SlideShare a Scribd company logo
1 of 63
Outline Introduction First order conservation laws Numerical method Numerical results Summary
A Robust Updated Lagrangian Smooth Particle
Hydrodynamics Algorithm For Fast Solid Dynamics
Paulo R. Refachinho de Campos∗, Antonio J. Gil∗, Chun Hean Lee†,
Antonio Huerta‡, Matteo Giacomini‡
∗ Zienkiewicz Centre for Computational Engineering (ZCCE)
† Glasgow Computational Engineering Centre (GCEC)
‡ Laboratori de Càlcul Numèric (LaCàN)
UKACM 2021 Conference on Computational Mechanics
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 1/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Outline
1 Introduction
Fast solid dynamics
Computational approach
2 First order conservation laws
Isothermal process
3 Numerical method
Spatial discretisation
4 Numerical results
Isothermal elasticity
Isothermal plasticity
5 Summary
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 2/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Outline
1 Introduction
Fast solid dynamics
Computational approach
2 First order conservation laws
Isothermal process
3 Numerical method
Spatial discretisation
4 Numerical results
Isothermal elasticity
Isothermal plasticity
5 Summary
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 3/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Engineering Applications for fast solid dynamics
· Short-duration dynamic events where large deformations, high energy impacts,
fracture and fragmentation can take place.
· Commercial solutions: VPS/PAM-CRASH, LS-DYNA, Abaqus/Explicit, RADIOSS . . .
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 4/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Engineering Applications for fast solid dynamics
· Short-duration dynamic events where large deformations, high energy impacts,
fracture and fragmentation can take place.
O&G blowout preventer Explosive forming Drop test Crashworthiness
Bird impact Ballistic Space debris impact Shock-wave lithotripsy
· Commercial solutions: VPS/PAM-CRASH, LS-DYNA, Abaqus/Explicit, RADIOSS . . .
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 4/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Engineering Applications for fast solid dynamics
· Short-duration dynamic events where large deformations, high energy impacts,
fracture and fragmentation can take place.
O&G blowout preventer Explosive forming Drop test Crashworthiness
Bird impact Ballistic Space debris impact Shock-wave lithotripsy
· Commercial solutions: VPS/PAM-CRASH, LS-DYNA, Abaqus/Explicit, RADIOSS . . .
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 4/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Limitations of current technology
· Mesh-based methods can potentially suffer from mesh entanglement when
simulating very large deformations
· A wealth of alternative meshfree methods have emerged over the years
· Smooth Particle Hydrodynamics (SPH)
· Simple and versatile:
· Complex geometries
· Large deformation
· Failure representation
· Classical SPH formulation:
· Not robust
· Non-physical modes
· Lack of consistency
· Reduced accuracy for stresses and strains
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 5/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Limitations of current technology
· Mesh-based methods can potentially suffer from mesh entanglement when
simulating very large deformations
· A wealth of alternative meshfree methods have emerged over the years
· Smooth Particle Hydrodynamics (SPH)
· Simple and versatile:
· Complex geometries
· Large deformation
· Failure representation
· Classical SPH formulation:
· Not robust
· Non-physical modes
· Lack of consistency
· Reduced accuracy for stresses and strains
Mesh entanglement
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 5/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Limitations of current technology
· Mesh-based methods can potentially suffer from mesh entanglement when
simulating very large deformations
· A wealth of alternative meshfree methods have emerged over the years
· Smooth Particle Hydrodynamics (SPH)
· Simple and versatile:
· Complex geometries
· Large deformation
· Failure representation
· Classical SPH formulation:
· Not robust
· Non-physical modes
· Lack of consistency
· Reduced accuracy for stresses and strains
Mesh entanglement
Non-physical modes
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 5/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Outline
1 Introduction
Fast solid dynamics
Computational approach
2 First order conservation laws
Isothermal process
3 Numerical method
Spatial discretisation
4 Numerical results
Isothermal elasticity
Isothermal plasticity
5 Summary
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 6/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Kinematic description
· Consider the deformation of an isothermal solid body:
F := ∇X φ, H :=
1
2
F F , J :=
1
3
H : F
Tensor-cross product property [Bonet et al., 2016]: (A B)ij = εiklεjmnAkmBln
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 7/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Kinematic description
· Consider the deformation of an isothermal solid body:
F := ∇X φ, H :=
1
2
F F , J :=
1
3
H : F
Tensor-cross product property [Bonet et al., 2016]: (A B)ij = εiklεjmnAkmBln
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 7/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Continuum balance principles
· Total Lagrangian conservation laws for solid dynamics:
∂p
∂t
− DIVP = b0
∂F
∂t
− DIV(v ⊗ I) = 0
∂H
∂t
− CURL (v F ) = 0
∂J
∂t
− DIV HT v

= 0
CURLF = 0 and DIVH = 0
· Written in hyperbolic form: EI := Ith unit vector of the Cartesian basis
∂U
∂t
+
3
X
I=1
∂FI
∂XI
= S
U =



p
F
H
J


 , FI = −



P EI
v ⊗ EI
F (v ⊗ EI )
H : (v ⊗ EI )


 , S =



b0
0
0
0



MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 8/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Continuum balance principles
· Total Lagrangian conservation laws for solid dynamics:
∂p
∂t
− DIVP = b0
∂F
∂t
− DIV(v ⊗ I) = 0
∂H
∂t
− CURL (v F ) = 0
∂J
∂t
− DIV HT v

= 0
CURLF = 0 and DIVH = 0
· Written in hyperbolic form: EI := Ith unit vector of the Cartesian basis
∂U
∂t
+
3
X
I=1
∂FI
∂XI
= S
U =



p
F
H
J


 , FI = −



P EI
v ⊗ EI
F (v ⊗ EI )
H : (v ⊗ EI )


 , S =



b0
0
0
0



MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 8/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Continuum balance principles
· Total Lagrangian conservation laws for solid dynamics:
∂p
∂t
− DIVP = b0
∂F
∂t
− DIV(v ⊗ I) = 0
∂H
∂t
− CURL (v F ) = 0
∂J
∂t
− DIV HT v

= 0
CURLF = 0 and DIVH = 0
· Written in hyperbolic form: EI := Ith unit vector of the Cartesian basis
∂U
∂t
+
3
X
I=1
∂FI
∂XI
= S
U =



p
F
H
J


 , FI = −



P EI
v ⊗ EI
F (v ⊗ EI )
H : (v ⊗ EI )


 , S =



b0
0
0
0



MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 8/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Kinematic description based on multiplicative decomposition
F := fFχ, H := hHχ, J := jJχ
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 9/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Continuum balance principles
· INCREMENTAL Updated Lagrangian conservation laws for solid dynamics:
J−1
χ
∂U
∂t
+
3
X
i=1
∂

FH−1
χ

i
∂χi
= J−1
χ S, in ΩV χ
J−1
χ
∂p
∂t
− divχ

P H−1
χ

= J−1
χ b0
J−1
χ
∂F
∂t
− divχ

v ⊗ H−1
χ

= 0
J−1
χ
∂H
∂t
− divχ
h
F

v ⊗ H−1
χ
i
= 0
J−1
χ
∂J
∂t
− divχ

H−T
χ HT v

= 0
· Fluxes are highly nonlinear
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 10/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Continuum balance principles
· INCREMENTAL Updated Lagrangian conservation laws for solid dynamics:
J−1
χ
∂U
∂t
+
3
X
i=1
∂

FH−1
χ

i
∂χi
= J−1
χ S, in ΩV χ
J−1
χ
∂p
∂t
− divχ

P H−1
χ

= J−1
χ b0
J−1
χ
∂F
∂t
− divχ

v ⊗ H−1
χ

= 0
J−1
χ
∂H
∂t
− divχ
h
F

v ⊗ H−1
χ
i
= 0
J−1
χ
∂J
∂t
− divχ

H−T
χ HT v

= 0
· Fluxes are highly nonlinear
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 10/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Continuum balance principles
· INCREMENTAL Updated Lagrangian conservation laws for solid dynamics:
∂pχ
∂t
− divχσχ = bχ
∂f
∂t
− divχ (v ⊗ I) = 0
∂h
∂t
− curlχ (v f) = 0
∂j
∂t
− divχ hT v

= 0
curlχf = 0 and divχh = 0
· Written in hyperbolic form: ei := ith unit vector of the Cartesian basis
∂Uχ
∂t
+
3
X
i=1
∂Fi
χ
∂χi
= Sχ
Uχ =



pχ
f
h
j


 , F
i
χ = −



σχei
v ⊗ ei
f (v ⊗ ei)
h: (v ⊗ ei)


 , Sχ =



bχ
0
0
0



MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 11/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Continuum balance principles
· INCREMENTAL Updated Lagrangian conservation laws for solid dynamics:
∂pχ
∂t
− divχσχ = bχ
∂f
∂t
− divχ (v ⊗ I) = 0
∂h
∂t
− curlχ (v f) = 0
∂j
∂t
− divχ hT v

= 0
curlχf = 0 and divχh = 0
· Written in hyperbolic form: ei := ith unit vector of the Cartesian basis
∂Uχ
∂t
+
3
X
i=1
∂Fi
χ
∂χi
= Sχ
Uχ =



pχ
f
h
j


 , F
i
χ = −



σχei
v ⊗ ei
f (v ⊗ ei)
h: (v ⊗ ei)


 , Sχ =



bχ
0
0
0



MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 11/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Incremental deformation
· How to define the reference configuration?
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 12/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Incremental deformation
· How to define the reference configuration?
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 12/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Incremental deformation
· How to define the reference configuration?
…
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 12/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Incremental deformation
· How to define the reference configuration?
…
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 12/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Incremental deformation
· How to define the reference configuration?
…
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 12/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Incremental deformation
· How to define the reference configuration?
… …
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 12/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Incremental deformation
· How to define the reference configuration?
… …
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 12/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Outline
1 Introduction
Fast solid dynamics
Computational approach
2 First order conservation laws
Isothermal process
3 Numerical method
Spatial discretisation
4 Numerical results
Isothermal elasticity
Isothermal plasticity
5 Summary
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 13/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Smooth Particle Hydrodynamics Method
· Pioneers [Gingold, Monaghan, 1977; Lucy, 1977]
· Lagrangian scheme
· Meshfree method
· Simple implementation
· Low computational cost
· Suitable for Large deformation
· Foundations in interpolation theory:
v (X) =
Z
ΩV
v X0

δ X − X0

dV ≈
Z
ΩV
v X0

W X − X0
, h

dV
· SPH approximation:
v (Xa) =
X
b∈Λb
a
VbvbWX
ba , ∇X v (Xa) =
X
b∈Λb
a
Vb(vb − va) ⊗ ∇X WX
ba
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 14/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Smooth Particle Hydrodynamics Method
· Pioneers [Gingold, Monaghan, 1977; Lucy, 1977]
· Lagrangian scheme
· Meshfree method
· Simple implementation
· Low computational cost
· Suitable for Large deformation
· Foundations in interpolation theory:
v (X) =
Z
ΩV
v X0

δ X − X0

dV ≈
Z
ΩV
v X0

W X − X0
, h

dV
· SPH approximation:
v (Xa) =
X
b∈Λb
a
VbvbWX
ba , ∇X v (Xa) =
X
b∈Λb
a
Vb(vb − va) ⊗ ∇X WX
ba
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 14/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Smooth Particle Hydrodynamics Method
· Pioneers [Gingold, Monaghan, 1977; Lucy, 1977]
· Lagrangian scheme
· Meshfree method
· Simple implementation
· Low computational cost
· Suitable for Large deformation
· Foundations in interpolation theory:
v (X) =
Z
ΩV
v X0

δ X − X0

dV ≈
Z
ΩV
v X0

W X − X0
, h

dV
· SPH approximation:
v (Xa) =
X
b∈Λb
a
VbvbWX
ba , ∇X v (Xa) =
X
b∈Λb
a
Vb(vb − va) ⊗ ∇X WX
ba
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 14/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Smooth Particle Hydrodynamics Method
· Pioneers [Gingold, Monaghan, 1977; Lucy, 1977]
· Lagrangian scheme
· Meshfree method
· Simple implementation
· Low computational cost
· Suitable for Large deformation
· Foundations in interpolation theory:
v (X) =
Z
ΩV
v X0

δ X − X0

dV ≈
Z
ΩV
v X0

W X − X0
, h

dV
· SPH approximation:
v (Xa) =
X
b∈Λb
a
VbvbWX
ba , ∇X v (Xa) =
X
b∈Λb
a
Vb(vb − va) ⊗ ∇X WX
ba
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 14/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Smooth Particle Hydrodynamics Method
· Pioneers [Gingold, Monaghan, 1977; Lucy, 1977]
· Lagrangian scheme
· Meshfree method
· Simple implementation
· Low computational cost
· Suitable for Large deformation
· Foundations in interpolation theory:
v (X) =
Z
ΩV
v X0

δ X − X0

dV ≈
Z
ΩV
v X0

W X − X0
, h

dV
· SPH approximation:
v (Xa) =
X
b∈Λb
a
VbvbWX
ba , ∇X v (Xa) =
X
b∈Λb
a
Vb(vb − va) ⊗ ∇X WX
ba
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 14/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Classical SPH correction
· SPH does not fulfil the Kronecker-Delta property
· Corrected SPH kernel approximation [Bonet et al., 1999]
v (Xa) =
P
b∈Λb
a
VbvbW̃X
ba, W̃X
ba = KX
a WX
ba

· Consistency conditions
X
b∈Λb
a
VbW̃X
ba = 1,
X
b∈Λb
a
Vb (Xa − Xb) W̃X
ba = 0
· Corrected gradient evaluation [Bonet et al., 1999]
∇X v (Xa) =
P
b∈Λb
a
Vb(vb − va) ⊗ ˜
∇X WX
ba , ˜
∇X WX
ba = GX
a ∇X WX
ba

· Rigid body invariance
X
b∈Λb
a
Vb (Xb − Xa) ⊗ ˜
∇X WX
ba = I
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 15/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Classical SPH correction
· SPH does not fulfil the Kronecker-Delta property
· Corrected SPH kernel approximation [Bonet et al., 1999]
v (Xa) =
P
b∈Λb
a
VbvbW̃X
ba, W̃X
ba = KX
a WX
ba

· Consistency conditions
X
b∈Λb
a
VbW̃X
ba = 1,
X
b∈Λb
a
Vb (Xa − Xb) W̃X
ba = 0
· Corrected gradient evaluation [Bonet et al., 1999]
∇X v (Xa) =
P
b∈Λb
a
Vb(vb − va) ⊗ ˜
∇X WX
ba , ˜
∇X WX
ba = GX
a ∇X WX
ba

· Rigid body invariance
X
b∈Λb
a
Vb (Xb − Xa) ⊗ ˜
∇X WX
ba = I
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 15/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Classical SPH correction
· SPH does not fulfil the Kronecker-Delta property
· Corrected SPH kernel approximation [Bonet et al., 1999]
v (Xa) =
P
b∈Λb
a
VbvbW̃X
ba, W̃X
ba = KX
a WX
ba

· Consistency conditions
X
b∈Λb
a
VbW̃X
ba = 1,
X
b∈Λb
a
Vb (Xa − Xb) W̃X
ba = 0
· Corrected gradient evaluation [Bonet et al., 1999]
∇X v (Xa) =
P
b∈Λb
a
Vb(vb − va) ⊗ ˜
∇X WX
ba , ˜
∇X WX
ba = GX
a ∇X WX
ba

· Rigid body invariance
X
b∈Λb
a
Vb (Xb − Xa) ⊗ ˜
∇X WX
ba = I
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 15/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Classical SPH correction
· SPH does not fulfil the Kronecker-Delta property
· Corrected SPH kernel approximation [Bonet et al., 1999]
v (Xa) =
P
b∈Λb
a
VbvbW̃X
ba, W̃X
ba = KX
a WX
ba

· Consistency conditions
X
b∈Λb
a
VbW̃X
ba = 1,
X
b∈Λb
a
Vb (Xa − Xb) W̃X
ba = 0
· Corrected gradient evaluation [Bonet et al., 1999]
∇X v (Xa) =
P
b∈Λb
a
Vb(vb − va) ⊗ ˜
∇X WX
ba , ˜
∇X WX
ba = GX
a ∇X WX
ba

· Rigid body invariance
X
b∈Λb
a
Vb (Xb − Xa) ⊗ ˜
∇X WX
ba = I
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 15/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Classical SPH correction
· SPH does not fulfil the Kronecker-Delta property
· Corrected SPH kernel approximation [Bonet et al., 1999]
v (Xa) =
P
b∈Λb
a
VbvbW̃X
ba, W̃X
ba = KX
a WX
ba

· Consistency conditions
X
b∈Λb
a
VbW̃X
ba = 1,
X
b∈Λb
a
Vb (Xa − Xb) W̃X
ba = 0
· Corrected gradient evaluation [Bonet et al., 1999]
∇X v (Xa) =
P
b∈Λb
a
Vb(vb − va) ⊗ ˜
∇X WX
ba , ˜
∇X WX
ba = GX
a ∇X WX
ba

· Rigid body invariance
X
b∈Λb
a
Vb (Xb − Xa) ⊗ ˜
∇X WX
ba = I
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 15/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Smooth Particle Hydrodynamics Method
Material support
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 16/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Smooth Particle Hydrodynamics Method
Material support Updated support
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 16/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Smooth Particle Hydrodynamics Method
Material support Updated support Anisotropic support
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 16/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Smooth Particle Hydrodynamics Method
Anisotropic support
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 17/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Smooth Particle Hydrodynamics Method
Anisotropic support
· Option 1:
Wχ
ba = J−1
χ,bKX
a

WX
ba

∇χWχ
ba = J−1
χ,bF −T
χ,a GX
a

∇X WX
ba

where
WX
ba = W (Xa − Xb, hb) , hb = fh max
j∈Λ
j
b
(kXj − Xbk)
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 17/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Smooth Particle Hydrodynamics Method
Anisotropic support
· Option 2:
W̃χ
ba = Kχ
a

J−1
χ,bWX
ba

˜
∇χWχ
ba = Gχ
a

J−1
χ,bF −T
χ,a ∇X WX
ba

where
WX
ba = W (Xa − Xb, hb) , hb = fh max
j∈Λ
j
b
(kXj − Xbk)
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 17/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Smooth Particle Hydrodynamics Method
Anisotropic support
· Option 3:
W̃χ
ba = Kχ
a

J−1
χ,bŴX
ba

˜
∇χWχ
ba = Gχ
a

J−1
χ,bF −T
χ,a ∇X ŴX
ba

where
ŴX
ba = Ŵ

Fχ,ab, χa − χb, ĥb

ĥb = fh max
j∈Λ̂
j
b

F −1
χ,bjkχj − χbk

Xa − Xb ≈ F −1
χ,ab (χa − χb) , Fχ,ab =
1
2
Fχ,a + Fχ,b

MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 17/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Smooth Particle Hydrodynamics Method
Anisotropic support
· Option 4:
W̃χ
ba = Kχ
a

J−1
χ,bŴX
ba

˜
∇χWχ
ba = Gχ
a

J−1
χ,bF −T
χ,ab∇X ŴX
ba

where
ŴX
ba = Ŵ

Fχ,ab, χa − χb, ĥb

ĥb = fh max
j∈Λ̂
j
b

F −1
χ,bjkχj − χbk

Xa − Xb ≈ F −1
χ,ab (χa − χb) , Fχ,ab =
1
2
Fχ,a + Fχ,b

MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 17/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Smooth Particle Hydrodynamics Method
· Semi-discrete equations:
V χ
a
dpa
χ
dt
=
P
b∈Λb
a
1
2
σa
χCχ
ba − σb
χCχ
ab

+ V χ
a ba
χ + Aχ
a ta
χ+
P
b∈Λb
a
Dχ
ab
V χ
a
dfa
dt
=
P
b∈Λb
a
1
2
(vb − va) ⊗ Cχ
ba
V χ
a
dha
dt
= fa
P
b∈Λb
a
1
2
(vb − va) ⊗ Cχ
ba

V χ
a
dja
dt
= ha :
P
b∈Λb
a
1
2
(vb − va) ⊗ Cχ
ba

· Pseudo-area vectors:
Cχ
ba
:= 2V χ
a V χ
b
˜
∇χWχ
ba, Cχ
ab
:= 2V χ
b V χ
a
˜
∇χWχ
ab
· Riemann-based numerical dissipation [Ghavamian et al., 2021]
· Three-stages Runge-Kutta time integrator [Shu et al., 1988]
· Discrete angular momentum preserving algorithm [Lee et al., 2019]
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 18/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Smooth Particle Hydrodynamics Method
· Semi-discrete equations:
V χ
a
dpa
χ
dt
=
P
b∈Λb
a
1
2
σa
χCχ
ba − σb
χCχ
ab

+ V χ
a ba
χ + Aχ
a ta
χ+
P
b∈Λb
a
Dχ
ab
V χ
a
dfa
dt
=
P
b∈Λb
a
1
2
(vb − va) ⊗ Cχ
ba
V χ
a
dha
dt
= fa
P
b∈Λb
a
1
2
(vb − va) ⊗ Cχ
ba

V χ
a
dja
dt
= ha :
P
b∈Λb
a
1
2
(vb − va) ⊗ Cχ
ba

· Pseudo-area vectors:
Cχ
ba
:= 2V χ
a V χ
b
˜
∇χWχ
ba, Cχ
ab
:= 2V χ
b V χ
a
˜
∇χWχ
ab
· Riemann-based numerical dissipation [Ghavamian et al., 2021]
· Three-stages Runge-Kutta time integrator [Shu et al., 1988]
· Discrete angular momentum preserving algorithm [Lee et al., 2019]
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 18/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Smooth Particle Hydrodynamics Method
· Semi-discrete equations:
V χ
a
dpa
χ
dt
=
P
b∈Λb
a
1
2
σa
χCχ
ba − σb
χCχ
ab

+ V χ
a ba
χ + Aχ
a ta
χ+
P
b∈Λb
a
Dχ
ab
V χ
a
dfa
dt
=
P
b∈Λb
a
1
2
(vb − va) ⊗ Cχ
ba
V χ
a
dha
dt
= fa
P
b∈Λb
a
1
2
(vb − va) ⊗ Cχ
ba

V χ
a
dja
dt
= ha :
P
b∈Λb
a
1
2
(vb − va) ⊗ Cχ
ba

· Pseudo-area vectors:
Cχ
ba
:= 2V χ
a V χ
b
˜
∇χWχ
ba, Cχ
ab
:= 2V χ
b V χ
a
˜
∇χWχ
ab
· Riemann-based numerical dissipation [Ghavamian et al., 2021]
· Three-stages Runge-Kutta time integrator [Shu et al., 1988]
· Discrete angular momentum preserving algorithm [Lee et al., 2019]
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 18/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Outline
1 Introduction
Fast solid dynamics
Computational approach
2 First order conservation laws
Isothermal process
3 Numerical method
Spatial discretisation
4 Numerical results
Isothermal elasticity
Isothermal plasticity
5 Summary
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 19/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Numerical results
Isothermal elasticity
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 20/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Stability: Bending column
Problem: Bending column, neo-Hookean material, initial density ρ0 = 1100kg/m3
, Young’s
modulus E = 17MPa and Poisson’s ratio ν = 0.3. Initial velocity V = 10m/s. Updates
performed at every time step.
[video]
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 21/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Stability: Bending column
Problem: Bending column, neo-Hookean material, initial density ρ0 = 1100kg/m3
, Young’s
modulus E = 17MPa and Poisson’s ratio ν = 0.3. Initial velocity V = 10m/s. Updates
performed at every time step.
[video]
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 21/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Robustness: Twisting column
Problem: Twisting column, neo-Hookean material, initial density ρ0 = 1100kg/m3
, Young’s
modulus E = 17MPa and Poisson’s ratio ν = 0.4995. Initial angular velocity Ω = 105rad/s.
Updates performed at every time step.
[video]
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 22/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Numerical results
Isothermal plasticity
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 23/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
High speed impact: Taylor bar
Problem: Taylor bar, Hencky-Mises plasticity, initial density ρ0 = 8930kg/m3
, Young’s modulus
E = 117GPa, Poisson’s ratio ν = 0.35, yield stress, τ0
y = 400MPa and linear hardening modulus
H = 100MPa. Initial velocity V = −227m/s.
[video]
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 24/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
High speed impact: Taylor bar
Problem: Taylor bar, Hencky-Mises plasticity, initial density ρ0 = 8930kg/m3
, Young’s modulus
E = 117GPa, Poisson’s ratio ν = 0.35, yield stress, τ0
y = 400MPa and linear hardening modulus
H = 100MPa. Initial velocity V = −227m/s.
[video]
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 24/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
High speed impact: Taylor bar
Problem: Taylor bar, Hencky-Mises plasticity, initial density ρ0 = 8930kg/m3
, Young’s modulus
E = 117GPa, Poisson’s ratio ν = 0.35, yield stress, τ0
y = 400MPa and linear hardening modulus
H = 100MPa. Initial velocity V = −227m/s.
[video]
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 24/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Robustness: Necking bar
Problem: Necking bar, Hencky-Mises plasticity, initial density ρ0 = 7850kg/m3
, Young’s
modulus E = 206.9GPa, Poisson’s ratio ν = 0.29, yield stress τ0
y = 450MPa, residual yield
stress τ∞
y = 715MPa, linear hardening modulus H = 129.24MPa and saturation exponent
δ = 16.93. Quasi-static 25% elongation.
[video]
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 25/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Robustness: Necking bar
Problem: Necking bar, Hencky-Mises plasticity, initial density ρ0 = 7850kg/m3
, Young’s
modulus E = 206.9GPa, Poisson’s ratio ν = 0.29, yield stress τ0
y = 450MPa, residual yield
stress τ∞
y = 715MPa, linear hardening modulus H = 129.24MPa and saturation exponent
δ = 16.93. Quasi-static 25% elongation.
[video]
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 25/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Robustness: Necking bar
Problem: Necking bar, Hencky-Mises plasticity, initial density ρ0 = 7850kg/m3
, Young’s
modulus E = 206.9GPa, Poisson’s ratio ν = 0.29, yield stress τ0
y = 450MPa, residual yield
stress τ∞
y = 715MPa, linear hardening modulus H = 129.24MPa and saturation exponent
δ = 16.93. Quasi-static 25% elongation.
[video]
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 25/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Outline
1 Introduction
Fast solid dynamics
Computational approach
2 First order conservation laws
Isothermal process
3 Numerical method
Spatial discretisation
4 Numerical results
Isothermal elasticity
Isothermal plasticity
5 Summary
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 26/27
Outline Introduction First order conservation laws Numerical method Numerical results Summary
Summary
Highlights
· A ROBUST Updated Lagrangian SPH framework, laying the foundations for
Dynamic Fracture:
· System of first order conservation laws
· Incremental ULF (multiplicative decomposition)
· Anisotropic kernel function
· Entropy stable upwinding stabilisation scheme
Further work
· Extended capabilities:
· Thermal plasticity (ongoing)
· Dynamic fracture
· Contact
Acknowledgements
This project has received funding from the EU Framework Programme for
Research and Innovation Horizon 2020 under Grant Agreement No 764636.
Thank you!
MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 27/27

More Related Content

Similar to Updated Lagrangian SPH

EFFINET - Initial Presentation
EFFINET - Initial PresentationEFFINET - Initial Presentation
EFFINET - Initial PresentationPantelis Sopasakis
 
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Guillaume Costeseque
 
Large strain solid dynamics in OpenFOAM
Large strain solid dynamics in OpenFOAMLarge strain solid dynamics in OpenFOAM
Large strain solid dynamics in OpenFOAMJibran Haider
 
A contribution towards the development of a Virtual Wind Tunnel (VWT)
A contribution towards the development of a Virtual Wind Tunnel (VWT)A contribution towards the development of a Virtual Wind Tunnel (VWT)
A contribution towards the development of a Virtual Wind Tunnel (VWT)Vicente Mataix Ferrándiz
 
Universal approximators for Direct Policy Search in multi-purpose water reser...
Universal approximators for Direct Policy Search in multi-purpose water reser...Universal approximators for Direct Policy Search in multi-purpose water reser...
Universal approximators for Direct Policy Search in multi-purpose water reser...Andrea Castelletti
 
Novel unified finite element schemes for computational solid mechanics based ...
Novel unified finite element schemes for computational solid mechanics based ...Novel unified finite element schemes for computational solid mechanics based ...
Novel unified finite element schemes for computational solid mechanics based ...CHENNAKESAVA KADAPA
 
A first order conservation law framework
A first order conservation law frameworkA first order conservation law framework
A first order conservation law frameworkChun Hean Lee
 
Joint CSI Estimation, Beamforming and Scheduling Design for Wideband Massive ...
Joint CSI Estimation, Beamforming and Scheduling Design for Wideband Massive ...Joint CSI Estimation, Beamforming and Scheduling Design for Wideband Massive ...
Joint CSI Estimation, Beamforming and Scheduling Design for Wideband Massive ...T. E. BOGALE
 
Sinc collocation linked with finite differences for Korteweg-de Vries Fraction...
Sinc collocation linked with finite differences for Korteweg-de Vries Fraction...Sinc collocation linked with finite differences for Korteweg-de Vries Fraction...
Sinc collocation linked with finite differences for Korteweg-de Vries Fraction...IJECEIAES
 
Overview of the FlexPlan project. Focus on EU regulatory analysis and TSO-DSO...
Overview of the FlexPlan project. Focus on EU regulatory analysis and TSO-DSO...Overview of the FlexPlan project. Focus on EU regulatory analysis and TSO-DSO...
Overview of the FlexPlan project. Focus on EU regulatory analysis and TSO-DSO...Leonardo ENERGY
 
Stochastic methods and models for multi-objective dynamic optimisation problems
Stochastic methods and models for multi-objective dynamic optimisation problemsStochastic methods and models for multi-objective dynamic optimisation problems
Stochastic methods and models for multi-objective dynamic optimisation problemsEric Fraga
 
Challenges for coupling approaches for classical linear elasticity and bond-b...
Challenges for coupling approaches for classical linear elasticity and bond-b...Challenges for coupling approaches for classical linear elasticity and bond-b...
Challenges for coupling approaches for classical linear elasticity and bond-b...Patrick Diehl
 
Diapositiva - Defensa Tesis Doctorado
Diapositiva - Defensa Tesis DoctoradoDiapositiva - Defensa Tesis Doctorado
Diapositiva - Defensa Tesis DoctoradoDavid Barreto Lara
 
An Iteratively Coupled Solution Method for Partial and Super-Cavitation Predi...
An Iteratively Coupled Solution Method for Partial and Super-Cavitation Predi...An Iteratively Coupled Solution Method for Partial and Super-Cavitation Predi...
An Iteratively Coupled Solution Method for Partial and Super-Cavitation Predi...João Baltazar
 
introduction to scientific computing
introduction to scientific computingintroduction to scientific computing
introduction to scientific computingHaiderParekh1
 
CFD Lecture (2/8): Fluid Mechanics: CFD Perspective
CFD Lecture (2/8): Fluid Mechanics: CFD PerspectiveCFD Lecture (2/8): Fluid Mechanics: CFD Perspective
CFD Lecture (2/8): Fluid Mechanics: CFD PerspectiveAbhishek Jain
 
Development of a low order stabilised Petrov-Galerkin formulation for a mixed...
Development of a low order stabilised Petrov-Galerkin formulation for a mixed...Development of a low order stabilised Petrov-Galerkin formulation for a mixed...
Development of a low order stabilised Petrov-Galerkin formulation for a mixed...Chun Hean Lee
 
Wind meteodyn WT cfd micro scale modeling combined statistical learning for s...
Wind meteodyn WT cfd micro scale modeling combined statistical learning for s...Wind meteodyn WT cfd micro scale modeling combined statistical learning for s...
Wind meteodyn WT cfd micro scale modeling combined statistical learning for s...Jean-Claude Meteodyn
 
Wind energy projects integration in electricity grids portugal and med tso e...
Wind energy projects integration in electricity grids  portugal and med tso e...Wind energy projects integration in electricity grids  portugal and med tso e...
Wind energy projects integration in electricity grids portugal and med tso e...RCREEE
 

Similar to Updated Lagrangian SPH (20)

EFFINET - Initial Presentation
EFFINET - Initial PresentationEFFINET - Initial Presentation
EFFINET - Initial Presentation
 
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...
 
Large strain solid dynamics in OpenFOAM
Large strain solid dynamics in OpenFOAMLarge strain solid dynamics in OpenFOAM
Large strain solid dynamics in OpenFOAM
 
A contribution towards the development of a Virtual Wind Tunnel (VWT)
A contribution towards the development of a Virtual Wind Tunnel (VWT)A contribution towards the development of a Virtual Wind Tunnel (VWT)
A contribution towards the development of a Virtual Wind Tunnel (VWT)
 
Universal approximators for Direct Policy Search in multi-purpose water reser...
Universal approximators for Direct Policy Search in multi-purpose water reser...Universal approximators for Direct Policy Search in multi-purpose water reser...
Universal approximators for Direct Policy Search in multi-purpose water reser...
 
Novel unified finite element schemes for computational solid mechanics based ...
Novel unified finite element schemes for computational solid mechanics based ...Novel unified finite element schemes for computational solid mechanics based ...
Novel unified finite element schemes for computational solid mechanics based ...
 
A first order conservation law framework
A first order conservation law frameworkA first order conservation law framework
A first order conservation law framework
 
Joint CSI Estimation, Beamforming and Scheduling Design for Wideband Massive ...
Joint CSI Estimation, Beamforming and Scheduling Design for Wideband Massive ...Joint CSI Estimation, Beamforming and Scheduling Design for Wideband Massive ...
Joint CSI Estimation, Beamforming and Scheduling Design for Wideband Massive ...
 
Sinc collocation linked with finite differences for Korteweg-de Vries Fraction...
Sinc collocation linked with finite differences for Korteweg-de Vries Fraction...Sinc collocation linked with finite differences for Korteweg-de Vries Fraction...
Sinc collocation linked with finite differences for Korteweg-de Vries Fraction...
 
Overview of the FlexPlan project. Focus on EU regulatory analysis and TSO-DSO...
Overview of the FlexPlan project. Focus on EU regulatory analysis and TSO-DSO...Overview of the FlexPlan project. Focus on EU regulatory analysis and TSO-DSO...
Overview of the FlexPlan project. Focus on EU regulatory analysis and TSO-DSO...
 
Stochastic methods and models for multi-objective dynamic optimisation problems
Stochastic methods and models for multi-objective dynamic optimisation problemsStochastic methods and models for multi-objective dynamic optimisation problems
Stochastic methods and models for multi-objective dynamic optimisation problems
 
nte.pdf
nte.pdfnte.pdf
nte.pdf
 
Challenges for coupling approaches for classical linear elasticity and bond-b...
Challenges for coupling approaches for classical linear elasticity and bond-b...Challenges for coupling approaches for classical linear elasticity and bond-b...
Challenges for coupling approaches for classical linear elasticity and bond-b...
 
Diapositiva - Defensa Tesis Doctorado
Diapositiva - Defensa Tesis DoctoradoDiapositiva - Defensa Tesis Doctorado
Diapositiva - Defensa Tesis Doctorado
 
An Iteratively Coupled Solution Method for Partial and Super-Cavitation Predi...
An Iteratively Coupled Solution Method for Partial and Super-Cavitation Predi...An Iteratively Coupled Solution Method for Partial and Super-Cavitation Predi...
An Iteratively Coupled Solution Method for Partial and Super-Cavitation Predi...
 
introduction to scientific computing
introduction to scientific computingintroduction to scientific computing
introduction to scientific computing
 
CFD Lecture (2/8): Fluid Mechanics: CFD Perspective
CFD Lecture (2/8): Fluid Mechanics: CFD PerspectiveCFD Lecture (2/8): Fluid Mechanics: CFD Perspective
CFD Lecture (2/8): Fluid Mechanics: CFD Perspective
 
Development of a low order stabilised Petrov-Galerkin formulation for a mixed...
Development of a low order stabilised Petrov-Galerkin formulation for a mixed...Development of a low order stabilised Petrov-Galerkin formulation for a mixed...
Development of a low order stabilised Petrov-Galerkin formulation for a mixed...
 
Wind meteodyn WT cfd micro scale modeling combined statistical learning for s...
Wind meteodyn WT cfd micro scale modeling combined statistical learning for s...Wind meteodyn WT cfd micro scale modeling combined statistical learning for s...
Wind meteodyn WT cfd micro scale modeling combined statistical learning for s...
 
Wind energy projects integration in electricity grids portugal and med tso e...
Wind energy projects integration in electricity grids  portugal and med tso e...Wind energy projects integration in electricity grids  portugal and med tso e...
Wind energy projects integration in electricity grids portugal and med tso e...
 

Recently uploaded

Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and usesDevarapalliHaritha
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxvipinkmenon1
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 

Recently uploaded (20)

Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and uses
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptx
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 

Updated Lagrangian SPH

  • 1. Outline Introduction First order conservation laws Numerical method Numerical results Summary A Robust Updated Lagrangian Smooth Particle Hydrodynamics Algorithm For Fast Solid Dynamics Paulo R. Refachinho de Campos∗, Antonio J. Gil∗, Chun Hean Lee†, Antonio Huerta‡, Matteo Giacomini‡ ∗ Zienkiewicz Centre for Computational Engineering (ZCCE) † Glasgow Computational Engineering Centre (GCEC) ‡ Laboratori de Càlcul Numèric (LaCàN) UKACM 2021 Conference on Computational Mechanics MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 1/27
  • 2. Outline Introduction First order conservation laws Numerical method Numerical results Summary Outline 1 Introduction Fast solid dynamics Computational approach 2 First order conservation laws Isothermal process 3 Numerical method Spatial discretisation 4 Numerical results Isothermal elasticity Isothermal plasticity 5 Summary MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 2/27
  • 3. Outline Introduction First order conservation laws Numerical method Numerical results Summary Outline 1 Introduction Fast solid dynamics Computational approach 2 First order conservation laws Isothermal process 3 Numerical method Spatial discretisation 4 Numerical results Isothermal elasticity Isothermal plasticity 5 Summary MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 3/27
  • 4. Outline Introduction First order conservation laws Numerical method Numerical results Summary Engineering Applications for fast solid dynamics · Short-duration dynamic events where large deformations, high energy impacts, fracture and fragmentation can take place. · Commercial solutions: VPS/PAM-CRASH, LS-DYNA, Abaqus/Explicit, RADIOSS . . . MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 4/27
  • 5. Outline Introduction First order conservation laws Numerical method Numerical results Summary Engineering Applications for fast solid dynamics · Short-duration dynamic events where large deformations, high energy impacts, fracture and fragmentation can take place. O&G blowout preventer Explosive forming Drop test Crashworthiness Bird impact Ballistic Space debris impact Shock-wave lithotripsy · Commercial solutions: VPS/PAM-CRASH, LS-DYNA, Abaqus/Explicit, RADIOSS . . . MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 4/27
  • 6. Outline Introduction First order conservation laws Numerical method Numerical results Summary Engineering Applications for fast solid dynamics · Short-duration dynamic events where large deformations, high energy impacts, fracture and fragmentation can take place. O&G blowout preventer Explosive forming Drop test Crashworthiness Bird impact Ballistic Space debris impact Shock-wave lithotripsy · Commercial solutions: VPS/PAM-CRASH, LS-DYNA, Abaqus/Explicit, RADIOSS . . . MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 4/27
  • 7. Outline Introduction First order conservation laws Numerical method Numerical results Summary Limitations of current technology · Mesh-based methods can potentially suffer from mesh entanglement when simulating very large deformations · A wealth of alternative meshfree methods have emerged over the years · Smooth Particle Hydrodynamics (SPH) · Simple and versatile: · Complex geometries · Large deformation · Failure representation · Classical SPH formulation: · Not robust · Non-physical modes · Lack of consistency · Reduced accuracy for stresses and strains MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 5/27
  • 8. Outline Introduction First order conservation laws Numerical method Numerical results Summary Limitations of current technology · Mesh-based methods can potentially suffer from mesh entanglement when simulating very large deformations · A wealth of alternative meshfree methods have emerged over the years · Smooth Particle Hydrodynamics (SPH) · Simple and versatile: · Complex geometries · Large deformation · Failure representation · Classical SPH formulation: · Not robust · Non-physical modes · Lack of consistency · Reduced accuracy for stresses and strains Mesh entanglement MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 5/27
  • 9. Outline Introduction First order conservation laws Numerical method Numerical results Summary Limitations of current technology · Mesh-based methods can potentially suffer from mesh entanglement when simulating very large deformations · A wealth of alternative meshfree methods have emerged over the years · Smooth Particle Hydrodynamics (SPH) · Simple and versatile: · Complex geometries · Large deformation · Failure representation · Classical SPH formulation: · Not robust · Non-physical modes · Lack of consistency · Reduced accuracy for stresses and strains Mesh entanglement Non-physical modes MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 5/27
  • 10. Outline Introduction First order conservation laws Numerical method Numerical results Summary Outline 1 Introduction Fast solid dynamics Computational approach 2 First order conservation laws Isothermal process 3 Numerical method Spatial discretisation 4 Numerical results Isothermal elasticity Isothermal plasticity 5 Summary MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 6/27
  • 11. Outline Introduction First order conservation laws Numerical method Numerical results Summary Kinematic description · Consider the deformation of an isothermal solid body: F := ∇X φ, H := 1 2 F F , J := 1 3 H : F Tensor-cross product property [Bonet et al., 2016]: (A B)ij = εiklεjmnAkmBln MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 7/27
  • 12. Outline Introduction First order conservation laws Numerical method Numerical results Summary Kinematic description · Consider the deformation of an isothermal solid body: F := ∇X φ, H := 1 2 F F , J := 1 3 H : F Tensor-cross product property [Bonet et al., 2016]: (A B)ij = εiklεjmnAkmBln MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 7/27
  • 13. Outline Introduction First order conservation laws Numerical method Numerical results Summary Continuum balance principles · Total Lagrangian conservation laws for solid dynamics: ∂p ∂t − DIVP = b0 ∂F ∂t − DIV(v ⊗ I) = 0 ∂H ∂t − CURL (v F ) = 0 ∂J ∂t − DIV HT v = 0 CURLF = 0 and DIVH = 0 · Written in hyperbolic form: EI := Ith unit vector of the Cartesian basis ∂U ∂t + 3 X I=1 ∂FI ∂XI = S U =    p F H J    , FI = −    P EI v ⊗ EI F (v ⊗ EI ) H : (v ⊗ EI )    , S =    b0 0 0 0    MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 8/27
  • 14. Outline Introduction First order conservation laws Numerical method Numerical results Summary Continuum balance principles · Total Lagrangian conservation laws for solid dynamics: ∂p ∂t − DIVP = b0 ∂F ∂t − DIV(v ⊗ I) = 0 ∂H ∂t − CURL (v F ) = 0 ∂J ∂t − DIV HT v = 0 CURLF = 0 and DIVH = 0 · Written in hyperbolic form: EI := Ith unit vector of the Cartesian basis ∂U ∂t + 3 X I=1 ∂FI ∂XI = S U =    p F H J    , FI = −    P EI v ⊗ EI F (v ⊗ EI ) H : (v ⊗ EI )    , S =    b0 0 0 0    MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 8/27
  • 15. Outline Introduction First order conservation laws Numerical method Numerical results Summary Continuum balance principles · Total Lagrangian conservation laws for solid dynamics: ∂p ∂t − DIVP = b0 ∂F ∂t − DIV(v ⊗ I) = 0 ∂H ∂t − CURL (v F ) = 0 ∂J ∂t − DIV HT v = 0 CURLF = 0 and DIVH = 0 · Written in hyperbolic form: EI := Ith unit vector of the Cartesian basis ∂U ∂t + 3 X I=1 ∂FI ∂XI = S U =    p F H J    , FI = −    P EI v ⊗ EI F (v ⊗ EI ) H : (v ⊗ EI )    , S =    b0 0 0 0    MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 8/27
  • 16. Outline Introduction First order conservation laws Numerical method Numerical results Summary Kinematic description based on multiplicative decomposition F := fFχ, H := hHχ, J := jJχ MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 9/27
  • 17. Outline Introduction First order conservation laws Numerical method Numerical results Summary Continuum balance principles · INCREMENTAL Updated Lagrangian conservation laws for solid dynamics: J−1 χ ∂U ∂t + 3 X i=1 ∂ FH−1 χ i ∂χi = J−1 χ S, in ΩV χ J−1 χ ∂p ∂t − divχ P H−1 χ = J−1 χ b0 J−1 χ ∂F ∂t − divχ v ⊗ H−1 χ = 0 J−1 χ ∂H ∂t − divχ h F v ⊗ H−1 χ i = 0 J−1 χ ∂J ∂t − divχ H−T χ HT v = 0 · Fluxes are highly nonlinear MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 10/27
  • 18. Outline Introduction First order conservation laws Numerical method Numerical results Summary Continuum balance principles · INCREMENTAL Updated Lagrangian conservation laws for solid dynamics: J−1 χ ∂U ∂t + 3 X i=1 ∂ FH−1 χ i ∂χi = J−1 χ S, in ΩV χ J−1 χ ∂p ∂t − divχ P H−1 χ = J−1 χ b0 J−1 χ ∂F ∂t − divχ v ⊗ H−1 χ = 0 J−1 χ ∂H ∂t − divχ h F v ⊗ H−1 χ i = 0 J−1 χ ∂J ∂t − divχ H−T χ HT v = 0 · Fluxes are highly nonlinear MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 10/27
  • 19. Outline Introduction First order conservation laws Numerical method Numerical results Summary Continuum balance principles · INCREMENTAL Updated Lagrangian conservation laws for solid dynamics: ∂pχ ∂t − divχσχ = bχ ∂f ∂t − divχ (v ⊗ I) = 0 ∂h ∂t − curlχ (v f) = 0 ∂j ∂t − divχ hT v = 0 curlχf = 0 and divχh = 0 · Written in hyperbolic form: ei := ith unit vector of the Cartesian basis ∂Uχ ∂t + 3 X i=1 ∂Fi χ ∂χi = Sχ Uχ =    pχ f h j    , F i χ = −    σχei v ⊗ ei f (v ⊗ ei) h: (v ⊗ ei)    , Sχ =    bχ 0 0 0    MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 11/27
  • 20. Outline Introduction First order conservation laws Numerical method Numerical results Summary Continuum balance principles · INCREMENTAL Updated Lagrangian conservation laws for solid dynamics: ∂pχ ∂t − divχσχ = bχ ∂f ∂t − divχ (v ⊗ I) = 0 ∂h ∂t − curlχ (v f) = 0 ∂j ∂t − divχ hT v = 0 curlχf = 0 and divχh = 0 · Written in hyperbolic form: ei := ith unit vector of the Cartesian basis ∂Uχ ∂t + 3 X i=1 ∂Fi χ ∂χi = Sχ Uχ =    pχ f h j    , F i χ = −    σχei v ⊗ ei f (v ⊗ ei) h: (v ⊗ ei)    , Sχ =    bχ 0 0 0    MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 11/27
  • 21. Outline Introduction First order conservation laws Numerical method Numerical results Summary Incremental deformation · How to define the reference configuration? MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 12/27
  • 22. Outline Introduction First order conservation laws Numerical method Numerical results Summary Incremental deformation · How to define the reference configuration? MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 12/27
  • 23. Outline Introduction First order conservation laws Numerical method Numerical results Summary Incremental deformation · How to define the reference configuration? … MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 12/27
  • 24. Outline Introduction First order conservation laws Numerical method Numerical results Summary Incremental deformation · How to define the reference configuration? … MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 12/27
  • 25. Outline Introduction First order conservation laws Numerical method Numerical results Summary Incremental deformation · How to define the reference configuration? … MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 12/27
  • 26. Outline Introduction First order conservation laws Numerical method Numerical results Summary Incremental deformation · How to define the reference configuration? … … MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 12/27
  • 27. Outline Introduction First order conservation laws Numerical method Numerical results Summary Incremental deformation · How to define the reference configuration? … … MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 12/27
  • 28. Outline Introduction First order conservation laws Numerical method Numerical results Summary Outline 1 Introduction Fast solid dynamics Computational approach 2 First order conservation laws Isothermal process 3 Numerical method Spatial discretisation 4 Numerical results Isothermal elasticity Isothermal plasticity 5 Summary MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 13/27
  • 29. Outline Introduction First order conservation laws Numerical method Numerical results Summary Smooth Particle Hydrodynamics Method · Pioneers [Gingold, Monaghan, 1977; Lucy, 1977] · Lagrangian scheme · Meshfree method · Simple implementation · Low computational cost · Suitable for Large deformation · Foundations in interpolation theory: v (X) = Z ΩV v X0 δ X − X0 dV ≈ Z ΩV v X0 W X − X0 , h dV · SPH approximation: v (Xa) = X b∈Λb a VbvbWX ba , ∇X v (Xa) = X b∈Λb a Vb(vb − va) ⊗ ∇X WX ba MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 14/27
  • 30. Outline Introduction First order conservation laws Numerical method Numerical results Summary Smooth Particle Hydrodynamics Method · Pioneers [Gingold, Monaghan, 1977; Lucy, 1977] · Lagrangian scheme · Meshfree method · Simple implementation · Low computational cost · Suitable for Large deformation · Foundations in interpolation theory: v (X) = Z ΩV v X0 δ X − X0 dV ≈ Z ΩV v X0 W X − X0 , h dV · SPH approximation: v (Xa) = X b∈Λb a VbvbWX ba , ∇X v (Xa) = X b∈Λb a Vb(vb − va) ⊗ ∇X WX ba MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 14/27
  • 31. Outline Introduction First order conservation laws Numerical method Numerical results Summary Smooth Particle Hydrodynamics Method · Pioneers [Gingold, Monaghan, 1977; Lucy, 1977] · Lagrangian scheme · Meshfree method · Simple implementation · Low computational cost · Suitable for Large deformation · Foundations in interpolation theory: v (X) = Z ΩV v X0 δ X − X0 dV ≈ Z ΩV v X0 W X − X0 , h dV · SPH approximation: v (Xa) = X b∈Λb a VbvbWX ba , ∇X v (Xa) = X b∈Λb a Vb(vb − va) ⊗ ∇X WX ba MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 14/27
  • 32. Outline Introduction First order conservation laws Numerical method Numerical results Summary Smooth Particle Hydrodynamics Method · Pioneers [Gingold, Monaghan, 1977; Lucy, 1977] · Lagrangian scheme · Meshfree method · Simple implementation · Low computational cost · Suitable for Large deformation · Foundations in interpolation theory: v (X) = Z ΩV v X0 δ X − X0 dV ≈ Z ΩV v X0 W X − X0 , h dV · SPH approximation: v (Xa) = X b∈Λb a VbvbWX ba , ∇X v (Xa) = X b∈Λb a Vb(vb − va) ⊗ ∇X WX ba MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 14/27
  • 33. Outline Introduction First order conservation laws Numerical method Numerical results Summary Smooth Particle Hydrodynamics Method · Pioneers [Gingold, Monaghan, 1977; Lucy, 1977] · Lagrangian scheme · Meshfree method · Simple implementation · Low computational cost · Suitable for Large deformation · Foundations in interpolation theory: v (X) = Z ΩV v X0 δ X − X0 dV ≈ Z ΩV v X0 W X − X0 , h dV · SPH approximation: v (Xa) = X b∈Λb a VbvbWX ba , ∇X v (Xa) = X b∈Λb a Vb(vb − va) ⊗ ∇X WX ba MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 14/27
  • 34. Outline Introduction First order conservation laws Numerical method Numerical results Summary Classical SPH correction · SPH does not fulfil the Kronecker-Delta property · Corrected SPH kernel approximation [Bonet et al., 1999] v (Xa) = P b∈Λb a VbvbW̃X ba, W̃X ba = KX a WX ba · Consistency conditions X b∈Λb a VbW̃X ba = 1, X b∈Λb a Vb (Xa − Xb) W̃X ba = 0 · Corrected gradient evaluation [Bonet et al., 1999] ∇X v (Xa) = P b∈Λb a Vb(vb − va) ⊗ ˜ ∇X WX ba , ˜ ∇X WX ba = GX a ∇X WX ba · Rigid body invariance X b∈Λb a Vb (Xb − Xa) ⊗ ˜ ∇X WX ba = I MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 15/27
  • 35. Outline Introduction First order conservation laws Numerical method Numerical results Summary Classical SPH correction · SPH does not fulfil the Kronecker-Delta property · Corrected SPH kernel approximation [Bonet et al., 1999] v (Xa) = P b∈Λb a VbvbW̃X ba, W̃X ba = KX a WX ba · Consistency conditions X b∈Λb a VbW̃X ba = 1, X b∈Λb a Vb (Xa − Xb) W̃X ba = 0 · Corrected gradient evaluation [Bonet et al., 1999] ∇X v (Xa) = P b∈Λb a Vb(vb − va) ⊗ ˜ ∇X WX ba , ˜ ∇X WX ba = GX a ∇X WX ba · Rigid body invariance X b∈Λb a Vb (Xb − Xa) ⊗ ˜ ∇X WX ba = I MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 15/27
  • 36. Outline Introduction First order conservation laws Numerical method Numerical results Summary Classical SPH correction · SPH does not fulfil the Kronecker-Delta property · Corrected SPH kernel approximation [Bonet et al., 1999] v (Xa) = P b∈Λb a VbvbW̃X ba, W̃X ba = KX a WX ba · Consistency conditions X b∈Λb a VbW̃X ba = 1, X b∈Λb a Vb (Xa − Xb) W̃X ba = 0 · Corrected gradient evaluation [Bonet et al., 1999] ∇X v (Xa) = P b∈Λb a Vb(vb − va) ⊗ ˜ ∇X WX ba , ˜ ∇X WX ba = GX a ∇X WX ba · Rigid body invariance X b∈Λb a Vb (Xb − Xa) ⊗ ˜ ∇X WX ba = I MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 15/27
  • 37. Outline Introduction First order conservation laws Numerical method Numerical results Summary Classical SPH correction · SPH does not fulfil the Kronecker-Delta property · Corrected SPH kernel approximation [Bonet et al., 1999] v (Xa) = P b∈Λb a VbvbW̃X ba, W̃X ba = KX a WX ba · Consistency conditions X b∈Λb a VbW̃X ba = 1, X b∈Λb a Vb (Xa − Xb) W̃X ba = 0 · Corrected gradient evaluation [Bonet et al., 1999] ∇X v (Xa) = P b∈Λb a Vb(vb − va) ⊗ ˜ ∇X WX ba , ˜ ∇X WX ba = GX a ∇X WX ba · Rigid body invariance X b∈Λb a Vb (Xb − Xa) ⊗ ˜ ∇X WX ba = I MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 15/27
  • 38. Outline Introduction First order conservation laws Numerical method Numerical results Summary Classical SPH correction · SPH does not fulfil the Kronecker-Delta property · Corrected SPH kernel approximation [Bonet et al., 1999] v (Xa) = P b∈Λb a VbvbW̃X ba, W̃X ba = KX a WX ba · Consistency conditions X b∈Λb a VbW̃X ba = 1, X b∈Λb a Vb (Xa − Xb) W̃X ba = 0 · Corrected gradient evaluation [Bonet et al., 1999] ∇X v (Xa) = P b∈Λb a Vb(vb − va) ⊗ ˜ ∇X WX ba , ˜ ∇X WX ba = GX a ∇X WX ba · Rigid body invariance X b∈Λb a Vb (Xb − Xa) ⊗ ˜ ∇X WX ba = I MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 15/27
  • 39. Outline Introduction First order conservation laws Numerical method Numerical results Summary Smooth Particle Hydrodynamics Method Material support MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 16/27
  • 40. Outline Introduction First order conservation laws Numerical method Numerical results Summary Smooth Particle Hydrodynamics Method Material support Updated support MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 16/27
  • 41. Outline Introduction First order conservation laws Numerical method Numerical results Summary Smooth Particle Hydrodynamics Method Material support Updated support Anisotropic support MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 16/27
  • 42. Outline Introduction First order conservation laws Numerical method Numerical results Summary Smooth Particle Hydrodynamics Method Anisotropic support MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 17/27
  • 43. Outline Introduction First order conservation laws Numerical method Numerical results Summary Smooth Particle Hydrodynamics Method Anisotropic support · Option 1: Wχ ba = J−1 χ,bKX a WX ba ∇χWχ ba = J−1 χ,bF −T χ,a GX a ∇X WX ba where WX ba = W (Xa − Xb, hb) , hb = fh max j∈Λ j b (kXj − Xbk) MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 17/27
  • 44. Outline Introduction First order conservation laws Numerical method Numerical results Summary Smooth Particle Hydrodynamics Method Anisotropic support · Option 2: W̃χ ba = Kχ a J−1 χ,bWX ba ˜ ∇χWχ ba = Gχ a J−1 χ,bF −T χ,a ∇X WX ba where WX ba = W (Xa − Xb, hb) , hb = fh max j∈Λ j b (kXj − Xbk) MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 17/27
  • 45. Outline Introduction First order conservation laws Numerical method Numerical results Summary Smooth Particle Hydrodynamics Method Anisotropic support · Option 3: W̃χ ba = Kχ a J−1 χ,bŴX ba ˜ ∇χWχ ba = Gχ a J−1 χ,bF −T χ,a ∇X ŴX ba where ŴX ba = Ŵ Fχ,ab, χa − χb, ĥb ĥb = fh max j∈Λ̂ j b F −1 χ,bjkχj − χbk Xa − Xb ≈ F −1 χ,ab (χa − χb) , Fχ,ab = 1 2 Fχ,a + Fχ,b MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 17/27
  • 46. Outline Introduction First order conservation laws Numerical method Numerical results Summary Smooth Particle Hydrodynamics Method Anisotropic support · Option 4: W̃χ ba = Kχ a J−1 χ,bŴX ba ˜ ∇χWχ ba = Gχ a J−1 χ,bF −T χ,ab∇X ŴX ba where ŴX ba = Ŵ Fχ,ab, χa − χb, ĥb ĥb = fh max j∈Λ̂ j b F −1 χ,bjkχj − χbk Xa − Xb ≈ F −1 χ,ab (χa − χb) , Fχ,ab = 1 2 Fχ,a + Fχ,b MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 17/27
  • 47. Outline Introduction First order conservation laws Numerical method Numerical results Summary Smooth Particle Hydrodynamics Method · Semi-discrete equations: V χ a dpa χ dt = P b∈Λb a 1 2 σa χCχ ba − σb χCχ ab + V χ a ba χ + Aχ a ta χ+ P b∈Λb a Dχ ab V χ a dfa dt = P b∈Λb a 1 2 (vb − va) ⊗ Cχ ba V χ a dha dt = fa P b∈Λb a 1 2 (vb − va) ⊗ Cχ ba V χ a dja dt = ha : P b∈Λb a 1 2 (vb − va) ⊗ Cχ ba · Pseudo-area vectors: Cχ ba := 2V χ a V χ b ˜ ∇χWχ ba, Cχ ab := 2V χ b V χ a ˜ ∇χWχ ab · Riemann-based numerical dissipation [Ghavamian et al., 2021] · Three-stages Runge-Kutta time integrator [Shu et al., 1988] · Discrete angular momentum preserving algorithm [Lee et al., 2019] MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 18/27
  • 48. Outline Introduction First order conservation laws Numerical method Numerical results Summary Smooth Particle Hydrodynamics Method · Semi-discrete equations: V χ a dpa χ dt = P b∈Λb a 1 2 σa χCχ ba − σb χCχ ab + V χ a ba χ + Aχ a ta χ+ P b∈Λb a Dχ ab V χ a dfa dt = P b∈Λb a 1 2 (vb − va) ⊗ Cχ ba V χ a dha dt = fa P b∈Λb a 1 2 (vb − va) ⊗ Cχ ba V χ a dja dt = ha : P b∈Λb a 1 2 (vb − va) ⊗ Cχ ba · Pseudo-area vectors: Cχ ba := 2V χ a V χ b ˜ ∇χWχ ba, Cχ ab := 2V χ b V χ a ˜ ∇χWχ ab · Riemann-based numerical dissipation [Ghavamian et al., 2021] · Three-stages Runge-Kutta time integrator [Shu et al., 1988] · Discrete angular momentum preserving algorithm [Lee et al., 2019] MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 18/27
  • 49. Outline Introduction First order conservation laws Numerical method Numerical results Summary Smooth Particle Hydrodynamics Method · Semi-discrete equations: V χ a dpa χ dt = P b∈Λb a 1 2 σa χCχ ba − σb χCχ ab + V χ a ba χ + Aχ a ta χ+ P b∈Λb a Dχ ab V χ a dfa dt = P b∈Λb a 1 2 (vb − va) ⊗ Cχ ba V χ a dha dt = fa P b∈Λb a 1 2 (vb − va) ⊗ Cχ ba V χ a dja dt = ha : P b∈Λb a 1 2 (vb − va) ⊗ Cχ ba · Pseudo-area vectors: Cχ ba := 2V χ a V χ b ˜ ∇χWχ ba, Cχ ab := 2V χ b V χ a ˜ ∇χWχ ab · Riemann-based numerical dissipation [Ghavamian et al., 2021] · Three-stages Runge-Kutta time integrator [Shu et al., 1988] · Discrete angular momentum preserving algorithm [Lee et al., 2019] MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 18/27
  • 50. Outline Introduction First order conservation laws Numerical method Numerical results Summary Outline 1 Introduction Fast solid dynamics Computational approach 2 First order conservation laws Isothermal process 3 Numerical method Spatial discretisation 4 Numerical results Isothermal elasticity Isothermal plasticity 5 Summary MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 19/27
  • 51. Outline Introduction First order conservation laws Numerical method Numerical results Summary Numerical results Isothermal elasticity MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 20/27
  • 52. Outline Introduction First order conservation laws Numerical method Numerical results Summary Stability: Bending column Problem: Bending column, neo-Hookean material, initial density ρ0 = 1100kg/m3 , Young’s modulus E = 17MPa and Poisson’s ratio ν = 0.3. Initial velocity V = 10m/s. Updates performed at every time step. [video] MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 21/27
  • 53. Outline Introduction First order conservation laws Numerical method Numerical results Summary Stability: Bending column Problem: Bending column, neo-Hookean material, initial density ρ0 = 1100kg/m3 , Young’s modulus E = 17MPa and Poisson’s ratio ν = 0.3. Initial velocity V = 10m/s. Updates performed at every time step. [video] MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 21/27
  • 54. Outline Introduction First order conservation laws Numerical method Numerical results Summary Robustness: Twisting column Problem: Twisting column, neo-Hookean material, initial density ρ0 = 1100kg/m3 , Young’s modulus E = 17MPa and Poisson’s ratio ν = 0.4995. Initial angular velocity Ω = 105rad/s. Updates performed at every time step. [video] MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 22/27
  • 55. Outline Introduction First order conservation laws Numerical method Numerical results Summary Numerical results Isothermal plasticity MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 23/27
  • 56. Outline Introduction First order conservation laws Numerical method Numerical results Summary High speed impact: Taylor bar Problem: Taylor bar, Hencky-Mises plasticity, initial density ρ0 = 8930kg/m3 , Young’s modulus E = 117GPa, Poisson’s ratio ν = 0.35, yield stress, τ0 y = 400MPa and linear hardening modulus H = 100MPa. Initial velocity V = −227m/s. [video] MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 24/27
  • 57. Outline Introduction First order conservation laws Numerical method Numerical results Summary High speed impact: Taylor bar Problem: Taylor bar, Hencky-Mises plasticity, initial density ρ0 = 8930kg/m3 , Young’s modulus E = 117GPa, Poisson’s ratio ν = 0.35, yield stress, τ0 y = 400MPa and linear hardening modulus H = 100MPa. Initial velocity V = −227m/s. [video] MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 24/27
  • 58. Outline Introduction First order conservation laws Numerical method Numerical results Summary High speed impact: Taylor bar Problem: Taylor bar, Hencky-Mises plasticity, initial density ρ0 = 8930kg/m3 , Young’s modulus E = 117GPa, Poisson’s ratio ν = 0.35, yield stress, τ0 y = 400MPa and linear hardening modulus H = 100MPa. Initial velocity V = −227m/s. [video] MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 24/27
  • 59. Outline Introduction First order conservation laws Numerical method Numerical results Summary Robustness: Necking bar Problem: Necking bar, Hencky-Mises plasticity, initial density ρ0 = 7850kg/m3 , Young’s modulus E = 206.9GPa, Poisson’s ratio ν = 0.29, yield stress τ0 y = 450MPa, residual yield stress τ∞ y = 715MPa, linear hardening modulus H = 129.24MPa and saturation exponent δ = 16.93. Quasi-static 25% elongation. [video] MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 25/27
  • 60. Outline Introduction First order conservation laws Numerical method Numerical results Summary Robustness: Necking bar Problem: Necking bar, Hencky-Mises plasticity, initial density ρ0 = 7850kg/m3 , Young’s modulus E = 206.9GPa, Poisson’s ratio ν = 0.29, yield stress τ0 y = 450MPa, residual yield stress τ∞ y = 715MPa, linear hardening modulus H = 129.24MPa and saturation exponent δ = 16.93. Quasi-static 25% elongation. [video] MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 25/27
  • 61. Outline Introduction First order conservation laws Numerical method Numerical results Summary Robustness: Necking bar Problem: Necking bar, Hencky-Mises plasticity, initial density ρ0 = 7850kg/m3 , Young’s modulus E = 206.9GPa, Poisson’s ratio ν = 0.29, yield stress τ0 y = 450MPa, residual yield stress τ∞ y = 715MPa, linear hardening modulus H = 129.24MPa and saturation exponent δ = 16.93. Quasi-static 25% elongation. [video] MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 25/27
  • 62. Outline Introduction First order conservation laws Numerical method Numerical results Summary Outline 1 Introduction Fast solid dynamics Computational approach 2 First order conservation laws Isothermal process 3 Numerical method Spatial discretisation 4 Numerical results Isothermal elasticity Isothermal plasticity 5 Summary MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 26/27
  • 63. Outline Introduction First order conservation laws Numerical method Numerical results Summary Summary Highlights · A ROBUST Updated Lagrangian SPH framework, laying the foundations for Dynamic Fracture: · System of first order conservation laws · Incremental ULF (multiplicative decomposition) · Anisotropic kernel function · Entropy stable upwinding stabilisation scheme Further work · Extended capabilities: · Thermal plasticity (ongoing) · Dynamic fracture · Contact Acknowledgements This project has received funding from the EU Framework Programme for Research and Innovation Horizon 2020 under Grant Agreement No 764636. Thank you! MSCA-ITN-EJD ProTechTion, Horizon 2020 (Grant Agreement No 764636) April 2021 27/27