Recommended
DOCX
DOCX
Tugas matematika 2 (semester 2)
DOCX
Tugas matematika 2 (semester 2) @Polman Babel
DOCX
Tugas matematika 2 (semester 2) - Tia
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
More Related Content
DOCX
DOCX
Tugas matematika 2 (semester 2)
DOCX
Tugas matematika 2 (semester 2) @Polman Babel
DOCX
Tugas matematika 2 (semester 2) - Tia
DOCX
DOCX
DOCX
DOCX
What's hot
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
Viewers also liked
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
Tugas Matematika 2 : Buku Calculus (Integral Tentu)
DOCX
PDF
Tugas matematika kisi2 pdf
DOCX
DOCX
DOCX
Tugas 2(1) 1. POLITEKNIK MANUFAKTUR NEGERI BANGKA BELITUNG
Tugas 2 MTK2 Page 1
TUGAS 2
MATEMATIKA 2
D
I
S
U
S
U
N
Oleh :
Nama : Aulia Ramadhani
NPM : 003 14 03
Prodi : TeknikElektronika
Kelas : 1E A
Semester : 2 (Dua)
POLITEKNIK MANUFAKTUR NEGERI BANGKA BELITUNG
KawasanIndustri Air KantungSungailiat, Bangka 33211
Telp. (0717) 93586, Fax. (0717) 93585
Email :polman@polman-babel.ac.id
Website :www.polman-babel.ac.id
TAHUN AJARAN 2014/2015
2. POLITEKNIK MANUFAKTUR NEGERI BANGKA BELITUNG
Tugas 2 MTK2 Page 2
Tentukanlahnilai
𝑑𝑦
𝑑𝑥
darifungsiberikutini !
1. 𝑦 = √ 𝑥5 + 6𝑥2 + 3
2. 𝑦 = √ 𝑥4 + 6𝑥 + 1
3
3. 𝑦 = √ 𝑥2 − 5𝑥
5
4. 𝑦 =
1
√𝑥4+2𝑥
5. 𝑦 =
1
√𝑥2−6𝑥
3
6. 𝑦 =
1
√𝑥2−5𝑥+2
5
7. 𝑦 = sin √ 𝑥2 + 6𝑥
8. 𝑦 = cos √ 𝑥3 + 2
3
9. 𝑦 = sin
1
√𝑥2+2
10. 𝑦 = cos
1
√𝑥2+6
3
Jawaban :
1. 𝑦 = √ 𝑥5 + 6𝑥2 + 3
Misalu= 𝑥5
+ 6𝑥2
+ 3 , maka
𝑑𝑢
𝑑𝑥
= 5𝑥4
+ 12𝑥
𝑦 = √ 𝑢 = 𝑢
1
2 , maka
𝑑𝑦
𝑑𝑢
=
1
2
𝑢−
1
2 =
1
2
(𝑥5
+ 6𝑥2
+ 3)−
1
2
Maka
𝑑𝑦
𝑑𝑥
=
𝑑𝑦
𝑑𝑢
.
𝑑𝑢
𝑑𝑥
=
1
2
(𝑥5
+ 6𝑥2
+ 3)−
1
2 . (5𝑥4
+ 12𝑥)
𝑑𝑦
𝑑𝑥
=
1
2
(5𝑥4
+ 12𝑥)
(𝑥5 + 6𝑥2 + 3)
1
2
=
1
2
(5𝑥4
+ 12𝑥)
√ 𝑥5 + 6𝑥2 + 3
2. 𝑦 = √ 𝑥4 + 6𝑥 + 1
3
Misalu= 𝑥4
+ 6𝑥 + 1 , maka
𝑑𝑢
𝑑𝑥
= 4𝑥3
+ 6
𝑦 = √ 𝑢3
= 𝑢
1
3 , maka
𝑑𝑦
𝑑𝑢
=
1
3
𝑢−
2
3 =
1
3
(𝑥4
+ 6𝑥 + 1)−
2
3
Maka
𝑑𝑦
𝑑𝑥
=
𝑑𝑦
𝑑𝑢
.
𝑑𝑢
𝑑𝑥
=
1
3
(𝑥4
+ 6𝑥 + 1)−
2
3 . (4𝑥3
+ 6)
𝑑𝑦
𝑑𝑥
=
1
3
(4𝑥3
+ 6)
(𝑥4 + 6𝑥 + 1)
2
3
=
1
3
(4𝑥3
+ 6)
√(𝑥4 + 6𝑥 + 1)23
3. 𝑦 = √ 𝑥2 − 5𝑥
5
Misalu= 𝑥2
− 5𝑥 , maka
𝑑𝑢
𝑑𝑥
= 2𝑥 − 5
3. POLITEKNIK MANUFAKTUR NEGERI BANGKA BELITUNG
Tugas 2 MTK2 Page 3
𝑦 = √ 𝑢5
= 𝑢
1
5 , maka
𝑑𝑦
𝑑𝑢
=
1
5
𝑢−
4
5 =
1
5
(𝑥2
− 5𝑥)−
4
5
Maka
𝑑𝑦
𝑑𝑥
=
𝑑𝑦
𝑑𝑢
.
𝑑𝑢
𝑑𝑥
=
1
5
(𝑥2
− 5𝑥)−
4
5 .(2𝑥 − 5)
𝑑𝑦
𝑑𝑥
=
1
5
(2𝑥 − 5)
(𝑥2 − 5𝑥)
4
5
=
1
5
(2𝑥 − 5)
√(𝑥2 − 5𝑥)45
4. 𝑦 =
1
√𝑥4+2𝑥
=
1
(𝑥4+2𝑥)
1
2
= (𝑥4
+ 2𝑥)−
1
2
Misalu= 𝑥4
+ 2𝑥 , maka
𝑑𝑢
𝑑𝑥
= 4𝑥3
+ 2
𝑦 = 𝑢−
1
2 , maka
𝑑𝑦
𝑑𝑢
= −
1
2
𝑢−
3
2 = −
1
2
(𝑥4
+ 2𝑥)−
3
2
Maka
𝑑𝑦
𝑑𝑥
=
𝑑𝑦
𝑑𝑢
.
𝑑𝑢
𝑑𝑥
= −
1
2
(𝑥4
+ 2𝑥)−
3
2 .(4𝑥3
+ 2)
𝑑𝑦
𝑑𝑥
=
−
1
2
(4𝑥3
+ 2)
(𝑥4 + 2𝑥)
3
2
=
−2𝑥3
− 1
√(𝑥4 + 2𝑥)3
5. 𝑦 =
1
√𝑥2−6𝑥
3 =
1
(𝑥2−6𝑥)
1
3
= (𝑥2
− 6𝑥)−
1
3
Misalu= 𝑥2
− 6𝑥 , maka
𝑑𝑢
𝑑𝑥
= 2𝑥 − 6
𝑦 = 𝑢−
1
3 , maka
𝑑𝑦
𝑑𝑢
= −
1
3
𝑢−
4
3 = −
1
3
(𝑥2
− 6𝑥)−
4
3
Maka
𝑑𝑦
𝑑𝑥
=
𝑑𝑦
𝑑𝑢
.
𝑑𝑢
𝑑𝑥
= −
1
3
(𝑥2
− 6𝑥)−
4
3 .(2𝑥 − 6)
𝑑𝑦
𝑑𝑥
=
−
1
3
. (2𝑥 − 6)
(𝑥2 − 6𝑥)−
4
3
=
−
1
3
(2𝑥 − 6)
√(𝑥2 − 6𝑥)43
4. POLITEKNIK MANUFAKTUR NEGERI BANGKA BELITUNG
Tugas 2 MTK2 Page 4
6. 𝑦 =
1
√𝑥2−5𝑥+2
5 =
1
(𝑥2−5𝑥+2)
1
5
= (𝑥2
− 5𝑥 + 2)−
1
5
Misalu= 𝑥2
− 5𝑥 + 2 , maka
𝑑𝑢
𝑑𝑥
= 2𝑥 − 5
𝑦 = 𝑢−
1
5 , maka
𝑑𝑦
𝑑𝑢
= −
1
5
𝑢−
6
5 = −
1
5
(𝑥2
− 5𝑥 + 2)−
6
5
Maka
𝑑𝑦
𝑑𝑥
=
𝑑𝑦
𝑑𝑢
.
𝑑𝑢
𝑑𝑥
= −
1
5
(𝑥2
− 5𝑥 + 2)−
6
5 . (2𝑥 − 5)
𝑑𝑦
𝑑𝑥
=
−
1
5
. (2𝑥 − 5)
(𝑥2 − 5𝑥 + 2)
6
5
=
−
1
5
(2𝑥 − 5)
√(𝑥2 − 5𝑥 + 2)65
7. 𝑦 = sin √ 𝑥2 + 6𝑥
Misalu= 𝑥2
+ 6𝑥 , maka
𝑑𝑢
𝑑𝑥
= 2𝑥 + 6
𝑣 = √ 𝑢 = 𝑢
1
2, maka
𝑑𝑣
𝑑𝑢
=
1
2
𝑢−
1
2 =
1
2
(𝑥2
+ 6𝑥)−
1
2
𝑦 = sin 𝑣 , maka
𝑑𝑦
𝑑𝑣
= cos 𝑣 = cos √ 𝑢 = cos √ 𝑥2 + 6𝑥
Maka
𝑑𝑦
𝑑𝑥
=
𝑑𝑦
𝑑𝑣
.
𝑑𝑣
𝑑𝑢
.
𝑑𝑢
𝑑𝑥
= cos √ 𝑥2 + 6𝑥 .
1
2
(𝑥2
+ 6𝑥)−
1
2 . (2𝑥 + 6)
𝑑𝑦
𝑑𝑥
=
1
2
. (2𝑥 + 6) . cos √ 𝑥2 + 6𝑥
(𝑥2 + 6𝑥)
1
2
=
( 𝑥 + 3) . cos √ 𝑥2 + 6𝑥
√ 𝑥2 + 6𝑥
8. 𝑦 = cos √ 𝑥3 + 2
3
Misalu= 𝑥3
+ 2 , maka
𝑑𝑢
𝑑𝑥
= 3𝑥2
𝑣 = √ 𝑢3
= 𝑢
1
3 , maka
𝑑𝑣
𝑑𝑢
=
1
3
𝑢−
2
3 =
1
3
(𝑥3
+ 2)−
2
3
𝑦 = cos 𝑣 , maka
𝑑𝑦
𝑑𝑣
= −sin 𝑣 = −sin √ 𝑢3
= −sin √ 𝑥3 + 2
3
Maka
𝑑𝑦
𝑑𝑥
=
𝑑𝑦
𝑑𝑣
.
𝑑𝑣
𝑑𝑢
.
𝑑𝑢
𝑑𝑥
= −sin √ 𝑥3 + 2
3
.
1
3
(𝑥3
+ 2)−
2
3 .3𝑥2
5. POLITEKNIK MANUFAKTUR NEGERI BANGKA BELITUNG
Tugas 2 MTK2 Page 5
𝑑𝑦
𝑑𝑥
=
1
3
.3𝑥2
. −sin √ 𝑥3 + 2
3
(𝑥3 + 2)
2
3
=
𝑥2
. −sin √ 𝑥3 + 2
3
√(𝑥3 + 2)23
9. 𝑦 = sin
1
√𝑥2+2
= sin
1
(𝑥2+2)
1
2
= sin(𝑥2
+ 2)−
1
2
Misalu= 𝑥2
+ 2 , maka
𝑑𝑢
𝑑𝑥
= 2𝑥
𝑣 = 𝑢−
1
2 , maka
𝑑𝑣
𝑑𝑢
= −
1
2
𝑢−
3
2 = −
1
2
(𝑥2
+ 2)−
3
2
𝑦 = sin 𝑣 , maka
𝑑𝑦
𝑑𝑣
= cos 𝑣 = cos 𝑢−
1
2 = cos(𝑥2
+ 2)−
1
2
Maka
𝑑𝑦
𝑑𝑥
=
𝑑𝑦
𝑑𝑣
.
𝑑𝑣
𝑑𝑢
.
𝑑𝑢
𝑑𝑥
= cos(𝑥2
+ 2)−
1
2 . −
1
2
(𝑥2
+ 2)−
3
2 .2𝑥
𝑑𝑦
𝑑𝑥
=
−
1
2
. 2𝑥 . cos(𝑥2
+ 2)−
1
2
(𝑥2 + 2)
3
2
=
−𝑥 . cos(𝑥2
+ 2)−
1
2
√(𝑥2 + 2)3
10. 𝑦 = cos
1
√𝑥2+6
3 = cos
1
(𝑥2+6)
1
3
= cos(𝑥2
+ 6)−
1
3
Misalu= 𝑥2
+ 6 , maka
𝑑𝑢
𝑑𝑥
= 2𝑥
𝑣 = 𝑢−
1
3 , maka
𝑑𝑣
𝑑𝑢
= −
1
3
𝑢−
4
3 = −
1
3
(𝑥2
+ 6)−
4
3
𝑦 = cos 𝑣 , maka
𝑑𝑦
𝑑𝑣
= −sin 𝑣 = −sin 𝑢−
1
3 = −sin(𝑥2
+ 6)−
1
3
Maka
𝑑𝑦
𝑑𝑥
=
𝑑𝑦
𝑑𝑣
.
𝑑𝑣
𝑑𝑢
.
𝑑𝑢
𝑑𝑥
= −sin(𝑥2
+ 6)−
1
3 . −
1
3
(𝑥2
+ 6)−
4
3 .2𝑥
𝑑𝑦
𝑑𝑥
=
−
1
3
. 2𝑥 . −sin(𝑥2
+ 6)−
1
3
(𝑥2 + 6)
4
3
=
1
3
. 2𝑥 . sin(𝑥2
+ 6)−
1
3
√(𝑥2 + 6)43