SlideShare a Scribd company logo
1 of 23
WIND POWER
 What is it?
 How does it work?
 Efficiency
 U.S. Stats and
Examples
By: Roger Rivera
WIND POWER - What is it?
 All renewable energy (except tidal and geothermal power), ultimately
comes from the sun
 The earth receives 1.74 x 1017 watts of power (per hour) from the sun
 About one or 2 percent of this energy is converted to wind energy
(which is about 50-100 times more than the energy converted to
biomass by all plants on earth
 Differential heating of the earth’s surface
and atmosphere induces vertical and horizontal
air currents that are affected by the earth’s
rotation and contours of the land  WIND.
~ e.g.: Land Sea Breeze Cycle
• Winds are influenced by the ground surface at altitudes up to
100 meters.
• Wind is slowed by the surface roughness and obstacles.
• When dealing with wind energy, we are concerned with
surface winds.
• A wind turbine obtains its power input by converting the
force of the wind into a torque (turning force) acting on the
rotor blades.
• The amount of energy which the wind transfers to the rotor
depends on the density of the air, the rotor area, and the wind
speed.
• The kinetic energy of a moving body is proportional to its
mass (or weight). The kinetic energy in the wind thus depends
on the density of the air, i.e. its mass per unit of volume.
In other words, the "heavier" the air, the more energy is
received by the turbine.
•at 15° Celsius air weighs about 1.225 kg per cubic meter, but
the density decreases slightly with increasing humidity.
 A typical 600 kW wind turbine has a rotor diameter of 43-44 meters,
i.e. a rotor area of some 1,500 square meters.
 The rotor area determines how much energy a wind turbine is able to
harvest from the wind.
 Since the rotor area increases with the square of the rotor diameter, a
turbine which is twice as large will receive 22 = 2 x 2 = four times as
much energy.
 To be considered a good location for
wind energy, an area needs to have
average annual wind speeds of at least 12
miles per hour.
WINDMILL DESIGN
 A Windmill captures
wind energy and then
uses a generator to
convert it to electrical
energy.
 The design of a
windmill is an integral
part of how efficient it
will be.
 When designing a
windmill, one must
decide on the size of the
turbine, and the size of
the generator.
LARGE TURBINES:
• Able to deliver electricity at lower cost
than smaller turbines, because foundation
costs, planning costs, etc. are independent
of size.
• Well-suited for offshore wind plants.
• In areas where it is difficult to find sites,
one large turbine on a tall tower uses the
wind extremely efficiently.
SMALL TURBINES:
 Local electrical grids may not be able to handle the large electrical
output from a large turbine, so smaller turbines may be more
suitable.
 High costs for foundations for large turbines may not be
economical in some areas.
 Landscape considerations
Wind Turbines: Number of Blades
 Most common design is the three-bladed turbine. The most important reason is the
stability of the turbine. A rotor with an odd number of rotor blades (and at least three
blades) can be considered to be similar to a disc when calculating the dynamic
properties of the machine.
 A rotor with an even number of blades will give stability problems for a machine
with a stiff structure. The reason is that at the very moment when the uppermost blade
bends backwards, because it gets the maximum power from the wind, the lowermost
blade passes into the wind shade in front of the tower.
• Wind power generators
convert wind energy
(mechanical energy) to
electrical energy.
• The generator is attached
at one end to the wind
turbine, which provides
the mechanical energy.
• At the other end, the
generator is connected to
the electrical grid.
• The generator needs to
have a cooling system to
make sure there is no
overheating.
SMALL GENERATORS:
 Require less force to turn than a larger ones, but give much lower
power output.
 Less efficient
i.e.. If you fit a large wind turbine rotor with a small generator it
will be producing electricity during many hours of the year, but it
will capture only a small part of the energy content of the wind at
high wind speeds.
LARGE GENERATORS:
 Very efficient at high wind speeds, but unable to turn at low wind
speeds.
i.e.. If the generator has larger coils, and/or a stronger internal
magnet, it will require more force (mechanical) to start in motion.
o A windmill built so that it too severely interrupts the airflow
through its cross section will reduce the effective wind velocity
at its location and divert much of the airflow around itself,
thus not extracting the maximum power from the wind.
o At the other extreme, a windmill that intercepts a small
fraction of the wind passing through its cross section will
reduce the wind’s velocity by only a small amount, thus
extracting only a small fraction of the power from the wind
traversing the windmill disk.
o Modern Windmills can attain an efficiency of about 60 % of
the theoretical maximum.
P/m^2 = 6.1 x 10^-4 v^3
*The power in wind is
proportional to the cubic wind
speed ( v^3 ).
WHY?
~ Kinetic energy of an air mass
is proportional to v^2
~ Amount of air mass moving
past a given point is proportional
to wind velocity (v)
* An extra meter of tower will cost roughly 1,500 USD.
 A typical 600 kW turbine costs about $450,000.
 Installation costs are typically $125,000.
 Therefore, the total costs will be about $575,000.
 The average price for large, modern wind farms is
around $1,000 per kilowatt electrical power installed.
 Modern wind turbines are designed to work for some
120,000 hours of operation throughout their design
lifetime of 20 years. ( 13.7 years non-stop)
Maintenance costs are about 1.5-2.0 percent of the
original cost, per year.
 The U.S. currently has more than 1,600 MW of installed
capacity and produces about 3 billion KWh of electricity
each year.
 This is enough to meet the annual residential needs of 1
million people.
 More than 90 percent of this power is produced by three
wind farms in California (Altamont Pass, Tehachapi and
Palm Springs).
• The U.S. contains enough useable wind resource to produce
more electricity than the nation currently uses.
• The majority of this usable resource is in the Great Plains
region. North Dakota alone has enough suitable wind
resource to supply 36 percent of the electricity consumed in
the U.S.
• In addition, development of major global wind energy
markets could significantly impact jobs—recent studies show
that each billion kilowatt-hours of annual wind energy
generation creates between 440 to 460 jobs.
Advantages of Wind Power
• The wind blows day and night, which allows windmills to
produce electricity throughout the day. (Faster during the day)
• Energy output from a wind turbine will vary as the wind varies,
although the most rapid variations will to some extent be
compensated for by the inertia of the wind turbine rotor.
• Wind energy is a domestic, renewable source of energy that
generates no pollution and has little environmental impact. Up to
95 percent of land used for wind farms can also be used for other
profitable activities including ranching, farming and forestry.
• The decreasing cost of wind power and the growing interest in
renewable energy sources should ensure that wind power will
become a viable energy source in the United States and worldwide.
 Wind Turbines and the Landscape
- Large turbines don’t turn as fast  attract less attention
- City dwellers “dwell” on the attention attracted by windmills
 Sound from Wind Turbines
- Increasing tip speed  less sound
- The closest neighbor is usually 300 m  experiences almost no noise
 Birds often collide with high voltage overhead lines, masts, poles, and
windows of buildings. They are also killed by cars in traffic. However,
birds are seldom bothered by wind turbines.
 The only known site with bird collision problems is located in the
Altamont Pass in California.
 Danish Ministry of the Environment study revealed that power lines are
a much greater danger to birds than the wind turbines.
 Some birds even nest on cages on Wind Towers.
Planning Wind Turbine Installation in Regard to
Sound
* Most of the information and data in this
presentation was taken from www.windpower.org

More Related Content

What's hot (17)

Wind power
Wind powerWind power
Wind power
 
Powerpoint Presentation On WIND ENERGY
Powerpoint Presentation On WIND ENERGYPowerpoint Presentation On WIND ENERGY
Powerpoint Presentation On WIND ENERGY
 
Wind energy
Wind energyWind energy
Wind energy
 
Wind energy
Wind energyWind energy
Wind energy
 
wind Power
wind Power wind Power
wind Power
 
Wind Power Presentation
Wind Power PresentationWind Power Presentation
Wind Power Presentation
 
Wind Power & Wind Turbine
Wind Power & Wind TurbineWind Power & Wind Turbine
Wind Power & Wind Turbine
 
Wind Power Energy
Wind Power EnergyWind Power Energy
Wind Power Energy
 
Wind turbines
Wind turbinesWind turbines
Wind turbines
 
Wind energy
Wind energyWind energy
Wind energy
 
Wind Energy Systems & It`s working
Wind Energy Systems & It`s workingWind Energy Systems & It`s working
Wind Energy Systems & It`s working
 
Wind energy
Wind energyWind energy
Wind energy
 
Wind ppt
Wind pptWind ppt
Wind ppt
 
Wind energy
Wind energyWind energy
Wind energy
 
Wind energy
Wind energyWind energy
Wind energy
 
Wind Energy
Wind EnergyWind Energy
Wind Energy
 
Wind energy
Wind energyWind energy
Wind energy
 

Viewers also liked

Wind Energy Presentation 2003
Wind Energy Presentation 2003Wind Energy Presentation 2003
Wind Energy Presentation 2003guest9122ca
 
Wind Energy Power Point Presentation
Wind Energy Power Point PresentationWind Energy Power Point Presentation
Wind Energy Power Point Presentationrclassic
 
Wind Power Point Presentation
Wind Power Point PresentationWind Power Point Presentation
Wind Power Point PresentationKurt Kublbeck
 
Study: The Future of VR, AR and Self-Driving Cars
Study: The Future of VR, AR and Self-Driving CarsStudy: The Future of VR, AR and Self-Driving Cars
Study: The Future of VR, AR and Self-Driving CarsLinkedIn
 
Hype vs. Reality: The AI Explainer
Hype vs. Reality: The AI ExplainerHype vs. Reality: The AI Explainer
Hype vs. Reality: The AI ExplainerLuminary Labs
 

Viewers also liked (7)

Wind Energy Presentation 2003
Wind Energy Presentation 2003Wind Energy Presentation 2003
Wind Energy Presentation 2003
 
Wind Power
Wind PowerWind Power
Wind Power
 
Wind Energy Power Point Presentation
Wind Energy Power Point PresentationWind Energy Power Point Presentation
Wind Energy Power Point Presentation
 
Wind Power Point Presentation
Wind Power Point PresentationWind Power Point Presentation
Wind Power Point Presentation
 
Wind Energy
Wind EnergyWind Energy
Wind Energy
 
Study: The Future of VR, AR and Self-Driving Cars
Study: The Future of VR, AR and Self-Driving CarsStudy: The Future of VR, AR and Self-Driving Cars
Study: The Future of VR, AR and Self-Driving Cars
 
Hype vs. Reality: The AI Explainer
Hype vs. Reality: The AI ExplainerHype vs. Reality: The AI Explainer
Hype vs. Reality: The AI Explainer
 

Similar to Windpower (20)

Windpower
WindpowerWindpower
Windpower
 
Presentation On Wind Power
Presentation On Wind PowerPresentation On Wind Power
Presentation On Wind Power
 
Presentation On Wind Power
Presentation On Wind PowerPresentation On Wind Power
Presentation On Wind Power
 
wind turbine detailed presentation .ppt
wind turbine detailed presentation  .pptwind turbine detailed presentation  .ppt
wind turbine detailed presentation .ppt
 
windenergy-210626034246.pdf
windenergy-210626034246.pdfwindenergy-210626034246.pdf
windenergy-210626034246.pdf
 
wind turbines
wind turbineswind turbines
wind turbines
 
Wind energy
Wind energyWind energy
Wind energy
 
Wind energy
Wind energyWind energy
Wind energy
 
Wind energy
Wind energyWind energy
Wind energy
 
Wind Power and New Technology
Wind Power and New TechnologyWind Power and New Technology
Wind Power and New Technology
 
wttt.pdf
wttt.pdfwttt.pdf
wttt.pdf
 
Wind energy
Wind energyWind energy
Wind energy
 
wind-mill-and-wind-energy(contains about the wind energy)
wind-mill-and-wind-energy(contains about the wind energy)wind-mill-and-wind-energy(contains about the wind energy)
wind-mill-and-wind-energy(contains about the wind energy)
 
CH 6_ M A Islam_WINDPOWER
CH 6_ M A Islam_WINDPOWERCH 6_ M A Islam_WINDPOWER
CH 6_ M A Islam_WINDPOWER
 
WIND ENERGY
WIND ENERGY WIND ENERGY
WIND ENERGY
 
RET UNIT-4.pptx
RET UNIT-4.pptxRET UNIT-4.pptx
RET UNIT-4.pptx
 
MODULE - 4.pptx
MODULE - 4.pptxMODULE - 4.pptx
MODULE - 4.pptx
 
Chapter 15 Wind Energy.pdf
Chapter 15 Wind Energy.pdfChapter 15 Wind Energy.pdf
Chapter 15 Wind Energy.pdf
 
CH 5 Wind Energy
CH 5 Wind EnergyCH 5 Wind Energy
CH 5 Wind Energy
 
Ocean,Tidal and Wind Energy
Ocean,Tidal and Wind EnergyOcean,Tidal and Wind Energy
Ocean,Tidal and Wind Energy
 

Recently uploaded

Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfakmcokerachita
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,Virag Sontakke
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxAnaBeatriceAblay2
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 

Recently uploaded (20)

Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdf
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 

Windpower

  • 1. WIND POWER  What is it?  How does it work?  Efficiency  U.S. Stats and Examples By: Roger Rivera
  • 2. WIND POWER - What is it?  All renewable energy (except tidal and geothermal power), ultimately comes from the sun  The earth receives 1.74 x 1017 watts of power (per hour) from the sun  About one or 2 percent of this energy is converted to wind energy (which is about 50-100 times more than the energy converted to biomass by all plants on earth  Differential heating of the earth’s surface and atmosphere induces vertical and horizontal air currents that are affected by the earth’s rotation and contours of the land  WIND. ~ e.g.: Land Sea Breeze Cycle
  • 3. • Winds are influenced by the ground surface at altitudes up to 100 meters. • Wind is slowed by the surface roughness and obstacles. • When dealing with wind energy, we are concerned with surface winds. • A wind turbine obtains its power input by converting the force of the wind into a torque (turning force) acting on the rotor blades. • The amount of energy which the wind transfers to the rotor depends on the density of the air, the rotor area, and the wind speed. • The kinetic energy of a moving body is proportional to its mass (or weight). The kinetic energy in the wind thus depends on the density of the air, i.e. its mass per unit of volume. In other words, the "heavier" the air, the more energy is received by the turbine. •at 15° Celsius air weighs about 1.225 kg per cubic meter, but the density decreases slightly with increasing humidity.
  • 4.  A typical 600 kW wind turbine has a rotor diameter of 43-44 meters, i.e. a rotor area of some 1,500 square meters.  The rotor area determines how much energy a wind turbine is able to harvest from the wind.  Since the rotor area increases with the square of the rotor diameter, a turbine which is twice as large will receive 22 = 2 x 2 = four times as much energy.  To be considered a good location for wind energy, an area needs to have average annual wind speeds of at least 12 miles per hour.
  • 5. WINDMILL DESIGN  A Windmill captures wind energy and then uses a generator to convert it to electrical energy.  The design of a windmill is an integral part of how efficient it will be.  When designing a windmill, one must decide on the size of the turbine, and the size of the generator.
  • 6. LARGE TURBINES: • Able to deliver electricity at lower cost than smaller turbines, because foundation costs, planning costs, etc. are independent of size. • Well-suited for offshore wind plants. • In areas where it is difficult to find sites, one large turbine on a tall tower uses the wind extremely efficiently.
  • 7. SMALL TURBINES:  Local electrical grids may not be able to handle the large electrical output from a large turbine, so smaller turbines may be more suitable.  High costs for foundations for large turbines may not be economical in some areas.  Landscape considerations
  • 8. Wind Turbines: Number of Blades  Most common design is the three-bladed turbine. The most important reason is the stability of the turbine. A rotor with an odd number of rotor blades (and at least three blades) can be considered to be similar to a disc when calculating the dynamic properties of the machine.  A rotor with an even number of blades will give stability problems for a machine with a stiff structure. The reason is that at the very moment when the uppermost blade bends backwards, because it gets the maximum power from the wind, the lowermost blade passes into the wind shade in front of the tower.
  • 9. • Wind power generators convert wind energy (mechanical energy) to electrical energy. • The generator is attached at one end to the wind turbine, which provides the mechanical energy. • At the other end, the generator is connected to the electrical grid. • The generator needs to have a cooling system to make sure there is no overheating.
  • 10. SMALL GENERATORS:  Require less force to turn than a larger ones, but give much lower power output.  Less efficient i.e.. If you fit a large wind turbine rotor with a small generator it will be producing electricity during many hours of the year, but it will capture only a small part of the energy content of the wind at high wind speeds. LARGE GENERATORS:  Very efficient at high wind speeds, but unable to turn at low wind speeds. i.e.. If the generator has larger coils, and/or a stronger internal magnet, it will require more force (mechanical) to start in motion.
  • 11. o A windmill built so that it too severely interrupts the airflow through its cross section will reduce the effective wind velocity at its location and divert much of the airflow around itself, thus not extracting the maximum power from the wind. o At the other extreme, a windmill that intercepts a small fraction of the wind passing through its cross section will reduce the wind’s velocity by only a small amount, thus extracting only a small fraction of the power from the wind traversing the windmill disk. o Modern Windmills can attain an efficiency of about 60 % of the theoretical maximum.
  • 12. P/m^2 = 6.1 x 10^-4 v^3 *The power in wind is proportional to the cubic wind speed ( v^3 ). WHY? ~ Kinetic energy of an air mass is proportional to v^2 ~ Amount of air mass moving past a given point is proportional to wind velocity (v)
  • 13. * An extra meter of tower will cost roughly 1,500 USD.
  • 14.  A typical 600 kW turbine costs about $450,000.  Installation costs are typically $125,000.  Therefore, the total costs will be about $575,000.  The average price for large, modern wind farms is around $1,000 per kilowatt electrical power installed.  Modern wind turbines are designed to work for some 120,000 hours of operation throughout their design lifetime of 20 years. ( 13.7 years non-stop) Maintenance costs are about 1.5-2.0 percent of the original cost, per year.
  • 15.  The U.S. currently has more than 1,600 MW of installed capacity and produces about 3 billion KWh of electricity each year.  This is enough to meet the annual residential needs of 1 million people.  More than 90 percent of this power is produced by three wind farms in California (Altamont Pass, Tehachapi and Palm Springs).
  • 16.
  • 17.
  • 18.
  • 19. • The U.S. contains enough useable wind resource to produce more electricity than the nation currently uses. • The majority of this usable resource is in the Great Plains region. North Dakota alone has enough suitable wind resource to supply 36 percent of the electricity consumed in the U.S. • In addition, development of major global wind energy markets could significantly impact jobs—recent studies show that each billion kilowatt-hours of annual wind energy generation creates between 440 to 460 jobs.
  • 20. Advantages of Wind Power • The wind blows day and night, which allows windmills to produce electricity throughout the day. (Faster during the day) • Energy output from a wind turbine will vary as the wind varies, although the most rapid variations will to some extent be compensated for by the inertia of the wind turbine rotor. • Wind energy is a domestic, renewable source of energy that generates no pollution and has little environmental impact. Up to 95 percent of land used for wind farms can also be used for other profitable activities including ranching, farming and forestry. • The decreasing cost of wind power and the growing interest in renewable energy sources should ensure that wind power will become a viable energy source in the United States and worldwide.
  • 21.  Wind Turbines and the Landscape - Large turbines don’t turn as fast  attract less attention - City dwellers “dwell” on the attention attracted by windmills  Sound from Wind Turbines - Increasing tip speed  less sound - The closest neighbor is usually 300 m  experiences almost no noise  Birds often collide with high voltage overhead lines, masts, poles, and windows of buildings. They are also killed by cars in traffic. However, birds are seldom bothered by wind turbines.  The only known site with bird collision problems is located in the Altamont Pass in California.  Danish Ministry of the Environment study revealed that power lines are a much greater danger to birds than the wind turbines.  Some birds even nest on cages on Wind Towers.
  • 22. Planning Wind Turbine Installation in Regard to Sound
  • 23. * Most of the information and data in this presentation was taken from www.windpower.org