Recommended
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
Tugas matematika 3 (semester 2) : Integral
DOCX
DOCX
Tugas 3 (Matematika 2) : Integral
DOCX
Tugas 3 (Matematika 2) : Integral
DOCX
DOCX
DOCX
Tugas matematika 3 (semester 2) : Integral
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
Tugas MTK 3 Kisi-Kisi Tes 2
DOCX
PDF
Telenor Sweden, Live the brand
PDF
PDF
DOCX
PDF
RAD Studio XE7 DeepDive_VCL 자세히 살펴보기_김현수
PDF
Agnieszka Szóstak - The Good, The Bad, and the PR.
PDF
PDF
13% of Greeks turned their hobby into a business – Visa Infographic
PDF
Armonia cromatica y psicologia del color
PPTX
DOCX
More Related Content
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
Tugas matematika 3 (semester 2) : Integral
DOCX
DOCX
Tugas 3 (Matematika 2) : Integral
What's hot
DOCX
Tugas 3 (Matematika 2) : Integral
DOCX
DOCX
DOCX
Tugas matematika 3 (semester 2) : Integral
DOCX
DOCX
DOCX
DOCX
DOCX
DOCX
Tugas MTK 3 Kisi-Kisi Tes 2
DOCX
Viewers also liked
PDF
Telenor Sweden, Live the brand
PDF
PDF
DOCX
PDF
RAD Studio XE7 DeepDive_VCL 자세히 살펴보기_김현수
PDF
Agnieszka Szóstak - The Good, The Bad, and the PR.
PDF
PDF
13% of Greeks turned their hobby into a business – Visa Infographic
PDF
Armonia cromatica y psicologia del color
PPTX
DOCX
PPTX
8. la humildad de la sabiduría divina
PPTX
Hc multidimensional dr. duque
PDF
Current Openings At St. Mary Medical Center, Apple Valley, CA
More from Polman Negeri Bangka Belitung
DOCX
DOCX
DOCX
Tugas Calculus : Limit (Hal.8-14) Kelompok 2
DOCX
DOCX
DOCX
DOCX
DOCX
Recently uploaded
DOCX
PEMC 2025 - 2026 MEX xxxxxxxxxxxxxxxxxxx
PPT
O’zbekiston Respublikasida uzluksiz ta’lim tizimi va uning turlari.ppt
PPTX
Святой Иоанн Кантий, 1390–1473 Доктор Церкви.pptx
PDF
🌟 LABUAN4D – PLATFORM HIBURAN ONLINE TERBAIK!
PDF
محاضرة جامعة الرباط- هوية العمارة السودانية
PDF
Correlation - सहसंबंध @irfanullah_mehar #world_of_wisdom.pdf
PDF
ict final project about food chains .pdf
PDF
Projecte de la porta d'i3A: La màgia de l'unicorn
PDF
( من علوم القرآن )_men_aloom_alquran.pdf
PDF
15 Dec 2025 PS.pdf 15 Dec 2025 PS.pdf 15 Dec 2025 PS.pdf
Tugas 3 MTK2 1. POLITEKNIK MANUFAKTUR NEGERI BANGKA BELITUNG
Tugas 3 MTK2 Page 1
TUGAS 3
MATEMATIKA 2
(Integral)
D
I
S
U
S
U
N
Oleh :
Nama : Dita Yoriza
Prodi : Teknik Elektronika
Kelas : 1E A
Semester : 2 (Dua)
POLITEKNIK MANUFAKTUR NEGERI BANGKA BELITUNG
KawasanIndustri Air KantungSungailiat, Bangka 33211
Telp. (0717) 93586, Fax. (0717) 93585
Email :polman@polman-babel.ac.id
Website :www.polman-babel.ac.id
TAHUN AJARAN 2014/2015
2. POLITEKNIK MANUFAKTUR NEGERI BANGKA BELITUNG
Tugas 3 MTK2 Page 2
1. Hitunglah∫ (𝑥12
−
12
𝑥5 + √𝑥103
) 𝑑𝑥
∫(𝑥12
−
12
𝑥5
+ √ 𝑥103
) 𝑑𝑥
= ∫ 𝑥12
− 12𝑥−5
+ 𝑥
10
3 𝑑𝑥
=
1
13
𝑥13
−
12
−4
𝑥−4
+
1
13
3
𝑥
13
3 + 𝐶
=
1
13
𝑥13
+ 3𝑥−4
+
3
13
𝑥
13
3 + 𝐶
=
1
13
𝑥13
+
3
𝑥4
+
3
13
√ 𝑥133
+ 𝐶
2. Hitunglah∫[cos(7𝑥 − 12) + 𝑠𝑒𝑐2(9𝑥 − 15)] 𝑑𝑥
∫[cos(7𝑥 − 12) + 𝑠𝑒𝑐2(9𝑥 − 15)] 𝑑𝑥
=
1
7
sin(7𝑥 − 12)+
1
9
tan(9𝑥 − 15) + 𝐶
3. Denganmenggunakancarasubstitusihitunglah∫
𝑥2
√3+𝑥3 𝑑𝑥
∫
𝑥2
√3 + 𝑥3
𝑑𝑥
= ∫ 𝑥2
.(3 + 𝑥3)−
1
2 𝑑𝑥
𝑢 = 3 + 𝑥3
→
𝑑𝑢
𝑑𝑥
= 3𝑥2
→ 𝑑𝑥 =
𝑑𝑢
3𝑥2
∫ 𝑥2
. (3 + 𝑥3)−
1
2 𝑑𝑥 = ∫ 𝑥2
. 𝑢
−
1
2 .
𝑑𝑢
3𝑥2
=
1
3
∫ 𝑢
−
1
2 𝑑𝑢 =
1
3
.
1
1
2
𝑢
1
2 + 𝐶
=
2
3
√ 𝑢 + 𝐶 =
2
3
√3 + 𝑥3 + 𝐶
4. Denganmenggunakancarasubstitusihitunglah∫(2𝑥 + 2)cos(5𝑥2
+ 10𝑥 + 8) 𝑑𝑥
∫(2𝑥 + 2)cos(5𝑥2
+ 10𝑥 + 8) 𝑑𝑥
𝑢 = 5𝑥2
+ 10𝑥 + 8 →
𝑑𝑢
𝑑𝑥
= 10𝑥 + 10 → 𝑑𝑥 =
𝑑𝑢
10𝑥 + 10
∫(2𝑥 + 2)cos(5𝑥2
+ 10𝑥 + 8) 𝑑𝑥 = ∫(2𝑥 + 2).cos 𝑢 .
𝑑𝑢
10𝑥 + 10
= ∫(2𝑥 + 2).cos 𝑢 .
𝑑𝑢
5(2𝑥 + 2)
=
1
5
∫cos 𝑢 𝑑𝑢
=
1
5
sin 𝑢 + 𝐶 =
1
5
sin(5𝑥2
+ 10𝑥 + 8) + 𝐶
3. POLITEKNIK MANUFAKTUR NEGERI BANGKA BELITUNG
Tugas 3 MTK2 Page 3
5. Hitunglah integral parsildari∫ 2𝑥. sin(12𝑥 + 4) 𝑑𝑥
∫2𝑥. sin(12𝑥 + 4) 𝑑𝑥
𝑢 = 2𝑥 →
𝑑𝑢
𝑑𝑥
= 2 → 𝑑𝑢 = 2𝑑𝑥
𝑑𝑣 = sin(12𝑥 + 4) 𝑑𝑥 → 𝑣 = ∫sin(12𝑥 + 4) 𝑑𝑥 = −
1
12
cos(12𝑥 + 4)
∫ 𝑢. 𝑑𝑣 = 𝑢. 𝑣 − ∫ 𝑣 𝑑𝑢
∫2𝑥. sin(12𝑥 + 4) 𝑑𝑥 = 2𝑥. −
1
12
cos(12𝑥 + 4) − ∫ −
1
12
cos(12𝑥 + 4). 2𝑑𝑥
= −
1
6
𝑥 cos(12𝑥 + 4) + 2 [
1
12
12
sin(12𝑥 + 4)] + 𝐶
= −
1
6
𝑥 cos(12𝑥 + 4) +
1
72
sin(12𝑥 + 4) + 𝐶
6. Denganmenggunakanbantuantabelhitunglah integral dari∫ 𝑥3
𝑒−5𝑥
𝑑𝑥
+ 𝑥3
(turunan) 𝑒−5𝑥
(integral)
- 3𝑥2
−
1
5
𝑒−5𝑥
+ 6𝑥
1
25
𝑒−5𝑥
- 6 −
1
125
𝑒−5𝑥
+ 0
1
625
𝑒−5𝑥
= −
1
5
𝑥3
𝑒−5𝑥
−
3
25
𝑥2
𝑒−5𝑥
−
6
125
𝑥𝑒−5𝑥
−
6
625
𝑒−5𝑥
+ 𝐶
7. Hitung integral fungsirasionaldari∫
3𝑥
𝑥2−2𝑥−15
𝑑𝑥
3𝑥
𝑥2 − 2𝑥 − 15
=
3𝑥
(𝑥 − 5)(𝑥 + 3)
=
𝐴
( 𝑥 − 5)
+
𝐵
( 𝑥 + 3)
𝑥 − 5 = 0 → 𝑥 = 5 → 𝐴 =
3.5
(5 + 3)
=
15
8
𝑥 + 3 = 0 → 𝑥 = −3 → 𝐵 =
3. −3
(−3 − 5)
=
9
8
∫
3𝑥
𝑥2 − 2𝑥 − 15
𝑑𝑥 = ∫
15
8
( 𝑥 − 5)
𝑑𝑥 + ∫
9
8
( 𝑥 + 3)
𝑑𝑥
4. POLITEKNIK MANUFAKTUR NEGERI BANGKA BELITUNG
Tugas 3 MTK2 Page 4
=
15
8
ln| 𝑥 − 5| +
9
8
ln| 𝑥 + 3| + 𝐶
8. Hitunglah integral tentudari∫ (𝑥4
+ 5𝑥 +
1
𝑥3)
4
1
𝑑𝑥
∫(𝑥4
+ 5𝑥 +
1
𝑥3
)
4
1
𝑑𝑥 = ∫(𝑥4
+ 5𝑥 + 𝑥−3
)
4
1
𝑑𝑥
=
1
5
𝑥5
+
5
2
𝑥2
−
1
2
𝑥−2
=
1
5
𝑥5
+
5
2
𝑥2
−
1
2𝑥2
= (
1
5
. 45
+
5
2
. 42
−
1
2.42
) − (
1
5
. 15
+
5
2
. 12
−
1
2.12
)
= (
1024
5
+ 40 −
1
32
) − (
1
5
+
5
2
−
1
2
)
=
1024
5
−
1
5
−
1
32
−
4
2
+ 40 =
1023
5
−
1
32
+ 38
=
32736 − 5 + 6080
160
=
38811
160
9. Tentukanluasdaerah yang dibatasiolehkurva𝑦 = 𝑥2
+ 4dangaris𝑦 = −𝑥 + 16
𝑦1 = 𝑦2 → 𝑥2
+ 4 = −𝑥 + 16
𝑥2
+ 𝑥 − 12 = 0
( 𝑥 + 4)( 𝑥 − 3) = 0
𝑥 = −4 𝑎𝑡𝑎𝑢 𝑥 = 3
𝐿 = ∫(−𝑥 + 16) − ( 𝑥2
+ 4)
3
−4
𝑑𝑥
= ∫(−𝑥2
− 𝑥 + 12)
3
−4
𝑑𝑥 = −
1
3
𝑥3
−
1
2
𝑥2
+ 12𝑥
= (−
1
3
. 33
−
1
2
. 32
+ 12.3) − (−
1
3
. −43
−
1
2
. −42
+ 12. −4)
= (−9 −
9
2
+ 36) − (
64
3
− 8 − 48)
= 27 −
9
2
−
64
3
+ 56 = −
64
3
−
9
2
+ 83
=
−128 − 27 + 498
6
=
343
6
𝑠𝑎𝑡𝑢𝑎𝑛 𝑙𝑢𝑎𝑠
10. Tentukanlah volume benda yang terbentukdenganmemutarmengelilingisumbu-y
daridaerah yang dibatasioleh𝑦 = 3𝑥, 𝑦 = 𝑥, 𝑦 = 0dangaris𝑦 = 3
𝑦 = 3𝑥 → 𝑥 =
1
3
𝑦
𝑦 = 𝑥 → 𝑥 = 𝑦
5. POLITEKNIK MANUFAKTUR NEGERI BANGKA BELITUNG
Tugas 3 MTK2 Page 5
𝑉 = 𝜋 ∫( 𝑥1
2
− 𝑥2
2)
3
0
𝑑𝑦
= 𝜋 ∫(𝑦2
− (
1
3
𝑦)
2
)
3
0
𝑑𝑦 = 𝜋 ∫ (𝑦2
−
1
9
𝑦2
)
3
0
𝑑𝑦
= 𝜋 ∫
8
9
𝑦2
3
0
𝑑𝑦 = 𝜋 [
8
9
3
𝑦3
]
= 𝜋 [
8
27
𝑦3
] = 𝜋 [
8
27
. 33
−
8
27
. 03
]
= 𝜋[8 − 0] = 8𝜋 𝑠𝑎𝑡𝑢𝑎𝑛 𝑣𝑜𝑙𝑢𝑚𝑒