More Related Content
DOCX
Дээд математик 3 MT103 бодлого DOCX
Tugas matematika kelompok 8 kelas 1 eb DOCX
DOCX
DOCX
DOCX
Examen final de matematicas de la 4ta unidad PDF
Guía de estudios evaluación diagnóstica 2017 2018 PDF
What's hot
PDF
120 soal dan pembahasan limit fungsi trigonometri PDF
Ejercicios resueltos guía # 7 PPTX
Operaciones combinadas 6°primaria PDF
Tugas Matematika Kelompok 7 PDF
Tugas Matematika Kelompok 7 DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
PDF
DOCX
DOCX
21060112130041 yogapragiwaksana ss DOCX
Tugas matematika 2 (semester 2) - Polman Babel DOCX
Tugas matematika kalkulus PPTX
TUGAS MATEMATIKA PAK OPAN Viewers also liked
PDF
PPS
Guillaumet par Saint Exupéry. PDF
Lecturas12y3 120701212044-phpapp01 DOC
Programa matematica 1 año PPS
Quelques lavoirs du Gard. PPT
PDF
Comunicado lectura del mensaje presidencial PPTX
PPTX
Alistair Dent - SMX West 2015 - DIY data sharing for retargeting PPS
PDF
Relatório palácios do rio blog PPTX
PPT
dematérialisation des marchés publics : comment rechercher les avis de marché... PPT
More from sandiperlang
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
Tugas 2 mtk bab 1 semester 3 DOCX
DOCX
Tugas mtk bab 4 semester 3 Tugas 3
- 1.
TUGAS 3
NAMA KELOMPOK: 1.SUSANDI 2.RAFIS 3.GERIAN
KELAS : 1EA
LATIHAN 7.1
1. ∫ 100 𝑑𝑥 = 100𝑥 + 𝑐
2. ∫ 6𝑥 𝑑𝑥 = 3𝑥2
+ 𝑐
3. ∫( 3𝑥2
+ 4𝑥 − 5) 𝑑𝑥 = 𝑥3
+ 2𝑥 −
5𝑥 + 𝑐
4. ∫( 𝑥2
+ 1)√ 𝑥 𝑑𝑥 =
2
7
𝑥2
1
+
2
3
𝑥2
3
+ 𝑐
5. ∫( 𝑥 𝑒
+ 𝑒 𝑥 ) 𝑑𝑥 =
𝑥 𝑒+1
𝑒+1
+ 𝑒 𝑥
+ 𝑐
6. ∫(10𝑥 + 30)3
10 𝑑𝑥 =
(10𝑥+30)4
4
+ 𝑐
7. ∫(𝑥2
− 3)4
2𝑥 𝑑𝑥 =
(𝑥2−3)5
5
+ 𝑐
8. ∫(𝑠𝑖𝑛2
𝑥cos 𝑥) 𝑑𝑥 =
𝑠𝑖𝑛3
3
𝑥 + 𝑐
9. ∫ 𝑥2
− 𝑠𝑖𝑛 𝑥3
𝑑𝑥 =
− cos 𝑥3
3
+ 𝑐
10. ∫ 𝐼𝑛 𝑥 𝑑𝑥 = 𝑥 𝐼𝑛 𝑥 = 𝑥 𝐼𝑛 𝑥 − 𝑥 +
𝑐
penyelesaian :
1. =
𝑑
𝑑𝑥
(100𝑥 + 𝑐) = 100𝑥 + 𝑐
2. =
𝑑
𝑑𝑥
(3𝑥2
+ 𝑐) = 6𝑥 + 0 = 100
3. =
𝑑
𝑑𝑥
(𝑥3
+ 2𝑥2
− 5𝑥 + 𝑐) = 3𝑥2
+ 4𝑥 − 5 + 0 = 3𝑥2
+4x-5
4. =
𝑑
𝑑𝑥
(
2𝑥
1
2
7
+
2𝑥
3
2
3
+ c)=
2𝑥
−1
2
14
+
6𝑥
1
2
6
+ 0 =
1𝑥
−1
2
7
+ 𝑥
1
2
5. =
𝑑
𝑑𝑥
(
𝑥 𝑒+1
𝑒+1
+ 𝑒 𝑥
+ 𝑐) =
𝑒+1.𝑥 𝑒+1−1
1𝑒1−1+0
+ 𝑥𝑒 𝑥−1
+ 𝑐 =
𝑒+𝑥 𝑒
1
+ 𝑥𝑒 𝑥−1
+ 0 = 𝑒 + 𝑥 𝑒
+
𝑥𝑒 𝑥−1
6. =
𝑑
𝑑𝑥
(10𝑥+30)4
4
+ 𝑐 =
10𝑥4
4
+
304
4
+ 𝑐 =
40𝑥3
4
+ 0 = 10𝑥3
7. =
𝑑
𝑑𝑥
(𝑥2−3)5
5
+ c =
𝑥10
5
−
35
5
+ 𝑐 =
10𝑥9
5
+ 0 = 2𝑥9
8. =
𝑑
𝑑𝑥
(
𝑠𝑖𝑛3
3
𝑥 + 𝑐) =
𝑠𝑖𝑛2 𝑥
3
.
sin 𝑥
3
+ 0 =
(1−𝑐𝑜𝑠2 𝑥) .
3
sin 𝑥
3
9. =
𝑑
𝑑𝑥
(
− cos 𝑥3
3
+ 𝑐) =
−3 sin 𝑥2
3
+ 0 = −sin 𝑥2
10. =
𝑑
𝑑𝑥
( 𝑥 𝐼𝑛 𝑥 − 𝑥 + 𝑐) = 𝑥.
𝑑𝑥
𝑥
− 1 =
𝑥−1𝑑𝑥
𝑥
- 2.
LATIHAN 7.2
1. ∫8𝑑𝑥
2. ∫
3
4
𝑑𝑥
3. ∫9.75 𝑑𝑥
4. ∫√3𝑑𝑥
5. ∫(
√40
3
√10+15
)𝑑𝑥
6. ∫16 √2 𝑑𝑡
7. ∫ 𝑒2
𝑑𝑥
8. ∫2𝜋 𝑑𝑟
9. ∫−21𝑑𝑢
10.∫
6
𝑒
𝑑𝑥
Penyelesaian :
1. = 8x+c
2. =
3
4
𝑥 + 𝑐
3. = 9𝑥. 75𝑥 + 𝑐
4. = √3 x+c
5. =
40𝑥
2
3
10𝑥
1
2+15𝑥
+ 𝑐
6. = 16𝑡. √2 𝑡 + c
7. = 𝑒𝑥2
+ c
8. = 2𝑟. 𝜋𝑟 + c
9. = -21 u + c
10.=
6𝑥
𝑒𝑥
+ c
- 3.
LATIHAN 7.3
1. ∫𝑥5
𝑑𝑥
2. ∫ √ 𝑥34
𝑑𝑥
3. ∫ 𝑥√2
𝑑𝑥
4. ∫
1
𝑥2
𝑑𝑥
5. ∫ 𝑡100
𝑑𝑡
6. ∫ 𝑢2𝜋
𝑑𝑢
7. ∫
1
√𝑥
𝑑𝑥
8. ∫
𝑥5
𝑥2
𝑑𝑥
9. ∫ 𝑟−1
𝑑𝑟
10.∫
1
𝑡
𝑑𝑡
Penyelesaian :
1. =
𝑥6
6
+ 𝑐
2. = ∫ 𝑥
3
4 𝑑𝑥 =
𝑥
7
4
7
4
+ c =
4𝑥
7
4
7
+ 𝑐
3. =
𝑥√2+1
√2+1
+ 𝑐
4. =∫ 𝑥−2
𝑑𝑥 =
𝑥−1
−1
+ 𝑐 = −
1
𝑥
+ 𝑐
5. =
𝑡101
101
+ 𝑐
6. =
42𝜋+1
2𝜋+1
+ 𝑐
7. = ∫ 𝑥
−1
2 𝑑𝑥 =
𝑥
1
2
1
2
+ 𝑐 =
2𝑥
1
2
1
+ 𝑐
8. =
𝑥6
𝑥3
+ 𝑐
9. =
𝑟−1+1
−1+1
+ 𝑐 = ∞
- 4.
10.∫ 𝑡−1
𝑑𝑡 =
𝑡−1+1
−1+1
+𝑐 = ∞
LATIHAN 7.4
1. ∫ 𝑒 𝑡
𝑑𝑡
2. ∫ 𝑒20𝑥
𝑑𝑥
3. ∫ 𝑒 𝜋𝑥
𝑑𝑥
4. ∫ 𝑒0,25𝑥
𝑑𝑥
5. ∫ 𝑒
𝑥
5 𝑑𝑥
6. ∫ 𝑒√3𝑥
𝑑𝑥
7. ∫4 𝑥
𝑑𝑥
8. ∫23𝑥
𝑑𝑥
9. ∫1000,25𝑥
𝑑𝑥
10.∫ 𝜋
𝑥
5 𝑑𝑥
Penyelesaian :
1. = 𝑒 𝑡
+ 𝑐
2. =
1
20
𝑒20𝑥
+ 𝑐 =
𝑒20𝑥
5
+ 𝑐
3. =
1
𝜋
𝑒 𝜋𝑥
+ 𝑐 =
𝑒 𝜋𝑥
𝜋
+ 𝑐
4. =
1
0,25
𝑒0,25𝑥
+ 𝑐 =
𝑒0,25𝑥
0,25
+ 𝑐
5. =
1
𝑥
5
𝑒
𝑥
5 + 𝑐 =
5
𝑥
𝑒
𝑥
5 + 𝑐
6. =
1
√3
𝑒√3𝑥
+ 𝑐 =
𝑒√3𝑥
√3
+ c
7. =
1
𝐼𝑛 4
4 𝑥
+ 𝑐 =
4 𝑥
𝐼𝑛 4
+ 𝑐
8. =
1
3 𝐼𝑛 2
23𝑥
+ 𝑐 =
23𝑥
3 𝐼𝑛 2
+ 𝑐
9. =
1
0,25 𝐼𝑛 100
1000,25𝑥
+ 𝑐 =
1000,25𝑥
0,25 𝐼𝑛 100
+ 𝑐
10.=
1
𝑥
5
𝜋
𝑥
5 + 𝑐 =
5
𝑥
𝜋
𝑥
5 + 𝑐
- 5.
LATIHAN 7.5
1. ∫cos𝑣 𝑑𝑣
2. ∫sin(
1
2
𝜋𝑥)𝑑𝑥
3. ∫cos(18) 𝑑𝑥
4. ∫ 𝑠𝑒𝑐2
(√3𝑥)𝑑𝑥
5. ∫ 𝑐𝑠𝑐2
(2,5) 𝑑𝑥
6. ∫sec (
5
6
𝑥)tan(
5
6
𝑥)𝑑𝑥
7. ∫csc
x
3
𝑐𝑜𝑡
𝑥
3
𝑑𝑥
8. ∫csc(ex) cot(𝑒𝑥)𝑑𝑥
9. ∫sin 3𝜃 𝑑𝜃
10.∫cos(25𝜋𝑥) 𝑑𝑥
Penyelesaian :
1. = Sin v + c
2. = −
1
1
2𝜋
cos (
1
2
𝜋𝑥) + 𝑐 = −2𝜋cos (
1
2
𝜋𝑥) + 𝑐
3. =
1
8
sin(18𝑥) + 𝑐
4. =
1
√3
tan(√3𝑥) + 𝑐 =
tan(√3𝑥)
√3
+ 𝑐
5. = −
1
2,5
cot(2,5 𝑥) + 𝑐 =
−cot(2,5𝑥)
2,5
+ 𝑐
6. =
1
5
6
sec(
5
6
𝑥) + 𝑐 =
6
5
sec (
5
6
𝑥) + 𝑐
7. =
1
1
3
csc(
x
3
) + c = 3 csc (
𝑥
3
) + 𝑐
8. = −
1
𝑒
csc (ex) + c =
− csc( 𝑒𝑥)
𝑒
+ 𝑐
9. = −
1
3
cos(3𝜃) + 𝑐 =
−cos(3𝜃)
3
+ c
10.=
1
25𝜋
sin(25𝜋𝑥) + 𝑐 =
sin(25 𝜋𝑥)
25𝜋
+ c
- 6.
LATIHAN 7.6
1. ∫
1
1+𝜃2
𝑑𝜃
2.∫
𝑑𝑥
√16−𝑥2
3. ∫
1
49+𝑥2
𝑑𝑥
4. ∫
𝑑𝑡
0,25+𝑡2
5. ∫
𝑑𝑢
√𝑢2(𝑢2−1)
6. ∫
1
|𝑥|√𝑥2−41
𝑑𝑥
7. ∫
1
√
81
100
−𝑥2
𝑑𝑥
8. ∫
1
𝜋2+𝑥2
𝑑𝑥
9. ∫
𝑑𝑡
√𝑡2(𝑡2−
1
4
)
10.∫
1
|𝑥|√𝑥2−7
𝑑𝑥
Penyelesaian :
1. = 𝑡𝑎𝑛−1
𝜃 + 𝑐 = −𝑐𝑜𝑡−1
𝜃 + 𝑐
2. = ∫
1
√42−√𝑥2
𝑑𝑥 = 𝑠𝑖𝑛−1
(
𝑥
4
) + 𝑐
3. = ∫
1
√492+𝑥2
𝑑𝑥 =
1
√49
𝑡𝑎𝑛−1
(
𝑥
√49
) + 𝑐
4. = ∫
1
√0,252+𝑡2
𝑑𝑡 =
1
√0,25
𝑡𝑎𝑛−1
(
𝑡
√0,25
)+ 𝑐
5. = ∫
1
|𝑢|√𝑢2−√12
𝑑𝑢 =
1
1
𝑠𝑒𝑐−1
(
𝑢
1
) + 𝑐 = 𝑠𝑒𝑐−1( 𝑢) + 𝑐
6. = 𝑠𝑒𝑐−1
(
𝑥
41
) + c = - 𝑐𝑠𝑐−1
(
𝑥
41
) + c
7. = ∫
1
√
(9)2
10
−𝑥2
𝑑𝑥 = 𝑠𝑖𝑛−1
(
𝑥
9
10
) + 𝑐 =𝑠𝑖𝑛−1
(
10𝑥
9
) + 𝑐 = −𝑐𝑜𝑠−1
(
10𝑥
9
) + 𝑐
8.
1
𝜋
𝑡𝑎𝑛−1 𝑥
𝜋
+ 𝑐 = −
1
𝜋
𝑐𝑜𝑡−1
(
𝑥
𝜋
)+c
- 7.
9.= ∫
1
| 𝑡|√𝑡2−
(1)
2
2
𝑑𝑥 =
1
1
2
𝑠𝑒𝑐−1
(
𝑡
1
2
) + 𝑐 = 2𝑠𝑒𝑐−1(2𝑡) + 𝑐
10.𝑠𝑒𝑐−1
(
𝑥
7
) + 𝑐 = −𝑐𝑠𝑐−1
(
𝑥
7
) + 𝑐