIZATION PRESENTATION.pptx
PRODUCT LISTING OPTIMIZATION PRESENTATION.pptx
 
Astute Business Solutions | Oracle Cloud Partner |
Astute Business Solutions | Oracle Cloud Partner |Astute Business Solutions | Oracle Cloud Partner |
Astute Business Solutions | Oracle Cloud Partner |
 
Northern Engraving | Nameplate Manufacturing Process - 2024
Northern Engraving | Nameplate Manufacturing Process - 2024Northern Engraving | Nameplate Manufacturing Process - 2024
Northern Engraving | Nameplate Manufacturing Process - 2024
 
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
 
Poznań ACE event - 19.06.2024 Team 24 Wrapup slidedeck
Poznań ACE event - 19.06.2024 Team 24 Wrapup slidedeckPoznań ACE event - 19.06.2024 Team 24 Wrapup slidedeck
Poznań ACE event - 19.06.2024 Team 24 Wrapup slidedeck
 
"What does it really mean for your system to be available, or how to define w...
"What does it really mean for your system to be available, or how to define w..."What does it really mean for your system to be available, or how to define w...
"What does it really mean for your system to be available, or how to define w...
 
Session 1 - Intro to Robotic Process Automation.pdf
Session 1 - Intro to Robotic Process Automation.pdfSession 1 - Intro to Robotic Process Automation.pdf
Session 1 - Intro to Robotic Process Automation.pdf
 
Nordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptxNordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptx
 
High performance Serverless Java on AWS- GoTo Amsterdam 2024
High performance Serverless Java on AWS- GoTo Amsterdam 2024High performance Serverless Java on AWS- GoTo Amsterdam 2024
High performance Serverless Java on AWS- GoTo Amsterdam 2024
 
What is an RPA CoE? Session 1 – CoE Vision
What is an RPA CoE?  Session 1 – CoE VisionWhat is an RPA CoE?  Session 1 – CoE Vision
What is an RPA CoE? Session 1 – CoE Vision
 
Mutation Testing for Task-Oriented Chatbots
Mutation Testing for Task-Oriented ChatbotsMutation Testing for Task-Oriented Chatbots
Mutation Testing for Task-Oriented Chatbots
 
Connector Corner: Seamlessly power UiPath Apps, GenAI with prebuilt connectors
Connector Corner: Seamlessly power UiPath Apps, GenAI with prebuilt connectorsConnector Corner: Seamlessly power UiPath Apps, GenAI with prebuilt connectors
Connector Corner: Seamlessly power UiPath Apps, GenAI with prebuilt connectors
 
JavaLand 2024: Application Development Green Masterplan
JavaLand 2024: Application Development Green MasterplanJavaLand 2024: Application Development Green Masterplan
JavaLand 2024: Application Development Green Masterplan
 
What is an RPA CoE? Session 2 – CoE Roles
What is an RPA CoE?  Session 2 – CoE RolesWhat is an RPA CoE?  Session 2 – CoE Roles
What is an RPA CoE? Session 2 – CoE Roles
 
Dandelion Hashtable: beyond billion requests per second on a commodity server
Dandelion Hashtable: beyond billion requests per second on a commodity serverDandelion Hashtable: beyond billion requests per second on a commodity server
Dandelion Hashtable: beyond billion requests per second on a commodity server
 
The Microsoft 365 Migration Tutorial For Beginner.pptx
The Microsoft 365 Migration Tutorial For Beginner.pptxThe Microsoft 365 Migration Tutorial For Beginner.pptx
The Microsoft 365 Migration Tutorial For Beginner.pptx
 
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
 
From Natural Language to Structured Solr Queries using LLMs
From Natural Language to Structured Solr Queries using LLMsFrom Natural Language to Structured Solr Queries using LLMs
From Natural Language to Structured Solr Queries using LLMs
 
Day 2 - Intro to UiPath Studio Fundamentals
Day 2 - Intro to UiPath Studio FundamentalsDay 2 - Intro to UiPath Studio Fundamentals
Day 2 - Intro to UiPath Studio Fundamentals
 
QA or the Highway - Component Testing: Bridging the gap between frontend appl...
QA or the Highway - Component Testing: Bridging the gap between frontend appl...QA or the Highway - Component Testing: Bridging the gap between frontend appl...
QA or the Highway - Component Testing: Bridging the gap between frontend appl...
 

XebiCon'18 - Boostez vos modèles avec du Deep Learning distribué