More Related Content
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
What's hot
DOCX
Tugas matematika 2 (semester 2) DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
Tugas matematika 2 (semester 2) - Tia DOCX
Tugas matematika 2 (semester 2) DOCX
DOCX
Tugas matematika 2 (semester 2) @Polman Babel DOCX
DOCX
Viewers also liked
PDF
Debenhams Autumn Fashion: Case Study PDF
School Leaving Certificate ODP
ODP
L'alchimie : Changer le plomb en or PPT
การท่องเที่ยวจังหวัดภูเก็ต DOCX
Tugas mtk bab 4 semester 3 PDF
Performance bonus document PDF
PPTX
PDF
PDF
Microservices - enough with theory, let's do some code @Geecon Prague 2015 DOCX
DOCX
DOC
PPTX
More from sandiperlang
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
Tugas 2 mtk bab 1 semester 3 Recently uploaded
DOCX
PEMC 2025 - 2026 MEX xxxxxxxxxxxxxxxxxxx PDF
محاضرة جامعة الرباط- هوية العمارة السودانية PDF
( من علوم القرآن )_men_aloom_alquran.pdf PDF
Correlation - सहसंबंध @irfanullah_mehar #world_of_wisdom.pdf PDF
Projecte de la porta d'i3A: La màgia de l'unicorn PDF
15 Dec 2025 PS.pdf 15 Dec 2025 PS.pdf 15 Dec 2025 PS.pdf Tugas 2 mtk
- 1.
[Type text]
”LAPORAN tugasmtk 2”
Disusun Oleh :
Nama : susandi
Kelas : 1 elka (a)
Jurusan : teknik elektronik
Semester : 2 (Genap)
POLITEKNIK MANUFAKTUR NEGERI BANGKA BELITUNG
2015/2016
Industri Air Kantung Sungailiat, 33211
Bangka Induk Propinsi Kepulauan Bangka Belitung
Telpon : ( 0717 ) 93586, ( 0717 ) 431335 Ext. 2281,2126
Fax : (0717) 93585
Nama : susandi
- 2.
[Type text]
Kelas :1 EA
Tugas Matematika 2
Tentukanlah nilai
𝑑𝑦
𝑑𝑥
dari fungsi berikut ini !
1. 𝑦 = √ 𝑥5 + 6𝑥2 + 3
2. 𝑦 = √ 𝑥4 + 6𝑥 + 1
3
3. 𝑦 = √ 𝑥2 − 5𝑥
5
4. 𝑦 =
1
√𝑥4+2𝑥
5. 𝑦 =
1
√𝑥2−6𝑥
3
6. 𝑦 =
1
√𝑥2−5𝑥+2
5
7. 𝑦 = sin √ 𝑥2 + 6𝑥
8. 𝑦 = cos √ 𝑥3 + 2
3
9. 𝑦 = sin
1
√𝑥2+2
10. 𝑦 = cos
1
√𝑥2+6
3
- 3.
[Type text]
Jawaban :
1.𝑦 = √ 𝑥5 + 6𝑥2 + 3
Misal u= 𝑥5
+ 6𝑥2
+ 3 , maka
𝑑𝑢
𝑑𝑥
= 5𝑥4
+ 12𝑥
𝑦 = √ 𝑢 = 𝑢
1
2 , maka
𝑑𝑦
𝑑𝑢
=
1
2
𝑢−
1
2 =
1
2
(𝑥5
+ 6𝑥2
+ 3)−
1
2
Maka
𝑑𝑦
𝑑𝑥
=
𝑑𝑦
𝑑𝑢
.
𝑑𝑢
𝑑𝑥
=
1
2
(𝑥5
+ 6𝑥2
+ 3)−
1
2 . (5𝑥4
+ 12𝑥)
𝑑𝑦
𝑑𝑥
=
1
2
(5𝑥4
+ 12𝑥)
(𝑥5 + 6𝑥2 + 3)
1
2
=
1
2
(5𝑥4
+ 12𝑥)
√ 𝑥5 + 6𝑥2 + 3
2. 𝑦 = √ 𝑥4 + 6𝑥 + 1
3
Misal u = 𝑥4
+ 6𝑥 + 1 , maka
𝑑𝑢
𝑑𝑥
= 4𝑥3
+ 6
𝑦 = √ 𝑢3
= 𝑢
1
3 , maka
𝑑𝑦
𝑑𝑢
=
1
3
𝑢−
2
3 =
1
3
(𝑥4
+ 6𝑥 + 1)−
2
3
Maka
𝑑𝑦
𝑑𝑥
=
𝑑𝑦
𝑑𝑢
.
𝑑𝑢
𝑑𝑥
=
1
3
(𝑥4
+ 6𝑥 + 1)−
2
3 . (4𝑥3
+ 6)
𝑑𝑦
𝑑𝑥
=
1
3
(4𝑥3
+ 6)
(𝑥4 + 6𝑥 + 1)
2
3
=
1
3
(4𝑥3
+ 6)
√(𝑥4 + 6𝑥 + 1)23
3. 𝑦 = √ 𝑥2 − 5𝑥
5
Misal u = 𝑥2
− 5𝑥 , maka
𝑑𝑢
𝑑𝑥
= 2𝑥 − 5
𝑦 = √ 𝑢5
= 𝑢
1
5 , maka
𝑑𝑦
𝑑𝑢
=
1
5
𝑢−
4
5 =
1
5
(𝑥2
− 5𝑥)−
4
5
Maka
𝑑𝑦
𝑑𝑥
=
𝑑𝑦
𝑑𝑢
.
𝑑𝑢
𝑑𝑥
=
1
5
(𝑥2
− 5𝑥)−
4
5 . (2𝑥 − 5)
- 4.
[Type text]
𝑑𝑦
𝑑𝑥
=
1
5
(2𝑥 −5)
(𝑥2 − 5𝑥)
4
5
=
1
5
(2𝑥 − 5)
√(𝑥2 − 5𝑥)45
4. 𝑦 =
1
√𝑥4+2𝑥
=
1
(𝑥4+2𝑥)
1
2
= (𝑥4
+ 2𝑥)−
1
2
Misal u = 𝑥4
+ 2𝑥 , maka
𝑑𝑢
𝑑𝑥
= 4𝑥3
+ 2
𝑦 = 𝑢−
1
2 , maka
𝑑𝑦
𝑑𝑢
= −
1
2
𝑢−
3
2 = −
1
2
(𝑥4
+ 2𝑥)−
3
2
Maka
𝑑𝑦
𝑑𝑥
=
𝑑𝑦
𝑑𝑢
.
𝑑𝑢
𝑑𝑥
= −
1
2
(𝑥4
+ 2𝑥)−
3
2 . (4𝑥3
+ 2)
𝑑𝑦
𝑑𝑥
=
−
1
2
(4𝑥3
+ 2)
(𝑥4 + 2𝑥)
3
2
=
−2𝑥3
− 1
√(𝑥4 + 2𝑥)3
5. 𝑦 =
1
√𝑥2−6𝑥
3 =
1
(𝑥2−6𝑥)
1
3
= (𝑥2
− 6𝑥)−
1
3
Misal u = 𝑥2
− 6𝑥 , maka
𝑑𝑢
𝑑𝑥
= 2𝑥 − 6
𝑦 = 𝑢−
1
3 , maka
𝑑𝑦
𝑑𝑢
= −
1
3
𝑢−
4
3 = −
1
3
(𝑥2
− 6𝑥)−
4
3
Maka
𝑑𝑦
𝑑𝑥
=
𝑑𝑦
𝑑𝑢
.
𝑑𝑢
𝑑𝑥
= −
1
3
(𝑥2
− 6𝑥)−
4
3 . (2𝑥 − 6)
𝑑𝑦
𝑑𝑥
=
−
1
3
. (2𝑥 − 6)
(𝑥2 − 6𝑥)−
4
3
=
−
1
3
(2𝑥 − 6)
√(𝑥2 − 6𝑥)43
- 5.
[Type text]
6. 𝑦=
1
√𝑥2−5𝑥+2
5 =
1
(𝑥2−5𝑥+2)
1
5
= (𝑥2
− 5𝑥 + 2)−
1
5
Misal u = 𝑥2
− 5𝑥 + 2 , maka
𝑑𝑢
𝑑𝑥
= 2𝑥 − 5
𝑦 = 𝑢−
1
5 , maka
𝑑𝑦
𝑑𝑢
= −
1
5
𝑢−
6
5 = −
1
5
(𝑥2
− 5𝑥 + 2)−
6
5
Maka
𝑑𝑦
𝑑𝑥
=
𝑑𝑦
𝑑𝑢
.
𝑑𝑢
𝑑𝑥
= −
1
5
(𝑥2
− 5𝑥 + 2)−
6
5 .(2𝑥 − 5)
𝑑𝑦
𝑑𝑥
=
−
1
5
. (2𝑥 − 5)
(𝑥2 − 5𝑥 + 2)
6
5
=
−
1
5
(2𝑥 − 5)
√(𝑥2 − 5𝑥 + 2)65
7. 𝑦 = sin √ 𝑥2 + 6𝑥
Misal u = 𝑥2
+ 6𝑥 , maka
𝑑𝑢
𝑑𝑥
= 2𝑥 + 6
𝑣 = √ 𝑢 = 𝑢
1
2, maka
𝑑𝑣
𝑑𝑢
=
1
2
𝑢−
1
2 =
1
2
(𝑥2
+ 6𝑥)−
1
2
𝑦 = sin 𝑣 , maka
𝑑𝑦
𝑑𝑣
= cos 𝑣 = cos √ 𝑢 = cos √ 𝑥2 + 6𝑥
Maka
𝑑𝑦
𝑑𝑥
=
𝑑𝑦
𝑑𝑣
.
𝑑𝑣
𝑑𝑢
.
𝑑𝑢
𝑑𝑥
= cos √ 𝑥2 + 6𝑥 .
1
2
(𝑥2
+ 6𝑥)−
1
2 .(2𝑥 + 6)
𝑑𝑦
𝑑𝑥
=
1
2
. (2𝑥 + 6) .cos √ 𝑥2 + 6𝑥
(𝑥2 + 6𝑥)
1
2
=
( 𝑥 + 3) .cos √ 𝑥2 + 6𝑥
√ 𝑥2 + 6𝑥
8. 𝑦 = cos √ 𝑥3 + 2
3
Misal u = 𝑥3
+ 2 , maka
𝑑𝑢
𝑑𝑥
= 3𝑥2
𝑣 = √ 𝑢3
= 𝑢
1
3 , maka
𝑑𝑣
𝑑𝑢
=
1
3
𝑢−
2
3 =
1
3
(𝑥3
+ 2)−
2
3
𝑦 = cos 𝑣 , maka
𝑑𝑦
𝑑𝑣
= −sin 𝑣 = −sin √ 𝑢3
= −sin √ 𝑥3 + 2
3
- 6.
[Type text]
Maka
𝑑𝑦
𝑑𝑥
=
𝑑𝑦
𝑑𝑣
.
𝑑𝑣
𝑑𝑢
.
𝑑𝑢
𝑑𝑥
= −sin√ 𝑥3 + 2
3
.
1
3
(𝑥3
+ 2)−
2
3 .3𝑥2
𝑑𝑦
𝑑𝑥
=
1
3
. 3𝑥2
. −sin √ 𝑥3 + 2
3
(𝑥3 + 2)
2
3
=
𝑥2
. −sin √ 𝑥3 + 2
3
√(𝑥3 + 2)23
9. 𝑦 = sin
1
√𝑥2+2
= sin
1
(𝑥2+2)
1
2
= sin(𝑥2
+ 2)−
1
2
Misal u = 𝑥2
+ 2 , maka
𝑑𝑢
𝑑𝑥
= 2𝑥
𝑣 = 𝑢−
1
2 , maka
𝑑𝑣
𝑑𝑢
= −
1
2
𝑢−
3
2 = −
1
2
(𝑥2
+ 2)−
3
2
𝑦 = sin 𝑣 , maka
𝑑𝑦
𝑑𝑣
= cos 𝑣 = cos 𝑢−
1
2 = cos(𝑥2
+ 2)−
1
2
Maka
𝑑𝑦
𝑑𝑥
=
𝑑𝑦
𝑑𝑣
.
𝑑𝑣
𝑑𝑢
.
𝑑𝑢
𝑑𝑥
= cos(𝑥2
+ 2)−
1
2 . −
1
2
(𝑥2
+ 2)−
3
2 .2𝑥
𝑑𝑦
𝑑𝑥
=
−
1
2
. 2𝑥 . cos(𝑥2
+ 2)−
1
2
(𝑥2 + 2)
3
2
=
−𝑥 . cos(𝑥2
+ 2)−
1
2
√(𝑥2 + 2)3
10. 𝑦 = cos
1
√𝑥2+6
3 = cos
1
(𝑥2+6)
1
3
= cos(𝑥2
+ 6)−
1
3
Misal u = 𝑥2
+ 6 , maka
𝑑𝑢
𝑑𝑥
= 2𝑥
𝑣 = 𝑢−
1
3 , maka
𝑑𝑣
𝑑𝑢
= −
1
3
𝑢−
4
3 = −
1
3
(𝑥2
+ 6)−
4
3
𝑦 = cos 𝑣 , maka
𝑑𝑦
𝑑𝑣
= −sin 𝑣 = −sin 𝑢−
1
3 = −sin(𝑥2
+ 6)−
1
3
Maka
𝑑𝑦
𝑑𝑥
=
𝑑𝑦
𝑑𝑣
.
𝑑𝑣
𝑑𝑢
.
𝑑𝑢
𝑑𝑥
= −sin(𝑥2
+ 6)−
1
3 . −
1
3
(𝑥2
+ 6)−
4
3 .2𝑥
- 7.